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particle with half-integral spin are developed. An analysis of the spin equations is given.
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1. INTRODUCTION

It is well known that the hypothesis of the rotating
electron was advanced by G.E. Uhlenbeck and S. A.
Goudsmit1 in 1925,1' as a convenient classical model
of the fourth quantum number introduced by W. Pauli4

to explain the duality in the properties of an optical
electron.2' According to the Uhlenbeck-Goudsmit hypo-
thesis, in addition to an intrinsic mechanical angular
momentum or spin, the electron must also have an in-
trinsic magnetic moment. This made it possible to ex-
plain a number of experimental facts about the spectra
of alkali metals and the anomalous Zeeman effect.

The first attempt to describe the motion of the spin in
an electromagnetic field (a Coulomb field + an external
magnetic field), by use of the methods of special relativity
theory, is due to L. H. Thomas.5 In fact, however, the
foundations of the relativistic theory of spin in classical
electrodynamics were laid by J . I . Frenkel6·7 in 1926.
Without, at this point, going into the details of Frenkel's
theory, which has also been expounded fully in his well
known book on electrodynamics,8 we point out only that
in this theory the intrinsic magnetic moment of the elec-
tron in its rest system is set exactly equal to the Bohr
magneton.

After the appearance of Frenkel's fundamental work,7

from time to time over many years papers on the clas-
sical theory of spin were published, mainly by foregoing
authors (H. Kramers, H. Honl, and A. Papapetrou,
H.J. Bhabha and H.C. Corben, G. Weisshoff and A.
Raabe, etc. ; see the recent review article, Ref. 36),
essentially based on the fundamental elements of Fren-
kel's theory. Nevertheless these papers did not r e -
ceive general recognition, owing to the imperfections
of the physical bases of the theory, and also to the ra-
pid development of the more consistent quantum theory
of spin, first proposed by W. Pauli,9 and then in a more
elegant relativistically covariant form by P.A.M.
Dirac.10

! We note that the idea of a proper rotation of the electron had
arisen even earlier (cf., e. g., Refs. 2, 3) but received con-
crete content only in the hypothesis of Uhlenbeck and Goud-
smit.

2>Cf. also the comment of N. Bohr on the paper of G. E. Uhl-
enbeck and S. A. Goudsmit in Nature, in which he calls at-
tention to the importance of the hypothesis of electron spin
in the light of the correspondence between classical and
quantum mechanics.

Only since the appearance in 1959 of the Bargmann-
Michel-Telegdi equation," which described the motion
of the spin in constant and uniform fields, was there
renewed interest in the classical theory of spin. The
new classical theory took into account the anomalous
magnetic moment, which had been discovered in the
meantime12 and which provided an intuitive concept of
the precession of the spin in external fields and a great
improvement in precise experiments to measure the
^-factors of the electron13 and of other light par-
ticles14·15 (see also the review papers, Refs. 16,17).
The Bargmann-Michel-Telegdi equation, written in a
special coordinate system (the spin is described in the
rest system, and the external field and the radiation
field, in the laboratory system), led to theoretical con-
firmation of the effect of radiative self-polarization of
relativistic electrons, which was first predicted by the
methods of quantum electrodynamics18"20 and subsequent-
ly observed experimentally.21·22 All this can be regard-
ed as a great success of the classical theory of spin.

