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The appearance of electrons or positrons in dense gaseous media produces a whole series of striking

phenomena governed by the properties of the states of the light particles in the dense medium. The

present review considers these phenomena systematically. The results of measurements of electron

mobility and positron annihilation rates in moderately dense gases are discussed. Effects that arise as the

density of the gas increases are considered. Self-trapped states become possible at high densities: these are

bound states of the light particles with the medium, "clusters," "bubbles," or mixed-type formations. The

fluctuon theory of these states is set forth, along with the results of experiments in which the light

particles make transitions to new states. The possible existence of "orientation clusters" in gases

consisting of polar molecules is investigated. Certain applications of the results to the theory of

discharges in dense gases and liquids and to the theory of the weakly ionized nonideal plasma are

discussed.

PACS numbers: 51.50. + v, 51.10. + y
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INTRODUCTION

The present review is devoted to phenomena that
arise when light charged particles—electrons and
positrons—appear in dense gases. The state of these
particles in the gas changes radically as the density
of the gas rises. This evidenced by observations of a
sharp drop in electron mobility with increasing gas
density, an exponential increase in the annihilation
rate of slow positrons, and other experiments.

Qualitative effects can be observed even at moderate-

ly high densities and pressures (pressures in the tens
of atmospheres at standard temperature). The re-
duced mobility μ/μ0 increases with density in some
gases and decreases in others. This decrease antici-
pates the striking phenomena caused by the formation
of states in which electrons, positrons, or positronium
atoms are bound to the medium. Clusters, orientation
clusters, bubbles, or mixed-type formations may
result, depending on the nature of the interaction.

The review considers conditions under which the
electron (positron) density is so small that the inter-
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action between these particles can be neglected. All of
the principal effects are governed by the interaction
between the light charged particle and atoms of the gas
owing to the long wavelength of the light particle or the
large charge/neutral interaction radius. Chapter 1
discusses the range of moderate densities (ΙΟ^-ΙΟ21

cm"3), in which it is sufficient to apply only the first
density corrections. Chapter 2 discusses localization
or trapping effects that arise at high densities (ΚΡ-
ΙΟ22 cm"3), when the interatomic interaction also be-
comes appreciable. Chapter 3 discusses some
applications.

While the state of electrons and positrons in rarefied
gases is comparatively well understood,1*3 interest in
dense gases has really come alive only in the last
decade. Although completely different properties have
been studied (for example, electron mobility and
positron annihilation rate), the observed anomalies
are governed by related phenomena. One of the ob-
jectives of the present review is to discuss effects
that are common to all light particles in dense gases.

Dense gases represent the simplest case of the dense
disordered medium. The problem of the electron in a
dense environment of disordered scatterers4"6 simu-
lates a whole series of phenomena in various areas of
physics, such as the physics of nonpolar liquids,7

strongly doped semiconductors,8'9 solutions of elec-
trolytes,7 and the nonideal plasma.10 Theoretical study
of the properties of electrons and positrons in dense
gases relies in many respects on methods that are
widely used in the theory of condensed disordered sys-
tems and were developed in Refs. 5, 11, 12.

1. ELECTRON MOBILITY IN MODERATELY DENSE
GASES

Nonlinear effects due to the interaction of electrons
(positrons) with the atoms (molecules) of a gas arise
at densities such that the gas itself can be regarded as
near-ideal. Their appearance results either from a
large value of the electron wavelength or from a large
effective radius of the electron-atom interaction po-
tential. Therefore the most interesting effects should
be expected in cold gases and in gases whose atoms
possess high polarizability. Features of the inter-
action of the electrons with the gas atoms and mole-
cules are most fully in evidence in such cases.

Density effects have been observed at densities
W = 1020-1021 cm"3 in studies of the mobility of elec-
trons injected into a gas. Even at these not particu-
larly high densities, the electron-atom interaction
cannot be reduced to a series of successive pair-scat-
tering events. As a result the electron mobility is not
equal to the value μ0 defined by the Lorentz formula

ft> = — . v = Nqv; Μ 1)

where ν is the average frequency of collisions of the
electron with atoms, q is the scattering cross section,
υ is the velocity of the electron, υ =V2e/w, and ε is
its energy.

