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Λ review is given of the present state of theoretical and experimental work on the interaction of two
coherent light beams of equal frequency in a nonlinear medium. It is shown that dynamic self-diffraction
is substantially different for media with different types of response. Stationary energy transfer between
interacting beams is possible in the case of nonlocal nonsymmetric response, whereas this type of transfer
is forbidden in the case of local response. Different mechanisms for self-induced changes in the refractive
index are examined together with the corresponding processes of energy transfer between the writing
beams. The more important applications of dynamic self-diffraction are discussed.
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1. INTRODUCTION

Self- interaction of laser beams in a medium that is
due to changes in its properties induced by incident
radiation is among the most interesting phenomena in
nonlinear optics. Self-focusing and self-defocusing of a
light beam, self-rotation of the plane of polarization,
and so on, are examples.1·2 Self-interaction between
two or more light beams has attracted increasing atten-
tion in recent years. Suppose that two coherent light
beams of equal frequency, i.e.,

E, = C, exp i (ωί — k,· r ) , I = 1, 2, (1.1)

are incident on a nonlinear medium and, without inter-
secting, form the interference field

| Ε Ρ - I Et + E, p. (1.2)

The result of this is a periodic variation in permittivity
due, for example, to a cubic linearity of the form

Δβ=β, |£Ρ. (1.3)

This variation in permittivity is, in effect, a diffraction
grating which, in the case of complicated wave fields,
is referred to as a holographic grating. The incident
beams are diffracted by the grating and new beams ap-
pear, propagating in new directions (these are the dif-
fraction orders). There is also a change in the intensity
and phase of the writing beams themselves. This holo-
graphic effect is referred to4 as self-diffraction.1'

Self-diffraction can also be described in a different

u In the nondynamic situation, the permittivity ε remains prac-
tically unaltered during the grating writing process so that
there is no beam self-interaction. The change In the proper-
ties of the medium becomes effective after development, and
subsequent reading does not erase the grating.

way,5 namely, as frequency-degenerate stimulated four-
photon scattering of light by the oscillations of atoms
and electrons in the medium that are induced by the in-
teracting beams or as the "scattering of light by light."2'
In both approaches, a quantitative description of the
phenomenon reduces to the solution of the Maxwell equa-
tion containing the nonlinear increment Δε. Since all
crystals, liquids, and gases have nonzero cubic non-
linearity ε,, self-diffraction is a very general effect
that is produced in all media when the beam power is
high enough.

Substantial literature has appeared in recent years on
the properties associated with self-diffraction and on
its utilization in nonlinear laser spectroscopy for the
amplification and transformation of laser beams and
for optical data-processing, in this review, we shall
examine the physical principles of self-diffraction and
the data obtained as a result of studies of this phenom-
enon and its applications. As a rule, we shall adopt the
approach used by the respective authors of the original
papers reviewed, but the interaction between beams will
in general be interpreted as self-diffraction in a non-
linear medium.3' Many of the published papers on self-
diffraction are devoted to studies of mechanisms re-
sponsible for nonlinear it y in particular media. Such

2)When ωχ * Wj, we have stimulated Raman scattering, stimu-
lated Mandershtem-Brillouin scattering, intensity holograms,
and so on.10-13 Henceforth, we shall be concerned with the
frequency-degenerate interaction unless stated to the con-
trary.

3)The topicality and complexity of the nonlinear diffraction
problem was indicated in Ref. 2, where the importance of
the development of basic concepts in this field was empha-
sized.
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questions require separate examination and lie outside
the framework of the present review.

The phenomenon of self-diffraction is due to a process
in which the writing and reading of the grating occur
simultaneously and in a self-consistent manner. The
permittivity change Δε induced by the radiation gives
rise to a redistribution of the intensity and phase of the
interference field and this, in turn, is reflected in the
spatial distribution of Δε. All this determines the com-
plicated dynamic nature of self-diffraction, including
the stage after the establishment of the stationary state,
and the considerable difference between the properties
of the dynamic and static (given) gratings. Thus, the
equal-phase surfaces (the "lines" of the grating) be-
come inclined and bend, and the modulation depth be-
comes a function of position in the grating.6"' when the
writing process takes place under reflection geometry,
new effects connected with the variation in the period of
the grating for a given angle between the beams are
found to occur.14

The fact that dynamic self-diffraction is nontrivial in
character is most clearly seen in sufficiently thick tar-
gets where, as a result of interference quenching, the
intensity of the higher-order diffraction beams becomes
negligibly small (this will be referred to as Bragg self-
diffraction), it turns out that two coherent beams writing
the Bragg grating Δε in a medium with a local zero-
inertia response4' do not take part in energy transfer for
any ratio of the intensities5·15·16 although this grating
can be detected and investigated by examining the dif-
fraction of an auxiliary test beam by it.13 Energy trans-
fer remains forbidden in the case of local nonzero-
inertia response in the stationary state.17·18 Moreover,
the diffraction of two coherent beams by a given grating,
including the unshifted grating, is always accompanied
by a change in their intensity with the exception of beams
of equal intensity.19 The absence of energy transfer
under dynamic conditions is due to the interaction be-
tween the dynamic grating and the light field mentioned
above, namely, the grating adjusts itself in such a way
that the energy transfer in the Bragg beams is the same
and is mutually compensated for any intensity ratio.

As a result of an active search, a number of ways
have been found for producing dynamic self-diffraction.
They rely on a departure from any of the conditions
forbidding energy transfer:

1) Nonlocal response. Bragg self-diffraction of two
beams, as in Fig. la, in media in which dynamic scat-
tering is shifted in phase relative to the interference
field by an angle that is not zero or a multiple of τ.

2) Noninstantaneous response. Nonstationary Bragg
self-diffraction of two beams, as in Fig. lb, in a
medium with inertial nonlinear response.

3) More than two beams. Self-diffraction of three (or
four) beams in a medium with zero-inertia local re-

4)Local response of a medium Is defined as that for which the
extreme of the resulting grating and of the writing interfer-
ence field are coincident (this is the so-called unshifted grat-
ing).

FIG. 1. Schematic Illustration of dynamic self-diffraction in
a nonlinear medium: a) Bragg self-diffraction of two beams
in a medium with nonlocal response; b) nonstationary Bragg
self-diffraction in media with local response; c) self-dlffrac-
tlon of three beams in a medium with local response in the
presence of spatial locking; d) self-diffraction of four opposite
beams, collinear in pairs.

sponse, under the conditions of spatial synchronism, as
in Figs, lc and d.

4) Small-volume grating. Dynamic self-diffraction by
a thin grating with the participation of higher diffraction
orders (Fig. le).

Each of these cases will be examined in a separate
Section of this review. The last Section will discuss
results achieved through the utilization of the self-dif-
fraction effect.

Let us consider briefly the history of the problem. It
appears that self-diffraction was, in fact, first dis-
cussed in the course of an analysis of a totally different
problem,20 namely, the splitting of a powerful laser
beam into "filaments" during self-focusing in a non-
linear medium.5' The analysis was, in fact, concerned
with a plane wave modulated by a weak interference field
equivalent to the degenerate four-photon interaction of
Fig. lc. It was shown that the plane wave was unstable
against small field perturbations for Δε>0. The critical
size of the instabilities and, correspondingly, the criti-
cal spatial frequency, determined by the nonlinear
properties of the medium and the power carried by the
field, were found.

