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The present state of analytic calculations on computers is reviewed. Several programming systems which are

used for analytic calculations are discussed: SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL,

AVTO-ANALITIK, MACSYMA, etc. It is shown that these systems can be used to solve a wide range of

problems in physics and mathematics. Some physical applications are discussed in celestial mechanics, the

general theory of relativity, quantum field theory, plasma physics, hydrodynamics, atomic and molecular

physics, and quantum chemistry. Some mathematical applications which are discussed are evaluating

indefinite integrals, solving differential equations, and analyzing mathematical expressions. This review is

addressed to physicists and mathematicians working in a wide range of fields.
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1. INTRODUCTION Nevertheless, many people are extremely surprised
to hear that computers are capable of carrying out

The idea that any exact analytic procedure could be analytic as well as numerical calculations. The sur-
performed by a computer was expressed back in 1844 prise stems from both the general view of computers
by Lady Lovelace (Ada Augusta), the patron of the as tools designed especially for numerical calculations
English mathematician Charles Babbage. In 1833 and the extreme paucity of information on analytic com-
Babbage developed an "analytical engine,"1 which was a puter calculations in the Soviet literature.

programmable calculating machine with arithmetic and . . ... . . . . ,
, . . . , , ,. In algorithmic languages for numerical programming,

memory devices. A hundred years later, these proper- ~, ,, ,.. Σ , ,_· .
. * . . , . . . H. * .» ι.· « such as FORTRAN and ALGOL, all the symbols which

ties of Babbage s machine became the foundation of . , Ι ι • ±. ^ ^
, e . _,u *· ·. * ι «. t t are used of course represent certain numbers, and the

modern computers. The first successful attempts to ,. , ,. , , .. .
Γ , , . . result of the calculation is also a number,

perform analytic calculations on a computer were
undertaken a quarter-century ago for the simplest non- With the programming systems for analytic calcula-
numerical operation: differentiation.2 The next im- tions, on the other hand, it becomes possible to use
portant step in this direction—the development of a computers to perform analytically such operations as
polynomial algebra—required another ten years of rapid differentiation, simplification of expressions (collec-
developments in computer technology, the development tion of similar terms), replacement of a symbol or
of new nonumerical algorithms,3 and the creation of expression by another expression, etc. The net result
algorithmic programming languages. Among these of the calculation—and this point deserves particular

languages are the familiar" FORTRAN, ALGOL, PL/1, emphasis—is some analytic expression, e.g., a function
etc.; although LISP,5 devised by McCarthy6 in 1960, is with an explicit dependence on its arguments.
less familiar, it is far better suited for analytic calcur rt . , . , ,, . , .. , , ..
. . . It is remarkable that analytic calculations can be
lations.

carried out on digital computers, and that this capabil-
Since the mid-1960's, more than 30 programming ity was attained only after the development of several

systems have been devised for analytic calculations; subtle programming methods. In numerical calcula-
of these, about ten have found extensive use on a wide tions, for example, the particular way in which the
range of problems in physics and mathematics. data are distributed in the computer memory is usually

59 Sov. Phys. Usp. 23(1), Jan. 1980 0038-5670/80/010059-19$01.10 © 1980 American Institute of Physics 59



fixed, and the amount of data is known before the pro-
gram is begun. For analytic calculations, in contrast,
it is difficult, and sometimes impossible, to allot the
memory beforehand or to determine accurately how
much memory will be required for the intermediate
steps. One way to approach this problem is to use a
dynamic allocation of the memory: In the intermediate
steps of the calculations, data which are no longer re-
quired are erased, and the memory which thus be-
comes available is used to store new data. The algo-
rithmic language LISP is an excellent example of an
implementation of this principle.

Another distinctive feature of analytic calculations is
the greater complexity of the elementary operations
(adding, multiplying, etc.), which must be modified by
programming. Furthermore, the instructions required
to control both the input data and the calculated results
are more complicated. This is the primary distinction
between analytic and numerical calculations.

In some cases, analytic calculations can be carried
out without making direct use of symbols, which, like
numbers, are easily stored in the computer memory in
binary code. For example, the polynomial (54/7)x3yz2,
expressed in terms of the variables x,y,z,w, can be
represented completely unambiguously by the set of
numbers 54,7,3,1,2,0. This representation makes it
a simple matter to develop a compact and rapid system,
but when we turn to a symbolic operation, even such a
simple one as differentiation, the programming be-
comes extremely difficult.

At present we may distinguish among four methods
for carrying out analytic calculations on computers;
these methods of course have several features in com-
mon.

First method. The input data are entered into the
computer memory in some compact way, like that de-
scribed above, and the program required for control-
ling these data is written in a low-level language: an
assembler language (which is a symbolic form of the
machine instructions). The first method is usually
used to solve a narrow range of problems, and it is the
basis for many specialized analytic programming sys-
tems which are compact and fast. One example is the
SCHOONSCHIP7 system. This first approach suffers
from the drawback, however, that much tedious labor
is required of highly skilled programmers in order to
introduce any new capabilities (i.e., any new mathe-
matical operations).

Second method. Again, the input data are stored in a
compact manner, but the program for manipulating
these data either is written entirely in a higher-level
language (e.g., FORTRAN) or takes the form of sub-
programs, some in the higher-level language and some
in an assembler language. These subprograms are
controlled in the higher-level language. One system
which uses this method is the SAC-1 system.8

Third method, in this case the necessary operations
are programmed directly in a language at a higher level
than the assembler language. In this case, both the
input data and the manipulations of these data are

governed by the syntax of the particular language used.
In this method, the internal representation of the input
data is no longer necessarily compact, as it is in the
first two methods. Another distinguishing feature of
this method is that there is no tie with the assembler,
which differs from computer to computer. It is thus
relatively painless to transfer a program written in this
manner from one type of computer to another. The
language used for this purpose may be, for example,
LISP. In LISP, for example, it is a simple matter to
write a symbolic-differentiation program,9 using a table
of derivatives.

Fourth method. This is the most promising method
for analytic calculations, and it is the basis for the most
sophisticated analytic programming systems. This
method involves the use of a set of standard analytic-
manipulation subprograms, written in any symbolic
language L (for example, LISP). Furthermore, the
system incorporate a large number of special functions,
which are written out beforehand in L. The input data
and the program for controlling them are written in a
special external language, developed along with the rest
of the system. This external language must be of maxi-
mum convenience for the user, among other things.
Several of the systems which have been developed thus
have, for example, an ALGOL-like external language
(Table I). An important advantage of this latter ap-
proach is that the user himself can extend the capabili-
ties of the system by adding the subprograms which he
needs, written in the external language or L. Although
convenient for writing programs, these systems are
generally slower than systems of other types.

This fourth method for analytic programming is used
in some universal analytic programming systems, in
particular, REDUCE-2 (Ref. 10). The process for ex-

TABLE I. General properties of certain programming sys-
tems for analytic calculations.

System -*

Version (year)
Computer

Capacity of system

Status at JINR
Implementation language
External language
Interactive mode
Primary applications

System -•

Version (year)
Computer

Capacity of system
Status at JINR
Implementation language
External language
Interactive mode
Primary applications

SCHOONSCHIP

1977
CDC-6500

25000 words

Adopted
Assembler
*
Yes
QFT

SYMBAL

1970
CDC-6500

25 000 words
Adopted
Assembler
ALGOL
No
GP

CLAM

1972
CDC-6500

20000 words

Adopted
Assembler
LISP
No
GTR

CAMAL

1975
EC-1040

240 kbytes
Being adopted
BCPL
*
No
CM and GTR

REDUCE-2

1973
CDC-6500
EC-1040
65000 words (CDC)

300 kbytes (EC)
Adopted
LISP
ALGOL
Yes
Universal

AVTO-ANALITIK

1973
BESM-6

30000 words
BESM-6
Machine Code
*
No
MP

MACSYMA

1977
DEC PDP-10

221000 words

USP
ALGOL
Yes
Unhrersil

•Special language of this system; QFT) quantum field theory;
GTR) general theory of relativity; CM) celestial mechanics;
MP) mathematical physics; GP) general purpose.
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FIG. 1. Diagram for executing the instructions in the REDUCE-2
system.

ecuting an instruction in the REDUCE-2 system is il-
lustrated by the diagram11 in Fig. 1. It is clear that this
multiple-step translation and the use of the LISP sys-
tem affect the speed of BEDUCE-2.

A computer can be of assistance, of course, only if
the procedure for finding a solution is clear, i.e., only
if a clearly defined algorithm is available for con-
structing the necessary solution. An analytic pro-
gramming system can be thought of as a powerful and
essentially unique tool for solving the following two
types of problems: 1) those problems which require an
unacceptable amount of manual calculation; 2) those
which are very sensitive to a loss of accuracy in nu-
merical solutions.

Among the problems of the first category is that of
inverting a high-order matrix whose elements are
symbols or algebraic expressions.

An important problem in the second category is that
of analyzing the plasma stability in a tokamak; this
problem reduces to one of determing the condition
under which some function is zero in a specified region.
The position of this zero is very sensitive to a loss of
accuracy in intermediate calculations. Analytic pro-
gramming systems have proved exceptionally useful in
this problem, and this case will be discussed in detail
below (Chapter 3).

2. GENERAL PROPERTIES OF PROGRAMMING
SYSTEMS FOR ANALYTIC CALCULATIONS

For our purposes we can classify all the existing
analytic programming systems in three groups.

/. Specialized systems. These systems have been
developed for a definite field of application and usually
for very long calculations. For many systems of this
type, the number of mathematical operations involved
is small. These operations generally use special algo-
rithms, so that the calculations can be carried out
rapidly, with a relatively small demand on the central
computer memory.

