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A simple method is proposed for finding the local-field correction to the dielectric constant of a system of

interacting electrons. In this method, the local distortion of the mean induced density near an individual

electron owing to exchange-correlation effects is automatically taken into account by determining the self-

consistent potential at the given space-time point under the extra condition that one of the electrons of the

system lies at that point. The stated method for accounting for exchange-correlation effects is initially

developed within the framework of the single-particle approximation, and then is generalized to the case of

analyzing the complete many-electron problem. By using it one can easily reproduce most of the currently

known results on the dielectric constant, including those derived by the powerful methods of many-body

theory. This study analyzes the contemporary state of the theory of the dielectric constant of an interacting

electron gas and briefly presents an application of this theory for describing the physical properties of simple

metals.
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1. INTRODUCTION This parameter is of the same order of magnitude as
the ratio of the potential energy of the particles to their

One of the central areas in solid-state physics is oc- mean kinetic energy.
cupied by studies of the degenerate, strongly interacting to ^ ^ ^ ^ Q{ ^ ^ . ^ n_

electron plasma of metals, which plays a decisive role e n t Q f ^ C o u l o m b i n t e r a c t i o n v [ ) = 4 w y 2ςι f o r s m a l l

in engendering the fundamental characteristics of the w h i c h ^ s e g f r o m № β χ n a t u r e f C o u l o m b

metal crystal, such as its structure, binding energy, . , , .. . - _ • . · r ι *
' ' . , t '. .. forces, calculations of the properties of an electron gas

phonon spectrum, and electromagnetic properties. . ' . . , T , . .
„ . _, ! , - . - * „ . * . , . by perturbation theory yield divergent expressions even
Hence, in order to create a theory of the metallic state, . . . , . . , . . . , . ,.

' „ , . . . , . , in the second order in v(q). As became clear after the
we must know the properties of an electron plasma. . . . . „ . j - τ , - ι j 1.1. , t ± j . *ττ ν
_ . . , Γ / \ . .. , . . studies of Bohm and Pines1 and the later studies of Hub-
The problem of calculating the properties of an interact- . ,, . , „ „ , , , j „ , 3 ... ,

, . . _ . , , . * * • . bard2 and of Gell-Mann and Brueckner,3 the long-range
ing electron gas, while complicated per se, is even , . . . . , , , _ , . . . " .6 ,. . ' . . . . .. . . „ . component of the interelectron Coulomb interaction is
more complicated for a metal by the need of a parallel . , . . . . . . „ .. .. . . .

, , . . T mainly responsible for the collective motions of the
account for the strong electron-ion interaction. In or- . . . . . ,

. , . .. ., ,. i, . , , particles in the system (plasma oscillations). The lat-
der to single out the specific effects that stem solely t e p h a v e a r a t h e r e n e Q f e x c i t a t i o w h e r e a s t h e

from the Coulomb interaction between the conduction i n d i v i d u a l m o t i o n s o f t h e electrons are determined by
electrons, people often resort to a simplified model of t h e g c r e e n e d C o u l o m b i n t e r a c t i o n w i t h a n e f f e c t i y e „ .

a metal that replaces the ion lattice with a homogeneous d i u s Q f i n t e r a c t i o n o f t h e o r d e r o f , A S u c h a s h o r t .

passive background that serves only to ensure overall interaction can be taken into account, even within
electroneutrality and stability of the system. A model ^ f r a m e w o r k o f e l e m e n t a r y p e r t u r b a t ion theory, in
system of ΛΓ interacting electrons moving in a volume Ω w M c h n Q d l v e difficulties arise. The correspond-
in the background of a uniformly distributed positive . , , . . , - , . , _ _ , . , . , . . .

. . , ,, . .. , . ing calculations employing the screened interelectronic
charge is commonly called an interacting electron gas . f ,. . , r ' °,^ . . .. .. .,.. .
- .. , . . . . . _ . .. . ° interaction enable one to obtain both the equilibrium
(sometimes an electron fluid). The properties of this . j . . . . . . . . .\. . A.

, . , , , , , Γ f. . , ,. thermodynamic and the kinetic characteristics of the
system can be completely characterized by a single di-
mensionless rarefaction factor r,, which is related to e e Γ Ο Π g a S '
the electron number density by the relationship The screening properties of the system of interacting

_ο___4π_ ,3 /. .> electrons, just as the dispersion law of the plasma os-
N 3 ' cillations, are governed by the dielectric constant

The parameter r, defines the radius of a sphere of vol- ε(ς , ω), which depends on the wave vector q and the fre-
ume equal to the mean volume per electron in the sys- quency ω. To calculate e(q, ω) is the central problem in
tem in units of the Bohr radius aB = K2/me2. the entire theory of the electron gas. This problem
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proves rather simple only in the case of a highly com-
pressed system, i.e., when a small parameter rs« 1
exists. As has been shown,2·3 it suffices to employ the
dielectric constant (DC) calculated for a noninteracting
electron gas as c(q, w) in this case. Yet in real metals
the conduction electrons have densities for which the
corresponding values of the parameter rs lie in the
range 1 < rs < 6. During the past three decades, at-
tempts have been repeatedly undertaken to construct a
systematic theory of the DC of an electron gas (see,
e.g., the reviews4'8). Although highly substantial pro-
gress has been made toward solving this pressing prob-
lem of solid-state physics, a satisfactory solution of it
has not yet been found.

This article reviews the current state of the theory of
the DC of a system of interacting electrons. Here we
shall not adhere strictly to the historical course of de-
velopment of events, and shall not treat all the numer-
ous studies in this field, since this would require writ-
ing an extensive monograph. Instead, we shall show
that most of the currently known results for c(q, ω),
even those derived by the modern methods of many-body
theory, can actually be matched within the framework of
a unified single-particle approach based on the method
of the self-consistent field. The approach that we have
employed automatically allows one to take into account
the existence around the electron of an exchange-cor-
relation hole. This is done by determining the self-con-
sistent potential at the given space-time point under the
extra condition that one of the electrons of the system
lies at that point.

We shall devote the introductory Sec. 2 to presenting
the fundamental problems. We shall discuss in detail
therein the definition of the DC, its most general prop-
erties, and its connection with experimentally observ-
able quantities. The following Sec. 3 briefly describes
very simple one-particle approximations for the DC
(Hartree-Fock and random-phase approximations). Sec-
tion 4 of the review is devoted to discussing the problem
of accounting for exchange-correlation effects within the
framework of the one-particle approximation. The ap-
proach developed here will then be extended in Sec. 5 to
the case of analyzing the complete many-particle prob-
lem. The fundamental idea employed in this section is
that the initial Hamiltonian of the system in the pres-
ence of an external electromagnetic perturbation does
not undergo second quantization on the basis of single-
particle states in the form of plane waves, but on the
basis of single-electron states that correspond to mo-
tion of the electron in the field of the external perturba-
tion and in the self-consistent field of the rest of the
electrons of the system. Thus, even in the first stage
of calculation, we avail ourselves of an effective Hamil-
tonian that accounts to a considerable extent for the ef-
fect of screening of the probe charge introduced into the
system by generation of an induced density. Section 6
of the review will briefly apply the theory of a homo-
geneous electron gas to describe the properties of sim-
ple metals. In particular, this section will generalize
the method of the self-consistent field described in Sec.
4 that allows one to account for the effects of exchange
and correlation in calculating both pair interionic forces

and many-ion interactions, which have been mainly '•
treated thus far in the random-phase approximation. In
conclusion we discuss the potentialities of experimental
test of the effects predicted by the theory of the homo-
geneous electron gas, together with the problems of de-
veloping it further.

2. DEFINITION OF THE DIELECTRIC CONSTANT
AND ITS FUNDAMENTAL PROPERTIES

Let us probe a system of electrons with an external
source that has the Fourier component A,xt(q, ω) of
charge density. Consequently, the induced charge
And(r» t), which fluctuates in space and time, arises in
the system. In combination with pe%ix, t), it amounts to
the total variation of charge ptot(r, f) =pex/r, t) +Pjnd(r, t).
This perturbation of the system produces in it a macro-
scopic electric charge whose induction D(r, t) and field
intensity Ε (r, /) are given by the Maxwell equations

div D = 4npe x t, div Ε = 4πρ,οι. (2.1)

As is usual in the electrodynamics of continuous
media,7·8 the dielectric constant e(q, ω) is defined in
terms of the stated quantites by any of the relationships:

D (q, ω) — e. (q, ω) Ε (q, ω),

Pext (q> ω) = ε (q, ω) p , o t (q, ω). (2.2)

In the general case, the oscillations of the individual
harmonic components of the induced charge are phase-
shifted with respect to the corresponding oscillations of
the external charge. Hence the function e(q, ω) intro-
duced by the formulas of (2.2) proves complex. An ex-
tremely important problem here is that of its analytic
properties. We shall begin the analysis of the general
properties of the function e(q, ω) by discussing it.

In a homogeneous system of interacting electrons, the
Fourier components of the induced and external charges
in the linear-response case are interrelated by

Pmd (q, ω) = ν (q) χ (q, ω) p<.It (q, ω). ( 2 . 3 )

Here u(q) =4tne2q2il is the Fourier component of the Cou-
lomb potential, and x(q, ω) is the response function for
the external charge (also called the polarizability of the
system), which is defined by the expression

X(q, ω ) = — i j d/e«»+<W([n(q, i), «* (q, 0)]). (2.4)

Here n(q)=£/exp(-fq«r) is the Fourier component of
the electron-density operator, while the quantity
<[n(q, t), «+(q, 0)]> is the statistical mean of the commu-
tator of the operators n(q) and n+(q) in the Heisenberg
representation. As a function of the complex variable
o>,x(q, ω) is analytic in the upper half-plane, including
the real axis. At infinity it is proportional to l/ω2. The
Cauchy integral for the function x(q, ω) taken along the
real axis is equal in this case to

(2.5)

Here & is the symbol for the principal value. Upon sep-
arating the real and imaginary components in (2.5), we
arrive at the Kramers-Kronig relationships for the re-
sponse function x(q, ω):
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Re*(q, ω) = - 1 ^ j dm' im*,{^a

a) ,

I m x i q . O ^ - J - ^ f d c ' J i i ^ l

ε (q, ω) — 1 + ν (q) π (q, ω). (2.12)

(2.6a)

(2.6b)

One can also derive these relationships directly by
starting with the definition (2.4) for X(q, ω).

The fact that the function x(q, ω) obeys the Kramers-
Kronig relationships is a direct consequence of the cau-
sal character of the response of the system to an ex-
ternal perturbation. Upon being rewritten by using the
corresponding Fourier components with respect to the
time, Eq. (2.3) acquires the form

Pmd(q, ί) = Ιψ- j di'z(q, <-i')PeIt(q, «')· (2.7)

On the other hand, we find from Eq. (2.4) by direct inte-
gration that

x(q,/-«') =

(2 &)
Here 9{t- t') is the unit step function

, t>f,

ο! «<«·.
Thus, in full accord with the principle of causality, the
result (2.7) implies that the induced charge arising in
the system at the instant t of time arises from the cum-
ulative action on it of the external perturbation over all
the preceding instants of time t' < t.

Now let us discuss the problem of whether the dielec-
tric constant e(q, o>) satisfies the Kramers-Kronig rela-
tionships. Upon employing (2.2) and (2.3), and taking
account of the fact that pto,(q, ω) = &rt (q, ω) +pind(q, ω), we
arrive at the following general formula for e(q, ω) in the
linear-response approximation:

ε-1 (q, ω) = 1 + » (q) X (q. <•>)· (2.9)

We see from this formula that the reciprocal of the di-
electric constant l/e(q, ω) in any case should satisfy the
Kramers-Kronig relationships, which we shall write in
the following explicit form:

Ree"'(q, co) = 1 + 4

lme 5Ree~'(q, ω').

(2.10a)

(2.10b)

As concerns the functions e(q, ω) directly, most stud-
ies on the electrodynamics of continuous media (see,
e.g., Refs. 7, 8) usually assume without the appropriate
detailed analysis that it also obeys relationships of the
type of (2.10). Starting with this assumption, an entire
series of sum rules has been derived that the quantity
e(q, ω) must satisfy.9 Yet e(q, ω) is not generally a
causal response function. To prove this, let us intro-
duce into the treatment the screened response function
v(q, w) that establishes the connection between the in-
duced and total charges:

Pind (q. ω) = —ν (q) π (q, ω) ptot (q, <=>)• (2.11)

We can easily convince ourselves that e(q, ω) can be ex-
pressed in terms of the screened response function
(often also called the irreducible polarization operator)
as follows:

This formula shows that the function c(q, ω) actually de-
fines the response of the system to the total charge. It
is generally impossible for the induced charge to be
governed by the total charge (which in turn itself de-
pends on the induced charge). Hence we cannot treat the
quantities ir(q, ω) and ε^, ω) as being causal response
characteristics and require them to satisfy the
Kramers-Kronig relationships.

The idea of the possible breakdown of the Kramers-
Kronig relationships for the longitudinal dielectric func-
tion t(q, ω) has been advanced in Refs, 10 and 11. This
problem has been analyzed in detail in the review of
Kirzhnits.12 He showed that the very fact of breakdown
of the Kramers-Kronig relationships for e(q, o>) does
not contradict any of the general principles of stability
of the system. This same study treats the consequen-
ces to which this breakdown leads. In particular, the
static DC ε^, 0) of the system can prove negative. On
the other hand, as was shown in Ref. 12, when q=0,
the function ε(0, ω) characterizes a causal response,
and it obeys the Kramers-Kronig relationships. Refer-
ence 13 gives a detailed analysis of the reasons why the
Kramers-Kronig relationships for c(q, u>) can break
down in different physical systems, including an elec-
tron gas. This same study discusses the consequences
of the existence of negative values of the static dielec-
tric function e(q, 0) for a set of problems of metal the-
ory, in particular, for problems of high-temperature
superconductivity. Henceforth in this review, we shall
practically not concern ourselves with the stated prob-
lems, but shall focus our attention on the quantity
^'1(q, «·»)» which is a causal response function, and
which satisfies without reservations the Kramers-
Kronig relationships in a dynamically stable system, to-
gether with all their consequences.