All the leading features of Bragg self-diffraction, in-
cluding the appearance of the dynamic grating, and the
conditions for and size of energy transfer in the scheme
shown in Fig. lc were analyzed in Ref. 5 which appeared
in the same year. The experimental realization of this
scheme on the basis of ruby-laser beams interacting in
nitrobenzene followed soon after.21 This was followed
by work on stimulated temperature scattering of the
Rayleigh-line wing, and stimulated scattering due to
absorption (detailed references are cited in Refs. 11 and
12). From the standpoint of self-diffraction, the initial-
ly theoretical and subsequently experimental verifica-
tion of the possibility of self-diffraction of beams of

5)This is not a fortuitous coincidence because the two effects,
i. e., self-focusing and self-diffraction, are due to cubic non-
linearity.
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strictly equal frequency in media with local response
under nonstationary conditions17·22 is the most important
result, although the reason for the effect was not
established at the time (see Sec. 4).

By now, dynamic self-diffraction has become an in-
dependent branch of holography. The emergence of
dynamic holography as part of the development of
holography generally was recently reviewed in Ref. 9.
It was noted that the starting point for the development
of dynamic holography was the discovery of stationary
energy transfer and its interpretation as a consequence
of the writing of the shifted grating in lithium niobate
crystals.3 9 The first systematic theory of this effect
was given in Ref. 8, and interest in studies in this field
arose in connection with the possibility of holographic
transformation of intensity as a means of correcting the
laser wave front.1 1 8·1 1 0

Renewed interest in degenerate four-wave interaction
arose in 1977-8 when it was shown that weak beams
could be efficiently enhanced and complex conjugate
waves could be generated in the stationary state under
the conditions of spatial synchronism in a scheme in-
volving crossed beams collinear in pairs. 2 3 t 2 i

The description of self-diffraction from the standpoint
of nonlinear optics is the most convenient in the case of
the transparency region when the response can be re-
garded as being instantaneous and the increment Δε in
the Maxwell equation is determined by the nonlinear
polarizability P{SLy of the form3

>) EkE,Em, (1.4)

where the variable subscripts i,k,l,m correspond to
the Cartesian components x,y,z, and \ m m is the cubic
nonlinearity tensor whose values are standard char-
acteristics of the material.3·3 7

Almost simultaneously with the emergence of the non-
linear optics approach (in 19672S), the other, holo-
graphic, approach was developed. The holographic ap-
proach provided a more graphic interpretation of the
effect of self-diffraction and led to qualitatively new re-
sults in a number of cases. The example of self-dif-
fraction of two beams of monopulse radiation from a
ruby laser in thin films of a solution of a transmitting
dye (cryptocyanine) was used to demonstrate that it was
possible to form, read, and transform images in real
time with the aid of dynamic holograms. In recent
years, self-diffraction has been produced and investi-
gated in a large number of reversible detecting me-
dia.2 6"3 5

In the general case of a medium with nonzero inertia,
the nonlinear polarizability is given by

KNu (ω, r, t) = χ \Ε (ω, r, r', t, t') Ε (ω, r, r', t, t')]x Ε (ω, r', «'),

(1.5)

where \[E(w,r,r',t,t')E(w,r,r',t,t')] is an integro-
diff erential operator whose form is determined by all
the processes involving the migration of excitation in
coordinate and energy spaces, i.e., by the change in
level population in the medium. Accordingly, χ is no
longer a standard characteristic of the medium and

depends, in addition, on the temporal and spatial char-
acteristics of the writing fields. For example, in the
case of pulsed excitation in a time interval that is small
in comparison with the excited-state lifetime x, the
nonlinearity determined by χ is independent of τ but, in
the case of continuous illumination, χ does depend on r.
This difference between the effects of self- interaction
of beams in a medium with delayed or nonlocal response
means that the holographic description of self-diffrac-
tion becomes more convenient, since it explicitly in-
volves the phase mismatch between the field and grating,
which plays a dominant role in the self-diffraction pro-
cess. 7 · 8 · 1 8

It is important to note that the terminology used to
describe self-diffraction is not as yet finally estab-
lished. The phrase temporary holograms has been wide-
ly used in foreign literature since the publication of Ref.
25 and is meant to indicate that the holograms are pro-
duced and read in the presence of radiation in the course
of which the writing beams become modified and that the
holograms decay after the end of the writing process.
"Real time" holography has a very similar meaning.
"Self-diffraction"4 and "dynamic holography"9·28·31 are
most frequently used in Soviet literature and have the
same meaning. If the length of the writing pulse is less
than or comparable with the response relaxation time of
the recording medium, one speaks of "transient holo-
grams (nonstationary holograms).27

To so-called superposition-state holograms114·115

which appear during the interference between excited
atomic states1 1 6 are a new and interesting form of
dynamic holograms. Superposition holography has been
studied mainly theoretically, but the first experimental
results on superposition holograms in ruby have al-
ready been reported.1 1 7

2. ENERGY TRANSFER IN DYNAMIC
SELF-DIFFRACTION. GENERAL PRINCIPLES

The theory of the phenomenon is based on the solution
of Maxwell's equations that include the nonlinear de-
pendence of the permittivity on the light-field amplitude
[ see (1.3)]. The specific form of this dependence in
each particular case is deduced from the set of con-
stitutive equations for the medium. Since the boundary
conditions are periodic, the solution is usually sought
in the form of a series in terms of the spatial harmo-
nics of the original interference field acting on the
medium. The result of this is the appearance of a set
of discrete light beams—higher diffraction orders—and
there is also a change in the amplitude and phase of the
interacting beams. Depending on experimental condi-
tions (thickness of nonlinear layer, angle between the
beams, and size of nonlinearity), the higher diffraction
orders may appear (thin dynamic hologram) or may be
interference-quenched (volume holography and Bragg
diffraction).

Let us begin by considering the solution for the gen-
eral case when ί-th order diffraction has nonzero in-
tensity. If we write the Z-th order light wave amplitude
in the form E, = VTj exp(t(p|), and the/>-th component of
the permittivity grating in the form zp = \tp ΙβχρβΦ^), we
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obtain the following expressions for the intensities /,
and phases φ, of the Z-th beam (see the Appendix):

|ερΐν/»/ι8ίη(Φ.-< (2.1)

(2.2)

where a is the absorption coefficient, kt,k are the
components of the incident-wave vector along t h e * , ζ
axes, and φ1η = φ, - φΛ is the phase of the interference
field due to the Z-th and m-th components of the beams.
The first term on the right-hand side of (2.1) describes
the absorption of the Z-th beam, and the second term
takes into account the resultant change in its intensity
due to the diffraction of partial beams by the corre-
sponding grating components. The first term in (2.2)
determines the change in the phase of the Z-th beam
relative to the Bragg beams that is connected with the
difference between the paths traversed by the beams in
the nonlinear medium (the geometric phase difference).
The second term is due to the nonlinear "transfer" of
phases during self-diffraction.

It follows from (2.1) that the contribution of an in-
dividual diffraction term to the intensity of the Z-th
beam is proportional to 8ίη(Φ - <plm). In other words,
the necessary condition for energy transfer between the
Z-th and m-th components of the light beam in the
presence of a phase mismatch between the interference
field due to these components and the p-th component
of the grating is

— <Pjm ¥=0, π. (2.3).

The change in the beam phase, in turn, appears as a
result of diffraction [described by the sum over the
diffraction orders in (2.2)] if Φ^- φΐΛ is not an odd
multiple of ττ/2 and, in the case of non- Bragg beams,
as a result of geometric mismatch in the direction of
the original beams with Z=± 1 [first term in (2.2)].

For the volume grating in the Bragg approximation
(Ct, Φ 0, Cm = 0, | w | > I) 1 4 and when the absorption is
weak, the expression given by (2.1) can be written in
the form

-g—±iitwr*( (2.4)

For a medium without inertia but with local response,
Ae=e2C1Cf!1 [see (1.3)] and dI±i/dz = 0. Energy trans-
fer in the case of dynamic Bragg self-diffraction in a
medium with zero-inertia local response is thus found
to be absent.