Among these specialized analytic programming sys-
tems are SCHOONSCHIP7 and ASHMEDAI ,12 designed for
standard calculations in quantum field theory; ALAM,13

its modification CLAM,14 and also SHEEP,15 which have
been developed for calculations in the general theory of
relativity; MAO16 and AMS ,17 which have been developed

for operations with Poisson series in stellar mechanics;
CAMAL,18 developed for problems of celestial mech-
anics and the general theory of relativity; and AVTO-
ANALITIK,19 developed for solving several problems of
mathematical physics.

//. General-purpose systems. These incorporate the
mathematical operations typical of many problems in
physics and mathematics; differentiation, vector alge-
bra, matrix algebra, etc.

Among the systems we will mention FCRMAC ,20

ALTRAN,21SYMBAL,22 and ANALITIK-74 (Ref. 23).

III. Universal systems. Three of the most sophisti-
cated general-purpose systems fall in this group:
REDUCE-2 (Ref. 10), MACSYMA ,24, and SCRATCH-
PAD.25 The last two of these are the most powerful of
the programming systems for analytic calculations now
in existence. They can handle the overwhelming majori-
ty of analytic operations which can be carried out on
present-day computers. The REDUCE-2 system in-
corporates many fewer operations than does MACSYMA
or SCRATCHPAD. However, the user of REDUCE-2 has
much flexibility in defining new objects and/or new
mathematical operations in the external language of the
system. This particularly attractive feature of
REDUCE-2 is the stimulus for its continuous develop-
ment and puts it in the class of universal systems. We
should emphasize here that many specialized systems
and some of the general-purpose ones are written in an
assembler language, so that they tend to be compact
and fast. The universal systems, on the other hand,
are written in LISP.5 Although LISP is excellent for
analytic calculations, it requires a comparatively large
amount of computer time to carry out the individual
operations. As a result, the calculations by the uni-
versal systems are relatively "slow."

In contrast with numerical programs, analytic sys-
tems, especially the universal ones, require a large
computer memory—typically tens of thousands and
sometimes hundreds of thousands of machine words
(see, for example, Table I). In the actual use of any
system, of course, more memory is required, the pre-
cise amount depending on the type of problem to be
solved. This severe demand on the computer memory
is a consequence of the particular nature of the non-
numerical algorithms and the need to store all the in-
termediate results in the memory. These intermediate
results frequently expand in volume greatly in the
course of a calculation. The most powerful analytic
programming systems are accordingly used on the
larger computers, e.g., the IBM 360/370, the CDC
6000/7000, and the DEC PDP-10. An excellent example
of an analytic programming system for small computers
is ANAUTIK-74 (Ref. 23), developed in the Soviet Union
for MIR-3 computers. Unfortunately, despite the flexi-
bility of ANALITIK and its use for a variety of prob-
lems,26 it is limited to comparatively modest calcula-
tions on the MIR-3. In the Soviet Union, research on
"computer analytics" was begun in the late 1950's by
Kantorovich and his students.27"31 (see also the book by
Smirnova32 and the bibliography there) and later by
Shurygin and Yanenko.33 Several analytic programming
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systems have now been developed in the Soviet Union for
Soviet computers: the SIRIUS system34 for the M-20 and
M-222 computers; the AVTO- ANALITIK and AMS , men-
tioned above, for the BESM-6 computer, the ANALITIK-
74 system, etc. In addition to systems, several pro-
cessors and special programs have been developed, for
example, the KINO and PASSIV processors for analyzing
the group properties of differential equations35 and pro-
grams which perform certain calculations in quantum
electrodynamics.*·37 A good picture of the various
Soviet-trends in computer analytics is drawn by the pro-
ceedings of the All-Union Discussion of the Use of Digi-
tal Computers for Analytic Calculations.18

The use of analytic programming systems in the Joint
Institute for Nuclear Research began in 1975 with the
asoption of the SCHOONSCHIP system.7 Since then, the
CLAM," BEDUCE-2 (Ref. 10), andSYMBAL22 systems
have been asopted; CAMAL18 is in the process of being
adopted; and plans call for the adoption of the AVTO-
ANALITIK system19 in the near future. Tables I and
Π list the most general properties of these systems,
along with the mathematical objects and the operations
on these objects (these are also typical of many other
analytic programming systems). Shown for comparison
in the last column of each table is the information cor-
responding to the MACSYMA system24—which is the
most powerful of the existing analytic programming sys-
tems. Among the general properties (Table I) we wish
to single out the interactive mode of operation, which is
embodied in the SCHOONSCHIP and REDUCE-2 sys-

TABLE Π. Mathematical objects and operations on these ob-
jects which are incorporated in the various systems in Table I.

System -*•

Elementary
functions
Rational·
fraction
expressions
Search for
largest com-
mon divisor
Differentiation
Integration

Complex
quantities
Rational
numbers
Arithmetic of
floating-deci-
mal numbers
Operation with
fragments of
pown series
Operation with
fragments of
Fourier series
Vector and
tensor algebra
Metric
algebra
Algebra of 7
matrices and
spinors
Noncommu-
tattve algebra

ο

SC
H

O

No

No

No

No
No

Yes

Yes

Fast

No

No

Fair

No

Excellent

Good

U

Most

Yes

No

Yes
No

No

Yes

No

No

No

Special
kind
No

No

No

Ξ
υ
Dua

Some

Yes

Yes

Yes
No

Yes

Yes

Slow

Fab-

No

Good

Good

Good

Fair

<

Few

Yes

No

Yes
In
simple
cases
Yes

Yes

No

Excellent

Special
kind

Fair

Fab

No

No

υ

Most

Yes

In
simple
cases
Yes
In
simple
cases
Yes

Yes

Fast

Good

Excellent

Fair

No

No

No

LI
TI

K

<

Most

No

No

Yes
In
simple
cases
No

No

Fast

No

No

No

Fair

No

Fab

<

>·

M
AC

!

All

Yes

Yes

Yes
Yes

Yes

Yes

Fast

Excellent

Good

Excellent

Excellent

No

Excellent

terns. When working in this mode, the user can monitor
the intermediate results and thus greatly streamline the
solution of many problems. Among the capabilities in-
corporated in analytic programming systems (Table Π)
we have not mentioned polynomial algebra, simplifica-
tion of expressions (the collection of similar terms),
and substitution, which are characteristics of all mod-
ern systems. In certain cases, the substitution capa-
bility makes the system far more flexible with respect
to the operations which it incorporates. And in general,
the capabilities listed in Table Π are a far from ex-
haustive list of all the capabilities of the MACSYMA
system, which also incorporates a procedure for cal-
culating a broad range of definite integrals, several
special functions, direct and inverse Laplace trans-
forms, and much more.24·39

We turn now to several successful applications of
analytic programming systems in physics and mathe-
matics.

3. APPLICATIONS IN PHYSICS

a) Celestial mechanics

One of the fundamental problems of celestial mechan-
ics is to construct an analytic theory of celestial ob-
jects, i.e., the major planets, their satellites, artifi-
cial satellites, space stations, etc. The term "theory"
is understood in celestial mechanics as meaning a set
of equations which determine the position of the celes-
tial object as a function of the time. In order to con-
struct this theory it is necessary to solve a system of
differential equations describing the motion of the ob-
ject, and only in trivial cases can a closed solution be
found, perturbation theory is the most general ap-
proach used in deriving analytic theories of celestial
objects. Since in most cases the motion of the object
is nearly periodic, the solution is usually sought as a
series of trigonometric functions whose arguments are
linear functions of the time; the coefficients of the
series are polynomials in the small parameters of the
particular problem.

These series are called Poisson series and have the
general form

j

where x={xt,xz,... .tfj- is the vector of polynomial
variables; y = {yuyz,... ,y«} is the vector of trigono-
metric variables; J = {i1,J2,... Jj- is a vector with inte-
ger components; and P,(x) and ?,(x) are polynomials in
the variables Xj.tfj xm, which are indexed by the
set {j,}.

We can illustrate the situation with a simple exam-
ple.10 We consider the unperturbed Kepler motion de-
scribed by the equation

u + « sin E, (3.2)

where e is the eccentricity of the orbit, Ε is the ec-
centric anomaly, in terms of which the coordinates and
velocities of the elliptic motion are expressed in final
form, and u is the mean anomaly, a linear function of
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the time.

Treating e as a small parameter, as is usual in
celestial mechanics, we seek a solution E=f(u,e) of
the Kepler equation in (3.2) by the method of successive
approximations:

(3.3)

where

Ax = e sin «,

ι = I e sin u 11 —
Ah

(3.4)

The index Λ +1 on the brackets in (3.4) means that
terms of order higher than k + 1 in e must be discarded.
Transforming the right sides of (3.4) to expressions
which are linear in the trigonometric functions, we find
the following general expression for Ak:

ft

Ak = Σ [Pt <«) c o s O'«) + Qt (e) s>" 0")]
1-0

with the polynomials P} and Qf. The solution in (3.3) of
the Kepler equation in (3.2) is thus expressed in terms
of the one-dimensional Poisson series in (3.1), in which
the mean anomaly ? is a trigonometric variable, and
the eccentricity is a polynomial variable.