A qualitative effect has been observed in experi-

ments of recent years. In most gases, for example
in He and H2, the reduced mobility μ/μ0 decreases
with increasing N. But μ/μα increases in Ar and CH4.
This behavior of μ/μ0 has been explained only re-
cently in its relation to aspects of the interaction of
electrons with atoms of gases of these groups.

Similarly, density effects should influence the state of
the positron (and positronium) in dense gases. In the
next section of this chapter we shall discuss measure-
ments of positron annihilation rates in gases.

a) Mobility of thermalized electrons

Most of the measurements have been made by the
direct "time-of-flight" method.13 The quantity mea-
sured is the time for electrons that have been injected
into the gas to drift between two electrodes. Since the
distance between the electrodes is known, what is
actually measured is the drift velocity W, W = ̂ F,
where F is the electric strength. Figure 1 shows
results of measurements in He, H2,

14·15 Ar,ie and
CH4

17 in weak fields, i.e., under conditions such that
the electrons are thermalized. Let us discuss the
causes of the differing behavior of W/W0QJ) in these
gases.

Since the electron density is low, the electrons inter-
act only with atoms of the gas. At moderate gas den-
sities the interatomic interaction can be neglected.
Therefore the electron is in a field Μ(Γ) of randomly
distributed scatterers,

u(r) = 2 n r - R j ) . (1.2)

where V(r) is the potential of the electron-atom inter-
action and R, is the coordinate of the jtYi atom. For
slow electrons, V (r) is determined by the scattering
length L and the polarizability α of the atom.18* Let
us first consider the case in which the polarizability
is small.

If the fields of neighboring atoms do not overlap,
N\ L\ 3 « 1, F(r) can be represented in the form of a
Fermi pseudopotential:

F(r) = β (Γ). (1.3)

At low densities, the electron collides with atoms at a
frequency v=Nqv, where q = 4πΖ,2 is the scattering
cross section. When the electron wavelength \=H/
V2me becomes comparable to the path length (qN)~l,
successive scattering events are no longer independent,
The effective collision frequency increases by the

0.5 _ _
Ο i-IO* 210" Km-3

FIG. 1. Reduced drift velocity of thermalized electrons vs.
density In various gases (T = 300 K).
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interference correction:

This effect is the first density effect.19

The interference effect lowers the drift velocity,

(1.5)

where Xe=S/V2mT is the thermal wavelength. For the
He atom L = 1.2a0, and for the H2 molecule L = 1.6a0.
At T=300 Κ andJV = 1021 cm'3 we obtain W/Wo- 1*0.1,
which agrees with the value observed in experiments
(Fig. 1).

If the cross section q(e) depends very weakly on
energy, relation (1.5) can be rewritten W/Wo = 1
-i)NT'1'2, where η is a constant for a given gas.
Schwartz18" analyzed the results of measurements in
helium: η was indeed found to be constant upon varia-
tion of the temperature and density. The temperature
was varied in a broad range, from 4.2 to 300 K.

Let us now consider the situation in a gas of high
polarizability a. In this case the potential F(r) cannot
be regarded as short-range (1.3). The long-range
polarization component of the potential V(r) = -ae2/2r*
is significant for scattering. Let us represent V(r)
as the sum of the short-range component (of electro-
static and exchange origin) and the polarization
component:

( r ) - 2 7 ^ W · (1.6)

The "atomic radius" r0 is obviously of the order of the
Bohr radius a0. The potential (1.6) is applicable to slow
electrons with long wavelengths λ, λ » | Z,|,X»r0, λ

2

» ααά1. The amplitude of scattering through an angle
θ on the potential (1.6) has the form

f sin A).

This theory agrees well with the results of measure-
ments in rarefied gases.