On the other hand, the phase φ = φ± ί - <p_j is trans-
ferred from the strong beam to the weak in accordance
with (2.2):

( 2 · 5 )

This result was first obtained in Ref. 5 and then in Ref.
15 and in several of the subsequent papers. Finally, the
exact integrals of Maxwell's equations in a nonlinear
reactive homogeneous medium were used in Ref. 16 to
derive this conclusion for two opposing waves of equal
frequency under the law of conservation of energy and

momentum.

Phase transfer, which is equivalent to a change in the
phase velocity of the propagating beams, leads to a
tilting of the equal-phase surfaces of the writing inter-
ference field toward the weak wave, and the absence of
energy transfer is a consequence of the strict coinci-
dence between the extrema of the interference field and
the induced grating at all times. In the case of the re-
sponse of a medium with inertia, the same result is
obtained under stationary conditions. Experiments per-
formed with different media have confirmed these theo-
retical conclusions.22'31

We emphasize that phase transfer in the absence of
energy transfer36 can be used in phase-sensitive devices
to modulate laser radiation and for similar applications.
It can also be used to determine the size of the cubic
nonlinearity of different media.37

The characteristics of energy transfer and the prop-
erties of the dynamic grating in a particular nonlinear
medium can be found for the first two cases of self-
diffraction from the self-consistent solutions of the
equations for the intensities and phases of the field and
the complex grating amplitude ε^ in the Bragg approxi-
mation (see the Appendix):

- ε 1/./.,.,/_, tin (φ-Φ),

| ε | cos
i = α |/ /+,/_, cos (φ — Φ + ψ,,),

*"

at
sin ψ Τ

(2.6)

where ψβ, ipT are the phase shifts associated with zero-
inertia and finite-inertia writing mechanisms, the pa-
rameter α is determined by the particular response
mechanism, and ε = \εή 21 is the modulus of the ampli-
tude of the fundamental component of the permittivity
grating. In the stationary case, when 3ε/3ί = 3Φ/3ί = 0,
Eq. (2.6) assumes the form

s/4 = ± -f- ατ/+,/., sin (ψ,

f = •£-(/+,-/-,) cos (ψο

Φ = φ + ψτ + ψα·

(2.7)

It is clear from (2.7) that the stationary mismatch
between the phases and the field at the grating (ψτ + φα)
is determined by the drift component (φΤ) and the non-
linear response of the medium (ψα).

3. BRAGG SELF-DIFFRACTION BY THE SHIFTED
GRATING

We must now consider the first method of producing
Bragg-beam energy transfer, i.e., self-diffract ion by
the shifted phase grating. It follows from (2.4) that the
energy transfer has a maximum when the grating is
shifted by π/2, i.e., by a quarter of the period, relative
to the interference field. A graphic explanation of this
fact can be given as follows. When self-diffraction takes
place, two collinear waves propagate in the direction of
each of the interacting beams, namely, the transmitted
zero-order wave from one of the beams and the first-
order diffraction wave from the other. For the un-
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shifted grating, these two waves are phase-shifted by
π/2 relative to each other. When the grating is shifted
by a quarter of the period, there is an additional phase
difference between the waves, which is equal in mag-
nitude but is different in sign (± π/2). For the acceptor
beam, the waves are in phase and add constructively,
whereas for the donor beam they are in antiphase and
add destructively. This provides us with the possibility
of complete interference quenching of one of the inter-
acting beams during self-diffraction by the shifted
grating (Fig. la).

In the case of the shifted grating (ψτ +φα = π/2), the
initial set of equations given by (2.6) reduces to

—-τ— = Ψ -τ-ατί+,/_,, —31 = 0; (3.1)

so that the beam intensities are given by

/±i W = /o {1 + [m exp (Γζ)]*1}-', (3.2)

where /„ = /•! +/_t and m = /_10//,10 is the intensity ratio
of the beams at entry to a nonlinear medium of thick-
ness z.

It follows from (3.2) that Bragg self-diffraction by the
shifted grating leads to an enhancement of the beam
toward which the grating is shifted, independently of the
original beam intensity ratio. When the medium thick-
ness ζ is large enough, the intensities of the two beams
combine almost completely into a single beam at exit
(Fig. 2).8

The gain is given by

Γ - ' l n ( '-1 '*"]- *' " (3.3)

and characterizes the efficiency of energy transfer,
which is proportional to the amplitude of the shifted
grating but is independent of the thickness of the
medium. We also note that the induced grating is very
inhomogeneous in depth (Fig. 2). This is a consequence
of the variation in the contrast of the writing field in the
course of propagation through the medium. There is
also the absence of phase transfer, so that the grating
"lines" for plane writing waves are planes parallel to
the bisectrix of the incident beams.

Nonlinear media with nonlocal response are quite
rare. It is clear that these must be media without a
center of inversion for which there is one or several
special directions for which the variation of the optical
properties is sensitive to the sign of the applied dis-

30 z,cm

FIG. 2. Dynamic self-diffraction In a shifted stationary grat-
ings. The normalized Intensity Is shown for two Interacting
beams as a function of the thickness of the nonlinear layer
together with the nonlinear increment ln the permittivity as
a function of hologram depth.8

turbance. Known detecting materials with this property
include crystals with linear electrooptic effects, name-
ly, the ferroelectrics LiNbOj, LiTaOj, and BaTiO3, and
semiconductors CdS, CdTe, BijjSiOj,,, and Bi12GeO?r

One of the possible mechanisms that can be used to
write the shifted holograms in these crystals in con-
nected with the diffusive redistribution of space charge
over the crystal. When a periodically modulated light
field is applied to the crystal, an inhomogeneous dis-
tribution of nonequilibrium electrons is set up in the
conduction band. Diffusion then ensures that some of
the electrons enter dark regions of the interference
pattern and are captured by deep traps. The space-
charge field that modulates the refractive index of the
crystal appears as a result of this. In most real crys-
tals, the screening length is much less than the period
of the interference field, and the stationary distribution
of free carriers is practically the same as the distribu-
tion of the pump radiation. The stationary field due to
the space charge that results from this diffusion pro-
cess is proportional to the logarithmic derivative of the
distribution n(x) of free carriers:18

JSf(,)~^^ln»W. (3.4)

The refractive-index grating with the same spatial
frequency as that of the pump radiation is thus shifted by
a quarter of the period relative to the interference field.

The correct interpretation of stationary self-diffrac-
tion in lithium niobate in terms of the spatial mismatch
between the interference field and the grating during the
diffusion process was first given in Ref. 39. However,
the enhancement of energy transfer during grating mis-
match had been predicted much earlier.5

Diffraction by crossed gratings was subsequently con-
sidered in Refs. 8 and 40, where a number of important
qualitative results is reported. Calculations for a spe-
cific model of an electrooptic crystal and a detailed
comparison with experiment were reported in Ref. 41.
A gain of Γ »10 cm'1 was obtained in the case of writing
in nominally pure reduced crystals of lithium niobate at
the wavelength of the helium-cadmium laser. This is
much greater than the gain recorded for most active
media of solid-state lasers, which is of the order of the
gain of liquid dye lasers. In complete accordance with
the theory,41 the gain increased linearly with the spatial
frequency of the grating, and was practically indepen-
dent of the absolute intensity or the intensity ratio (Fig.
3). The minimum amplified signal was 10"6 W/cm' and
was determined by light scattering in the crystals. It
has also been shown41·42 that nonlocal response is possi-
ble during the redistribution of the space charge in
electrooptic crystals in sufficiently strong external elec-
tric fields. Recent work43·44 has shown that this phe-
nomenon can be recorded experimentally in potassium
niobate crystals.