First let us note that, if the studied model system of
interacting electrons actually existed, then one could
directly measure the imaginary component of its recip-
rocal dielectric function ε "*(<!.» ω) by setting up an ex-
periment on inelastic scattering by the system of a beam
of probe charges (fast electrons). The double differ-
ential cross-section of this scattering in the first Born
approximation has the form

^ = i f ^ 2 i ( ? , » ) . (2.13)

HereR^ and Et =H2k\/2m are respectively the momen-
tum and energy of the scattered electron when far from
the target; dfi k l is the element of solid angle in which
the scattered particles are detected; Kq=ti()zo — k1) and
Ku = K2(k%-k\)/2m are the momentum and energy im-
parted to the system in the scattering event; ε,, = ti2q2/
2m; and finally S(q, w) denotes the function

S(q, «)=2H& (2.14)

The latter is called the dynamic structure factor. This
function is real and satisfies the relationships

S (—q, ω) = S (q, ω), 5 (q, —ω) = β-»ω/»τ· $ (q, ω). (2.15)

We can easily show by employing Eqs. (2.4), (2.9),
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(2.14), and (2.15) that the function
in terms of S(q, ω) as follows:

, ω) is expressed section for fast electrons).

e - (q, ω) - 1 dc'S (,, ω') ( m_ (2.16)

Thus the dynamic structure factor plays the role of the
spectral density for the function e"Mq, <·>). Upon isolat-
ing the imaginary component in (2.16), we find the
sought formula

Im ε-1 (q, ω) = —ην (q) (1 - e-WT) S (q, ω). (2.17)

Equation (2.17) establishes a rigorous connection be-
tween the imaginary component of the response function
to a longitudinal perturbation and the spectral distribu-
tion of density fluctuations in an equilibrium many-elec-
tron system. Similar relationships that also hold for
the spin susceptibility and for the response functions to
transverse fields are called the fluctuation-dissipative
theorems.

To see what information we can extract about the sys-
tem by measuring its dynamic structure factor, let us
for simplicity examine the case of Τ = 0, and rewrite
Eq. (2.17) in the following form:

S (q, ω)=
θ (ω) q, ">) (2.18)I e}(q, <]))--|-e|(q, ω) "

Here e,(q, ω) and {^(q, ω) are the real and imaginary
components of the dielectric function:

e (q, ω) = et (q, ω) + ie, (q, ω). (2.19)

Let us assume that the imaginary component of the di-
electric function vanishes in some region of values of
(q, ω). In this case, upon transforming to the limit as Cj
- 0 inEq. (2.18), we get

oy ν θ(ω) tit f \\ /o O(\\

Consequently, if we have t^(q, ω) =0 in some region of
values of transferred energies and momenta, then a
nonzero contribution to the dynamic structure factor will
will arise only from those q and ω in this region for
which we also have e1(q, o>) = 0. Upon taking account of
(2.19), we can write this condition in the form

β (q, ω) = 0. (2.21)

The roots of Eq. (2.21) define the dispersion law ω = ω(%)
of the collective excitation modes in the electron gas
whose existence does not stem from the introduction of
external charges into the system. Actually, when pext

= 0, we can represent Εqs. (2.1) in the form

β (q, ω) qE (q, ω) = 0, qE (q, ω) = 4np l n d (q, ω).

Along with the trivial solution q -B(q, ω) = 4irplnj(q, ω) = 0,
when the condition (2.21) is satisfied, these equations
allow the existence in the system of a nonzero alternat-
ing electric field Ε (q, <>>(q)) caused by free oscillations
of the charge density ptod(q, <>>)(q) (i.e., plasma oscilla-
tions). In the neighborhood of the frequency u> = w(q),
the expression (2.20) for S(q, ω) acquires the form

n. . θ((ΰ) / 5Ej \— 1 -/ ln\\ (9 99 ̂

The formula (2.22) shows that the dynamic structure
factor shows a sharp peak of characteristic losses cor-
responding to production of plasmons (while, owing to
(2.13), so does the double differential scattering cross-

Actually the dispersion equation (2.21) has a real solu-
tion ω = ωρ = \/~4ir#e2/win only in the long-wavelength
limit q-0, for which the plasmons do not decay. The
latter circumstance involves the fact that, when 9 = 0,
the Fourier component of the electron-current-density
operator

commutes with the Hamiltonian of the system. Hence
the electron-density oscillations of zero wave vector do
not decay via interelectron interactions. However, the
plasmons decay for finite q. Here, since in a dynamic-
ally stable system the function c~1(q, <o) should not have
singularities in the upper half-plane of the complex var-
iable ω, the complex plasma frequency <o(q) defined by
Eq. (2.21) can lie only in the lower half-plane. That is,
we have

ω (q) = ω, - ίγ, (γ, > 0).

For small q, the laws of conservation of energy and mo-
mentum impede the conversion of a plasmon into an
electron-hole pair, although they do not forbid its decay
with multiple creation of such pairs. Consequently, for
small q the decay y q proves small, and as before, the
dynamic structure factor S(q, ω) shows a sharp plasmon
resonance at the frequency ω = ω)|. With increasing q,
this resonance continues to broaden and becomes ever
less distinct, and can even vanish suddenly, provided
only that the plasmon branch ω = a>q penetrates into the
region of creation of single electron-hole pairs. Far
from the plasmon resonance, the dynamic structure
factor is mainly governed by the type of behavior of the
imaginary component of the dielectric function [see Eq.
(2.18)]. Here the dominant contribution to S(q, ω) comes
from processes of excitation of electron-hole pairs.

An important integral characteristic of the overall be-
havior of the functions S(q, ω) and Imc"1(q, ω) throughout
the spectral range is their moments with respect to the
frequency. One can easily show by starting with (2.15)
and (2.17) that the following equation holds for the mo-
ments of these functions:

j dttHo'lm e"'(q, ω)=-m>(q) [1 — (— I)1] J daxo'S (q, ω). (2.23)
—oo — σα

We see from this that the even moments of the function
c~1(q, ω) vanish identically. Upon turning to Eq. (2.14),
we obtain

oo

J dioS (q, <o) e'*> = -L <n (q, 0) n* (q, t)>.

If we now differentiate this relationship / times with re-
spect to t, and then set f = 0, we arrive at the so-called
sum rule for the moments of the dynamic structure fac-
tor

(WS(q, « ^ - ^ (2.24)

Here L is the Liouville operator, whose action on the
quantum-mechanical operator / is determined by the
rule Lf=Hf-fH, where Η is the Hamiltonian of the sys-
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tem. Finally, by starting with (2.15), (2.23), and (2.24),
and also by accounting for the fact that (fLf)
= -{{Lf)f), we arrive at the formula for the moments
of the function Ime"x(q, ω):

- Im ε~< (q, ω) = _ (2.25)

The sum rule for the first moment has the following
form:

\ άωω Im ε"1 (q, ω) = — -5- ω£ . (2.26)

Here wp is the plasma frequency of the electron gas in
the long-wavelength limit. The corresponding sum rule
for the dynamic structure factor is expressed by the
formula

f (2.27)

The relationships (2.26) and (2.27) are often called the /
sum rule. As we can see well from (2.25), the first mo-
ment of the function Ime'Mq, u>) does not depend on the
interaction between the electrons, and actually the /
sum rule reflects only the requirement of conservation
of the number of particles.9 In this sense, the first mo-
ment is fully identical for systems of either interacting
or free electrons. A difference involving account of the
interaction is manifested only in the third moment of the
function Ime'^q, ω), an explicit expression which
has the form

^ ω)

(2.28)

In this formula, we have e q = K2q*/2m,{ T) is the mean
kinetic energy of the system, and S(q) is the static
structure factor:

= jr\ d<oS(q, ω) = -£<»(q) »•<!!)>. (2.29)

The existence of exact sum rules satisfied by the true
function e'Mq, ω) enables one to test the accuracy of ap-
proximate expressions for the dielectric function. Gen-
erally such a test enables one to reveal the physical ad-
equacy of the approximations that some particular con-
crete theory of the dielectric constant is actually based
on.

A serious test for an approximate dielectric function
is the so-called compressibility sum rule. One can
show rigorously15 that the polarization operator jr(q, ω)
for zero q and ω can be expressed in terms of the iso-
thermal compressibility Κ of the electron gas;

«(0,0) = - ^ . (2.30)

Consequently, in the long-wavelength limit, the formula
(2.12) for ω=0 acquires the following asymptotically
exact form:

e(q, 0) » 1 + (-ϊϊί1)2-^-. (2 31)

Here H T F =(6ifNe2/cFtl)
L/z is the Thomas-Fermi wave

number, while Kf = 3i2/2ĵ eF is the compressibility of

the free-electron gas at T = 0. The relationship (2.31) is
known as the compressibility sum rule. On the other
hand, one can determine the compressibility of the elec-
tron gas in another way in addition to (2.30), which now
requires a knowledge of the dielectric constant for all q
and ω. Namely, one can employ the thermodynamic re-
lationship9

4t=T*24r l^)-2'··^]· < 2 · 3 2 >
Here α = (4/9ττ)ι/3 =0.521, and c(rs) is the energy of the
ground state per electron expressed in Rydbergs, which
obeys the formula

j . (2.33)

People generally assume that an approximate dielectric
function satisfies the compressibility sum rule if Eqs.
(2.31) and (2.32) give the same result for the quantity K.
A lack of such agreement indicates lack of self-consis-
tency of the approximate expression for e(q, ω).

In closing this section, we shall discuss briefly the
problem of what physical consequences might arise from
a possible breakdown of the Kramers-Kronig relation-
ships for the reciprocal dielectric constant e'^q, ω) in
an interacting electron gas. Purely formally, such a
situation corresponds to the appearance in this function
of at least one pole in the upper half-plane of the com-
plex frequency, e.g., one lying at the point ω = ωι+ίω2

(o)2 >0). In turn, this means that the dielectric constant
of the system vanishes at the stated point:

ε (q, ω, + (ω2) = U.

Here a singularity arises in the spectrum of density
fluctuations at the frequency Wj [see Eq. (2.18)], which
corresponds physically to an exponentially rapid growth
of the contribution from the component »(q, wl +iu2).
Consequently the homogeneous electron gas becomes un-
stable with respect to formation of the so-called charge-
density waves.

The possible transition of a system of interacting
electrons to a state characterized by an inhomogeneous
distribution of charge density has been discussed for a
long time. One example of such a state might be a
Wigner crystal. As early as the thirties, Wigner pro-
posed18 that, when the density of an electron gas is de-
creased (i.e., the parameter r, increases), its homo-
geneous state ceases to be stable, and the electrons
must rearrange into a crystal lattice. Concrete calcu-
lations of the value of rs at which a phase transition can
occur from a homogeneous electron gas to a Wigner
crystal give a very great scatter of critical values of
rs(6<rs < 100) (see the review17). We should note that
most of the studies on this problem have treated a tran-
sition from a homogeneous gaseous phase directly to a
crystal lattice of localized electrons. However, as
noted in the review,13 a situation can occur in which a
transition first occurs to an inhomogeneous state having
a small amplitude of density modulation, i.e., to a state
corresponding to a so-called coherent crystal." Con-
cretely, this possibility has been discussed for the
cases of a three-dimensional19 and a two-dimension-
al20·21 electron gas in a magnetic field.
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Within the framework of the model of an electron gas
with a passive neutralizing background, the possible
transition to a Wigner-crystal state arouses some doubt
involving the following circumstance. One can show22

that the instability of the system upon breakdown of the
Kramers-Kronig relationships and the onset of an in-
homogeneous state having some wave vector q,, is man-
ifested in the fact that the static polarizability x(q, 0)
becomes infinite for the given value of the wave vector:

χ (.,„, ()) , . oo. (2-34)

In most of the known approximate expressions for the
static dielectric constant e(q, 0), the polarization opera-
tor for a momentum q = 0 becomes negative at values of
the parameter r5 that are usually smaller than those for
which the condition (2.34) is satisfied. In turn, owing to
(2.30), the condition ir(0,0)<0 implies the appearance of
a negative compressibility. In this case, self-compres-
sion of the electron gas or a transition resembling an
ordinary liquid-gas transition precedes a transition to
a state having a charge-density wave. The studies of
Wiser and Cohen23 and of Van Horn24 have paid attention
to this situation. When one accounts for a finite com-
pressibility of the neutralizing background, a transition
to the state of a Wigner crystal becomes even more
probable.

3. VERY SIMPLE APPROXIMATIONS FOR THE
DIELECTRIC CONSTANT (HARTREE-FOCK AND
RANDOM-PHASE)

One can actually calculate the dielectric constant of a
system of interacting electrons only approximately by
employing some particular simplified description of the
many-electron system. A very simple approximation
for s(q, ω) arises when one completely neglects the Cou-
lomb interactions between the electrons in finding the
induced-charge density (but, of course, necessarily ac-
counts for the Pauli principle). In this case pind(q, w) is
defined by Eq. (2.3). However, in the latter the Lind-
hard function enters instead of x(q, ω):

J^Z^L^. ' (3.1)

q. 0) = -£-%„ (q, 0) VM (q, 0).