The fact that the electron as it induces dipole mo-
ments on the atoms also induces a dipole-dipole inter-
action between them becomes important in dense gases.
Dipoles oriented to the electron repel one another,
lowering the resultant dipole moment of the atom. As a
result, a multiplier that depends on density appears
in the asymptotic form of the potential V{rf°:

This multiplier is the permittivity of the gas. Thus,
the electron-atom interaction in the medium is de-
scribed by the potential

. + *.air)-\ (1.7)V(r) = - -6(r) 2-v,

which can be applied for both moderate and high den-
sities.21 The latter will be done later, in Section d).
At moderate densities, when 8παΝ/3 « 1 , the ampli-
tude of scattering on V(r) (1.7) takes the form

The last term in (1.8) gives a positive density cor-
rection. If L<0, /decreases with increasingN, and
therefore W/Wo increases.

This is precisely the situation in Ar and CH4. For
argon L = -l.2a0, α = 11.1α3, and r o = 1.2ao (this value
of r0 was proposed in Ref. 22). At Γ =300 Κ and Ν = 1021

cm' 3 we obtain an approximately 30% decrease in the
effective cross section, which would explain the ob-
served increase in W/Wo (Fig. I).2 1 What is essential
is that the effect need not be small. The small param-
eter is not the correction to the scattering amplitude,
but the quantity 8vaN/3.

Mobilities in He and H2 have been measured23"27 at
lower temperatures, 20-160 K, and densities up to
6 · 1021 cm"3. Figure 2 presents results obtained in
Ref. 26. We observe first of all that the mobility de-
creases comparatively sharply with increasing Ν (not
in inverse proportion to the density, ~N~l, but rather
as N'3/2 or N'2). Secondly, μ does not depend on the
temperature of the gas.1' This enables us to propose
the following interpretation. In a dense cold medium,
the electron has a "zero" energy 2nKiLN/m, which
determines the velocity of its translational motion (in
accordance, for example, with the Wigner-Seitz
model28 [see also Chap. 2, Sec. b)]. Therefore as long
as 2itKzLN/m » T, we have the first-approximation
mobility μ =(e/K)(4.iiLN)~3l2L~l. There are corrections
to this quantity in the parameter LN"l/s, in much the
same way as in the problem of the state of the posi-
tronium atom in matter.29·30 This enables us to inter-
pret the results shown in Fig. 2, although a properly
conditioned description has not yet been obtained.

A low-mobility branch was observed24 in addition to
the relationship discussed above. Differences have
arisen as to its treatment.24·26'31 Bartels showed that
this branch is related to the presence of impurity ions,
chiefly O^, in the gas.

b) Drift velocity of hot electrons

Interesting experimental data have been obtained in
heating electric fields in which the average electron
velocity exceeds the gas temperature T. In dense

10'

ΙΟΛ

FIG. 2. Electron mobility
μ as function of helium
density26 at various tem-
peratures: T(K) = 20.3
(1), 52.8 (2), 77.3 (3) and
160 (4).

4 e
N. 10" an*

"This does not mean that the electrons have made the transi-
tion to the trapped state. At 77 Κ this transition occurs at
ΛΤ=7·1021οπΓ3 [see Chap. 2, Sec. a]. In the experiment of
Ref. 26, the transition occurred only at T = 20.3 Κ (see Fig.
2).
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gases, the drift velocity W ceases to be a function of
F/N alone. There is also a density dependence
W(F/N, N), which has been observed in a number of
studies; see the review in Ref. 32.

Figure 3a shows values of W/Wo plotted against F/N
for various densities in hydrogen and argon. They were
obtained by the time-of-flight method.14·18 In both cases
the largest deviations from unity are observed in low
fields, when the electrons are thermalized. As a re-
sult of heating of the electrons, W/Wo tends to unity.
It is quickly understood from general considerations
that any effects due to nonideality should vanish at
high energies. However, more complex W(F/N, N)
relationships are observed in addition to the simple
monotonic ones. Figure 3b shows plots obtained in
methane17 and ethane.33 We shall put off discussion of
the latter case until the next section; as for the non-
monotonic W/Wo relation in CH4, it results from the
simultaneous appearance of the effects observed in
Ar and H2.