The high precision required of the calculations in
celestial mechanics means that hundreds, thousands,
or even tens of thousands of terms must be taken into
account in the poisson series and the associated series.
It is thus not surprising that as early as 1958 (Ref. 41)
astronomers were considering the use of computers for
analytic calculations, and it was only a year later that
the first program was published,42 for an IBM 650, for
analytic calculations of poisson series. Since then,
many programs have been written, and some analytic
programming systems have in fact been developed
especially for celestial mechanics.4 0·4 3 Further motiva-
tion for the development of analytic programming sys-
tems for celestial mechanics came from the desire to
check the results found back in the middle of the nine-
teenth century in a monumental work by Delaunay.44

Delaunay derived an analytic theory for the motion of
the moon in seventh order in the small quantities, such
as the eccentricities e = 1/120 and e' a 1/60, the dimen-
sion ratio a/a' a 1/400, and the sine of the inclination of
the lunar and terrestrial orbits, y = s in i« l/ l l . A dis-
tinctive feature of the lunar motion is that the lunar
orbit is outside the region in which the earth's attrac-
tion is stronger than the sun's. In constructing a theory
for the moon it is thus necessary to consider the higher
orders of perturbation theory. In calculating the per-
turbation function and then integrating the equations of
motion of the moon, Delaunay used thousands of terms
and ended up devoting 20 years to the project. In 1958,
the informed estimate41 was that 200 programming man-
years would be required to reproduce Delaunay's re-
sults on a computer. Fortunately, this pessimistic
estimate turned out to be very wrong, and in 1970 a
group of three people45, working for a year, repro-
duced Delaunay's results by means of the MAO system,

developed by one of the group, A. Rom.ie Remarkably,
only a single error was found in Delaunay's multi-
volume work,44 which contained about 40000 equations.

The Poisson series in (3.1), the basic mathematical
object of analytic perturbation theory, constitute a set
which is closed with respect to the operations of addi-
tion, subtraction, and multiplication. Furthermore, if
a suitable subset of the Poisson series is used, it is
possible to introduce the operation of integration and to
carry out several substitutions without leaving this sub-
set. Another remarkable feature of (3.1) is that poly-
nomial algebra and the standard operations on trigono-
metric (exponential) functions are sufficient for manip-
ulating these series. Since in practice it is necessary
to process a huge number of terms, it is clear that the
most effective way to use computers is to develop
special Poisson processors. The principal require-
ments which must be met by the corresponding algo-
rithms are speed and a minimum demand on opera-
tional memory.

In the Soviet Union, this approach is being pursued
actively in the Institute of Theoretical Astronomy.
Using the AMS system which they had developed pre-
viously17 for analytic operations with Poisson series,
Brumberg and Isakovich46 developed and adapted for the
BESM-6 computer some FORTRAN Kepler-processor
procedures and some procedures for exapnding the
perturbation function in satellite problems. Other
special FORTRAN systems have also been developed
in the Institute of Theoretical Astronomy for manipu-
lating both Poisson series4 7 and power series.4 8

For a wide range of problems in celestial mechanics,
especially those which require going beyond Poisson
series (see, for example, the applications discussed in
the review by Jeffrys43), more general analytic pro-
gramming systems can of course be used to advantage.
The CAMAL system,18 developed for the general theory
of relativity as well as for celestial mechanics, is par-
ticularly convenient. To illustrate the use of a uni-
versal system in celestial mechanics, we will cite the
work by Anderson and Lau.49 Using the MACSYMA sys-
tem,24 they calculated the temporal variations in the pa-
rameters of a Kepler orbit in first-order perturbation
theory for an arbitrary perturbation function.

We recommend the review by Barton and Fitch40 and
that by Jeffrys43 for a more detailed discussion of the
range of celestial-mechanics problems which can be
solved by analytic programming systems.

b) General theory of relativity

Over the past decade, much work has been carried
out in the general theory of relativity by means of
analytic programming systems. In many cases, these
systems have played a leading role, since the extreme-
ly extensive calculations essentially rule out manual
work. As an example of the most common calculations
in the general theory of relativity—calculations which
can be carried out completely on computers—we will
consider the procedure for calculating the Riemann
tensor (the curvature tensor) and the associated quanti-

63 Sov. Phys. Usp. 23(1), Jan. 1980 Gerdt et al. 63



ties for a given covariant metric g{)^,j = Q, 1,2,3),
specified by

To calculate the contravariant metric ga it is necessary
to solve the system of linear equations

i.e., to invert the matrix \\git\\.

The Christoffel symbols of the first kind are defined
by the first partial derivatives of git;

(3.6)

Suppressing the first index on Tkil, we find the
Christoffel symbols of the second kind:

Ιΐ- ί *
Ι τ, Μ . (3.7)

The next step is to calculate the Riemann tensor from
the equation

* τ- +Γρ1ιΓ§,— (3.8)

The convolution of the Riemann tensor yields the Ricci
tensor,

and the scalar curvature,

R = g^Rt,-

(3.9)

(3.10)

These latter quantities appear, through the Einstein
tensor

Gij=Rti—fRgt/' (3.11)

in the basic equation of the general theory of relativity:
the Einstein equation,

Gt, = Tti, (3.12)

where Tu is the energy-momentum tensor.

Calculations from Eqs. (3.5)-(3.11) only require a
matrix inversion and a differentiation in addition to the
polynomial operations, and in principle they can be
handled by most analytic programming systems. Spe-
cial programs for such calculations were available in
even the earliest systems, GRAD-ASSISTANT and
FCEtMAC, and are described in Ref. 50. However, dif-
ficulties with the size of the operational memory of the
IBM 7090/7094, which was used for these calculations,
restricted the practical applications to problems in
which, say, the components of the Ricci tensor con-
tained no more than 100 terms.

To optimize calculations of the type in (3.5)- (3.11),
and to generate some additional capabilities (working
with tetrads, working with a metric containing a small
parameter, etc.), several specialized analytic pro-
gramming systems were developed for solving prob-
lems in the general theory of relativity. Some examples
are ALAM13 (and its modification LAM for the IBM/360
370 and its modification CLAM14 for the CDC 6000/
7000), CAMAL,18 and SHEEP.15 To illustrate the capa-
bilities of these specialized analytic programming sys-
tems, we consider the metric proposed by Bondi et al.u

for analyzing the gravitational radiation of a rotating

star:

ds2 = [ r «P№_t/2 |*exp (2γ)] du*+2exp (2β) du dr

+ 2Vr* du de—r» [exp (2γ) d8«—exp (—2γ) sin* θ dqj*],

(3.13)
where U, V, β, and γ are functions of the coordinates

(3.5) u, r, and Θ.

To calculate all the tensors for the metric in (3.13),
up to the Einstein tensor in (3.11), by the CLAM system
requires only 32 sec on a CDC 6500.

Most applications of analytic programming systems in
the general theory of relativity involve analyzing the
Einstein equation in (3.12) in vacuum (Tu = 0). In this
case the condition Gu = 0 is equivalent to the condition

Λ,, = 0. (3.14)

Because of the symmetry properties of the Ricci tensor
and the metric g(i, Eqs. (3.11) constitute a system of
ten second-order partial differential equations for ten
unknown functions git (t*j).

In 1959 Harrison52 analyzed an important class of
solutions of the vacuum equations in (3.14)—those
having the structure

gt/ (xt, xj Β, {xt, ι,) 6,,. (3.15)

Substitution of (3.15) into (3.14) reduces the latter to
ordinary differential equations for the functions At and
Bt. Using this approach, Harrison found all the dif-
ferent solutions of the type in (3.15); there turned out
to be 40. Some of the solutions were simple, while
others had a complicated algebraic structure. It was
not possible to check the latter by direct substitution
into (3.14) without using computers. In 1972, Harrison's
solutions were checked independently by d'lnverno and
Russell-Clark,53 using the ALAM system, and by
Fitch,54 using the CAMAL system. As a result it was
found that Harrison's expressions for gfi did not satisfy
Eqs. (3.14) in four cases out of the 40.

d'lnverno and Russell-Clark did not, however, stop
after reaching this important conclusion.53 They classi-
fied all of Harrison's solutions on the basis of the dif-
ferent types of metrics as proposed by Petrov.55 In
Petrov's classification, a metric of one type cannot be
transformed into a metric of another type by means of
a coordinate transformation, so the metrics of different
types are different in an essential way. To determine
which type a given metric was, d'lnverno and Russell-
Clark53 developed a special algorithm based on an anal-
ysis of the multiplicity of roots of the fourth-degree
equation

4Φ,Ζ» + 6Φ.Ζ8 + 4Φ.Ζ 0; (3.16)

here the φι(ί = 0-4) are the Newman-Penrose scalars,
which are constructed from the Weyl tensor,

Guu*= Rijki+-Y(guRik — gi\Rii + gjkRii—giiRm) — •£• tetigki—gikgi/)

We note that the weyl tensor reduces in vacuum to the
Riemann tensor by virtue of (3.14). To determine the
multiplicity of roots of Eq. (3.16) and then determine
the type of matrix, it is not absolutely necessary to
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solve this equation. It is sufficient to check to see
whether a certain set of polynomial equations involving
the function Φ, holds. These equations are quite compli-
cated, and some contain terms of sixth degree in the
variables Φ{. Nevertheless, the effort to find a petrov
classification of all of Harrison's solutions was success-
ful thanks to analytic programming systems, specifical-
ly, the ALAM system.

These examples, of course, fall far short of ex-
hausting the complete list of applications of analytic
programming systems in the general theory of rela-
tivity. Several other applications can be found in, for
example, Refs. 56 and 57 and in the reviews of Refs.
40, 58, and 59. Among the systems used at the Joint
Institute for Nuclear Research (Table I), CLAM and
CAMAL are devoted to calculations in the general theory
of relativity. This does not mean, however, that other
systems (in particular, SYMBALand REDUCE-2) are
not useful in certain cases. As an example of the prob-
lems of this type, we can cite the calculation of the
tidal forces in the vicinity of a black hole which were
carried out60 by the REDUCE-2 system.

c) Quantum field theory

One of the most successful applications of analytic
programming systems, along with celestial mechanics
and the general theory of relativity, has been in per-
turbation-theory calculations in quantum field theory.
This important field of theoretical physics combines
exceedingly complicated calculations with a compara-
tively small number of necessary mathematical opera-
tions. Computers, especially when equipped with ana-
lytic programming systems, have found many applica-
tions (see, for example, the reviews in Refs. 40 and
61-65) in each step of the calculations by the well-
known Feynman-diagram technique.66"68 Let us consider
these steps in succession.