Let us account for the fact that

) - 2

This amounts to the polarizability of a system of nonin-
teracting electrons. In this formula, nk is the Fermi
distribution function, while ek =K2fe2/2m is the energy
of a free particle. In this approximation the dielectric
constant obeys the formula

q, ω). ( 3 · 2 )

The expression (3.2) for the DC is known in the litera-
ture as the Hartree-Fock approximation,25 since substi-
tution of eo(q, ω) into Eq. (2.33) leads to the Hartree-
Fock result for the energy of the ground state of a
homogeneous electron gas. The neglect of correlation
effects renders the approximation (3.2) physically quite
unsound in many respects. In particular, we can easily
convince ourselves that eo(q, ω) incorrectly describes
the phenomenon of screening. Actually, if we use the
Lindhard function in Eq. (2.3) instead of the true polar-
izability, then we can write the following expression for
the static potential V,ai(q, 0) induced in the system under
the action of the external source Vext'l, 0):

(3.3)

where eF is the Fermi energy of the system of noninter-
acting electrons. Then we see that the ratio Kind(q, 0)/
Vext(q< 0) approaches minus infinity in the limit of small
wavenumbers q. Correspondingly, the overall potential
proves also to diverge at large distances from the probe
charge. Such a gross overscreening is physically evi-
dently meaningless, and it has been a direct conse-
quence of the neglect of the Coulomb repulsion between
the electrons in the process of generation of the induced
charge.

An approximation is far more reasonable in which the
electrons as before are treated formally as independent
particles, but now one seeks their response to the over-
all screened potential, rather than to the external field.
In this case the induced-charge density proves to be

P i n d ( q . < » ) ~ " ( q ) X o ( q , <•>) , J 1 0 , ( q , ω ) . ( 3 · 4 >

Comparison of Eqs. (3.4) and (2.11) shows that, in the
studied approximation, the polarization operator is de-
fined by the formula

'RPA (q. ω) --= —Xo (q, ω). (3.5)

In line with (2.12), this leads to the following expression
for the DC:

ERPA (q, ω) = 1 — ν (q) χ0 (q, ω). (3.6)

The formula (3.6) for the DC was first derived by Lind-
hard.26 This result has subsequently been repeatedly
reobtained by use of a whole set of theoretical methods,
in the approximation on which it is based on has re-
ceived several names.25 The most widespread term is
apparently the random-phase approximation (RPA),
which we shall adopt here.

Upon starting with (2.9) and (3.6), we can easily find
the polarizability of a system of interacting electrons
in the RPA:

i (3.7)

With accounting of (3.3) we have in the limit of small
wave numbers

Hence, in the RPA the static induced potential Vjnd(q, 0)
is related to the external potential K,rt(q,0) by

! , „ "ll.lt (<l. ») Λ

Ιϋϊ-ΡΞΠϋπβ--1·

This is the condition for complete screening of the field
from a static probe charge at large distances.

Within the framework of the random-phase approxima-
tion, the interacting electrons are treated as free par-
ticles moving in the total screened potential

^iot(q.«>)—!T^r = v.-xt(q. M) + "('i)'li"d(q. «)• (3-8>

This corresponds to the interaction of the electron with
the external field and with the mean Hartree field of the
induced charge. The Fourier component of the electron
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number density «inj(q, ω) in the induced charge is then

found in self-consistent fashion by the equation

«lnd (q. ω) = χ0 (q, ω) Vt0, (q, ω )
(3.9)

= to (q, ω) [Ve i, (q, ω ) + i,· (q) n , n d (q, ω)1.

This expression for the induced density can easily be
derived by employing the Hartree approximation to de-
scribe the motion of the system of interacting electrons
in the external field. For this reason, cR P A(q, ω) is
sometimes called the dielectric constant in the self-
consistent Hartree approximation.

The general properties of the function εκρΑ(ς, ω ) have
been described in a whole series of monographs on
solid-state theory and statistical physics (see e.g.,
Refs. 9,25,27-29). Hence we shall not treat this prob-
lem globally here, but shall only take up the following
aspects: to what extent does the dielectric function
ε^Αίς,ω) satisfy the exact sum rules, and how reliable
is the random-phase approximation at densities corres-
ponding to the densities of conduction electrons in real
metals?

First let us treat the compressibility sum rule. We
can easily see from (3.3) and (3.6) that the static dielec-
tric constant EnpA(q, 0) behaves as follows as in the limit
of small wave numbers

employ the following representation for the δ-function:

e.RPA.(q, 0)
q - 0

1 + -1 (3.10)

Comparison of (3.10) with (2.31) shows that the com-
pressibility Κ of a system of interacting electrons as
calculated in the RPA by starting with the behavior of
the static DC in the long-wavelength limit is identical
with the compressibility Kf of a free electron gas. Yet
the thermodynamic definition of the compressibility
based on the formulas (2.32) and (2.33) yields a different
result. The values of the ratio K/Kf found in the RPA
by differentiating the energy of the ground state are
given in Table I. Thus we see that the compressibility
sum rule is satisfied in the RPA only in the limit rs

« 1, i.e., outside the range of conduction-electron
densities in real metals.

Within the framework of the RPA, we note that the
Kramers-Kronig relationships hold for both the function
tfflA(q, ω) and the function em>A(q, ω). One can directly
prove the latter statement by starting with the defin-
itions (3.6) and (3.1). If we employ the identity trans-
formation

then we can easily see that the following relationship
holds:

ReeRPA(q- *>) = 1+4· ^ j j^taiRPAfq, ω'). (3.11a)

To derive the inverse relationship, we can conveniently

TABLE I.

r.

K,/K

0

1

1

0.83

2

0.64

3

0.45

4

0.24

S

0.03

6

—0.19

[ ( Κ ι ) '

J ω ' — ω ( ω ' — i u n r n ) (ω — ωηΙη)* + 8' ο-ο
•; * ·ΐ-δ(ω — ω...).

Thereby we can easily convince ourselves that

>' )= — TmeRPA (q, ro). ( 3 . 1 1 b )

As regards the function ej^A(q, u>), its fulfillment of the
Kramers-Kronig relationships is already implied by the
fact that the roots of the function e^pA(q,«) can only lie
on the real axis of the plane of the complex variable z,
as can be directly shown from its explicit form.

Now let us examine the situation in the RPA with re-
gard to satisfaction of the sum rules for the moments of
the function Ime'^q, ω). This function has a rather un-
wieldy explicit form, but we can find its moments with-
out resorting to direct integration. Upon employing the
fact that the function ImejjpA(q, w) vanishes at high fre-
quencies, we can represent the Kramers-Kronig rela-
tionship of (2.10a) in the form

q. <"> = . * — f Σ
ω " Λ ί=ο

ά ω ' ω ' 2 ' * ' I m ε«"Α <*· ω>"

On the other hand, the direct expansion of the exact ex-
pression for eJpA(q, ω) at large o> has the form

^ ^ (№-·). (3.13)

First, a comparison of the formulas (3.12) and (3.13)

indicates that the/sum rule is fulfilled in the RPA.

Second, it gives the result for the third moment direct-

ly:

[ A*(Dj). (3.14)

Here {T)f is the mean kinetic energy of a system of free
electrons having the same density. One can also derive
explicit expressions in quite analogous fashion for the
moments of the function Ime^pA(q, ω) of higher order.

In order to facilitate the comparison of the third mo-
ment in the RPA with the exact result given by Eq.
(2.28), it is expedient to integrate over the angular vari-
ables in the sum with respect to k standing on the right-
hand side of (2.28). Since, by virtue of its definition
(2.29), the static structure factor s(q) has a singularity
at q = Q [namely, S(0)=N], then we should separate out
the contribution having k =-q in this sum. Consequently
the stated sum is transformed into the form

-Lj-A Υ (^S.)'[S(k + q) — S{k)] = /i2al +/(?). (3 15)
k ; 0 H

Here the quantity J(q) is given by the expression

(3.16)

In the limit of small q, the function J(q) is described by
the formula

n-Tl·."-*1· (3.17)

Here (V) is the mean potential energy of the system.
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Yet at large q the quantity j(q) asymptotically approach-
es a constant limit:

(3.18)

Here g(0) is the pair correlation function for r =0 (see
below).

As we see from Eqs. (2.28), (3.15), and (3.17), in the
long-wavelength limit q - 0, the exact third moment ap-
proaches the value -jra>J/2. The third moment in (3.14)
of the formula Ime^>A(q, to) takes on this same value as
q - 0 . Thus the sum rule for the third moment in the
RPA is satisfied exactly in the limit q = 0. At small but
nonzero wavenumbers, this rule is obeyed only approx-
imately. In this region of q, the deviation between the
exact third moment and that found in the RPA diminish-
es with increasing density of the electron gas and with
decreasing rt (when r , ~ 0 , the kinetic energy of the
electrons substantially exceeds the potential energy,
and we have (T) * (Γ),). As regards the region of large
q, the result (3.14) of the RPA can quite considerably
differ here from the exact third moment of (2.28), ex-
pecially at the values of r, corresponding to the electron
density in real metals.

An important physical characteristic of the system is
the pair correlation function git), which is defined as
the ratio of the mean electron number density at the dis-
tance r from a given electron to the quantity (N- l)/8
(i.e., to the corresponding density in the absence of any
correlations in the spatial distribution of the particles).
The function g(t) obeys the formula25

g(r)- (3.19)

Here S(q) is the static structure factor of the system.

We can easily find the explicit expression that defines
the pair correlation function in the Hartree-Fock ap-
proximation:

sin χ — χ cos ι \2Ϋ.
Here we have x = kvr. Figure 1 shows a graph of the
function go(r), from which we see that the Hartree-Fock
approximation accounts for the tendency of electrons to
avoid one another at small distances. In this approxi-
mation this correlation is connected exclusively with
accounts of the Pauli principle, which forbids electrons
with parallel spins to exist at the same point. The re-
striction imposed by the Pauli principle extends over a
certain region of space around the electron where the
probability of finding another electron with the same
spin direction is small. It is said of this effect that an
"exchange hole" is formed around the electron. We can
judge the radius of the latter from Fig. 1. The fact that

FIG. 1. Pair correlation func-
tion 4fo(r) 1° the Hartree-Fock
approximation.

) = l/2 in the Hartree-Fock approximation arises
from the total neglect of correlation between electrons
having antiparallel spins, which actually also avoid one
another owing to Coulomb repulsion forces. It is said
of the latter effect that the electron is surrounded by a
"correlation hole". The existence of this effect causes
the true value of the pair correlation function g(r) for r
= 0 to lie somewhere in the interval from zero to 1/2.

No simple formula exists for g(r) in the RPA, as ex-
ists for #0(r), and finding the pair correlation function
involves the need of numerical integration employing
Eqs. (3.19), (2.29), (2.17), and (3.6). Such calculations
have been performed in Refs. 30 and 31. It turned out
that in the RPA the existence of a correlation hole at the
electron is manifested to such an extent that the essen-
tially positive physical quantity g(r) becomes negative
at small r throughout the range of metallic densities.
We can see well from Table Π, which gives the values
of g(0) as a function of r s , that the RPA becomes ever
less reliable with decreasing density of the electron
gas. As regards the region r,« 1, here the function

) has no explicit nonphysical singularities.

One can sometimes describe correlation in the motion
of particles more conveniently directly in terms of the
static structure factor S(q), rather than by using the
pair correlation function. At large momenta (q»2kr),
the function S(q) approaches unity, while in the long-
wavelength limit it is characterized by the behavior9

!Λ-Ϋ (3.20)

In ordinary liquids as well as in liquid metals, the
static structure factor shows a sharp peak at qt2v/a {a
is the mean distance between particles). With further
increase in q, it goes over into damped oscillations
around a value of unity. This behavior of S(q) indicates
local ordering in the mutual arrangement of the par-
ticles in the liquid at small distances.

One of the important questions to be answered by the
theory of the dielectric constant consists in whether
such a close-range order is realized in a system of in-
teracting electrons, and if it is realized, then in what
density range. In particular, there is as yet no full
clarity in the problem of whether the conduction elec-
trons in real metals behave like a liquid. We shall re-
turn again to discussing this problem in the later sec-
tions, but now shall merely note here thatthe static struc-
ture factor S(j) in the RPAfor small<? is exactdescribed
by Eq. (3.20) (yet again, this confirms a certain relia-
bility of the RPA in the long-wavelength limit). Then it
monotonically increases to unity with increasing q with-
out showing any peaks or oscillations (Fig. 2).

As we have noted in the preceding section, the condi-
tion e(q, ω) = 0 determines the dispersion law of the col-
lective excitations in the system. In the RPA this dis-

TABLE II.

rs

8(0)

1

—0.06

2

—0. 53

3

—0 95

4

— 1 33

5

—1.70

6

—2.04
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FIG. 2. Static structure factor in the random-phase approxi-
mation for the case rs =2.

persion equation has a solution that corresponds to un-
damped plasma oscillations. This solution exists at val-
ues of the momenta q in the range from zero to some
critical value qc at which the plastnon branch enters the
region of creation of electron-hole pairs, where
ImeRPA'1> w)*0· I n the long-wavelength limit, the dis-
persion law for plasmons in the RPA has the form

i- (3.21)

Qualitatively, Eq. (3.21) agrees with the results of ex-
periments to measure the inelastic scattering cross-
section for electrons and x-rays in metals.32 However,
one usually can get quantitative agreement only after in-
troducing exchange correlation corrections into (3.21)
(see the next section). In line with the predictions of the
RPA, when q > qc, plasmons practically cease to exist
as well-defined excitations (qe-Q.lkr in the case of Al
with rs = 2). In spite of these predictions, a plasmon-
loss peak is observed experimentally even at values of q
substantially exceeding qc (for q~\.5-2k? in the case of
Al33·34).