34

In the single-electron approximation, the drift ve-
locity can always be expressed in terms of the effective
frequency vet{, W = eF/mvet!. If we assume that the
interaction does not affect the electron dispersion law,
averaging of vtfS (ε) over the energies ε takes place
as usual35:

_[_ ""/' dt. at
3 m J v e ( ((e) et '

We have for the electron distribution function35

= /(O)expf-

(1.9)

(1.10)

where δ is the fraction of the energy lost in the col-
lision, 6 = 2m/M for small F/N. In strong fields, δ
increases as a result of inelastic processes.35

In a gas with low polarizability, when q(t) does not
depend on ε, we take the interference effect (1.4) into
account. W/Wo agrees with (1.5) for thermalized elec-
trons. For very hot electrons, when 21«2e2.F2(3mi>2)"1,
we obtain with (1.10) and (1.9)

(1.11)

where vt =Nq V2T/Ai. W/Wo increases with F/N
because the average electron wavelength decreases.

FIG. 3. Reduced drift veloctty of electrons in dense gases vs.
F/N (T=300 K). a) Argon: 1) N=2.5-1021 cm"'; 2) 1-1021

i-1; hydrogen: 3) JV = 1-1OM cm"»;b) methane: 1)ΛΤ=1.1·10Μ

•*; 2) 0.5Ί02 1 cm" 1 "; ethane: 3)Ν=1.1Ί0 Ά cm'5; 4)

Figure 3a compares calculated results34 (curve 3) with
experimental data obtained14 in hydrogen at Τ =300 Κ.

The results of a calculation according to (1.11) and
(1.5) have been compared18" with experimental data
obtained in helium at Τ =4.2 Κ. The changes in elec-
tron drift velocity can be traced in Fig. 4 from "cold"
to very "hot." Electron mobility is strongly suppressed
by the interference effect at small F/N. Schwartz
notes that relation (1.5) describes this state well, even
though we might expect higher powers of the param-
eter (λβήΝ) to appear in it. Only when the electrons
are heated to an energy ε» 0.02 eV (Fig. 4) are they
free in the full sense of the word.

Figure 3a compares the results from measure-
ments in argon with theoretical data (curves 1 and 2)
obtained with the use of (1.8), which corresponds to
the case of high polarizability.34 The ratio W/Wo de-
creases with increasing F/N as the average electron
energy increases. An increasing fraction of the elec-
trons enters the energy range in which the density
corrections are small, i.e., the range of energies
exceeding the energy of the Ramsauer minimum. It is
obvious that competition between these two effects
may also produce a nonmonotonic W/Wo curve. This
is the situation in methane, where both of the effects
have been found to be important.34 The calculated
curves, constructed with account of these effects, and
with consideration of the strong effect of the excitation
of molecular vibrations on the distribution function,
describe the experimental data accurately (see
Fig. 3b).

c) Capture of electrons by molecules of the gas

Let us consider the drift of an electron in the case in
which it can form a bound state with gas molecules as it
moves. This hypothesis was made in Ref. 36 and dis-
cussed in Ref. 32. Since a negative ion has low mo-
bility, we may assume that the electron moves only in
those intervals of time in which it is free. We then
have for the reduced mobility

μ» "

where we is the probability that the electron is free.
It is most probable that the bound states are self-
ionization states and arise on excitation of rotational
(or vibrational) states of the molecule by the electron.

Let us assume that the electron makes many transi-

o.i

cm
cm" . .
O.i-lO^cm"3.38

FIG. 4. Experimental values of drift veloctty in helium at Τ
= 4.2 Κ (ΛΓ=0.948 ·1021 cm**).l№ The dashed line Is the drift
veloctty Wo In the Ideal-gas approximation; the upper solid
curve was computed with (1.11), the lower one with (1.5).