/. Generation of diagrams corresponding to the given
order of perturbation theory for a given process. Four
different programs have been published for generating
Feynman diagrams in quantum field theory.69"72 The
best-developed is the program worked out by Sasaki72

especially for quantum electrodynamics. This program,
written in LISP (and available for the CDC 6500 at the
Joint Institute for Nuclear Research), generates only
those diagrams which are topologically nonequivalent,
rejecting those of no physical interest (those which are
not connected, those which contain closed electron loops
with an odd number of vertices, etc.).

//. Derivation of integrands. For those models of
quantum field theory which describe particles with a
nonzero spin, this step of the calculation is frequently
exceedingly laborious. For example, in quantum elec-
trodynamics it is necessary to carry out some laborious
operations of the algebra of Dirac γ matrices, in par-
ticular, to simplify expressions of the type Z/,,yB... γμ

and to calculate the trace. The effective execution of
these operations on a computer required the develop-
ment of special algorithms,73·74 which are now incor-
porated in the SCHOONSCHIP ,7 ASH ME DAI ,1 2 and
REDUCE-2 (Ref. 10) systems. Each of these three sys-

tems allows all the calculations involved in constructing
the integrands to be carried to completion. In higher-
order perturbation theory, however, SCHOONSCHIP
and ASHMEDAI are preferred; these systems, which
were developed especially for quantum field theory,
demand much less of the computer than does the uni-
versal REDUCE-2 systems.

///. Elimination of divergences. In the higher orders
of perturbation theory, the calculations in step II are
known to lead to divergent integrals, which pose one of
the main problems in quantum field theory.6 6"6 8 A
rigorous mathematical procedure for assigning meaning
to these integrals, namely the Bogolyubov-Parasyuk R
operation,66·75 allows the divergent parts of these in-
tegrals to be seprated out, so that renormalized inte-
grands corresponding to finite integrals can be con-
structed. Unfortunately, and despite a few important
results,7 6 a general algorithmic approach has not yet
been developed for the extremely laborious renormal-
ization procedure in quantum field theory. For this
reason, in quantum electrodynamics, for example, only
part of the R operation has been adapted for computer
calculations, namely, the procedure of analyzing the
structure of the divergences of a given diagram.77 At
present, the computer calculation procedure can be
carried out completely for only scalar theories. Calmet
and Perrottet,7 0 for example, have examined the sim-
plest case of the scalar theory: the super-renormal-
izable model gcp3, in which the divergences arise only
in second-order diagrams for the self-energy. Calmet
and Perrottet wrote a LISP program for constructing
the renormalized amplitudes in the gcp3 model. A much
more general approach was developed by Tarasov in
Ref. 78, where an algorithm was given, and a
SCHOONSCHIP program was described which imple-
mented the R operation completely for scalar theories
for the case of an arbitrary subtraction point.

IV. Integration. In by no means all cases, of course,
is it possible to calculate the renormalized Feynman
integrals analytically; these a special class of multiple
integrals. In several important cases, nevertheless, in
which the procedure for the analytic integration is
known, analytic programming systems have had much
success. These cases are summarized in Table ΙΠ,
which is taken from Ref. 65, to which the reader is
referred for further details. It might appear at first
glance that for those problems in which we are not in-
terested in the exact dependence of the Feynman ampli-
tude on any parameters (the kinematic variables) an
analytic calculation would not be necessary. An ordi-
nary numerical integration would suffice. However,
because of the structure of the integrand, which usually
has integrable singularities, the only reliable numeri-
cal-integration method is the Monte Carlo method.79

The Monte Carlo method, however, is very slow and
requires much computer time. For example, to evalu-
ate the septuple parametric integrals which arise in
sixth-order perturbation theory for the anomalous mag-
netic moment of the electron within 1% requires several
hours on the most powerful computers in existence.
Analytic programming systems, in contrast, yield an
accurate answer in ~10 min (Table ΠΙ). Even in those
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TABLE ΠΙ.

Represen-
tation of
integral 1!

8

I !
12 ASHMEDAI UNIVAC-1108 0 min Anomalous 80

magnetic
moment of
election

Momentum* 6 2 8 MACSYMA DEC PDP-10 2 min Divergent 81
put of the
electric-
charge re-
normali-
zation
conitant

SCHOONSCHIP CDC-6600 | - Election 82
form
factor

12 SCHOONSCHIP CDC-7600 | - Anomaloui 83
magnetic
moment of
electron
and moon

Parametric" 4 2 4 SCHOONSCHIP CDC-6500 1 min Anomalous 84
magnetic
moment of
election,
Lamb shift

Parametric" 4 2 4 REDUCE-2 DEC PDP-10 2 min Anomalous 85
magnetic
moment of
electron.
Lamb shift

The integral is calculated directly in momentum space.
••The integral is represented in terms of Feynman param-
eters.

cases in which the analytic evaluation of the integral
cannot be carried out completely, the use of analytic
programming systems to evaluate some of the repeated
integrals greatly improves the accuracy of numerical
calculations.

V. Calculation of scattering cross sections. Many
problems of high-energy physics require calculations
of differential cross sections. Calculations of this sort
require an extension of the calculation scheme de-
scribed above. All the calculations which involve
squaring a Feynman amplitude (matrix element) are
similar to the calculations of step Π and can be^carried
out completely on a computer by means of the
SCHOONSCHIP, ASHMEDAI , and REDUCE-2 systems.
Much more difficult is evaluating integrals over a phase
space, in which case the integrand typically depends on
parameters (the masses and the kinematic variables),
and the integration limits have a complicated structure.
Under these conditions, the analytic programming sys-
tems may be exceptionally useful. As an example, we
can cite the work by Bardin et al.,K who used the
SCHOONSCHIP system to derive the exact electromag-
netic correction of lowest order to the elastic scattering
of two spin-1/2 particles and the elastic scattering of a
spin-0 particle by a spin-1/2 particle. The purpose of
those calculations was to analyze some experiments in
which elastic reactions were not discreiminated from
reactions involving the emission of a photon by brems-
strahlung. Another interesting example is the calcula-
tion87 of the differential distribution (the ratio of the
differential cross section to the total cross section) of
β~μ* pairs obtained in the lepton decay of a pair of heavy
leptons created in e*e~ annihilation. Assuming the V- A

weak interaction, Linke et αί.87 calculated the distribu-
tion of the β~μ* lepton pair in the lowest order of per-
turbation theory, using SCHOONSCHIP to calculate the
square of the matrix element for the process and for a
partial integration over the phase space of the unde-
tected particles (four neutrinos). The rest of the phase
integral was evaluated numerically. The analytic part
of the calculation required 7 min on an CDC Cyber-175
computer; the maximum length of the intermediate ex-
pressions was «40000 terms.

We turn now to the greatest success of analytic pro-
gramming systems in quantum field theory: the cal-
culation, in sixth-order perturbation theory, of the
anomalous magnetic moment of the electron, clearly
a quantity of fundamental importance in physics. This
moment is known66·67 to be that part of the total magnet
moment

μ - μ . (1+0),

which results from the radiative corrections to the
point electromagnetic vertex corresponding to a mag-
netic moment μ0, the Bohr magneton,

The quantity a can be written as a perturbation series
in powers of a/7r = /

The coefficient a2, which is governed by a single
Feynman diagram (Fig. 2a), is

and was calculated by Schwinger88 in 1948.

The calculations in the next order of perturbation
theory require five different two-loop diagrams (Fig.
2b). Their total contribution to a was calculated ten
years after Schwinger's work by Peterman90 and Som-
merfeld91:

where

"ΕΓ-1-2020569..

To determine the coefficient ae, i.e., the contribution
from sixth-order perturbation theory, it becomes nec-

PIG. 2. One-loop, two-loop, and certain three-loop vertex
diagrams for the anomalous magnetic moment of the electron.
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TABLE IV. Experimental and theoretical progress on the
anomalous magnetic moment of the electron over the past 5
years.

Year

1973 «

1978 «

Calculated
7th-order
diagrams

Anal-
ytical-
ly

5

30

Nu-
mer-
ically

33

10

»r

1.21 +
+0.07
1.184+
+0.007

expt
°6

1.060+
+0.33
1.189+
+0.025

fitheo

(1159601.9+
+2.5)-10-·

(1159652.375+
+261)-10-8

a

e x p t

(1159656.7+
±3.5) -10-·

(1159652.41+
+0.20)-10-»

Aclexpt

,,expt

3.0-10-»

1.7 10-'

Λ μ " " "
μ«Ρ<

3.5-10-»

2.0 χ
ΧΙΟ-'·

essary to calculate 40 different three-loop diagrams,
and these calculations are so long as to be essentially
impossible without computers. Suffice it to say that not
a single three-loop vertex diagram has been calculated
analytically without the use of analytic programming
systems.9 2"9 4 However, while in 1973 it was possible
to calculate analytically only five of the diagrams (those
in Fig. 2c; and all were calculated with the help of the
SCHOONSCHIP system), over the past five years the
use of the SCHOONSCHIP7 and, especially, ASHMEDAI 12

systems has resulted in the analytic calculation of
another 25 diagrams. The net result has been to re-
duce by an order of magnitude the error in the theoreti-
cal value of a6 (Table IV). The diagrams which are
most difficult for the calculations are those in Fig. 2d;
in the intermediate stage of the corresponding calcula-
tions, there are as many as 24 000 terms, and each
diagram required80 about 150 min on a UNIVAC 1108
(this time includes steps Π-IV of the calculation pro-
cedure described above, which is carried out complete-
ly in the ASHMEDAI system).