On the whole, the analysis presented above implies
that, from the quantitative standpoint, the RPA satis-
factorily describes a system of interacting electrons
only in the high-density limit (rs«l). As regards the
density region characteristic of real metals, here
EKPA(Q»

 ω ) gives a rather accurate account of the proper-
ties of the system only at small wavenumbers q. Yet
the application of the RPA for calculating physical quan-
tities that are sensitive to the behavior of the DC for
large ? yields answers known to be erroneous, e.g., when
estimating the pair correlation function at small dis-
tances or the plasmon dispersion law for large momen-
tum transfers.

4. ACCOUNT OF EXCHANGE AND CORRELATION
EFFECTS WITHIN THE FRAMEWORK OF THE
SELF-CONSISTENT FIELD METHOD

First of all, we should clarify the problem of what are
the most important effects from the physical standpoint
that are not taken into account in the RPA, so that this
approximation proves especially unreliable at large
wave vectors. We recall that the effective potential
Veff(q, ω) in the RPA, which perturbs the motion of an
individual electron upon introducing the external probe
charge into the system, is approximated by the total
screening of the potential Vext(q,w)/c(q, ω) [see Eq.
(3.8)]. In other words, in line with the definition of the
DC (2.2) in the RPA, we assume that the mean macro-
scopic electric field E(q, ω) that arises in the system

acts on the electron.

As Nozieres and Bines35 first noted, this assumption,
which does not reflect the actual pattern of electron
correlations at small distances, precisely constitutes
the main defect of the RPA. The point is that the real
field at the site r of the electron is not determined by
the sum of the contributions from the external field and
the mean field induced by the charges. As we noted in
the last section, a region of depressed density of other
electrons (an exchange-correlation hole) is produced in
the vicinity of the point r owing to the restrictions im-
posed by the Pauli principle, and also because of the
strong Coulomb repulsion between electrons at small
distances. The actual field whose action the electron
must experience must differ from (3.8) by a certain
quantity called the local-field correction.

The effect of local fields on the dielectric constant has
been studied for a long time within the framework of
classical electrodynamics.36·37 As is well known, the
deviation of the local microscopic field Ε mjC acting on
the atoms or molecules of the material from the mean
macroscopic field Ε mac means that the DC of such a sub-
stance is not determined by the simple sum of the polar-
izabilities of its constituent particles. In particular,
this fact is expressed in the classical Lorentz-Lorenz
formula for the dielectric constant:

e(ω) ='! + !_ *"""(", (4.1)

Here or(a>) is the polarizability of an individual atom,
while η is the density of atoms in the system. Without
account for the effects of the local field, the dielectric
constant would have the form

e (ω) = 1 + 4πηο (ω). (4.2)

Comparison of Eqs. (4.1) and (4.2) shows that an account
for the effects of the local field within the framework of
classical electrodynamics always increases the DC.

By analogy with classical electrodynamics, one can
formally account for the correction to the dielectric
constant of a system of interacting electrons due to the
effect of the local field by the following generalization of
Eqs. (3.8) and (3.9):

«met (q. ω) = — Jtelt (q, ω) Vtl, (q, ω), (4.3)

Tfft (q. ω) =-• Γ κ , (q, ω) + ν (q) [1 — G (g, ω)] nIM (q, ω). (4.4)

Along with the effective screened response function
ireff(q, ω), Eqs. (4.3) and (4.4) also determine the func-
tion G(q, ω), which enters into the local-field correc-
tion, and which for this reason bears the same name.
We find from Eqs. (4.3) and (4.4) that

'l· ω)
1 —e(q)C(q. a)nt.tt(q. to)

ι (q. ω) ( 4 . 5 )

[cf. (2.11)]. Finally, by using (4.5) we get the following
expression for the dielectric constant:

Ε (q, (.)) = 1 -
ι- (ιι).-τ,,π (q. M)

1—l(q)(;(q, ">) ."Vn (<1, 01)
(4.6)

We note that most studies on the theory of the dielectric
constant generally write the final result in the form

l-:-r((|)(,(q. ω) "/«(«I- «>) •

Here xo(q, ω) is the Lindhard function of (3.1). We can

(4.7)
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easily convince ourselves that Eqs. (4.6) and (4.7) agree
identically if we select the renormalized local-field cor-
rection G(q, ω) as follows:

G(q, M) = g(q, « ) - ^ - [ x („' „ + „„.,(, ω ) ] · ( 4 · 8 )

In the representation of the dielectric constant in the
form (4.7), terms appear in the function G(q, ω) that
have no direct relation from the physical standpoint to
the true local-field correction G"(q,«). However, for
practical calculations, the form of writing of the dielec-
tric constant plays no special role.

First of all, we note the evident analogy between the
classical Lorentz-Lorenz expression (4.1) and the form-
ulas (4.6) and (4.7) for the dielectric constant. Upon
starting with this analogy, we can consider that the lo-
cal-field correction function G(&>) in the classical case
is reduced to a constant value of 1/3. We can easily
verify that the local-field correction Go = 1 in the Har-
tree-Fock approximation discussed above, whereas in
the random -phase approximation we have GR P A = 0.

To find the function G(q, ω) is the fundamental problem
of the theory of an interacting electron gas. In this sec-
tion we shall restrict the treatment to calculating G(q, ω)
within the framework of the single-particle approxima-
tion based on the self-consistent-field method. As we
shall show below, a rather considerable fraction of the
currently known approximate formulas for the function
G(q, ω), which were derived in the original papers by
the tqost varied theoretical approaches, can actually be
reproduced withing the framework of a simple, single-
particle self-consistent approximation.

In the method of the self-consistent field, one treats
the system of interacting electrons as an ensemble of
independent quasiparticles, each of which moves in the
field of the external charge and in the mean field of all
the rest of the electrons. Here the true many-electron
wave functions are approximated by simple Slater de-
terminants constructed of the single-particle states
Xviv, t, t) (here ζ is the spin coordinate of the electron,
while q and σ are respectively the orbital and spin quan-
tum numbers). In turn, one finds these single-particle
states by solving a certain system of equations, e.g., of
the type of the well-known Hartree or Hartree-Fock
equations.

In the simplest variant of the method of the self-con-
sistent field one assumes that this field is local and is
the same for all of the single-electron states. In the
absence of a magnetic field and with neglect of spin-
orbital interactions, one can naturally choose these
states in the form of products of the orbital and spin
wave functions:

ψ,π (r, ζ, t) - ψ, (r, ί) χ , (ζ).

Here the orbital wave functions will be determined by
the Schrodinger equation

ih <**„ . 0. (4.9)

The following is the effective potential energy of the
electron in this case:

This potential energy consists of the potential of inter-
action of the electron with the external charge Vezt(r, t)
and of its potential energy Vt(r, t) in the electric field of
the rest of the electrons, averaged over the states of
the system.

The accuracy with which one can describe the elec-
tromagnetic properties of the original system of inter-
acting electrons within the framework of this approach
depends considerably on how one concretely defines the
potential energy F,(r, f), or in other words, on how one
averages the operator for the electric field created at
the point r by the remaining;/- 1 electrons. The latter
is given by the expression

,-, ( 4 · Π )

If we average (4.11) over the states of the complete sys-
tem Ψα(<) = ? « ( ? 1 , £1 ?r2f2,..., rK, ζΝ, t) without imposing
any restrictions on the relative arrangement of the par-
ticles, then we obtain a field corresponding to the mean
induced charge, and we arrive at the RPA. We can
more correctly account for the existence around the
electron of an exchange-correlation hole that dynamic-
ally accompanies it during movement if we impose the
additional condition in averaging the operator of (4.11)
over the wave function Ψα(ί) that an electron exists at
the point r at the instant of time t with the appropriate
probability. In practice this means that we should set
i*! =r in the wave function Φ „(/), and we should integrate
only over the coordinates r2,..., r^ with fixed r in cal-
culating the matrix element of the operator Ε (r). We
shall denote the stated procedure symbolically in the
form (.. .) r . Then we shall have the following expres-
sion for the gradient of the potential energy V,(T, t):

(4.12)
«t+o

In calculating the matrix elements that enter into Eq.
(4.12) in the wave function *«(r£, r 2 £ 2 , . . . , r,£H, t), we
should separate out in explicit form the coordinates τζ
of the studied electron and those of one of the remaining
N- 1 electrons, say r2£2. This is performed by employ-
ing the formula

(r2, ζ,, t)«,,„,*

(4.13)
| a).

Here | a) is the corresponding state of the sytem in the
second-quantization representation, while c ^ i s the an-
nihilation operator for electrons in the single-particle
state χ,,,. Consequently we arrive at the following ex-
pression for Wjx, f):

lVr, t) = i y , ί)
(4.14)

r', t)].

I'ot, (r, 0 = F e i l (r, t) -r V, (r, t). (4.10)

Here n(r, t) is the electron number density at the point r
at the instant of time f, and we have

n(r, t) = S»ta№k(', Ol2· (4.15)

The first term in (4.14) represents the mean Hartree
field taken into account in the RPA, since the second
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term is of exchange origin and describes the sought lo-
cal-field correction.

Together with the self-consistency condition (4.10) and
Eq. (4.14), the Schrodinger equation (4.9) forms a
closed system of equations with respect to ?,(?, t) and
Fe(r, /), which we must solve to the accuracy of first-
order terms in the external perturbation. To this ac-
curacy, the single-electron states are determined by
the formula

Upon substituting (4.16) into (4.14) and making simple
algebraic transformations, we get

l ' e (q, <o) = ν (q) [1 - G (q, ω) | χ0 (η, ω) \\η (η, ω). ( 4 . 1 7 )

Here G(q, ω) denotes the function

k + p_,,k )^—"t~"t 4 1 ' .. . (4.18)

Finally, upon substituting (4.16) into (4.15), we find the
Fourier component of the mean induced density

«mi (it °>) = Xu ( i . <*) 1 Vtr (q- ω). ( 4 . 1 9 )

Comparison of Eqs. (4.3), (4.4), (4.10), (4.17), and
(4.19) shows that the function (4.18) is the sought local-
field correction [we note that we have jreff (q, ω)
= -XO(Q> ω ) i n t n e self-consistent-field approximation,
and owing to (4.8), we have G(q, ω)= G(q, ω)].

The expression (4.18) for the local-field correction
was first derived by Toigo and Woodruff38 (see also
Refs. 39-41). These authors started with the exact form
formula (2.4) for the polarizability x(q, o>), and uncou-
pled the equations of motion for the double-time-re-
tarded commutator of x(q, t- t') [see (2.8)]. Here they
imposed on the higher-order Green's functions the spec-
ific condition that they should be proportional to the
Green's function of x(q, t- t'), so as to retain in the re-
sult the integral of the corresponding spectral densities
with respect to the frequency.

The derivation of Eq. (4.18) given above requires far
fewer powerful mathematical tools and is distinguished
by greater physical perspicuity. In particular, the ap-
proach that we have employed allows us to establish di-
rectly the form of the effective interaction of the elec-
tron with the external charge introduced into the system
with account for local-field effects. This is, as we can
easily see from (4.10) and (4.17), we have

ω)
(4.20)

Here e(q, ω) is the so-called effective dielectric con-
stant, for which we have the formula

? ( q , ω ) = 1 — ι · ( q ) [ 1 — G ( q , ω ) | -/„ ( q , <•>). ( 4 . 2 1 )

As we see from (4.20), ^ ( q , ω) is not determined by
the dielectric function e(q, ω) itself, which characteriz-
es only the mean macroscopic fields in the system, but
by the effective dielectric constant of (4.21), which ac-
counts for the local distortion of the mean induced dens-
ity near an individual electron owing to exchange and
correlation effects. In this regard we note that the true
spatial induced-charge distribution around the point r
when an electron lies at this point is determined by the

quantity [1 - G(q, w)]«ind(q, w).

Before we proceed to analyze the fundamental proper-
ties of the dielectric function of Toigo and Woodruff, we
shall show how one can calculate it in practice. We see
from (4.7) that we must also know the quantity

Φ (q, ω) ~ G (q, ω) χ0 (q, ω),

in order to find e(q, o>), in addition to the well-known
function xo(q, ω). In line with (4.18), the latter requires
one to calculate a sextuple integral. It turns out that the
imaginary component of the function «i>(q, ω) can be ex-
pressed in terms of elementary functions:

Imip(q, ω)

~-
0

in the remaining cases; here we have x= (q2 + (i))/2q,

x> =(g2-w)/2q, ν = (1 + ω)1'2, y ' = (1 + ω)1/2, q is mea-
sured in units of kF, and ω stands for Kt»)/cF. Finally,
F(f) is a function having the following form:

If we know the imaginary component of the function
Φ (q, ω), we can also find its real component by using
the dispersion relationship

ReO(q, (ΐ) = | ImO(q, ω').

In the static case a> = 0, the local-field correction of
(4.18) behaves as follows in the limits of small and
large φ

G (q, 0) - (4.22)

One can judge the character of the function G(q, 0) in the
intermediate region of wavenumbers from Fig. 3.