In most of the detecting media used for dynamic
writing, response is local so that the first Fourier com-
ponent of the refractive- index distribution is the same
as the distribution of light in the interference field.
Stationary energy transfer is possible in these media
but special techniques using the inertia of real non-
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/", cm

10

w~
FIG. 3. Dynamic self-diffraction in a stationary shifted grat-
ing in an impurity-free lithium nlobate crystal. Gain Γ as a
function of the period I. of the interference field and the ratio
m of the intensities of the interfering beams. Solid lines—cal-
culated, open circles—experimental.

linearity have to be used.

The first proposal for an artificial mismatch between
the holographic grating and the interference field was
given in Ref. 45. In absorbing liquids, nonlinearity is
of thermal origin: the refractive index changes as a
result of the heat release during light absorption. This
grating relaxes relatively slowly through thermal dif-
fusion and the equalization of temperature through the
cell. If the detecting medium is displaced during the
writing process in the direction perpendicular to the in-
terference field planes, the resulting refractive index
distribution becomes mismatched relative to the field
(Fig. 4).

The moving-medium method has turned out to be ex-
ceedingly useful for the writing of dynamic holograms
with pulsed laser beams operated under free-generation
conditions.45"47 Thermal holograms in a moving cell
containing a liquid have been written with a ruby
laser.4 6 Figure 5 shows the envelopes of the sequence
of generation peaks for a modified acceptor beam as a
function of the rate of displacement of the cell and the
direction of its motion. It is clear that the sign of the
shift determines the direction of energy transfer, and
its velocity governs the magnitude of the effect. A
thousandfold amplification of a weak acceptor beam was
achieved in this experiment, and it was found that 10%

30

15

1.0

ZOO WO WO WO

a)

FIG. 5. Dynamic self-diffraction by the thermal grating with
artificial phase mismatch:46 a) time variation of the enhance-
ment of the weak beam when the medium moves with velocities
ν = 8, 0, and —8 cm/sec for curves 1—3, respectively; b) time
dependence of intensities leaving the hologram and normalized
over the peaks for the amplifying (+1) and modified (-1)
beams tor υ =8 cm/sec and m =20.

of the total laser energy could be concentrated.

In media in which writing of the hologram is connected
with the appearance of charged particles, it is possible
to use shift techniques based on the application of elec-
tric and magnetic fields.48·49 When a semiconducting
crystal is placed in crossed electric and magnetic fields
whose directions are parallel to the planes of the inter-
ference field, the Lorentz force, parallel to the normal
to these planes and having the same sign for electrons
and holes, is found to appear. As a result, the sta-
tionary distribution of electrons and holes becomes
shifted relative to the generating light field.

Shifted holograms of this kind have been obtained by
exciting electron-hole pairs in silicon with a ^-switched
neodymium-glass laser. 4 ' A 30% increase in the in-
tensity of the acceptor beam was observed for Ε
= 102-103 v/cm and ff= (2-5) χ 103 Oe. The same beam
is weakened in intensity when the polarity of the mag-
netic field is reversed (Fig. 6). When the writing is
repeated on the same piece of the crystal, the effect
becomes less well defined because of the accumulation
of photochemical transformations. However, the prop-
erties of the crystal can be restored by annealing, and
the relationship illustrated in Fig. 5 can be reproduced.
Stationary enhancement is not observed in the absence
of the fields.

We note that the phenomenon of self-diffraction by
stationary shifted dynamic gratings has been analyzed
within the framework of the holographic approach, and
we know of no papers in which the traditional nonlinear-
optics approach has been applied to this problem.

Art I

FIG. 4. Dynamic self-diffraction in a layer of absorbing liquid
moving at right-angles to the planes of the interfering field.45

The light intensity distribution (£(x)|2 in the Interference pat-
tern and the variation in the refractive index An(x) is shown
for a stationary (1) and a moving (2) medium.

l-f/U,

\ \

1.1

0.9

.1-H-
10

FIG. 6. Dynamic self-diffraction in a free-carrier grating
in silicon, shifted by externally applied crossed electric and
magnetic fields.49 The figure shows the Intensity ratio for the
two beams leaving the crystal as a function of pulse numberiV.
The beams intercepted by the crystal have equal Intensity.
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4. NONSTATIONARY ENERGY TRANSFER BETWEEN
INTERACTING BEAMS

Investigations performed in recent years have shown
that media with noninstantaneous local response, in
which stationary energy transfer is forbidden, can ex-
hibit efficient energy redistribution between Bragg
beams in time intervals comparable with the nonlin-
ear ity relaxation time. Since there is no physically
special direction in many media with local nonlinearity,
the effect appears only when the intensity of the two in-
teracting beams is different, and energy transfer al-
ways occurs from the strong to the weak beam.

Qualitative analysis of the phenomenon can be based
on the original set of equations given by (2.6) with φα

= φτ=0. It follows from the equation for the phase dif-
ference φ between the two beams that, when Ι^ιΦΐ_ι,
the position of the maxima in the interference field in
the medium is a function of time.18·46 (Fig. 7). At time
f = 0, there is no grating, ε = 0, and the planes of the
interference field lie along the normal to the surface of
the nonlinear layer (d<p/Sz = 0). in the stationary case,
<ρ-Φ = 0 but Βφ/ΒζΦθ, i.e., the grating is inclined to
its original position. Thus, the "lines" of the inter-
ference field in the medium are shifted (rotated) during
the transient process. At the same time, the time mis-
match between the writing and diffraction processes
leads to a spatial mismatch between the recorded
grating and the interference field produced by the in-
teracting beam. This mismatch [ nonzero argument
φ - Φ in the formula for the change in the beam inten-
sity given by (2.6)] is, in fact, responsible for the en-
ergy transfer between the two beams. The mismatch
between the gratings depends on the depth of penetration
of the nonlinear medium (Fig. 7b). In the case of sta-
tionary states, the holographic grating succeeds in
catching up with the interference field, and energy
transfer ceases.

It also follows from (2.6) that, initially, energy trans-
fer proceeds from the strong to the weak beam. The

\ /

\

flAVU

FIG. 7. Different cases of development of the nonstationary
energy transfer effect: a) Initial time t =0; b) time of Inter-
action comparable with the characteristic nonlinearity relaxa-
tion time, t » τ; c) stationary state, t » r. Solid lines repre-
sent surfaces of equal phase In the Interference field; broken
lines show the distribution of the refractive index in the medl-

transfer is oscillatory in character in the presence of
strong phase modulation, | φ - Φ| > ir/2, and vanishes
altogether when the beam intensities are equal.

Exact solution of (2.6) for arbitrary donor and ac-
ceptor beam intensities is difficult to obtain. The first
theory of this was given in Ref. 17, where the effect of
nonstationary thermal Rayleigh scattering was examined
numerically on a computer in the approximation of a
given pump-wave field. Analytic calculations have also
been reported18·50 without introducing the given-field ap-
proximation, but only for moderate gain. Finally, a
computer simulation of the effect for arbitrary acceptor-
beam intensity has been reported.47

The time dependence of the intensity of the transmitted
beam is given by18

(4.1)
where ζ is the thickness of the nonlinear layer, τ is the
characteristic nonlinearity relaxation time, and the pa-
rameter Δ is determined by the ensemble of charac-
teristic parameters of the medium that define the photo-
refraction process.18·50 It is clear that the nonstationary
increment on the acceptor-beam intensity is quadratic
in the thickness of the medium and the depth of modula-
tion of the refractive index, and that, initially, it in-
creases as the square of the time.17'18·50

The nonstationary energy transfer effect was first ob-
served during the writing of the thermal grating by
waves moving in opposite directions in a solution of
carbon tetrachloride containing iodine, and was inter-
preted as "stimulated temperature reflection."51 The
weak beam was reflected from the phase grating pro-
duced during its interaction with the strong beam and
was found to increase its intensity by a factor of more
than 200 over an interaction length of 2 cm. A similar
phenomenon was subsequently observed during the inter-
action between two beams of light from a laser with
self-locked oscillations in an absorbing liquid.26

The interpretation of the effect as a nonstationary pro-
cess was first given in Refs. 17 and 22. Qualitative re-
sults on the amplification coefficients that followed from
numerical calculations were examined, and a quantita-
tive comparison was carried out for the kinetics of the
amplified pulse and the calculated pulse obtained by
assuming that the pump pulse was Gaussian (Fig. 8).
This comparison resulted in an estimate for the half-
width of the central peak in Rayleigh scattering by
methyl alcohol containing iodine.