It is well established24"27 (see also Refs. 28 and 29)
that the Bargmann-Michel-Telegdi equation follows in
the quasiclassical limit from the Dirac equation with
Pauli's vacuum interaction.30

Finally, comparatively recently R.H. Good, Jr . , 3 1

P. Nyborg,32 and a number of other authors33"36 have
derived spin equations which generalize the Bargmann-
Michel-Telegdi equations to the case of nonuniform ex-
ternal fields. The correspondence between these equa-
tions and quantum theory has been discussed in papers
by Plathe.38

There is still active interest in the classical theory
of spin, owing to its convenience in the explanation of
polarization effects for relativistic particles (see Refs.
39-41, etc.). We also note that intuitive classical
models have great heuristic significance in the descrip-
tion of the spin properties of microscopic particles.42

Unfortunately, the foundation-laying work of J .I .
Frenkel7 is now almost forgotten. The opinion has be-
come accepted that Frenkel's theory "served as the
basis for dealing with all questions connected with the
dynamics of the spinning electron, up to the time when
Dirac created the new quantum-mechanical relativistic
theory of the electron."43

The purpose of the present paper is to show that
Frenkel's theory is not merely of historical interest.
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Starting from general requirements of relativistic co-
variance, we have established that if one phenomeno-
logically introduces into Frenkel's equations an arbit-
rary intrinsic magnetic moment which in the rest sys-
tem is not equal to the Bohr magneton (for instance, it
includes the anomalous magnetic moment of the par-
ticle) , one gets equations that reduce in the case of con-
stant uniform fields to the Bargmann-Michel-Telegdi
spin equation and the ordinary classical equation of mo-
tion of the charge. Moreover, it follows from an exact
analysis of the Frenkel equations that after elimination
of nonphysical terms they lead to generalized spin equa-
tions that agree, in particular, with the equations of
Good, Nyborg, and others.

2. FUNDAMENTAL PROPOSITIONS OF THE
CLASSICAL RELATIVISTIC THEORY OF SPIN

Following J. I. Frenkel,7 we shall start from a point
model of a particle with half-integral spin, which pos-
sesses a charge and an intrinsic magnetic moment.
Unlike Frenkel, however, we take as the magnetic not
the Bohr magneton lJ-o = eH/2moc but an arbitrary value

μ =№os. (1)

Inclusion of the g factor here takes into account the
anomalous magnetic moment of the particle. For the
electron we can take12 # = 2(1 + α/2π), and the spin

For convenience in comparing with the Frenkel theory
we write the intrinsic magnetic moment (1) also in the
form

μ-!**«. (2)

where "*- = e/moc is a notation used by Frenkel.

We shall describe the intrinsic magnetic moment of
the particle with the antisymmetric tensor μ"β intro-
duced by Frenkel, and the related (dimensionless) spin
tensor which we denote by ΙΓ*= (Φ,Π). According to
Eq. (1) we have

μ«Ι>=μΠ<Ί>. (3)

To obtain the correct relativistic equations of motion
of a particle with half-integral spin it is necessary to
observe the following rules:

I. In the rest system of the particle the spin tensor
ΓΓ" must have only purely spatial components

Π£ν=(0, Πο). (4)

This requirement is secured by Frenkel's condition3'

*plli»-o. (5)

As a consequence of this, we have the relation

Φ = [βΠΙ. (6)

II. In the rest system of the particle the spin equation
must have the classical form

«ιπο _ μ , ΐ , Β ΐ ( 7 )

l>rrhe numbers placed to the left of equations are those given
to them in Frenkel's paper, Ref. 7.

III. Besides the three ordinary degrees of freedom, a
point particle with spin must also have a "rotational"
degree of freedom, which correspond to the 2 Is 1+ 1
possible orientations of its spin (see Ref. 44). Since
the rotational motion of the particle brings in two de-
grees of freedom (sic), we require that the tensor Π""
have only two independent components. We note that so
far, with antisymmetry and the condition (6) taken into
account, the tensor Π"" has three independent compon-
ents. We can impose a supplementary condition on the
invariant Uuvn.uv, fixing its value as

Then according to Eq. (3) we have

4·μα(μ°'ι = μ2. (9)

From the condition (8) we immediately obtain

n M , i ^ l = o. do)

where τ is the proper time.

IV. In accordance with the postulate of special re-
lativity theory we have have4'

and consequently

(11)

(12)

where the dot indicates the derivative with respect to
the proper time.