As is implied by the compressibility sum rule (2.31)
and Eq. (4.7), the main contribution to the static local-
field correction for q~0 must have the form

G{q, 0)—>-i£-. (4.23)

Here γ is a dimensionless constant that is related to the

FIG. 3. Static variant of the local-field correction in the the-
ories of Togio and Woodruff38 (1), Vashishta and Singwi54 (rs

= 2) (2), and Geldart and Voskcr (ί =2) (3). Curves 4 and 5
calculated according to Eqs. (4.38) and (4.41) while accounting
for the factor 2/3 of Gaspar, Kohn, and Sham.60·61
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isothermal compressibility by

= 1 - - (4.24)

When γ = 1/4 [see (4.22)], Eq. (4.24) coincides exactly
with the corresponding expression for the compressibil-
ity obtained from (2.32) by differentiating the energy of
the ground state in the Hartree-Fock approximation:

3 (4.25)

As direct calculations show (see, e.g., Ref. 54), the
correction to the compressibility from the correlation
energy is much smaller than the contributions from
each of the two terms in Eq. (4.25), and it becomes ap-
preciable only when r3 ~6, when compensation of the
main Hartree-Fock contributions occurs. Thus, even
though the compressibility sum rule is not obeyed
strictly in the approximation of Toigo and Woodruff, yet
it is satisfied with good accuracy over a rather broad
range of the parameter r, that covers a substantial part
of the range of metallic densities. In this respect, the
dielectric function of Toigo and Woodruff has an un-
doubted advantage over eRPA(q, ω).

In the region of small q and large ω, the local-field
correction of (4.18) is approximated by the expression

This behavior of G(q, ω) leads to the ordinary quadratic
dispersion law of the long-wavelength plasma oscilla-
tions

( 0 ( ? ) _ _ Η . ω ρ + ^ _ . ( 4 < 26)

Here the dimensionless parameter a proves equal to

α = _ϊ^(ΐ_5ίι\ (4.27)
OHiUn \ 3JI / '

The second term on the right-hand side of (4.27) consti-
tutes the exchange-correlation correction to the result
of (3.21) derived in the RPA. Figure 4 shows the exper-
imental values of the ratio a/a-^^for a set of simple
metals, together with the corresponding calculated val-
ues obtained by Eq. (4.27). As we see from this dia-
gram, Eq. (4.27) satisfactorily describes the experi-
mental data, and this allows us to conclude that the ex-
pression (4.18) for G(q, ω) is quite reliable for small q.
We note that the result of (4.26) and (4.27) was first de-
rived by NoziSres and Pines45 and then has been repeat-
edly derived by other authors.46"50

FIG. 4. The ratio α / α № Α as a function of r,. The solid line
corresponds to Eq. (4.27), and the dotted line corresponds to
the random-phase approximation. The experimental data are
taken from Befs. 42 (1), 43 (2), 33 (3), and 44 (4).

Moreover, the dielectric function of Toigo and Wood-
ruff has the undoubted advantage over CjipAthat it strict-
ly satisfies not only the /sum rule but also the sum rule
for the third moment.14·51 Hence it now satisfactorily
describes the development of events in a system of in-
teracting electrons, at least for short times.

The study of Toigo and Woodruff38 was historically the
first study that found a method for accounting for the dy-
namic character of the exchange-correlation hole, and
thus obtained a frequency-dependent local-field correc-
tion. Prior to that, all attempts to improve the result
(3.6) of the RPA, beginning with the first publication of
Hubbard,2 led to a formula for the DC of the form of
(4.7). However, in these formulas the static local-field
correction G(q) figured instead of G(q, ω). One of these
attempts was undertaken in the well-known series of
studies of Singwi et al.s2'ss These authors proposed a
method based on a classical analogy that was quite at-
tractive from the physical standpoint for accounting for
exchange-correlation effects via pair correlation func-
tions (see also the study of Hubbard56). We shall show
below how the fundamental postulate of the theory of
Singwi et al. can be substantiated within the scope of the
method that led us to the theory of Toigo and Woodruff.

Let us assume that an electron exists at the point r,
while we are interested in the mean number density of
the rest of the electrons at the point r' under conditions
in which an external perturbation acts on the system.
Upon employing the same notation as in Eq. (4.12), we
have the following expression for the sought density:

B c l t ( l j V δ(Γ'-Γ,)|ψα(ί)> (4.28)

If we were to remove the restriction on the right-hand
side of (4.28) that the designated (first) electron is rig-
idly fixed at the point r, then we woald obtain simply the
mean density n(r', f) instead of nefr(r, r'; i). The relation
is established between these two quantities that

«eff (r, r'; I) = g (r, r'; t) n (r', t). ( 4 . 2 9 )

This defines the pair correlation function #(r,r'; /) in the
perturbed system. Upon employing (4.28) and (4.29), we
can rewrite Eq. (4.12) in the following equivalent form:

VVe (r, i) = \ dVg (r, r'; t) n (r\ t) V ν (r - r'). (4.30)

Here v{r-r')=e2/\r-r'\ is the Coulomb potential.
This notation has a quite evident structure in terms of
classical electrodynamics.

Equation (4.30) is the fundamental equation in the the-
ory of Singwi et al. These authors actually postulated it
by generalizing the corresponding classical expression
to the quantum-mechanical case. This approach per se
gives no hint how one can calculate in practice the per-
turbed pair correlation function that enters into (4.30).
The further course of construction of the theory fully
depended only on the physical intuition and inventiveness
of the authors.

In the first variant of their theory,52 instead of
g{r,T';t), Singwi et al. employed in (4.30) the equilibri-
um pair correlation function g(r-r'), which is associ-
ated with the static structure factor S(q) by the relation-
ship (3.19). Here Eq. (4.30), upon being rewritten in
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terms of the corresponding Fourier components, ac-
quires the form

Fe (q, ω) = i; (q) 11 - G (q)l « l n d (q, ω). ( 4 . 3 1 )

Here the static correction for the local field G(q) is
given by the expression

In turn, the static structure factor S(q) is associated
with the dielectric function by the relationship

S(q)= — \ du> Im ε"1 (q, ω). (4.33)

Equations (4.33), (4.32), and (4.7) [with the function
G(q) instead of G(q,u>)] form a closed system of equa-
tions with respect to S(q), G(q), and c(q, ω), which can
be solved by the iteration scheme

ε"» (q, ω) -»- S>°> (q) -»- G'°» (q) -»• ε'ι> (q, ω) ->-... .

An essential achievement of the theory of Singwi et al.
was that it led to a physically reasonable pair correla-
tion function. As we see from Table ΠΙ, in this theory
g(0) remains positive up to r s « 4 , while for j-,2 4, it
takes on very small negative values that we can consid-
er zero for all practical purposes. However, the com-
pressibility calculated by Eq. (4.24) becomes negative
even at rs s 3. Moreover, the theory52 gives an ex-
tremely unsatisfactory description of the plasmon dis-
persion law (which, moreover, is characteristic of all
the known dielectric functions having a static local-field
correction).

The theory of Singwi et al. culminated in the study of
Vashishta and Singwi,54 which to some extent accounted
for the effect of reorganization of the pair correlation
function upon imposing the external field. In analyzing
the classical case, these authors employed the follow-
ing approximation for the function ^(r, r '; /):

r'; t) = g (r' -r) +-i- (•", *) + "l ')]•

This was chosen by calculation to satisfy the compres-
sibility sum rule exactly. The local-field correction in
this approximation remains static as before, and is de-
termined by the formula

Gvs" (q)= (l+-^--^-)C(q). - (4.34)

Here the function G(q) has the form of (4.32). In gener-
alizing the result of (4.34) to the quantum-mechanical
case, Vashishta and Singwi simply replaced the factor
1/2 in the second term by the empirical parameter a.
Numerical calculations showed that a choice of α = 2/3
causes the compressibility sum rule in the quantum-
mechanical case to be almost exactly satisfied through-
out the range of metallic densities. Simultaneously it
describes the pair correlation function almost as satis-
factorily in the original variant of the theory. Figure 3
shows the behavior of the local-field correction of

TABLE ΙΠ.

g(0)

1

0.24 0

2

.11

3

0.04 0

4

.006

5

—0 02

G

—0.003

Vashishta and Singwi for the case rs =2. As the authors
themselves note, the assumptions underlying the theory
are difficult to substantiate in any rigorous way, and
their only justification is that this theory gives a phys-
ically acceptable description of the static properties of
a system of interacting electrons.

Rajagopal et al*9 have undertaken a special attempt to
elucidate the reason for the success of the theory of
Singwi et al. However, they could not correlate the ap-
proach used therein with the well-known schemes of
calculating the dielectric function in many-body theory.
At the same time, even the first study of Singwi et al.*2

noted that one can start with Eq. (4.32) to derive in ex-
plicit form the first known local-field correction, which
was found by Hubbard by partial summation of the per-
turbation-theory series for the irreducible polarization
operator.2 Namely, if one substitutes the static struc-
ture factor of a system of noninteracting electrons

50(q) = l—•$• V nkn»+q,
k

into Eq. (4.32) then it acquires the form

If now we replace the quantity (k +p + q)2 in the denomin-
ator by q2 + *f, (an approximation to which Hubbard also
resorted), then this formula transforms into Hubbard's
result

G W = T ? T * F · ( 4 · 3 5 )

Comparison of (4.35) with (4.23) shows that the param-
eter γ is 1/2 in Hubbard's approximation. This implies
that the compressibility calculated by Eq. (4.24) begins
to take on negative values atr s &3.

Geldart and Vosko57 have proposed a modified variant
of Hubbard's formula (4.35), which preserves its funda-
mental merit, namely, its extreme simplicity:

Here ξ(ν$) is a parameter that is chosen by calculation
so that the compressibility sum rule is strictly obeyed.
The static dielectric function with the local-field cor-
rection of (4.36) gives quite satisfactory results in cal-
culating the phonon spectra of simple metals.6

However, one should approach with some caution the
problem of employing dielectric functions with a static
local-field correction in estimating any concrete prop-
erty of a system of interacting electrons. A common
serious defect is inherent in these dielectric functions—
once cannot in principle construct them so as to satisfy
all the exact sum rules simultaneously without leading
to physical contradictions.58 Consequently, theories in-
volving dielectric functions with a static local-field cor-
rection unavoidably have only a limited field of applica-
bility.

In closing this section, we shall again touch upon the
problem of choosing the self-consistent potential
Ve(r, t) in Eq. (4.10). First we shall show how the di-
electric function arises when one employs the above-
proposed method for accounting for local-field effects
for constructing Ve(r, t), but directly averages the ener-
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gy of interelectronic interaction, rather than the elec-
tric-field operator of (4.11). In this case, as we can
easily see, we have

Fe(r, <)= \ dVt>(r — r')n(r', ()

kpu

(4.37)
Consequently we obtain the following expression for the
local-field correction:

G (q, ω)

Σ -ρΐ <""

(4.38)
In the static limit, the function of (4.38) has the follow-
ing asymptotic behavior at small and large q:

G(q, (4.39)

Upon comparing (4.39) with (4.23), we see that y = 3/8 in
the considered approximation. Hence the compressibil-
ity calculated by Eq. (4.24) already becomes negative
for ra s 4, whereas this happens only for r , s 6 in Toigo
and Woodruff's approximation. Thus the replacement of
Eq. (4.14) by (4.37) expands the range of values of ra in
which the compressibility sum rule fails.

Interestingly, the potential energy of (4.37) amounts to
nothing but a generalization to the nonstationary case of
the expression proposed by Slater as early as 1950 for
the effective energy of interelectronic interaction, which
he derived by specific averaging of the nonlocal ex-
change potential in the Hartree-Fock equation.59 Since
the one-electron Schrodinger equation with the potential
energy Ve(r) proved not much simpler to calculate than
the original Hartree-Fock equation, Slater further ap-
proximated Ve(r) by its value in a free electron gas hav-
ing the same local density. That is, he assumed that

(4.40)

If we replace w(r) in (4.40) by n(r, i) and employ the re-
sulting potential Ve(r, t) to find the dielectric constant
within the framework of the self-consistent-field meth-
od, then, as we can easily convince ourselves, we ar-
rive at the static local-field correction in the form

G(?) = 4-(-r-)2· (4.41)

Comparison of (4.41) with (4.39) indicates that the ap-
proximation (4.40) for the initial Slater potential of
(4.37) does not distort the description of the correlations
between the electrons at large distances, although it is
unsatisfactory for small r.

Gaspar80 and Kohn and Sham*1 have shown that is is
far better warranted in accounting for exchange-corre-
lation effects in a system of interacting electrons not to
employ directly the Slater potential of (4.40), but only
2/3 of its value. This is precisely the factor that recon-
ciles the behavior of the local-field corrections of (4.39)
and (4.41) in the limit of small q with the analogous be-
havior of the function G(q, 0) in the theory of Toigo and
Woodruff [see (4.22)]. Figure 3 shows the static variant
G(q, 0) of the function of (4.38) and also the function of

(4.41) with account for the factor 2/3.

The self-consistent-field method with the Slater ex-
change-correlation potential of (4.40) multiplied by some
empirical coefficient a(2/3 « a «1) has been termed the
Xa method, and it is widely applied for calculating the
electronic structure of solids, atoms, and molecules."2

Yet the original potential of (4.37) has found no practical
application. Nevertheless, one could have used it to
construct a dielectric function with the dynamic local-
field correction of (4.38), even before the development
of the random-phase approximation.

Upon turning to Eq. (4.41), we note that the static loc-
al-field correction, which behaves like q2 in the region
of both small and large q, has also been derived by
Kleinman83 and by Langreth."4 Singwi et a/.52·53·*5 have
advanced a serious argument against results of this
type. They pointed out that the quadratic behavior of
G(q, 0) for large q gives rise to a nonphysical singular-
ity of the 1/r type in the pair correlation function as r
- 0 .