For the other ten diagrams contributing to ae> calcu-
lation steps Π and m (the construction of the integrands
and the elimination of the divergences) were carried
out by analytic programming systems, and the rest of
the calculations (step ΙΠ, the integration) were carried
out numerically.

The calculated results (Table IV) turned out to be in
extremely gratifying agreement with recent precise
measurements96 of the anomalous magnetic moment of
the electron, within a relative error of 2· 10"10.

In the next few years we can expect further progress
in the refinement of both experimental96 and theoreti-
cal9 4 data. For example, there is every reason to be-
lieve that of the ten seventh-order diagrams which have
been found numerically at the present time, seven will
soon be calculated analytically by known methods. At
this point it is not clear how to calculate the three re-
maining nonplanar diagrams (Fig. 2e), for which the
calculation technique developed by Levine et al.m is not
applicable. If, however, we are interested in only their
numerical values, we can bring the error in the theo-
retical value of a6 to9 7

0.13(^-)4«4.10-12.

At this accuracy level, however, we should take into
account other contributions to a, mainly the muon
loop,94

«(muon loop)-= 2.8· KT | 2 « 0.1 (-^-)\

the hadron vacuum polarization,

a(hadron) = 2.UT12« 0.07 (-2-)*,

and weak interactions

a (Salam — Weinberg) = 0.05.ΙΟ"1*» 0.0017 (-£-)'.

The fact that these effects are small in comparison with
(α/π)4 means that the next step in refining the theoreti-
cal value of the anomalous magnetic moment of the elec-
tron will be to go to eighth-order perturbation-theory
calculations in quantum electrodynamics.

For this purpose it is necessary to calculate the con-
tribution of 430 different four-loop vertex diagrams. Of
them, 161 are found by inserting electron loops in a
lower-order diagram, and the corresponding calcula-
tions are no more complicated than those for diagrams
making the contribution ~ (α/π)3. The other 269 dia-
grams correspond to decuple integrals in a parameter
space, for which the integrand is 10-20 times as long
as that for three-loop diagrams.

Work has already been begun97 on ag. In particular,
a SCHOONSCHIP program has been written for con-
structing integrands. This program requires from 2 to
10 min per diagram on a CDC 7600. According to esti-
mates by Kinoshita,97 these calculations would require
several hundred hours for a 10% error if the integra-
tion were carried out by numerical methods on the
CDC 7600. It is believed that the total calculation ef-
fort required in this project will be from 4 to 6 man-
years.

In recent years, analytic programming systems have
found some interesting applications in non-Abelian
gauge models of quantum field theory. In particular, we
can cite the use of the SCHOONSCHIPsystem for two-
loop calculations98·99 of the Gell-Mann-Lau function and
the anomalous propagator dimensionalities in the Yang-
Mills theory with an arbitrary gauge parameter. These
calculations were carried out in the JTNR on a CDC
6400; they required 84 min of computer time for the
total of 33 two-loop diagrams. Another important ex-
ample would be the REDUCE-2 calculation of the vio-
lation of the Okubo-Iizuki-Zweig rules in lowest-order
perturbation theory in quantum chromodynamics which
results from the radiative decay of heavy pseudoscalar
particles.100

d) Plasma physics

Analytic programming systems have had much suc-
cess in this exceedingly important field of physics.101"106

The most interesting applications have been in analyzing
the hydrodynamic condition for plasma stability in
tokamaks.101"103 The corresponding numerical calcula-
tions would require several hours of computer time,
even on the most powerful computers in existence, and
even then the conclusion reached about the plasma sta-
bility would be just Barely reliable. In contrast, pure-
ly analytic calculations generate expressions in the in-
termediate steps which are so long that the user runs
into problems with the computer memory, Further
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more, these analytic calculations also require much
computer time. The best approach here has been to
combine numerical and analytic methods.102

Let us examine the structure of the calculations which
have been carried out on the plasma-stability problem.
When a displacement ξ occurs in the plasma, the plas-
ma stability is governed by the deviation (blf) of the
potential energy of the plasma from its equilibrium
value. If δ U < 0, the plasma is unstable. According to
the MHD theory, bU can be written as the following
triple integral, which depends on the geometry of the
particular device and the nature of the displacement ξ:

where

(3.17)
plasma
volume

where

Q - ν χ [|B],

φ = (V.

Β and J are the magnetic field and current density, re-
spectively, in the equilibrium state, gu is the metric
tensor, and Ρ is the plasma pressure.

If Φ = 0, then the displacement ξ satisfies

Τ .\ = 0.

The problem is to evaluate the integral in (3.17) with
the necessary accuracy. For the calculations in Ref.
102, which we are discussing here, a curvilinear co-
ordinate system X1,Xi,Xs reflecting the axial symmetry
of a tokamak was selected (Fig. 3):

(3.18)

Here ζ,φ,ν are the cylindrical coordinates; the con-
stants a, y, and R specify the geometry of the device.

In system (3.18), X*,X3e.[Q,2ir], A ^ c o n s t is a mag-
netic surface, and Xl=X\ = const corresponds to the
plasma boundary.

The variation in the plasma potential energy, 6(7, is
found by expanding ξ in a Fourier series:

= kin
(3.19)

Because of the axial symmetry of the problem, we can
seek the variation 6(7 separately for each value of ft.
The following displacement was studied in Ref. 102:

Σ U. m (X1) exI» mX») A'o (X1, X3),

/-const

FIG. 3. Curvilinear coordinate system used in analyzing the
plasma stability in a tokamak.

λ ' 0 ( χ · , χ ' ) = Σ < Μ ^
1-0

(3.20)

Two types of functions ξ»,»,^1) were chosen for the vari-
ation: I) polynomials in if1; II) Bessel functions of inte-
ger order. Equation (3.17) is studied by varying the
function (3.20) with respect to its parameters and by
varying the functions ξΙ,Μ(Χχ) with respect to their pa-
rameters, in case I, the integration over all the X' can
be carried out analytically; in case Π, Eq. (3.17) re-
duces to elliptic integrals after an analytic integration
over X2 and X3, and these elliptic integrals must be
evaluated numerically. If, however, the integrand is
expanded in a Taylor series, then a completely analytic
result can be found for each term in the expansion.

In practice, the calculations were carried out102 both
through the use of a Taylor series (21 terms in the
series were required for the accuracy desired) and
without this series, but with a numerical integration
over X1. The BEDUCE-2 system was used for the ana-
lytic calculations,10 carried out as follows:

1. Calculation of the quantities Q* and then of the in-
tegrand in (3.17).

2. Integration over X2.
3. preparation for an integration over X3.
3.1. Expansion of the integrand in a Taylor series (if

necessary).
3.2. introduction of the function jC0 in accordance with

(3.20).
4. integration over X3.
5. integration over X1. in the case in which this inte-

gral is evaluated numerically, a special transformation
of the integrand is carried out to simplify the subsequent
calculations.

6. Determination of the final expression by simpli-
fying the results of the preceding calculations.

In the case in which the functions ξ»,,,^1) are repre-
sented in terms of Bessel functions of integer order,
the analytic part of the calculations required 40 min on
an Amdahl-470v/6 computer; then the numerical calcu-
lations required about 50 sec.

According to the MHD theory, the integral in (3.17) is
the difference between two large numbers which are ap-
proximately equal in magnitude:

tU = 6C/+ - 6IL {SU± > 0).

Consequently, δ Ut must be calculated very accurately.
The calculations carried out by the method described
above showed that the numerical calculations were not
sufficiently accurate but that combined numerical and
analytic methods were quite accurate; in principle, any
accuracy level could be achieved by using a sufficient
number of terms in the series expansion.

e) Hydrodynamics

In hydrodynamics, and for that matter in many other
fields of applied mathematics, it is necessary to solve
some complicated systems of partial differential equa-
tions. Attempts to solve these equations by analytic
methods run into insurmountable difficulties, except in
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FIG. 4. Geometry of the problem of the flow of a thin, two-
dimensional liquid down an inclined plane.

comparatively simple cases. However, even when an
analytic solution method has been developed for some
particular hydrodynamic problem, the implementation
of this method generally requires some tedious analytic
calculations. In such situations, analytic programming
systems are extremely useful, and frequently they are
the only solution method available.

As an example, we consider the problem of con-
structing the evolution equation for the function h(x,t)
which describes the free surface of a thin, two-dimen-
sional flow of a very viscous liquid down an inclined
plane (Fig. 4).

This problem has been solved successfully by means
of the REDUCE-2 system107 in the approximation of
long surface waves. Here we will follow Ref. 107 and
give an exact mathematical formulation of the problem
and then briefly describe the solution method.

This type of liquid motion has two scale dimensions:
the length of the surface wave, λ, along the χ axis and
the thickness of the liquid layer, h, along they axis.

We introduce the stream function tp<?c,y,t), which in
our two-dimensional case allows us to reduce the
Navier-Stokes equations to a single partial differential
equation. We transform to dimensionless variables by
using the scale transformations

where hu=ah/k (a and k a r e the heat-transfer coefficient
and the thermal conductivity, respectively) is the Nus-
selt thickness for this flow, w0 is the average velocity,
α = 2πΛ0/λ is the dimensionless wave number, and μ is
the viscosity.