Nonstationary energy transfer can be explained
qualitatively in the language of nonlinear optics as a
change in the frequencies of the interacting beams11

during the transient stage of hologram recording. In
point of fact, if we recall that the grating that is re-
sponsible for diffraction is "unfolded" in space with a
definite velocity, the diffracted beam must assume
Doppler increments of different sign and frequency.
The magnitude of these increments is determined by the
reciprocal of the nonlinearity relaxation time, and may
amount to hundreds of megahertz for the thermal non-
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FIG. 8. Nonstationary self-diffraction In an absorbing liquid.22

Open circles are experimental; solid curve is the result of a
theoretical approximation. The figure shows the time varia-
tion of the weak-beam intensity.

linearity. However, it must also be remembered that
the frequency shift varies with time from zero to some
value, and then again becomes equal to zero. The inte-
grated spectrum-broadening effect in self-diffraction in
an absorbing liquid was observed in Ref. 12. For media
with highly inertial nonlinearity, for example, lithium
niobate, the nonstationary frequency shift may amount
to a fraction of a hertz, which is practically undetect-
able. On the other hand, the fact that the position of the
grating "lines" in space varies during the transient pro-
cess is the basic presumption in the holographic treat-
ment of the effect, and mischange is reliably detected
experimentally.

Nonstationary energy transfer has also been investi-
gated in studies concerned with dynamic holography
aimed at determining the conditions for the observation
of energy transfer.46·52 Figure 5 illustrates the energy
transfer effect during the writing of the thermal grating
in a stationary cell, i.e., when stationary energy trans-
fer is forbidden. Subsequent studies have shown47 that,
when the donor beam intensity is high enough, a virtual-
ly 100% conversion to the acceptor beam is possible.
The characteristic feature of the process is the con-
siderable stretching of the transient interval in compari-
son with the hologram relaxation time, and the de-
parture from regular kinetics (Fig. 9).

Nonstationary energy transfer is also observed during
the writing of holograms (based on free carriers in
silicon crystals) by the monopulse radiation from a
neodymium-glass laser, pure amplification was found
to occur at power levels in excess of 1 MW/cm2, and
the calculated threshold power was found to be in agree-
ment with observations.53 Amplification was observed
only when the intensities of the interacting beams were
different, and the energy was always transferred from
the strong to the weak beam. Measurement of the gain
Γ as a function of the nonlinearity relaxation time r
showed that the effect was, in fact, nonstationary in

/ • / / . »

10 15 20
t/τ

FIG. 9. Nonstationary self-diffraction in the case of thermal
nonlinearity.47 The calculated normalized weak-beam intensity
ί-ι/ϊ+ιο is plotted as a function of time. The parameter G is
proportional to the initial intensity of the strong wave and the
thickness of the material; m=0.01, ατ=5.

character, and was observed only when the length of the
pump light pulse was Δί slOr.

This type of phenomenon has also been observed
during the writing of dynamic holograms in cadmium
sulfide, based on the two-photon absorption of mono-
pulse ruby laser radiation.54

Exceedingly strong nonstationary amplification occurs
during the writing of holographic gratings in lithium
niobate crystals placed in an external electric field.
The drift writing mechanism, which relies on the re-
distribution of photoexcited carriers in the electric
field, leads to the writing of the unshifted component
of the holographic grating. Nonstationary energy
transfer thus becomes possible.50 The usual stationary
diffusion amplification operates at the same time. Ex-
periment shows that the gain associated with one effect
is added to or subtracted from the other, depending on
the orientation of the C-axis of the crystal and the beam
intensity ratio. An oscillatory energy transfer process
between the beams occurs when the external field ex-
ceeds 5 kv/cm, and practically the entire donor beam
energy is transferred to the acceptor beam. As in most
of the effects described above, the gain remains in the
range 10-100 cm"1.

Maximum nonstationary energy transfer (weak-beam
intensity increases by a factor of 2500) occurs when the
grating is written in lithium niobate crystals doped with
iron,55 owing to the photovoltaic effect. Figure 10 shows
the relative increase in the weak-beam intensity during
nonstationary energy transfer in LiNbO3 doped with
0.05% by weight of iron.

5. THREE-AND FOUR-BEAM INTERACTION UNDER
THE CONDITIONS OF SPATIAL SYNCHRONISM

It follows from the foregoing discussion that Bragg
self-diffraction of two beams in the case of the unshifted
spatial grating does not lead to energy transfer between
the beams. At first sight, energy transfer in arrange-
ments using the higher diffraction orders would seem to
be impossible because of the difference between the geo-
metric phase differences [see (2.1)], i.e., a departure
from spatial synchronism with the Bragg beams. It is,
however, possible to achieve energy transfer by using
the phenomenon of phase transfer in dynamic gratings
[see (2.5)]. Geometric dephasing of a complementary
diffraction order can be compensated by changing the

FIG. 10. Nonstationary self-dlffractlon during the interaction
between light beams in lithium niobate crystals, showing the
photovoltaic effect.55 The initial beam intensity ratio is 1:10,
1:25, and 1:100 for curves 1—3, respectively.
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weak-beam phase φ_χ by phase transfer. Since, in ac-
cordancw tih (2.5), φ_χ depends on the strong-beam in-
tensity 7M, this compensation is possible only for
suitably chosen values of J,1# This produces the inter-
action of all three beams under the conditions of spatial
synchronism, and the corresponding energy transfer
(Fig. lc). Three-beam interaction of this kind was the
first arrangement used for dynamic self-diffraction (see
the Introduction).

We shall now follow Ref. 5 in considering the basic
relationships for this process. Suppose that a medium
with zero-inertia cubic nonlinearity ε2>0 intercepts
strong (£0) and weak (£t) waves. The resulting unshifted
dynamic grating Δε [see (1.2)] with wave vector q=k0

-ki induces the polarization wave

A / ) =-^-[lc»i2(£»+2 £')+T(ic°i i Cie i < 1"'+"r" i'u')+ c c · ] (5-D
with wave vector kg + q = 2kg - kj. The phase transfer is
then equivalent to an increase in the refractive index for
the weak wave, given by

(5-2)

Suppose that the weak wave E2 with wave vector k2

=kg + q = 2kg - kj propagates through the medium at the
same time, and that the wave vector corresponds to the
first non- Bragg diffraction order. The spatial locking
condition

2k,=k,+k,

is then satisfied for the above three waves.

(5.3)

In accordance with (5.3), two pump-wave photons are
scattered into two weak-wave photons during the four-
photon interaction and are amplified equally.6'

The angle θοβ% between the beams for which (5.3) is
valid is given by

'ψ-±/5 2e0

(5.4)

This situation occurs when the wave E2 is absent at
entry, since it appears during the self-diffraction pro-
cess in a thin layer of the medium (see Sec. 6).