The erroneous results for the asymptotic behavior of
G(q, 0) for large q in the work of Kleinman83 and Lang-
reth6 4 did not stem from physical inadequacy of the gen-
eral scheme of calculation that they employed, but from
incorrect approximations that they introduced into their
calculations in the final stage. These authors started
with a self-consistent-field method resembling that pre-
sented in this section. However, they based their calcu-
lations on a time-dependent one-electron equation with
a nonlocal exchange potential of Hartree-Fock type

in- t)

0 \ t).

(4.42)
(They treat the case of a paramagnetic many-electron
system.) In the absence of an external perturbation,
Eq. (4.42) admits solutions in the form of the usual
plane waves

Here we have

(4.43)

as the dispersion law of the one-electron excitations in
the Hartree-Fock approximation. To an accuracy of
first-order terms in the external perturbation, the sin-
gle-particle states satisfying Eq. (4.42) have the form

*<>. 0-^f [1 +2 J £ L - C w * K(WE". (4.44)

Here Vĵ iq, ω) is the Fourier component of the effective
one-electron potential:

Vt

c (q, ω). (4.45)

In turn, Vfcc(q, ω) is the component of the Hartree-Fock
nonlocal exchange-correlation potential inEq. (4.42),
which is defined as follows:

k'-k, ω) *'\Vxc(t)\k)
(4.46)
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We can clearly see the Hermitian character of the oper-
ator Vc from this relationship, whereby the Fourier
components Vf^q, ω) and ^"(q, ω) possess the following
transformational property with respect to the operation
of finding the complex conjugate:

Upon substituting the trial solutions of (4.44) into Ε q.
(4.15) and employing (4.47), we find the Fourier com-
ponent of the induced density:

>W(q, ω) -n"(q, ω). (4.48)

Finally, upon substituting (4.44) into (4.46) and assum-
ing that k ' =k +q, we find the following relationship that
we needed:

ϊ , ω). (4.49)

In contrast to the case of a local potential, in which
the self-consistency equation reduces to a simple alge-
braic equation for Vetf (q, ω), substitution of (4.48) and
(4.49) into (4.45) yields an integral equation with re-
spect to V^iq, ω). In order to simplify the writing of
this equation, let us introduce the so-called vertex func-
tion A|,(q, ω), which is defined by the relationship

V'k"(q, a>) = Ak(q, h>)Vtot(q, ω) ( 4 . 5 0 )

= Ak(q, co)[Kt.xl(q, a>) + v (q) n l m l (q, ω)].

Upon substituting (4.49) into (4.45) and taking account of
(4.50), we arrive at the following equation for the vertex
function in the self-consistent Hartree-Fock approxima-
tion:

Ak(q, 1+E Λ-m A p ( q · *>). (4.51)

If now we recall the definition (2.11) of the irreducible
polarization operator ir(q, u>), then we can easily see
from (4.48) and (4.50) that the following expression
holds in the considered approximation:

A p (q, co). (4.52)

Equation (4.52) exactly matches the well-known expres-
sion for the screened response function, which is usual-
ly derived by diagram technique within the framework of
the self-consistent Hartree-Fock approximation.66·*7

As we have already noted, the dielectric constant is
commonly written in the form (4.7). Hence we shall
give here another formula that relates the local-field
correction G(q, ω) to the function jr(q, ω):

In finding the approximate solutions of the integral
equation (4.51) for the vertex function, Kleinman63 and
Langreth64 employed different methods, However, sub-
sequently both of these authors actually replaced the
Hartree-Fock energy Ek of (4.43) by the corresponding
value ck for free electrons in the formulas that they had
derived. Consequently they arrived at the false asymp-
totic behavior G(q, 0)~aq2. Geldart and Taylor6 7·6 8

have performed a painstaking analysis of the formula
(4.52) for the screened response function in the static
case OJ = 0 within the framework of diagram technique.
As these authors stressed, a correct account for the re-

normalization of the one-electron eigenvalues of the en-
ergy is extremely important in the self-consistent Har-
tree-Fock approximation. In particular, Geldart and
Taylor calculated the asymptotic form of the vertex
function in explicit form in the limit of large wavenum-
bers. They showed that all orders of the perturbation-
theory series yield strict compensation for large wave
vectors between the contributions from the vertex com-
ponents and from the renormalization of the one-elec-
tron energies, which are proportional to q2.

In spite of the fact that the self-consistent Hartree-
Fock approximation for the dielectric function was de-
veloped in general outline long ago, nevertheless it has
not been possible up to now to establish, even by nu-
merical methods, the nature of the behavior of the cor-
responding local-field correction GgHp(<i, ω) throughout
the region of values of q and ω. In the static case with
ω = 0, Geldart and Vosko showed57 that we have the fol-
lowing expression in the limit of small wavenumbers:

6-(*,ο)^4-(-£Γ. ( 4 · 5 4 )

(We note that the static local-field correction of Toigo
and Woodruff has the same asymptotic behavior.) More-
over, it was found that41

GSHF(?, Oj-^-i-. (4.55)

In the intermediate region of q values, the behavior of
the function GSHF(<?> 0) has unfortunately not yet been
established. Moreover, in essence, the very question
remains unclear of the degree of accuracy on which one
can generally rely in describing the dielectric proper-
ties of a system of interacting electrons within the
framework of the self-consistent Hartree-Fock approx-
imation.

5. THE MANY-PARTICLE APPROACH BASED ON
THE METHOD OF THE GENERALIZED SELF-
CONSISTENT FIELD

The previous sections have treated a set of the known
formulas for the dielectric constant, for whose deriva-
tion it sufficed to employ a simple one-particle approx-
imation combined with the standard method of the self-
consistent field. We cannot view the potentialities of
this approach as being full exhausted, since apparently
one can find more suitable equations for the exchange-
correlation contribution to the effective interelectronic
interaction potential. However, on this pathway one
still must rely mainly on physical intuition. We shall
present below a more systematic method for finding the
dielectric function of an interacting electron gas based
on the many-electron approach, but in which the se-
quence of ideas employed in the method of the self-
consistent field is explicitly followed. Within the
framework of this new approach, we shall see that even
the crudest approximation, in a certain sense analogous
to the very simple Hartree-Fock approximation treated
in Sec. 3, directly yields a result for c(q, ω) that consti-
tutes the latest advance in the theory of the dielectric
constant in its current stage of development.

In the coordinate-momentum representation, the com-
plete Hamiltonian of a system of interacting electrons
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in the presence of an external perturbation has the form

>*'•

+ Σ J
q

(5.1)
ω> Σ

In order to account for the positive neutralizing back-
ground, we shall ρ reassign the Fourier component v(q)
of the Coulomb potential by the condition υ(0) =0, and we
shall also assume that V«t(0, ω) = 0.

In contrast to the usual practice, we shall not perform
the second quantization of the Hamiltonian (5.1) on the
basis of plane waves, but on that of single-particle
states that account, even in the first approximation, for
the presence in the system of both the external perturb-
ation and of the Coulomb repulsion between the elec-
trons. Namely, we shall employ a basis of one-electron
states of the form

( 5 · 2 )

Comparison of (5.2) with (4.16) and (4.20) shows that one
can treat these states as approximate solutions of the
single-particle Schrodinger equation describing the mo-
tion of an electron in the field of the external source and
in the self-consistent field of the other electrons of the
system. The concrete form of this self-consistent field
will be determined from the self-consistency equation.
We assume the effective dielectric constant e(q, ω) en-
tering into Eq. (5.2) to possess the general property
e*(q, w) = c(-q, -u>). Without loss of generality we shall
assume that the function e(q, u>) has the structure of
(4.21), where G(q, ω) is the sought local-field correc-
tion.

To an accuracy of terms linear in the external per-
turbation, the Hamiltonian of (5.1) acquires the follow-
ing form in the second-quantization representation on
the basis of (5.2):

ί
(5.3)

Here the contribution Hc corresponds to the Coulomb
interelectronic interaction in the original Hamiltonian of
(5.2). It is given by the expression

q, ω)

kk'q
σσ'

Σ I ^ e -

The states of the perturbed system are described by
the wave functions Φα(ί), which are the solutions of the
Schrodinger equation

i f t^J^-=Β (ί)Ψ,(ί). (5.5)

Here the subscript α numbers the eigenstates of the un-
perturbed system that correspond to the eigenvalues of
the energy Ea. The Fourier component of the mean in-

duced density will now be determined by the relationship

η (q, t) = Ζ-> S e-E«»T <Ψα (t) | £ e'^l\ Va (,)>. (5. 6)

The operator Σ jexpi-iq-Tj) entering into Eq. (5.6) in
the second-quantization representation on the basis of
(5.2) acquires the form

(5.7)

Since we are interested in the linear response, it suf-
fices in averaging the second term in (5.7) after it has
been substituted into (5.6) to assume therein that

Here the n^o are the mean occupation numbers of the
single-electron states in the system of interacting elec-
trons. Here, as we can easily see, the summation in
the second term in (5.7) reduces to an expression having
the same structure as the Lindhard function of (3.1),
with the sole difference that the exact occupation num-
bers of the single-particle states in the interacting sys-
tem enter into this expression. Recalling this, we keep
the previous symbol xo(q, ω) for this expression. Thus,
upon substituting (5.7) into (5.6), we get

n(q, ω). (5.8)

Comparison of (5.8) with (4.3) shows that Eq. (5.8) de-
fines implicitly the effective screened response function
tf,ft(q,w).

In calculating the first term in (5.8), we must already
know the concrete form of the perturbed wave functions
t j / ) . That is, we must find the solution of the
Schrodinger equation (5.5) in some approximation. Upon
performing these calculations, we arrive at a formula
for the dielectric constant of the form of (4.6), where
ireff(q, ω) and G(q, ω) will in turn amount to certain func-
tionals of the sought local-field correction G(q, ω) that
enters into the definition (4.21) of the effective dielec-
tric constant e(q, ω). In principle we can then find the
unknown function G(q, ω) from the self-consistency con-
dition (4.8).

We can simplify this unwieldy scheme of calculation
substantially by requiring the dielectric constant di-
rectly to have the standard form (4.7), where xo(q, ω) is
the Lindhard function with the exact occupation numbers
of the single-electron states. As we can easily see from
from (5.8), it suffices for this to require that

This simple condition will serve us as the equation for
finding the local-field correction G(q, ω).

In solving the Schrodinger equation (5.5), the funda-
mental difficulties arise from the first term in the op-
erator of (5.4), which do not contain any small param-
eter. We shall get the crudest approximation, which
makes the problem elementarily simple, by simply neg-
lecting this term. Here the complete Hamiltonian of the
system is reduced to the form

Η (t) (ί). (5.10)
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The "unperturbed" Hamiltonian is given by the expres-
sion

ko (5.11)

while the "perturbation" H^t) amounts to the sum of the
second terms in Eqs. (5.3) and (5.4). Although the Ham-
iltonian of (5.11) does not depend explicitly on the time,
yet we note that its eigenfunctions must depend on the
time, since we are employing the perturbed basis of
(5.2). In their structure the eigenfunctions *J,0)(<) of the
Hamiltonian Ho amount to Slater determinants con-
structed from the single-electron states of (5.2). The
eigenvalues corresponding to them are equal to

£a>>=S6k«kcr).
ko

Here the nj,"' are the occupation numbers of the state

The solutions of the Schrodinger equation (5.5) with
the Hamiltonian of (5.10) in the approximation linear in
the external perturbation have the form

If now we average the first term in (5.7) over the states
of (5.12), and by virtue of the condition (5.8), equate the
result to zero, then the following equation arises for the
local-field correction:

(5.13)

»)]•

Here the «k are the mean occupation numbers of the
single-electron states in a free electron gas. In order
to facilitate the comparison of this result with those of
other authors, and also for computational considera-
tions, we shall assume that the function \0(q, ω) in (5.13)
is the ordinary Lindhard function of (3.1). In this ap-
proximation, we find from Eq. (5.13) directly that

(5.14)

In the static case o>=0, we can transform Eq. (5.14)
into the form

s
(k+p+q)2J (f,+,-e,,)(ek+i-ek)! •

(5.15)
In the limits of small and large q, this function has the
following asymptotic behavior:

G(g, 0)-
q -*• oo.

(5.16)

Upon comparing (5.16) with (4.54) and (4.55), we see
that the function of (5.15) reaches the same asymptotic
limits as the static local-field correction in the self-
consistent Hartree-Fock approximation. Figure 5
shows the behavior of the function of (5.15) in the inter-
mediate wavenumber region.

The approximation (5.14) for the local-field correction

f s
t/t,

FIG. 5. Static local-field correction calculated by Eq. (5.15).

possesses a rather long history, though as yet it has
received no generally accepted name. As we can show
from the results of Geldart and Taylor,87 who treated
only the static case ω=0, the local-field correction of
(5.15) corresponds to an approximation in which one in-
troduces first-order exchange corrections for the Cou-
lomb interaction into the zero-order polarization opera-
tor

That is, one employs the approximation

«ρ- Ο + Ο + O + C>

Although Geldart and Taylor did not find the function of
(5.15) in explicit form, yet in Ref. 67 they tabulated the
numerical values of the integral entering into (5.15) in
the interval of wave vectors 0 < q « 2kr.

The local-field correction to the static dielectric con-
stant of (5.15) has alos been derived by Dagens69 and by
Sham,70 who used the method developed by Kohn and
Sham61 of accounting for exchange-correlation effects on
the basis of functionals of the density. Moreover,
Dagens showed71 that the values of the function of (5.15)
for all q are an upper bound for the possible values of
the local-field correction Ggiwiq, 0) in the self-consis-
tent Hartree-Fock approximation.