V. In the rest system the force acting on a particle
with charge e and intrinsic magnetic moment μ must be
determined by the well known expression

£ = ίΕ0 + μ*(ΠοΗο). (13)

The last term in this equation is due to the potential
energy

U = - (μΗ) (14)

of the intrinsic magnetic moment in the magnetic field.

With these rules we can formulate unambiguously the
spin equations of motion. We shall show how this can
be done.

3. DERIVATION OF THE EQUATIONS OF MOTION
OF A PARTICLE WITH HALF-INTEGRAL SPIN

In accordance with Frenkel's condition, Eq. (5), we
shall assume that the tensor Π"" is spacelike [see Eq.
(4)]. We write the covariant generalization of Eq. (7)
in the form

5iL- J L (Ηι\,Π>>* - i f ' (ι*χν _ νν (15)

The second term on the right side of this equation is
inserted in order to satisfy the condition (8). By using
the spacelike nature of nu", the condition (12), and also
the identity

nttVtfyip|1=u, (16)

we can verify that Eq. (10), and consequently the con-
dition (8), are actually satisfied.

4>The metric tensor used ing·"1'= (—1, +1, +1, +1).
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It remains to determine X". For this purpose we cal-
culate the derivative d{vuU

uv)/dr, which is equal to zero
according to Eq. (5). Differentiating, we get

with the Bargmann-Michel-Telegdi equation11:

From this we find

(β», +± „»„,) X" = o.

(18)

The arbitrary timelike vector V satisfies the relation

i*i'z» 0. (19)

( 2 0 )

The vector ap in this equation is defined by the for-
mula

Substituting -V in Eq. (15), we get Frenkel's spin
equation with arbitrary μ:

i ^ l L - ι,-πμρ) ap\.

c» (μ/ΛίΙ
(21)

We shall now find the equation for the force acting on
the charged particle with spin. The covariant general-
ization of Eq. (13) can be written in the form

»=-ffl"V,+4n,,0Va. (22)

The meaning of the mass coefficient Μ will be made
clear further on in a deeper analysis of the correspond-
ing Frenkel force equation.

To satisfy the condition (12), the derivatives in Eq.
(22) have been "extended" with an added term:

= d* (23)

If we now substitute Eq. (22) in the spin Eq. (20), we
get a self-consistent version of the Frenkel equation

Jt-

[ ( J L - ^

(24)
Setting here [cf. Eq. (2)]

? ? = 2 ^ ' Μ = m»· (25)

we arrive at the equation obtained by P. Nyborg32 (see
also Ref. 35). For constant uniform fields we have the
equation investigated by M. Kolsrud.2 7·3 7

If we use not a tensor, but the vector

(26)

which was derived in classical spin theory, in a correct
manner, by Yu. M. Shirokov,45 Eq. (24) goes over into
an equation of the form

ASa

(27)

where E"" is the tensor dual to the electromagnetic field
tensor H.

For M=m0 Eq. (27) for a particle with half-integral
spin is identical with the equation obtained by R. H.
Good31 and several other authors.3 2 ' 3 5 For constant
uniform fields the substitution (25) becomes identical

ds"
2m0c

(27')

(17) 4. ANALYSIS OF THE FRENKEL SPIN EQUATIONS

In deriving a system of equations describing the mo-
tion of a point charged particle with spin, J. I. Frenkel
used Hamilton's variation principle. The supplemen-
tary conditions I-IV were satisfied either automatically
(Points II and ΙΠ), or by the introduction of Lagrange
multipliers af (Point I) and λ (Point V).

The force equation (in our notation) was thus found in
the form

± (28)

The spin equation agreed completely with the Eq. (20),
which Frenkel had previously derived by a different
method.

At first glance, Eq. (28) differs decidedly from the
spin Eq. (22).5) It turns out, however, that this is due
to the fact that Frenkel did not make use of the further
proposition formulated in Point V.