For arbitrary diffraction orders that are symmetric
with respect to the strong wave, the weak wave gain is
given by5T

(5.5)

It follows from this expression that Γ >0 for 0 < θ < θιΐΛ

where 6llm is the angle for which the square root in
(5.5) is equal to zero. At 0opt, the gain reaches its
maximum value of rm = Δε*,/2 = ε21Co |'feo/2. For the
diffraction orders nearest to the strong wave, I = - 1;
+ 3, and Γ>0 for

A~ 8ε, sin» (β/2) * ' ' '

Thus, in the given-field approximation, an exponential

6>If the medium is illuminated by two strong waves of equal in-
tensity, self-diffraction will give rise to two additional sym-
metric diffraction orders corresponding to two coupled
four-phonon interactions.56

-0.5 -0.25

FIG. 11. Three-beam dynamic self-diffraction under the con-
ditions of space matching: a) gain Γ for weak waves as a func-
tion of the parameter A; b) three types of dependence of weak-
beam Intensity on the thickness of the nonlinear layer57 [A
< 1/4 (1), A =1/4 (2), andA>l/4 (3), respectively].

growth of the weak wave in the three-beam arrangement
is possible in a medium with positive cubic nonlinearity.
However, the strong-wave power threshold must be ex-
ceeded. This threshold is determined both by the me-
dium parameters and by the angle between the beams.

If the medium exhibits nonactive losses characterized
by absorption length la, the strong-wave threshold
power is

/»«, =-5«j-|C(|». • (5.7)

Estimates performed for typical nonlinear media (ε2

= 7.5x 10"11 esu for the Kerr nonlinearity in CS2) with
λ = 6943 A and /e = 10 cm yield Pth=9 MW/cm2.

There are also possible solutions with Γ =0, when
the weak waves grow parabolically (Fig. 11, curve 2).
When Γ < 0, the weak-wave intensity oscillates with
depth of propagation in the medium because of the viola-
tion of the space locking condition (this class of solu-
tions was first examined in Ref. 8, where, however, it
was erroneously concluded that it was the only class of
solutions). Finally, a qualitative analysis has been car-
ried out of the nonlinear problem of interaction between
three waves without the given-field approximation,57 and
it has been shown that the transfer was always oscilla-
tory in character. Conditions have also been found
under which the weak wave has a complicated front and
is amplified without appreciable distortion.

Three-beam self-diffraction was first carried out with
monopulse ruby laser radiation of 900 ±300 MW/cm2.
Two beams with an initial intensity ratio of 8:100 were
allowed to cross in a cell containing nitrobenzene (1 = 3
mm). All other effects were either suppressed (stimu-
lated Raman scattering) or did not succeed in developing
(self-focusing, stimulated Mandel'shtam- Brillouin scat-
tering). When #opt = 8.3±0.8 mrad, an additional beam
of the same frequency (theoretical value 0opt = 7.2± 1.3
mrad) was observed at the angle 6>opt although the mea-
sured value of Γ turned out to be several times smaller
than the calculated value. The theoretical prediction20·5

of simultaneous and practically symmetric amplification
of weak beams was confirmed for sufficiently long inter-
action regions (/ = 75 mm).

Three-beam self-diffraction of broad-bend dye laser
radiation near the absorption lines of potassium and
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rubidium was investigated in Ref. 56. In accordance
with (5.6), the additional beams appeared only on the
short-wave side of the absorption band, where ε 2 > 0,
and the original weak beam, amounting to about 2% of
the strong beam, was amplified by an order of magni-
tude. The appearance of symmetric weak beams for
1+ ίο · ̂ -io= 1:1 w a s a l s o noted.

It would appear that one of the most universal and
promising arrangements for dynamic holography is that
proposed in 1977 in Refs. 23 and 24, where a nonlinear
medium with instantaneous local response was illumi-
nated on opposite sides with two plane pump beams Ei

and E} propagating in opposite directions, and two signal
beams E3 and Ei were present at a certain angle to the
other two. The latter beams also propagated in opposite
directions (Fig. Id):

of a single signal wave C3(0) [ Ct(L) = 0] . We then have

k, + k, = 0; k, + kt = 0. (5.8)

The spatial locking conditions are then satisfied auto-
matically. Stationary energy transfer to the signal
waves in a medium with local response thus becomes
possible and, in contrast to the three-beam scheme,
this can occur for an arbitrary angle between the pairs
of beams, and any sign of the nonlinearity ε2. One
photon from each of the beams participates in the ele-
mentary event.

The standard procedure for solving the wave equation
with nonlinear polarization [as in (1.4)] leads to the
following equations for the signal waves in the given-
field approximation:

dt
(5.9)

x = 2iro>xC1C2/cw is the complex coupling constant
between the waves.

For a clearer understanding of the four-beam interac-
tion, we return to holographic language, i.e., to the
consideration of the dynamic gratings produced as a
result. The gratings that are written by the opposing
beams Cu C2 and C3, C4 are excluded from consideration
because Bragg diffraction of the second pair of beams
cannot be produced by them and the opposing beams
themselves do not exchange energy in accordance with
Sec. 2. The self-diffraction process occurs as follows.
Beams C, and C3 write the transition grating, which can
diffract the beam C2 under the Bragg conditions, and
generate wave C4.

T> Beams C3 and C* in turn write the
grating that diffracts the pump wave C, and generates
wave C3. Reflecting gratings produced by beams C2, C3,
and so on, can be described in a similar way.

We shall now solve (5.9) for the most interesting case

"Wave C4 Is the complex conjugate of C3 In accordance with
the basic laws of holography58-60 which are valid for dynamic
gratings, since It can be reconstituted by the wave C2 which
is the complex conjugate of the reference wave Ct (for plane
waves, complex conjugation is equivalent to propagation in
opposite directions). We note that our notation is different
from that adopted in Refs. 24 and 63, where the signal wave
is called C4 and the resulting complex conjugate wave is
called C3.

C ' ( 0 >
(5.10)

If the gain Γ along the path L, determined by | H | L , is
sufficiently large, the intensity of the resulting reflected
wave C4(0) is greater than the incident-signal wave
C3(0). When the condition |κ|ζ, = π/2 is satisfied, gen-
eration by waves C3 and C4 becomes possible without a
cavity resonator although the introduction of a totally
reflecting mirror perpendicular to C3 reduces the gen-
eration threshold by a factor of two.59 The results that
we have obtained must be regarded as purely qualitative
because the given-pump field approximation is violated
for | K | L = TT/2.

An important conclusion is that generation of the com-
plex conjugate wave remains possible for signal waves
with complicated fronts. In this case, (5.10) assumes
the form

CK{x, y, (x, y, z<0), (5.11)

i.e., the amplified reflected wave C4 is the complex con-
jugate of the incident wave C3 for ζ <0, i.e., outside the
nonlinear medium. This enables us to perform dynamic
correction of wave fronts by the well-known holographic
method. The possibility of beams with complex conju-
gate fronts in nonlinear-optics processes was first
discovered and explained in the case of stimulated
Mandel'shtam- Brillouin scattering.61"6'

It has been shown63 that the use of the four-wave in-
teraction in beams traveling in opposite directions in
f iberoptics systems containing a core with the neces-
sary cubic nonlinearity results in the generation of an
amplified complex-conjugate signal wave at moderate
(1 W) pump levels and extended interaction lengths
(10-100 m) with simultaneous automatic compensation
of phase distortion due to the optical inhomogeneity of
the fiber. Theoretical estimates have shown that other
nonlinear effects do not develop at the same time. Fast
media can be used to perform these operations in real
time.

It is important to emphasize that the generated com-
plex conjugate wave is a "time-reversed" modification
of the direct signal wave C3.