Rajagopal and Jain72 first derived the local-field cor-
rection of (5.14) dependent on the frequency and the
wave vector. Like Langreth,64 these authors started
with the integral equation for the nonlocal vertex func-
tion Ap(q, ω) in the self-consistent Hartree-Fock approx-
imation. They found approximate solutions of this equa-
tion by the variational method. The idea of this method
is very simple and consists in the following. Initially
one seeks some functional S[A], that acquires an ex-
tremal value whenever the vertex function satisfies Eq.
(4.51). Let us choose the functional S[A] in the form

S [Λ] = Ξ χ V Λ9 Χ ρ 1;(ρ-ρ') χρ.Λρ.-2 5 χρΛρ.
' Ρ

(5.17)

To shorten the notation here we have introduced the
symbol

Also we have omitted the common arguments (q, ω) in
the functions xp(q, ω) and Ap(q, ω). Upon varying (5.17)
with respect to Λρ, we get

5 ^ ! = 2ZpfAn-l+V,.-(p-p')X,.Ap.j. (5-19)

By comparing (5.19) with (4.51), we see that, if Λ. is a
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solution of the integral equation (4.51), then the func-
tional of (5.17) actually reaches an extremum. Then one
employs the variational principle, namely, one seeks
the best "solution" of Eq. (4.51) of the local type of
A(q, ω) that doesn't depend on the wave vector p. In the
class of such local vertex functions, the functional of
(5.17) has the form

•· ρ m"
It reaches an extremum when

· (5.20)

Upon employing (5.20), (4.52), and (4.53), we finally
find the following expression for the local-field correc-
tion:

(5.21)

(Ί. ω> I-

Here we have introduced the notation

χ(ς, ω) = 2Σχ»(?. ω)·
ρ

The approximation (5.20) for the vertex function was
first derived by Langreth84 (in fact, he proposed in this
study to use the shielded potential 4ire2/[(p-p')! ! +K2

S)
instead of v(p-p'))· As regards the study by Rajagopal
and Jain,7 2 they took account of the Coulomb interaction
to an accuracy of terms of the first order in v(p - p').
Upon considering (4.43) and (5.18), we have the follow-
ing expression in this approximation for the first term
in brackets in (5.21):

whereas it suffices to set the third term in brackets
equal to

2 VI i» '\ ("p —"p+q) ( y — V + , ) IK OO\

^ ^ T ^ l i / t P - P ) («M-ep+<1 + ep+i8)(M,-ep,+q+ep. + i6) · ( 5 ' 2 3 )

Upon substituting (5.22) and (5.23) into (5.21), we ar-
rive at Eq. (5.14) directly.

We note that Rajagopal and Jain7 2 found formulas for
the spin and orbital magnetic susceptibility of a system
of interacting electrons in the same approximation.

The dynamic local-field correction of (5.14) also fig-
ures in the study of Dharma-Wardana73 [see Eq. (4.6c)
of the cited study]. For finding the linear response
function, he uses the formalism developed by Zubarev74

of double-time Green's functions, while to estimate the
mass operators, he applies the approach of Tyabilkov
and Bonch-Bruevich75 based on perturbation theory. An
analysis is also performed in Ref. 73 of the contribu-
tions to the function G(q, ω) of the second order in the
Coulomb interaction that are not accounted for in Eq.
(5.14). These contributions now arise from three-par-
ticle correlations, and were shown not be small. Gel-
dart and Taylor88 had previously reached the same con-
clusion.

In addition, the expression (5.14) for the function
G(q, ω) has been derived by Brosens et al.50 following
the Hartree-Fock scheme, they uncoupled the equations
of motion for the Wigner distribution function /(p, r, f),

which is the quantum-mechanical analog of the classical
Boltzmann distribution function. Here they obtained an
integral equation for /(p, r, t), which they solved by the
above-described Langreth-Rajagopal-Jain variational
procedure.

Finally, the local-field correction of (5.14) has ap-
peared in a study by Tripathy and Mandal,7· who followed
the general scheme of Toigo and Woodruff,38 while in-
troducing a certain new feature into it. As mentioned in
the previous section, Toigo and Woodruff started with a
chain of equations of motion for the Green's functions
that stemmed from the equation for the response func-
tion x(q, ω). Here the Green's functions of the next or-
der were equated to x(q, ω) with a certain proportionality
constant A(q). They required the corresponding inte-
grals with respect to the frequency to coincide. Tri-
pathy and Mandal applied the same method, but em-
ployed here the coefficient A(q, ω) that also depends on
the frequency. We should note that, although this calcu-
lational scheme has a certain mathematical elegance,
the underlying physics requires special elucidation.

Thus we see that the approximation (5.14) for the lo-
cal-field correction proves very "popular", and is
yielded by an entire set of theoretical methods that are
often difficult to correlate with one another. Within the
framework of the approach developed in this section,
however, we see well that this approximation is still
rather crude. It corresponds to the simplest treatment
of the problem in which one drops the first term, which
is not at all small, in the Coulomb interaction operator
of (5.4). Yet the behavior of the dielectric constant with
the local-field correction of (5.14) is characterized by
qualitatively new features that merit thorough study.
Thus, Brosens et al.77 calculated the real component of
e(q, ω) as well as the dynamic structure factor. As
these calculations showed, an important qualitative fea-
ture of the dielectric constant with the local-field cor-
rection of (5.14) is that it yields a plasmon branch that
doesn't penetrate into the region of creation of single
electron-hole pairs with increasing wave vector. In-
stead, the plasmon branch asymptotically approaches
the boundary Λω/ε, = 2(q/ftF) + (qr/ftF)

2 of the continuum
of single-pair excitations. Thus here, for example, at
<7 = 1.5i>F the plasmons are still conserved as well-de-
fined collective excitations even at r a = 3. Tripathy
et al.78 showed that, within the framework of the studied
approximation, the static structure factor s(q) shows a
maximum at q~2k? for all values of the parameter rs in
the range of metallic densities. This indicates that
close-range order is established in a system of inter-
acting electrons at these densities. Thus this system
more resembles a liquid than a gas. With further
growth in r3, the maximum at q = 2feF on the S(q) curve
becomes even sharper. Moreover, extra maximum ap-
pear at q>2kT, which indicate establishment of corre-
lation between ever more remote neighbors. However,
it remains unknown how much one can trust the stated
behavior of the static structure factor for large q and
large r,, since the calculations of the pair correlation
function g{r) performed by Mandal et aZ.79 show that g(0)
becomes negative for r s £ 4 in the studied approximation.
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6. THE INTERACTING ELECTRON GAS AND THE
THEORY OF SIMPLE METALS

The homogeneous system of interacting electrons mov-
ing in a background of neutralizing positive charge that
we have treated in the previous sections is, of course,
purely a model and is not realized in nature. Yet real
objects exist for which one can easily adapt the theory
of the homogeneous electron gas to describe their prop-
erties. The most important example of such systems is
the simple metals.

Many elements that have incomplete s and ρ electron
shells in the atomic state collectivize all their valence
electrons in forming a metal, and convert into a dis-
tinctive two-component electron-ion plasma. As a rule,
the dimensions of the ionic cores in such metals are
small in comparison with the lattice parameter, so that
the direct interionic interaction amounts mainly to a
pure Coulomb repulsion of the point charges +Ze,
where Ζ is the number of valence electrons released by
the metal atom into the conduction band. The stability
of both the ionic and the electronic subsystems is en-
sured by their mutual interaction.

In order to create a quantitative theory of the metal-
lic state, one must first make specific such an import-
ant characteristic as the electron-ion interaction. We
shall condense to an extreme the discussion of this far-
from-simple problem, whose solution is involved in the
development of an entire field in metal theory. We note
that the concept of the pseudopotential (or model poten-
tial)8 0·8 1 proves very useful in describing the effective
electron-ion interaction in simple metals, whose funda-
mental properties primarily owe to the character of the
behavior of the conduction electrons in the region of
space outside the ionic cores. In the intervals between
the ions, the total potential acting on an electron is
highly smoothed, and the wave function of the electron
has a form close to a plane wave. Hence it proves pos-
sible in describing the behavior of the electrons in this
region of space to replace the true Coulomb potential of
the ions, which generally is not at all small, with some
relatively weak pseudopotential that has the same scat-
tering properties. In this case, the calculation of the
electronic properties of a metal can start with treat-
ment of a homogeneous electron gas, and then account
for the effect of the weak electron-ion interaction by
perturbation theory. In the simplest variant of the
pseudopotential method, to which we shall restrict our
analysis, one assumes that the pseudopotential is a lo-
cal operator, and that the effective electron-ion inter-
action can be written in the following form:

Ve,.,(r,-Rn).

jn
(6.1)

Here r , and RB are the coordinates of the jth electron
and the «th ion respecitvely, while F(q) is the form fac-
tor of the electron-ion pseudopotential, which is a char-
acteristic of the individual ion and is assumed to be
fixed.

As we know, the concept of the pseudopotential initial-
ly arose within the framework of the problem of calcu-
lating the electronic band structure.8 0 However, the

fruitfulness of this idea has also been demonstrated
subsequently in the calculation of other characteristics
of simple metals, such as the binding energy and pho-
non spectra.6·8 1 The formation of the phonon spectrum
of a metal is a very complicated process, in which the
interactions between all the particles existing in the
metal play a substantial role. Here an especially im-
portant role belongs to screening effects arising from
interelectron interaction. We shall discuss the influ-
ence of these effects on the phonon spectrum of a sim^·
pie metal in the next section.

Upon accounting for the picture formulated above of a
simple metal, we can write the model Hamiltonian for
it in the following form:

(6.2)
One usually calculates the phonon spectrum of a metal
on the basis of the Hamiltonian of (6.2) within the frame-
work of the adiabatic approximation first proposed by
Born and Oppenheimer.82 This approximation is based
on the following physical arguments. Owing to the large
difference between the masses of the electrons and the
ions, the characteristic velocities of the conduction
electrons in metals greatly exceed the velocities of the
ions. Hence, in studying the motion of the electrons,
one can consider the ions in first approximation to be at
rest with some given configuration {RB}. On the other
hand, in treating the motion of the ions, we get a good
approximation if we replace all the quantities that de-
pend on the electronic variables and which affect the dy-
namics of the ionic subsystem with their mean values
calculated for the corresponding concrete configurations
of the ions. Thus, within the framework of the adiabatic
approximation, the effective potential energy of the ionic
subsystem ^({R,,}) can be represented as the sum of
the direct Coulomb interionic interaction Uit({Rn}) and
the mean energy of the electrons £0({RB}) for the given
configuration {R,} of the ions:

Uw ({R,,}) = Un ({Rn}) + Eo ({Rn}).

In finding in practice the lattice-vibration spectrum
from {/Cff ({RB}), one separates out the harmonic com-
ponent (which is quadratic in the small deviations un of
the ions from their equilibrium lattice positions), and
then solves the system of classical equations of motion
of Newton for the ions:

In this equation, the right-hand side contains the effec-
tive force exerted on the nth ion by the other ions and
electrons.

The most difficult point in this scheme of calculation
consists in finding a reasonable approximate estimate of
the mean energy of the electrons £0({RB}) for a given
ionic configuration. The theory of simple metals takes
as the zero-order approximation for this quantity the
energy of the ground state of a homogeneous interacting
electron gas, while the contribution from the electron-
ion interaction is taken into account in the form of a
perturbation-theory series in powers of the pseudopo-
tential V(q). This procedure has been carried out most
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consistently within the framework of a many-particle
approach to the electronic subsystem in a series of
studies by Ε. G. Brovman and Yu. M. Kagan (see the
review9). They showed that the contribution to JS0({RB})
quadratic in V{q) is responsible in the lattice dynamics
for the pairwise interionic interactions, whereas the
contributions of higher order in V(q) are equivalent to
many-particle ion-ion forces, which indicate the exis-
tence in metals of a sort of covalent bonding. The pain-
staking analysis of these many-ion interactions by Brov-
man and Kagan showed that one can use them to solve
the problem of the compressibility and that of the
breakdown of the Cauchy relationships for the elastic
constants of a metal. They also found that these inter-
actions must lead to a certain type of anomalies in the
phonon spectra of metals.

Evidently, in calculating the mean electron energy
£0({Rn}), and hence also in calculating the effective in-
terionic potential, accounting for the exchange-correla-
tion effects in the electronic subsystem is an extremely
difficult problem. Owing to the electron-ion interaction,
this problem proves substantially more complicated
than, say, the calculation of the dielectric constant of a
homogeneous electron gas. As regards the pairwise in-
terionic interactions, which correspond to accounting
for the pseudopotential V(q) in second-order perturba-
tion theory, they are completely described by using the
DC of a homogeneous electron gas. In calculating them,
this allows one to use the already existing approximate
expressions for the DC that account for exchange and
correlation effects. Yet a calculation of the non-pair-
wise many-ion interactions requires a knowledge of the
nonlinear polarizabilities of an interacting electron gas.
No procedure that is to any extent systematic has yet
been developed for accounting for exchange-correlation
effects in finding the nonlinear polarizabilities of an
electron gas. Hence, in calculating the many-ion non-
pairwise forces, most studies have actually been re-
stricted to tiie framework of the random-phase approx-
imation.6·83"85 Recently attempts86"88 have been under-
taken on the basis of the formalism of functionala of the
density61 to take account to an equal extent of exchange-
correlation effects in calculations of both the linear and
the nonlinear polarizability. We shall return later to
discussing this problem, but first we shall present a
method of calculating the electronic contribution to the
effective ion-ion interaction based on ideas close to
those employed in Sec. 4.