If we repeat the procedure for determining the La-
grange multipliers λ and a", which differs from that
used by Frenkel only by the fact that the intrinsic mag-
netic moment has an anomalous part, which is taken
into account with the g factor shown in Eq. (2), we get6'

(29)

(30)

Frenkel succeeded in finding the multiplier a" only
approximately. After substituting λ and ap in Eqs. (20)
and (28), we get a system of equations which, in the
case of constant uniform fields, is identical with the
classical theory of spin constructed on the basis of the
Bargmann-Michel-Telegdi equation. In fact, if we use
the vector representation of the spin, Eq. (26), then
using the Lagrange multipliers (29) and (30) we get the
equations

It is now obvious that our assertion is correct. More-
over. Eq. (32) is identical with Good's equation for a
particle with half-integral spin, and for g = 2 it be-
comes the equation found also by I.E. Tamm [see Ref.
47, Eqs. (49) and (49')].

As for the force Eq. (31), it is easy to see that it
does not satisfy the condition (12), which is due to the
fact that the Lagrange multiplier a" has been found
only approximately.

5)When ae is substituted in Eq. (28) the second derivative of
the velocity appears, vB, which has given rise on occasion
to criticism of Frenkel's theory.43

^Considerably later the equations of motion for a classical
spinning particle with this value of λ were derived by H. C.
Corben,46 but he gave no reference to Frenkel's work. ?

881 Sov. Phys. Usp. 23(10). Oct. 1980 I. M. Ternov and V. A. Bordovitsyn 681



We shall now show that if one carries out an exact
analysis of Frenkel's spin Eq. (28), with the require-
ment of Point V taken into account, all the difficulties
are eliminated. In fact, after we differentiate with
respect to τ on the left side of Eq. (28) it can be put in
the form

( 3 3 >

We see that here the "extended" derivative D" expect-
ed according to Eq. (12) has made its appearance, but
additional terms have also appeared, one of them pro-
portional to the acceleration v", and the other corre-
sponding to the rather complicated expression

+ IT3"1 (Η » >

(34)

We can, however, note that these additional terms are
spacelike vectors. In the case of the term ~v this is
obvious, and for R" our assertion can be proved by
means of the relation

£ (35)

which is a simple consequence of Eq. (20).

However, owing to the condition (12), the acceleration
vector is in general defined up to an arbitrary space-
like vector. Accordingly, if we consider the require-
ment (13), we can drop out the term Ra as a vector
which has no physical meaning. It is appropriate to in-
clude the additional term proportional to the accelera-
tion in the left side of the Eq. (33). We then get

Comparing this equation with Eq. (22), we find that
the quantity Μ introduced earlier a priori is given by
the expression

TUT I1 u nP° (V7\

and has a quite definite physical meaning; it is the ef-
fective mass of the particle in the external electromag-
netic field. We note that in the quantum theory a simi-
lar expression for the effective mass follows from the
Dirac and Pauli equations.30

It is interesting that in constant and uniform fields the
effective mass is an integral of the motion. It is easy
to show this if we consider the relation (35) and the
identity

ΐ7μ№»ΠΪΡΗρ·ΐ>σ = 0 . ( 3 8 )

It follows from this that in the Bargmann-Michel-
Telegdi equation the effective mass can be taken into
account by the simple change m0 = M = const.

Summing up, we conclude that if we phenomenological-
ly introduce into the Frenkel equations an arbitrary
intrinsic magnetic moment in the rest system, then
after removal of nonphysical terms from the force
equation we get a system of equations which, along with
the inclusion of the anomalous magnetic moment, con-
tains as special cases all the best known equations of

the classical theory of spin that have been published

Since 1926.

This work was stimulated by a discussion that arose
at one of the seminars of the Department of Quantum
Theory of Moscow State University.

The writers take this occasion to thank all the par-
ticipants in that seminar.
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