23 When the appropriate
conditions are satisfied, e.g., the nonlinear medium
is thin enough, it is possible to achieve the time com-
pression of ultrashort phase-modulated pulses.64

The first experimental work with the four-beam ar-
rangement, using beams traveling in opposite direc-
tions, was performed well before the proposals re-
ported in23'H This arrangement was employed in Ref.
65 in an investigation of nonstationary holograms, using
free carriers in silicon crystals, written by a neo-
dymium-glass laser beam (λ = 1.06 μ, power in excess
of 1 MW/cm2). A wave that was the complex conjugate
of the signal wave and was generated in the course of
transmission through an image-bearing slide was ob-
served.

At practically the same time, an analogous experi-
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ment was performed with a dynamic volume grating
written by a ruby laser in a solution of a transparent
dye.86 Here again, it was shown that the complex con-
jugate wave was produced in the direction opposite to
the signal wave, and was used to compensate the curva-
ture of the wavefront produced by a positive lens. How-
ever, the stationary interaction of beams traveling in
opposite directions was not considered in this work
[condition (5.8)] and the experiments were carried out
with nonstationary holograms.

The use of the complex conjugate wave for the correc-
tion of phase inhomogeneities in laser amplifiers was
suggested in Ref. 45, where the complex conjugate wave
was produced by reading a hologram with a beam having
a plane wave front and produced by reflection of part of
the reference beam in the reverse direction.

The four-wave interaction in liquid carbon disulf ide
between beams traveling in opposite directions and
derived from neodymium and ruby lasers (10-100 MJ
per pulse of 10~8 sec) was used in Refs. 67 and 68.
Practically complete compensation of the nonuniformity
in the reflected complex conjugate wave C4 was
achieved, and the properties of this wave were satis-
factorily described by the theory for | C31' < 0.11 Ct |

2 .
The writing and reconstruction of the image of a binary
transparency with a resolution of 40 lines/mm was re-
ported in Ref. 67. The arrangement used to compensate
optical distortions was found to be highly sensitive to
any departure from strict coaxiality of the two pump
waves Cj and C2.

The Kerr nonlinearity near the resonance doublet
Dl- D2 of sodium69 has been used to reach n2«10"8 esu
and to reduce substantially the necessary pump power
density (down to 40 kv/cm'). At the same time, a re-
flected wave was produced that was stronger than the
signal wave by a factor of 100. A tunable dye laser with
Δ^Γ = 0.03 cm'1 was used to investigate the wavelength
dependence of the intensity of the reflected wave (Fig.
12). A departure from the linear dependence of the in-
tensity of the fourth wave on | C3(0) | 2 was found to occur
at high C3 intensities (Fig. 13).

The scheme described above was realized by using
saturated absorption in the Doppler line (sodium vapor
at 2 χ 1011 cm"3) at λ = 5890 A, pumped by a continuous
dye laser of only 15 MW.ro The contribution of the
phase grating could be increased by departing from the
line center at which the grating was of pure amplitude

FIG. 12. Self-dtffractlon of four collinear beams propagating
in opposite directions In sodium vapor.69 The intensity of the
fourth wave |C 4 | 2 is shown as a function of the wavelength of
the interacting beam.

FIG. 13. Self-diffraction of collinear beams traveling in op-
posite directions in sodium vapor.59 The figure shows the
intensity of the fourth wave |C4 |

2, which is the complex conju-
gate of the signal wave C3, as a function of the intensity of
the latter.

type. Generation of the complex conjugate wave was
observed above 30 mw/cm2. The efficiency reached
0.2% at 600 mw/cm2. A resolution of 12 lines/mm was
achieved under these conditions in the complex conju-
gate wave in the real image of a test object placed in
the path of the signal wave. The wavelength range in
which the effect was observed, especially at low
pumping levels, was much narrower than the Doppler
linewidth. This opens up new possibilities for laser
spectroscopy within inhomogeneously-broadened lines.

Four-wave interaction of beams from the CO2 laser
(λ = 10.6 μ) in germanium was investigated in Ref. 71.
The generation of the complex conjugate wave and com-
pensation of phase inhomogeneities was demonstrated.

The generation of the complex conjugate wave in a
barium titanate system was reported in Ref. 72.

6. SELF-DIFFRACTION WITH THE PARTICIPATION
OF HIGHER DIFFRACTION ORDERS

The characteristic manifestation of self-diffraction
is the appearance of several higher-order diffraction
beams propagating at angles satisfying the vector rela-
tion

k=k o ±iq, (6.1)

where q is the grating vector (Fig. le) and t = 1,2,3,....

This is analogous to Raman- Nath diffraction by given
periodic structures73 and occurs when the higher dif-
fraction orders are not interference-quenched within the
nonlinear layer for one reason or another. Many re-
searchers have used the appearance of higher diffrac-
tion orders to investigate the nonlinearity mecha-
nism.74·75

Self-diffraction, including the appearance of the
higher orders, is usually discussed on the basis of a
simplified scheme without taking into account the re-
action of the change in the refractive index on the
writing light beams (this is the nonstationary phase
transparency approximation76"78). The calculated char-
acteristics of diffraction by a thin thermal grating78·77

show that the intensity of the higher diffraction orders
is described by a sum of the form

l±m = Tio(j2

m+Jl+1), (6.2)

where Jm and Jm 11 are Bessel functions representing
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FIG. 14. Dynamic self-diffraction with the participation of
higher diffraction orders.8 7 The figure shows the intensity of
the first non-Bragg diffraction order as a function of the spa-
tial frequency of the interference field for the cadmium tel-
luride crystal. Solid line—calculated,86 open circles—experi-
mental.

diffraction in a given direction from each of the writing
beams, and Τ is the layer transmission.

Experimental studies of self-diffraction under the
Raman-Nath conditions have been carried out for solu-
tions of organic dyes2 8·3 0·6 6 and semiconductors.2 7 '2 9·3 2 '3 3 '
54.74.81-84 β w a s shown that, when the diffraction ef-
ficiency was low, reasonable agreement could be a
achieved with different variants of the nondynamic
theory. 7 6 ~ 7 8 · 8 4 * 8 5 · 8 8 This can be understood by recalling
that the absolute change in the phase difference between
the interacting beams becomes negligible when the over-
all phase change across the nonlinear layer is small.

Improved calculations referring to particular experi-
mental situations appeared after this work. For exam-
ple, nonstationary self-diffraction by thermal gratings
was examined in Ref. 85 and by free-carrier gratings in
Ref. 74. Raman-Nath self-diffraction was analyzed in
Ref. 78 with allowance for nonlinear absorption.

The correct description of self-diffraction with al-
lowance for dynamic feedback is difficult because of the
increased number of equations. The first non-Bragg
intensities ItS have been calculated49'№ for self-diffrac-
tion in semiconducting crystals produced as a result of
the production of pairs of free carriers. Comparison
with experiments performed with CdTe crystals in which
stationary dynamic holograms were written by mono-
pulse Nd3*: YAG radiation showed that there was good
agreement with theory87 (Fig. 14).

7. APPLICATIONS OF THE SELF-DIFFRACTION
EFFECT

The phenomenon of self-diffraction has found extensive
applications in both physics and technology.

Image writing, reading, and transformation in real
time were demonstrated in the very first paper on
dynamic holography.25 Proposals for logic elements
based on dynamic holograms were subsequently investi-
gated. 8 9 The same idea formed the foundation for a
method of measuring the duration of ultrashort light
pulses writing the grating. This was suggested and
carried out in Ref. 91. The characteristics of self-
diffraction or test-beam diffraction by a dynamic holo-
gram can be used to determine the probabilities of
different relaxation processes leading to the erasure

of the grating (see the review paper given in Ref. 74),
Here, we have the possibility of measuring the tempera-
ture diffusivity in liquids and solids,92'93 the mobilities
of free carriers, and the probabilities of recombination
processes in semiconducting compounds, the depth of
impurity centers participating in the writing and era-
sure processes, and the investigation of new mecha-
nisms of nonlinearity. For example, the writing of
dynamic gratings in record times with the aid of intra-
band absorption by the carriers was reported in 81> 82.