Then the basic nonlinear dynamic equation for ip(x,y,t)
becomes

+ a3 Re (φ( χ χ - φχφχχ1Ι + ψ,,ψχχχ - α*ψχχχχ), (3.21)
where Re is the Reynolds number. The s t r e a m function
must satisfy, along with Eq. (3.21), the following bound-
ary conditions:

1. The adhesion conditions:
φχ = 0 at y = 0,
ψ,,=0 at j , = 0 . (3.23)

2. The surface-tension conditions:
(Ψ»»—α2Ψχ*)('—ot2A») — 4α2ΑχψΧ9 = 0 at y=*h(x, i), (3.24)

- α * ψ χ χ ϊ — α Re ( φ ί Β + ψΒ ψ Χ ί — ? ? ? ? ? ) — «^ΐΨκΐίχ — 3afexctg β

> Αχ ( φ ( χ + ψ 9 ψ χ * — φχΨκ») + 2α 2 ( ψ Ϊ Χ Ι 4- ψί 1 ί χΑ,)

Cj (>ΐχΊχχ + 2a?h3

xhxx + 3α4ΑχΑχχ)

+<*ReP [Α«χ + 3α* |( —i- hlhxxx - h\xhx)

+ 15α4 (-3- AXXX4J + —.- h\xh\) + 35αβ ( — τ ? h'Jixxx — = - h\h\x 1 1
\ σ C I \ ID ο / J

+ 4α4Α« (φϊ ί Μ + ψχϊι)Ax) (1 + α2Λ· + aViJ) + Ο (α9) = 0 at y = h(x, t).
(3.25)

(3.22)

Here P=azW, where W=a/h^lp is the Weber number
(σ is the surface-tension coefficient, and ρ is the den-
sity), and β is the inclination of the plane (Fig. 3).

3. The kinematic condition at the free surface:

h, + hx% + φχ = 0 at y = h (x, t). (3.26)

Conditions (3.22)-(3.25), along with Eq. (3.21) are suf-
ficient conditions for expressing φ in terms of the func-
tion h(x,t) and its derivatives; then condition (3.26)
gives us an evolution equation for the function h(p,t),
which is the ultimate goal of this analysis.

In the longwave approximation (λ» A), the condition
a «1 holds, and we can seek a solution of problem
(3.21)-(3.25) as the series

by the method of successive approximations. For ipm

we have

and at y=h(x,t) we have

The problem in (3.27), (3.28) is easily solved:

(3.28)

The res t of the process reduces to solving the equation

ψ<"> =/(ψ<"-'), φο-2), ...,ψΟΗ (3.29)

which has the s t ructure
t

(-0

{<„} = { 0 , i, 5, 9 «„-, + 4),

where the g("} depend on χ and t through the function
h(p,t) and its derivatives, i.e.,

gi" =g" (ft ht, hx, h,t, . . . ) .

Then Eq. (3.29) is integrated easily:
In /,? j i i

+ CSV + Ci'V+C/'V + CfK (3.30)

Since the stream function is specified within an additive
constant, conditions (3.22) and (3.23) can be put in the
form

D< oy"=Vn ) (0)=o, D(I V"=ψί"> (0)=ο,

from which it follows immediately that

Ci,"> = Cf" = 0 (n = 0, 1, 2, . . .) .

Then the quantities gj"*, C^"\ C^n> are expressed in terms
of the results of the preceding approximation by sub-
stituting (3.30) into (3.24) and (3.25), which can be
written

As a result, the kinematic condition in (3.26) can be
transformed into the parabolic equation

which describes the wavelike behavior of the free sur-
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face of the liquid in this hydrodynamic problem.

The method described above reduces to polynomial
operations and substitutions, so that it can be imple-
mented by any analytic programming system in Table
L

Atherton and Homsy107 reported the results calculated
for tl>a)(h,h) and ψ"'(Λ,Α) byBEDUCE-2 [it is a com-
paratively simple matter to calculate the function
ψ(1>(Λ,Λ) manually]. These results are quite compli-
cated expressions. For example, ψ(3>(Λ,Λ) is a poly-
nomial in the derivatives of the function h(x,t), con-
sisting of 60 terms of the type

ψ» (A, A)= - ^ R e W A ^ i ^ - f g j J R e i ctg^h'hlxx+ . . . .

Other applications of analytic programming systems
in hydrodynamics can be found, for example, in Refs.
108-110. Some interesting applications have also been
found in aerodynamics. In particular, Cohen et αϊ.1 1 1 · 1 1 2

have recently used the REDUCE-2 system to calculate
the parameters of a rapidly rotating ideal gas with a
low Mach number.

f) Atomic and molecular physics and quantum chemistry

Numerical calculations have of course become an in-
tegral part of much research in atomic and molecular
physics and also quantum chemistry. More recently,
analytic programming systems have also found several
applications.

For quantum chemistry, for example, these analytic
systems constitute a powerful tool for standard ana-
lytic manipulations involving calculating the matrix ele-
ments of the product of creation and annihilation opera-
tors. The basic calculation difficulty here lies in re-
ducing this product (which frequently contains many
operators) to normal form by means of commutation
relations. The best analytic programming system for
analytic transformations of this type is the
SCHOONSCHIP system.7 Nerbrant113 has recently used
this system to develop a special program for rapid and
efficient calculations of the matrix elements of the pro-
duct of creation and annihilation operators for fermion
fields.

The FQBMAC system20 has found some interesting
applications in atomic and molecular physics. For ex-
ample, Benesch114 used FQBMAC to calculate the radial
distribution functions in coordinate and momentum
space for helium and helium-like ions (Li*, Β3*, Ο6*, Ne8*,
Mg10*).

Many calculations in atomic physics require knowl-
edge of the Clebsch-Gordan coefficients. A FCSMAC
program has been written for analytic calculation of
these coefficients; this program uses the familiar
formula115

{}1j2mlmi\JM)

where

J):

(3.31)

and the summation is carried out over all integers k
for the numbers in the factorials are nonnegative. The
program of Ref. 115 vorks from Eq. (3.31) to yield, for
a given number j2, an analytic expression for the
Clebsch-Gordan coefficients as functions of the other
parameters (jnmum2tJ>M)· This program requires,
for example, 11 sec on the IBM 370/168 for j2 = l/2,
3/2, and 6; and 6 min for;2 = 2, 5/2,3,7/2,4, 9/2 (Ref.
2). There is an interesting applications of BEDUCE-2
(Ref. 10) andSYMBAL22 in Ref. 117, where five terms
in the expansion of the energy in smooth perturbations
of linear potentials in the Schrodinger equation are cal-
culated.

In the quantum mechanics of atomic systems, a funda-
mental role is played by the Slater integrals,118:

f j Ρ(Βιβ,; s)P(n2e2; r) (^.γ+ί-L Ρ (n3e3; s) Ρ (η^\ r) dsdr,(3.32)
ο Ό

where k is an integer, (r/s) = min{r/s, s/r}, and the
functions P(we;r) are of the type e~"r/(r), where/(r)
is a polynomial in r.

Analytic programming systems have proved excep-
tionally useful in evaluating the integrals in (3.32). We
will mention, in particular, the use of ALTRAN21 by
Fischer and Prentice119 and the use of FOR MAC by
Golden.120

4. APPLICATIONS IN MATHEMATICS

a) Evaluation of indefinite integrals

While differentiation is easily embodied in an algo-
rithm, and was in fact the first mathematical operation
to be carried out analytically on a computer,2 the in-
verse operation—integration—presents incomparably
greater difficulties. The first successful attempt in
this direction was that by Slagle.121 Soon after the ap-
pearance of LISP Slagle used it to write the program
SAINT (Symbolic Automatic Integrator) which used a
table of integrals and attempted to reduce the given in-
tegral to one of the tabulated integrals by one of the
standard approaches which would be included in a uni-
versity course in mathematical analysis.

After a few years, this heuristic approach was re-
fined by Moses into the SIN program122 (Symbolic Inte-
grator); this program (along with the Risch algorithm123

which it incorporates) is a constituent part of the
MACSYMA 2 4 and SCRATCHPAD25 systems.

The most important accomplishment, however, con-
sisted of the development and dissemination of an algo-
rithmic approach to calculating indefinite integrals.
Special algorithms were developed for integrating
rational functions,125'126 and a universal algorithm for
integrating elementary functions was discovered by
Risch123·124 (see also the reviews in Refs. 40 and 127).

The algorithmic approach, in contrast with the heu-
ristic approach, finds the integral without making use
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of any tables.

It should be noted that the advent of an algorithmic
approach did not make the heuristic method obsolete;
for a broad range of integrals, the heuristic method re-
quires much less computer time. Furthermore, be-
cause of serious technical difficulties, the Risch algo-
rithm has not yet been adapted to computer calculations
in the case in which the integrand contains algebraic
functions (expressions with noninteger powers).

Accordingly, the most powerful integration tools in
modern analytic programming systems, such as the
SIN program and the even more effective integration
program which has recently been developed and dis-
seminated in a new version of the BEDUCE-2 system,129

make fundamental use of both these approaches.

The SIN program, for example, implements the fol-
lowing strategy for evaluating an integral.127

Step I. An attempt is made to write the integral in the
form

C ^ flu (x)] u' (x) dx,

where C is a constant, u(x) is some function, u'(x) is
its derivative and/(«) is a simple elementary function
such as sinw, COSM, M*, e", lnw, or sin'ht or a sum of
such functions. If this can be done, then the integral
can be evaluated by substituting in standard tabulated
integrals. Otherwise, the calculation proceeds to the
next step.