In full accord with the spirit of the adiabatic approxi-
mation and with account for the explicit form (6.1) of the
electron-ion interaction potential, we can write the fol-
lowing obvious formula directly for the effective force
exerted by the electrons on the nth ion:

Fel (Rn) = - i I qV (q) ««•»» ( Σ «"""'>,„„,. (6·4>
ι >

Here the subscript applied to the brackets denotes
averaging over the states of the electronic subsystem
that are realized in the given ionic configuration {R B }.
The characteristic of the electronic subsystem to be
averaged is

ne(q; = _:« ' · 10.0)

This amounts to the Fourier component of the operator
for the electron number density. Thus, in finding the
effective force of (6.4), we must actually know only the
mean induced-density distribution in the system of in-
teracting electrons into which the ions in the configura-
tion {R n } have been introduced.

To solve this problem, we shall apply the self-consis-
tent-field method that we employed in Sec. 4 in deriving
the expression for the dielectric function of Toigo and
Woodruff. In this case, owing to the static nature of the
perturbation of the electronic subsystem by the motion-
less ions, we must know the stationary solutions of the
one-particle Schrodinger equation, in which the total
potential energy of an electron is defined by the expres-
sion

V.n (r) = Σ ν (k) <*'*** Σ e**# (r). (6.6)

Here Ve(r) is thepotential energy of the electron in the
self-consistent field of the rest of the electrons, which
we shall find by Eq. (4.4). In order to allow in explicit
form for the overall electroneutrality of the system, we
shall s tipulate that the Fourier components of the po-
tentials that figure in (6.6) have no components of zero
wave vector. That is, we have V(q =0) = Fe(q = 0) = 0.

To an accuracy of second-order terms in the pertur-
bation of (6.6), the solutions of the one-electron
Schrodinger equation have the form

^ ^ S i (6·7)

Here c q is a normalizing factor. Equation (6.7) directly
allows us to write down an expression for the sought
mean value of the operator for the Fourier component
of the electron density of (6.5):

<n, (q)),Rn) « /.„ (q) Vtu (q) + £ / 3 ) (k, q) V*,, (k) FCI, (k + q). (6.8)

Here xo(q) is the static Lindhard function, while
j<3>(k,q) denotes the function

(6.9)
i

( B p - e p + q ) ( e p - e p + t + q ) "
]

The latter was first introduced by Kagan and Brovman89

and is called the tripole. The review6 gives an explicit
expression for the tripole. As we see from Eq. (6.4),
the approximation (6.8) for the induced electron density
allows one to establish the form of the effective inter-
ionic interaction to an accuracy of third-order terms in
the form factor of the electron-ion pseudopotential, and
thus to gain a picture of the three-particle interionic
interactions.

We must still find the Fourier components Vefr(q) that
enter into (6.8), which we can do by using Eqs. (4,4),
(6.6), and (6.7). To facilitate tracing the scheme of this
calculation, we shall first account only for the first
term in Eq. (4.4), which corresponds to the self-con-
sistent Hartree field. This simplification corresponds
to employing the random-phase approximation.

In the RPA, we have actually already performed the
main part of the calculation, since the Hartree contribu-
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tion to the potential Ve(q) is determined by the expres-
sion

'̂•' (q) = £;(q)(Hc(q)>{R>i)· (6.10)

Upon employing the approximation (6.10) for Ve(q) and
accounting for (6.8), we arr ive from the self-consis-
tency condition (6.6) at the following integral equation
for the sought Four ie r components:

7.0 (k) Xo (k - <l) A' (k, q) (6.15)

eu (q)

! " I

(6.11)
Here e ^ ^ q ) is the dielectric constant in the RPA. We
must find a solution of Eq. (6.11) to an accuracy of
terms quadratic in the form factor of the electron-ion
pseudopotential V{q). This problem can be easily solved
by the iteration method, and as a result we get

""Τ"'+ , , 7 ( k , q) Τ V * « « V , «^JL
' R P A Λ> - l H ' ' R P A ( k ) * R 1 > A ( k - q ) - -

Finally, upon substituting (6.12) into (6.8) and taking
(6.4) into account, we arrive at the following expression
for the effective force exerted by the ions and electrons
on the «th ion:

Fcfr(K,,) «_« V
(6.13)

1,1

v*(k)
FRPA (k)

ν e-'

The first term on the right-hand side of Eq. (6.13) de-
scribes the pairwise effective interionic interaction
forces, which consist of direct Coulomb repulsion be-
tween the ions and their indirect attraction via the con-
duction electrons [the function xo(q) is negative for all
q\. This term determines the dominant contribution to
the total interionic interaction and plays the major role
in forming the phonon spectrum of a simple metal. The
term of the third order in V(q) in Eq. (6.13) describes
the effective forces of covalent type that correspond to
indirect interaction of one ion with two others. In struc-
ture, this term corresponds exactly to the analogous
term in Brovman and Kagan's theory. Its fundamental
role in the lattice dynamics of a simple metal is dis-
cussed in the review.6 We recall that Eq. (6.13) was de-
rived in an approximation that neglected the second
term in Eq. (4.4) for the potential Ve(r). We shall see
below how the expression for £eff(R,) is altered when we
account for exchange and correlation effects in the elec-
tronic subsystem.

Upon substituting the single-electron states of (6.7)
into the second term in Eq. (4.4), after rather unwieldy,
but fundamentally uncomplicated algebraic transforma-
tions, we arrive at the following expression for the
Fourier component of the exchange-correlation correc-
tion to the potential Ve(q):

(6.14)

Here G(q) is the static local-field correction of Toigo
and Woodruff, while gQz, q) denotes a function defined by
the expression

The subsequent calculation is performed in full analogy
with the scheme that we used above in deriving the re-
sult in the RPA, with the sole difference that now Ve(q)
is determined by the sum of the expressions (6.10) and
(6.14). Consequently we get the following expression for
the effective force acting on the «th ion:

n) «-f V q
(6.16)

_,· V k ρ) ' "

t(q) v(k--n)

Here c(q) is the effective dielectric constant of (4.10) in
the static case a>=0, while J(k,q) is the renormalized
tripole, which is given by the formula

j (k. q)= []+nq)<?(q)xo(<i)]-/(;:)(k,

--rr V

(6.17)
o (k) Zo (k + q) \G (k) +g(k, q)J.

We note that Eq. (6.16) has been derived for an arbi-
trary configuration of ions {RB}, so that it can be em-
ployed in the rather general case. In the problem of the
dynamics of a stable regular lattice, in which the ions
perform small oscillations around their equilibrium po-
sitions, the exponentials entering into (6.16) can be ex-
panded in a series in the displacements of the ions. In
the harmonic approximation, it suffices to restrict the
treatment to terms that are linear in the displacements.
This immediately yields the force matrix, with which
can find the dynamic matrix by standard procedures.
Diagonalization of the latter enables one to obtain the
phonon spectrum. For concrete calculations we must
also know the explicit form of the function g-(k, q), in ad-
dition to V(q) as well as the known functions xo(q), G(q),
and J< 3 )(k,q). One can easily convert the sixfold inte-
gral in (6.15) into a double integral, which can be found
by numerical integration. The corresponding formulas
are rather unwieldy, and we shall not present them
here.

The merit of the method given above for calculating
the effective interionic interaction is simple metals
lies in the fact that it enables one simultaneously and
self-consistently to find both the effective dielectric
constant, which determines the linear response of the
electronic subsystem to the electron-ion interaction and
the renormalized tripole, which characterizes the non-
linear polarizability of the electron gas with account for
exchange and correlation effects. Within the framework
of this method, apparently one can actually take the next
step and find an explicit expression for F e f r (Rn) to an ac-
curacy of fourth-order terms in the form factor of the
electron-ion pseudopotential. However, with further
increase in accuracy, we shall evidently obtain formu-
las that are ever more unwieldy and less suitable for
direct calculations.

Attempts have been undertaken87·88·90 to construct a
theory of the lattice dynamics of simple metals with ac-
count for the contributions from higher-order terms in
the electron-ion interaction. The fundamental idea of
these studies is the following. In line with the theorem
of Hohenberg and Kohn,81 the energy of the ground state
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of the electron gas £0({Rn}) is a functional of the elec-
tron density n(r,{RB}). Hence we should assign the cen-
tral role in the whole problem to calculatingthis specific
physical quantity as accurately as possible. This calcu-
lation is performed in the stated studies by the following,
highly nontrivial scheme. First one solves the auxiliary
problem of finding the true induced electron density in
a system of interacting electrons into which a single ion
of the given type has been introduced [in practice one
employs the Slater-Gaspar-Kohn-Sham approach59*92

for this purpose with an approximate exchange-correla-
tion potential of the form n*/3(r)]. In the region of space
outside the ion core (r^Rc), the exact induced density
n(r) is a smoothly varying function of r, whereas inside
the ion it undergoes frequent, short-wave oscillations.
From the data of this auxiliary calculation, one con-
structs the "smoothed" electron density «(r), which co-
incides with w(r) for r >RC, and has the same mean val-
ue over the volume as n(r), but now behaves smoothly
(without oscillations) inside the ionic core. Further,
one introduces a certain effective electron-ion potential,
which even in the lowest order of perturbation theory
leads to an induced density that coincides with the smo-
othed electron density n(r). Thus, two variants of the
local effective potential were tested in Ref. 88, namely
the first-order potential W(lKq) defined by the formula

together with the effective second-order potential
W<2>(q), which is introduced by the relationship

~(

Here f(q) is the static effective dielectric constant of
(4.10) (to be specific function e(q) was used in Ref.
88 with the local-field correction G(q) of Geldart and
Taylor88). The effective electron-ion potential thus de-
fined differs from the ordinary pseudopotential, and
actually proves even weaker. The latter fact facilitates
its use for calculating phonon spectra, as is done by the
same scheme as in the approach based on the pseudo-
potential method. It is clear, however, that by defin-
ition Wdn) also partially incorporates the effects of high-
er-order terms in the electron-ion interaction (e.g.,
those that correspond to multiple scattering of electrons
by the same ion). On the whole, this approach seems
highly promising, though systematic pursuit of it in
practice faces the same difficulties of accurate account-
ing for exchange and correlation effects.

7. CONCLUSIONS

It is practically impossible in such a short review to
examine all the aspects of the theory of a system of in-
teracting electrons, which continues to develop actively.
Hence we have focused attention on deriving the funda-
mental, currently known formulas for the dielectric
constant of this system. Here we have actually not
touched upon such an important question as the relative
merits of the various methods of solving this problem.
At present it seems very difficult to advance any cogent
arguments on the advantage of any given approach to
calculating the DC of an electron gas at intermediate

and low densities. This involves the following two cir-
cumstances. First, the absence of a small parameter
in the problem rules out a pure theoretical analysis of
the degree of accuracy of the different methods of cal-
culating e(q, <>>). Second, a system of a homogeneous
electron gas in a neutralizing background is not realized
in pure form in nature. Hence one cannot test experi-
mentally all the consequences of the various theoretical
calculations.

The sole system at our disposal that most closely cor-
responds to a homogeneous electron gas in the ensemble
of conduction electrons in simple metals. The few
known experiments to measure the contribution of the
conduction electrons to the dynamic structure factor of
a set of simple metals have been performed by the
method of inealstic scattering of both x-rays92·93 and an
electron beam.34·44 Apparently they indicate that not one
of the existing approximate expressions for the DC can
be deemed fully satisfactory. The results of these ex-
periments also show that the collective response of the
conduction electrons to the probe beam recalls the re-
sponse of a strongly interacting liquid, rather than of
an ideal gas. Study of the static structure factor in liq-
uid sodium and aluminum94 also reveals strong close-
range order in the electronic subsystem that propagates
to distances of 30-40 A. However, we should note,
first that the experimental data of Refs. 93,44 are not
in full agreement and second, that we do not possess
complete theoretical clarity on the problem of the role
of electron-ion interaction in these phenomena.

The problem of the behavior of a homogeneous elec-
tron gas in the background of a neutralizing positive
charge can also be studied in the classical limit. The
problem of studying the properties of a classical,
strongly nonideal plasma is currently also the topic of
intensive theoretical studies.95 However, the situation
in this field is far more definite, since detailed calcu-
lations exist on the properties of a classical, one-
component plasma by the method of molecular dyna-
mics,98·97 with which we can compare the approximate
theoretical results. Very recently molecular-dynamic
calculations have also been performed by the Monte
Carlo method on a quantum one-component plasma.98

This study calculated the energy of the ground state of
an interacting electron gas over a broad range of values
of the parameter rs. Three phases were shown to exist
in the electron system: a homogeneous unpolarized liq-
uid (1 < r, < 13), a ferromagnetic homogeneous liquid
with fully polarized spins (13 < r, < 33), and a Wigner
crystal for r,>33. The compressibility of a homogen-
eous electron gas was also found98 to become negative
even at ra s* 5.4. This means, first, that the stability of
this system at the corresponding densities can be en-
sured only by the compressibility of the neutralizing
background, and second, that the onset of negative com-
pressibilities at rs >5.4 in calculations that start with a
concrete expression for the dielectric constant cannot
be treated as evidence of the inconsistency of the given
approximation for the DC. Undoubtedly, it is of great
interest to continue the study of the properties of the
quantum interacting electron gas by the Monte Carlo
method, and in particular, to calculate the various cor-
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relation functions by this method.

In closing, the authors take the opportunity to thank
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