Modern technology can be used to measure diffracted
radiation of 10~5 of the intensity of the incident light,
which corresponds to the modulation of the optical path
difference by amounts of the order of 10"3λ, i.e., the
situation has been pushed practically to the limit of the
optical band. This high sensitivity of the method means
that exceedingly weak effects, such as second sound
propagation in crystals, can be investigated.95'96 The
coefficients of diffusion of excited molecules of a dye
in liquid crystals9 7 and the anisotropy of thermal con-
ductivity in liquid crystals9 8 have also been investigated.

Self-diffraction can also be used to determine the
components of the nonlinear polarizability tensor, which
is responsible for self-diffraction,58 and to investigate
internal inhomogeneities in a medium that give rise to
the inhomogeneity of the nonlinear polarizability ten-
sor. 6 8

Four-wave paired collinear interaction can be used
to achieve one of the variants of two-photon laser
spectroscopy within the Doppler-broadened line with
the elimination of background.68'70

On the other hand, dynamic holography has opened up
new possibilities for real-time image processing. Self-
diffraction in self-translucid liquids and gases has been
suggested99'101 as a means of correlational comparison
between two continuously-varying specimens. Two
beams of light passing through variable transparencies
are used to write the Fourier hologram in the focus of
a lens and the third, specially shaped beam of the same
frequency is used to read and reconstruct the mutual
correlation function for the two specimens in one of the
diffraction orders.

Amplification of coherent light beams, including am-
plification of beams carrying optical information, is a
possible application. The dynamic nature of the process
is such that it can be used to amplify time-dependent
signals.

Image enhancement during the writing of stationary
shifted holograms in lithium niobate crystals4 1 has been
reported as well as nonstationary energy transfer in
lithium niobate crystals in an external field50 and in
different four-wave arrangements for paired collinear
interaction.69'70 Figure 15 shows the image of a televi-
sion testcard enhanced by a factor of ten during the
writing of a hologram in a nominally pure lithium nio-
bate crystal (stationary amplification).

Another possible application of dynamic self-diffrac-
tion is real-time holographic interferometry.102'103

Several theoretical treatments4 0 '1 0 4~1 0 8 have been re-
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FIG. 15. Enhancement of the testcard image on a television
screen as a result of dynamic self-diffraction by a stationary
shifted grating written in a nominally pure lithium nlobate
crystal.

ported of possible applications of the energy transfer
effect in determinations of the parameters of electro-
optic crystals. The use of the energy transfer effect in
the visualization of phase inhomogeneities in a nonlinear
medium and in the correction of amplitude-inhomo-
geneous light beams has been discussed.108

In the case of stationary self-diffraction,39 the direc-
tion of energy transfer depends on the sign of the mobile
charge carrier. 3 9 It has recently been shown109 that,
when lithium niobate crystals are excited in the ultra-
violet band, the main mobile carriers are holes and not
electrons as in the case of excitation in the visible band.

Writing in dynamically nonlinear media can also be
used to solve the problem of the transformation of com-
plicated wavefronts to a given form and, in particular,
to correct the angular divergence of real lasers.8·4 5·6 0*1 1 0

Calculations have shown that, when the writing condi-
tions are correctly chosen, considerable enhancement
can be achieved for the acceptor beam with nearly plane
wavefront without appreciable distortion.1 1 1·1 1 2

On the other hand, the generation of complex conju-
gate wavefronts in Raman-Nath self-diffraction and in
the four-wave interaction68 can be used as a means of
compensating dynamic phase inhomogeneities of power-
ful laser amplifying sections45 and fiberoptic schemes
(this is a variant of adaptive optical systems with ampli-
fication).

Like many other nonlinear effects, self-diffraction can
be used to control the duration of the diffracted beam.
Compression resulting from the four-wave interaction,
which depends on the pump-wave intensity, was re-
ported in Ref. 67. However, the compression of ultra-
short light pulses by "time inversion" of the beam with
the complex conjugate wavefront is much more inter-
esting.64

APPENDIX

The basic set of equations used to describe self-dif-
fraction of light waves in a nonlinear medium includes
the Maxwell equations

where ε is the permittivity averaged over the volume,

and Δε is the light-induced nonlinear increment in the
permittivity. We shall confine our attention to two waves
with polarization perpendicular to the plane of incidence
xz [ i.e., E= (0, E, 0)], incident symmetrically on the
crystal at an angle of 20 to each other (see Fig. 1). We
suppose that the medium is infinite in the χ and y direc-
tions, so that we can put 3/3y =0 in (A.I) and seek the
solution in the form of the Fourier series

As<*. ζ, ί )-Σ«ρ(' · Ο·***1. ( Α > 2 )

Substitution of (A.2) and (A.I) yields (for ft, = *0\/εοο8θ,

_ L _ U £
2k,c* dt'

~Λ3 Γ-3Γ--ΤΤ I1%

+-

aCi

as

2*. -"2*7 Σ ePc'-p-

(A.3)

Henceforth, we shall consider smooth variations of C,
with ζ and t, which is valid provided

a'ct „, ac, a»C| ^ ι ac,

These conditions correspond to characteristic time (τ)
and space (/) scales of variation of C, that substantially
exceed the period Τ=2π/ω and the wavelength λ(τ » Γ;
X«4irZVTcose).

Simultaneously with the Maxwell equations, we must
consider the equation for the light-induced nonlinearity
Δε. This can be written in the following form that de-
scribes a sufficiently broad range of nonlinear media;

^.(A.)-B-^.(4.)-.i( 4.,-^-+pi + T?(-g-. J / * ) . (A.4)

where the first two terms on the right-hand side de-
scribe the drift (w is the drift velocity) and the diffusion
(D is the diffusion coefficient) components of the pump
flux along the Ox axis, which are responsible for the
variation in, for example, the number of current car-
riers or excitons in semiconductors and ferroelectrics,
or the fluxes of heat and liquids, where Δε is propor-
tional to the temperature, and so on. The third term
in (A.4) describes the relaxation of excitations, and the
last two the local and nonlocal response of the medium
to the incident ration. In general, the nonlocal term
can also be nonlinear; / is the intensity of light given by

Using the expansion (A.2) for the Fourier components
of C, and ε^, we obtain

(A. 5)

(A.6)

where Q, = (feJ/2fe,)(Z2- 1), a = 4ira/c-\£~ is the absorp-
tion coefficient, and τ^ 1 = τj^1 + Χ*2/>2 + ipvkt-t the func-
tion α^β,γ,Ρ) is determined by the particular mecha-
nism responsible for the light-induced variation of ε.
Equations (A.5) and (A.6) are the basic equations for
self-diffraction in media with nonlinearity given by
(A.4). The first term on the right-hand side of (A.5)
describes the change in the phase of the Z-th beam com-
ponent due to its deviation from the Bragg direction.
The second term describes absorption in the medium,
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and the last term is the contribution of diffraction to
the Z-th order of different beams. Transforming to
real variables ε^ = |eje'*>; €, = Ιϊβ**ι, where \tp\,
Φ are the amplitude and phase of the/>-th Fourier com-
ponent of the holographic grating and /,, ψ, determine
the intensity and phase of the /-th beam of light, we ob-
tain, instead of (A.5), the following expressions for the
case of weak absorption:

(A.7)
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