Step II. Depending on the structure of the integrand,
11 standard approaches are used; for example, using

1) the substitution i = tan(*/2) for trigonometric func-
tions;

2) the Chebyshev method for integrals of the type

tions, and if the integral of the function/(*) is again an
elementary function, then this integral can be repre-
sented by a finite sum of the type

j x' (C, +

where/), q, and r are rational numbers;
3) the Ostrogradskii-Her mite method for rational

functions; etc.

If the integral still cannot be evaluated after this step,
the calculation proceeds to the next step.

Step III. The Risch algorithm is used. This algorithm
determines whether the integral can be evaluated in
terms of elementary functions; if this can be done, it is
done.

The Risch algorithm is based on a study of the struc-
ture of the indefinite integral which dates back to the
early part of the nineteenth century. Analyzing inte-
grals of algebraic functions [the functiony(x) is "alge-
braic" if it satisfies the equation P(x,y) = 0, where P is
some polynomial with integer coefficients], Laplace
suggested that an integral contains only those algebraic
functions which are present in the integrand. This sug-
gestion was subsequently proved by Abel. Then Liou-
ville studied the form of an integral of various com-
binations of elementary functions in a series of papers
in the 1830s and 1840s.

As a result of this work, Liouville proposed that if a
function/(x) belongs to some field F of elementary func-

f f(x)Ax=V,(z)+ V C,\nV,(x), (4.1)

where the functions Va(x) and V9(*r) belong to the same
field F as the integrand, and the C( are constants.

This proposal, known now as the Liouville theorem,
was proved rigorously by Risch123 in 1969 and became
the basis of a fundamental algorithm which Risch
developed for integrating elementary functions. We
note that the logarithmic terms in Eq. (4.1) appear only
when the integrand has a fractional part, and these
terms are governed by the structure of the denominator
of the integrand. That this is true is easily seen in the
example of integrals of rational functions (forming a
field), for which the functions ν{(?) are the same as the
factors of the denominator which are linear in x.

We will not go into the mathematical details of the
Risch logarithm here (the reader is referred to Refs.
123, 124, and 127), and we will discuss a slightly
simplified scheme of a recent modification of this algo-
rithm,1 3 0 which substantially simplifies the evaluation of
integrals of transcendental functions. It was this ver-
sion of the Risch algorithm which Harrington used in
his BEDUCE-2 program.1 2 9 We recall that imple-
menting the Risch algorithm in the case of algebraic
functions is a problem in its own right, which we will
not discuss here.

The Risch algorithm is implemented through the
following procedure.

I. The integrand is converted to the form/)/?, where
the functions p and q are polynomials in structures such
as x, e*~, Vox,..., which are independent with respect to
field operations (i.e., summation, multiplication, and
division). To simplify the notation, we denote these
structures by χι,χΐ,χ3,.. .xs. Here Ν is the number of
structures. We will need to distinguish between the
variables xt which are of logarithmic and exponential
types.

Π. in accordance with the Liouville theorem, (4.1),
we write the integral as

-e-dx.
1

(4.2)

where u is an unknown polynomial, the C( are constants,
and the polynomials qt are the irreducible factors of
the polynomial q;

The polynomial q is expressed in terms of the factors

Qi by

except in the case in which any of the factors q{ is equal
to a variable χ which is of the exponential type. In this
case, the exponent on the factor q{ remains equal to nt

(it is not reduced by one); the corresponding logarith-
mic term does not appear in Eq. (4.2).
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ΠΙ. Differentiating (4.2), we find a first-order linear
differential equation in the unknown polynomial w.

IV. Substituting into the differential equation found in
step in the polynomial u, written as a sum of the type

Σ u, , ή ...
>ι> ••••'κ

"(*1. ·••..*«) =

we find recurrence relations for the coefficients

(4.3)

V. Using these recurrence relations, we can deter-
mine which term in the sum in (4.3) has the highest
power, j x +jz+'" +jK.. Then on the right side of Eq.
(4.2) we separate the corresponding term from the
original integral, finding new recurrence relations for
the coefficients of the remaining part of the polynomial
w.

VI. We repeat the calculations in steps IV and V,
successively reducing the power of the unknown part
of the sum in (4.3) and making use of the arbitrariness
in the choice of the parameters Ct, if necessary. Ulti-
mately, we either complete the calculation of the poly-
nomial u and the parameters Ct in Eq. (4.2), i.e., we
evaluate the original integral, or in some step we ar-
rive at a contradiction of the results of the preceding
calculations. This situation would mean that the orig-
inal integral cannot be written in the form in (4.2), so
that it cannot be expressed in terms of elementary func-
tions, by virtue of the Liouville theorem. Even in this
case, however, the calculations are useful, since they
make it possible to distinguish the "nonelementary"
part of the original integral.

To illustrate the operation of the Risch algorithm for
a specific example, we will attempt to evaluate the in-
tegral

by the algorithm described above.

L Clearly, the independent structures in the inte-
grand are χ and β*2. Adopting the notation e^=y, we
can write the integrand in the form x*y.

Π. Since the integrand is a polynomial (does not con-
tain a denominator), Eq. (4.2) gives us

I = u{x, y),

where u is an unkown polynomial,
m. Differentiating, we find

«' <*• y) = *V

IV. Assuming u(x,y)=2}uijK
lyt, and evaluating the

derivative

«' (*. v) = Σ »M (te'-y + 2/*·+V) = Σ *
1; li

we find the recurrence relations

(i +1) «i+i, i + 2/iti-i. >].

where δ ο is the Kronecker delta.
V. The single recurrence relation with a nonvanish-

ing right side is

3u,a + 2uul = i .

It follows that the coefficient of the polynomial u(x,y)
for the maximum power x, y must be »l t j = 1/2. Other-
wise, the recurrence relations would have led to non-
vanishing coefficients u2k M i l for all fesl, in contradic-
tion of the finite nature of the sum in (4.3), which
represents the polynomial.

There is accordingly a term xy/2 on the right side of
Eq. (4.2). Separating the corresponding term from the
original integral, we find

= -! •_ f -L

VL We repeat the calculations in steps IV and V for
the remaining integral,

As a result we find

We must equate the coefficient u_Ui to zero, since
u(x,y) is a polynomial. However, the equation uUi

= -1/2, which overdetermines the result found pre-
viously, cannot be ruled out, since the polynomial cor-
responding to the remaining integral must have a degree
lower than that of the original polynomial.

As a result we conclude that the original integral can-
not be evaluated in terms of elementary functions, and
the representation found for this integral in step V
should be accepted as the final result.

These powerful tools for evaluating indefinite inte-
grals are now embodied in the MACSYMA and
SCRATCHPAD systems and in the new version of
REDUCE-2, i.e., in the universal analytic programming
systems. This situation did not, of course, arise by
chance. These tools, primarily the Risch algorithm,
require the very subtlest methods of analytic program-
ming.

The next important step is to develop a Risch algo-
rithm for algebraic functions that uses the concepts of
modern algebraic geometry. This problem is currently
the subject of much study,130 and it will apparently be
solved in the near future. Another important direction
in the development of the Risch algorithm is a gen-
eralization to special functions.127tlsl

b) Solution of differential equations

The use of computers for analytic solution of differen-
tial equations has been the subject of a long list of
papers (see, for example, the bibliographies in Refs.
122, 132-134, and 136). The MACSYMA system24 in-
corporates a special ODE-2 unit,137 which can solve a
broad range of first-order and second-order ordinary
differential equations.

As an example, we will examine the method for
solving a first-order equation,

/ (*, y)y' + g (*, y) = 0, (4.4)

as used in the EULE program, written by Schmidt134 in
the PL/l algorithmic language.4 No general method for
solving Eq. (4.4) is currently available. The usual pro-
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cedure is to change variables or to multiply Eq. (4.4)
by some expression, in the hope that this equation can
be reduced to one with separable variables, a linear
equation, or an equation in total differentials.

The EULE program is based on a heuristic approach
of this type; the solution of a differential equation of the
type in (4.4) is sought by the following procedure.

L An examination is made to see whether this equa-
tion is

A) An equation with separable variables, a homo-
geneous equation, or an equation with coefficients which
are linear in χ and y;

B) the linear equation fo(x)y' +fi<x)y +/2(*) = 0; the
Bernoulli equation fo<x)y' +fi<x)y+fi<x)yc = 0, c = const
* 1 , theRiccati equation; fo<p)y' +f1<p)y2 +f2l?c)y +f3(x)
= 0; the nearly linear equation fo(x)h'(y)y' +ft<x)h{y)
+/2(*) = 0; an equation of the type

TABLE V. Results of a test of theEULE program.

y' = ny
n +

or
/'-" (

y =

If the equation is the Riccati equation, the program at-
tempts to find a particular solution y^ix) with which the
original equation can be reduced to a linear equation by
the means of the substitution J" = l/(y —y0);

C) an equation in total differentials. To determine
whether this is the case, an attempt is made to find an
integral factor of the type Af"yn, or a function of χ alone,
or a function of y alone.

Π. The interchange χ ;= y is used, and test I is re-
peated.

ΠΙ.Α change of variables is selected on the basis of
the particular expressions in the equation. For exam-
ple, if there are terms of the type [<p&,y)]c, where c
is a constant, the replacement y = (p(x,y),x=xis used.
If, on the other hand, there are terms of the type
•Ft$(y)] > 'hen the replacement y = F[ip(y)], x=x is
used. If F is a trigonometric function, the following
substitution is used:

The analysis of step I is repeated after each substitu-
tion.

IV. The replacements y =yx, y = y A a r e made, and
test I is applied again after each replacement.

V. An attempt is made to choose integrating factors
which are functions of the type

χ* ± y1 i = 1, 2, 3).

The method for solving the differential equation in
(4.4) which is used in the EULE program operates
through an analysis of the equations covered in the
familiar handbook by Kamke138 or the book by Murphy.139

TheEULE program was tested by using 1245 equa-
tions from four collections of differential equa-
tions.1 3 8"1 4 1 The results are shown in Table V. An
equation is judged solved if the program finds a solu-

Collection of
equations

Kamke' 3 B

M u r p h y ' "

Number of
equations given

333
715

|| Collection of
S o l v e d !| equations

li
90% !| l n c e " °
95% j| Spiegel""

Number of
equations given

121

76

Solved

100%
100%

Note. The collections by Ince and Spiegel axe actually problem
sets for second- and third-year university students.

tion method in accordance with the procedure outlined
above.

Among the differential equations in the books by
Kamke and Murphy, 171 and 505, respectively, can be
solved by elementary methods (separation of variables,
etc.). The EULE program also used elementary meth-
ods to solve the equations in 100% and 99.4% of the
cases, respectively.

Eighteen and 23 of the Riccati differential equations
in Kamke's and Murphy's books, respectively, are
solved by seeking a particular solution. The EULE
program solved these equations in the same way.

Twenty-five and 71 of Kamke's and Murphy's differen-
tial equations, respectively, are solved by choosing in-
tegrating factors. The program used the same method
in 92% and 90%, respectively, of the cases.

Frequently, the equation presented to the program
was solved by a method which had not been used pre-
viously for that particular equation. In some cases,
the solution method used by the program turned out to
be more elegant and more efficient than the method used
in the literature. For example, to solve the Riccati
equation

xy' In χ - j / 2 In χ — (2 In 4 χ + 1) y - In» χ = 0 (4.5)

Kamke uses the substitution y=u(s), s = lnx and then
the substitution y = - v'/v. The result is to convert Eq.
(4.5) into a second-order equation. The program, on
the other hand, found the particular solution y = - In*
for this equation, and then it was a trivial matter to
find the general solution.

Where the EULE program was capable of solving the
given differential equation, the solution generally re-
quired no more than 15 sec on an IBM 370/168 (Table
VI).

Those differential equations which the program was
not able to solve can be put in the following groups:

1) those which can be solved by a change of variables
which the program was not able to find;

2) those which can be solved by a series of successive
substitutions ·

TABLE VI. Typical examples of the computer
time required to solve the differential equa-
tions from Kamke's collection138 by the EULE
program.

['.quation no.

Time, sec

1.348

0.5

1.164

2.-<

1.33

3.2

1.313

27.0

1.2'JS

1.0

1.1211

1.5
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3) those which can be solved by some method which is
not programmed in the EULE.

c) Analysis of mathematical expressions

Both mathematicians and physicists are frequently
forced to analyze some mathematical expression quali-
tatively. The problem is to find answers to several
questions such as the following.

IS the given expression real, bounded, positive, con-
tinuous, monotonic, differentiate?

Are there any singularities, zeros, or local extrema
in the expression, and if so, where are they? What is
their order?

Is there a simple asymptotic representation for the
case in which some of the arguments approach zero or
infinity?

When the mathematical expression is complicated, it
becomes a difficult, time-consuming problem to answer
these questions. Stoutemyer142 has developed a
MACSYMA program24 especially for analyzing mathe-
matical expressions. This program determines the
zeros and singularities of a given expression, the value
of the expression as one of the variables approaches a
given limit, the extrema, the extreme values of the ex-
pression, and its upper and lower bounds. Further-
more, the Stoutemyer program yields information about
whether the given expression is decreasing, increasing,
or constant on a specified interval; whether it is convex
or concave; and whether it is even or odd. The program
also determines whether the expression is periodic in
some variable; if it is, the period is found.

Although this program realizes by no means all the
possibilities of the MACSYMA system for qualitative
and quantitative analysis of mathematical expressions,
it undoubtedly takes a big step toward simplifying and
speeding up this effort.

5. CONCLUSION

The examples which we have discussed in this review
of course do not come close to exhausting the range of
applications of analytic programming systems in phys-
ics and mathematics, which have been the subject of
more than 500 publications. Some of the papers which
we have not discussed here are covered in the reviews
in Refs. 40, 43, 59, 61-65, 92, and 127. Furthermore,
we have not discussed applications in such fields of
physics as geophysics,143 crystal physics,144 atmo-
spheric physics,145 and cosmology.148.

In mathematics, our coverage has been even less
complete. We might note in particular that there are
applications in solving integral,147 difference,148 and
functional149 equations; in the theory of commutative
rings150; and many aspects of group theory.135 A good
idea about other fields of application can be obtained
from Refs. 39, 88, and 135.

There can be no doubt that the number of problems
which can be solved by analytic programming systems
will continue to increase. The process will be aided

considerably by a more widespread adoption of the sys-
tems, which in turn depends on their adaptability to dif-
ferent computers. In contrast with numerical pro-
grams, the programs and systems for computer ana-
lytics are closely tied to the internal structure of the
particular computer. Serious difficulties thus arise in
attempts to switch from computers of one type to anoth-
er, and the way in which the difficulties are resolved
differs from case to case (see, for example, Fateman's
discussion151 of the problems involved in switching the
MACSYMA system from a DEC PDP-10 to a CDC 6600/
7600).

The most adaptable of the systems in Table I is un-
doubtedly REDUCE-2, which is the one which has been
adopted most widely.152 Computer analytics will not
find really widespread use, of course, until a funda-
mental solution is found for the computer-memory prob-
lem which results from the increase in the size of the
intermediate calculations. This fundamental solution
would make it possible to use powerful analytic pro-
gramming systems on small computers.

Another trend which is expanding the range of applica-
tions of analytic programming systems is their use in
combined numerical-analytic calculations. This ap-
proach is particularly valuable for those problems
which either cannot be solved analytically or require
an unacceptable amount of computer time for analytic
solution, but for which ordinary numerical calculations
are not adequate because of the unacceptably large cal-
culation errors. Some examples of these problems are
discussed in Section 3c (the contribution of nonplanar
seventh-order vertex diagrams to the anomalous mag-
netic moment of the electron) and Section 3d (analysis
of the plasma stability in tokamaks).

Each analytic programming system, of course, also
has provision for dealing with purely numerical calcula-
tions; nearly all the systems can operate with rational
numbers (see, for example, Table Π); and nearly all
can perform arithmetic operations on these numbers
without any errors (the exact arithmetic of integers and
rational numbers). However, the numerical calcula-
tions carried out by analytic programming systems are
much slower than those carried out by ordinary numeri-
cal systems, such as FORTRAN and ALGOL. This
circumstance is a serious problem in the interaction
between analytic and numerical systems.

In summary, analytic programming systems must be
developed in two directions in order to make effective
use of computers for combined numerical-analytical

PRINT NLIST
PRINT NSTAT
F A
Ζ DET3rDS(J,l(3,(DS(K,l,J,(DS(L,I,3,CA(l,J)*A(2,K)*A(3,L>

*DP<J,K,L>>))>>)
• END
DET3I

+AU,1)*A<2,2)*A<3,3>
-Α(1,Π*Α(2,3>*Α(3,2>
-Α(1,2>*Α(2,1)·Α<3,3>
+AU,2)*A<2,3>*A<3,1>
+A(1,3)*A(2,1)*A(3,2)
-A<l,3)*A(2,2>*A<3,I>+0.

FIG. 5. SCHOONSCHIP program for calculating a third-order de-
terminant.
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ARRAY P £ 3 > |
TOR tZUZo DO BEGIN PU>Zr(X**2-l )**I j
FOR JZsIZI DO P<I)n=DF{PCI),X)/t2*J)j
WRITE PC,I,) = ,PCI> END}

PC2>=C3*X - D / 2

2
Ρ(3)ϊ(Κ*<5*Χ -

END

FIG. 6. REDUCE-2 program for generating Legendre polynomials

from the Rodrigues formula.

calculations.

I. The analytic programming systems must be modi-
fied to improve their interaction with numerical pro-
gramming systems. These improvements will not only
speed up many calculations but will also open up the
possibility of using the extensive libraries of standard
numerical programs.

Π. The methods used for the numerical calculations
in the analytic programming systems themselves must
be improved, in order to increase the speed in an ac-
curate solution of any problem. As an important step
in this direction we might cite the paper by Sasaki,153

who has developed a new packet for exact arithmetic in
REDUCE-2.

Clearly, a harmonious blend of the capabilities of
modern computers in terms of numerical and analytic
calculations will make these machines capable of
solving an extremely broad range of problems in vari-
ous fields of knowledge.

6. SOME SIMPLE PROGRAMS IN SCHOONSCHIP
AND REDUCE-2

To illustrate the practical use of analytic program-
ming systems, we will consider two simple examples.

a) First, we will examine the use of SCHOONSCHIP
to calculate a third-order determinant.

For the calculations we use the formula

det || o,y || = S Σ Σ
j — i ft—I Z—1

(6.1)

where t m is the Levi-Civita symbol (the completely
anti-symmetric tensor; ε123 = 1). In the SCHOONSCHIP
system, this tensor corresponds to the incorporated
function DP(J,K,L). To carry out the summation, the
system function DS is used. The program which imple-
ments Eq. (6.1) in SCHOONSCHIP and the machine print-
printout of the result of the calculation are shown in
Fig. 5.

b) The second application which we will consider is
the generation of Legendre polynomials by means of
REDUCE-2.

For the calculations we use the Rodrigues formula

f-W^^^-1)')· (6-2)

The program for generating the polynomials Pn(r) with
η = 1-3 from Eq. (6.2), which uses the differentiation
operator DF(Q,x) = dQ/dx, which is embodied in the

REDUCE-2 system, is shown along with the calculated
results in Fig. 6.
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