706 Sov. Phys. Usp. 22(9), Sept. 1979 A. G. Khrapak and I. T. Yakubov 706



tions from the bound state to the free state and back
as it drifts between the electrodes.37 This condition
is satisfied with a comfortable margin under actual
experimental conditions. Thenwe(l - we)=nt/nf, where
nb and nf are the densities of the free and bound elec-
trons at static equilibrium. This yields37

-ST=T+W· (1.12)

If the electrons are thermalized, f is given by the
Sana formula &*\%βχρ(-εα/ε), where εα is the exci-
tation energy of the self-ionized state and ε is the
average electron energy, in this case T. Since the
equilibrium is only relative in the heating field, !F
acquires a more complex form:

• /<<<«)• (1.13)

where/(εβ) is the electron energy distribution function
at ε = εα. For example, for a molecule whose cross
section is independent of energy we have f
» λ? βχρί-εί/Ζε2). Since/(εβ) is largest if the average
energy ε is equal to εβ, it follows from (1.12) and
(1.13) that μ/μ0 has a minimum at ε = εα, irrespective
of the specific form of/(ε). This permits inferences as
to εα on the basis of experimental data. We note also
that while the interference correction is determined by
the small parameter kqN, the correction considered
here is characterized by the parameter λ.3Ν (provided
that ε« ε4). It may therefore be more important at
small c.

This situation obviously obtains in a number of
molecular gases (the mechanism does not operate in
atomic gases32). The minimum of μ/μ0 is quite
distinct in C2He (see Fig. 3b); we find that ε,« 0.08 eV.
Electron capture at low F/N can also be assumed
from measurements38 made in H2 at Τ = 77 Κ. The
measured W/W0(F/N) curves have a nonmonotonic
trend whose details cannot be described by the inter-
ference correction.

It was observed in Ref. 37 that the situation may be
more complex in reality. At large N, ta may itself
depend strongly on Ν as a result of a shift of the con-
tinuum boundary. Then the density parameter \2LN,
which determines this shift due to the interaction of
electrons with gas atoms, may become important.

d) Mobility at high densities

Although the experimental material is far from ex-
haustive, there is reason to believe that the behavior
of electrons at moderate densities anticipates the
phenomena that arise at still higher densities N. The
reduced mobility μ/μ0 in He drops sharply in the
critical density range as a result of localization of
electrons—trapping of the particles in massive "bub-
bles." This effect is discussed in detail in Sec. a) of
Chap. 2 and is illustrated in Fig. 8. In Ar, on the
other hand,—even in liquid argon—the electron re-
mains free, with a high mobility in the hundreds of
cm!/V sec.

Let us first consider the situation in Ar.21 The
solid curves in Fig. 5 are density curves of the scat-
tering amplitude in the medium, f{N), extracted from

f. units
of en

1.2

0.1

Ο.Ί

ηπ
υ, υ

-ΟΛ
-0.1

-1.2

•

-

.

^ _

" /

/

/
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4
ι ι ι ι ι

S 12 16 20 24

FIG. 5. Effective amplitude of scattering of electron on Ar
atom vs. density of gas16 and liquid.22 The dashed curve is the
theoretical relation.21

measurements of mobility in gaseous16 and liquid22

argon. It is known that the scattering amplitude in
matter may not only acquire corrections, as has been
demonstrated in the foregoing sections, but may also
depart radically from the scattering amplitude on an
isolated particle or even change sign (see, for ex-
ample, Ref. 39). This is precisely the situation in
argon, as was pointed out by Lekner in his papers on
electron mobility in the liquid,20·40 We shall discuss
the situation in simpler terms, working from the po-
tential (1.7).

The dashed line in Fig. 5 is the f(N) relation corre-
sponding to scattering on the potential (1.7). Expres-
sion (1.8) is valid for f(N) at small N. The scattering
amplitude decreases in absolute value as a result of
weakening of the polarization component of the poten-
tial. It then passes through zero and begins to in-
crease. At very large N, it may reach the value
LX=L- (7r/4)a/a0r0, which would indicate scattering on
an unpolarized atom. Naturally, repulsion predom-
inates in this case.

The actual situation is much more complicated at
liquid densities. The structure of the medium becomes
very important. The squared scattering amplitude is
multiplied by the structure factor S(0)41:

S(0) = l+N [ [g(r) — l)di = NTx, (1.14)

where g{r) is a pair function of the interatomic correla-
tion and κ is the isothermal compressibility of the
medium. S(0)« 1 in a gas, and is of the order of a few
hundredths in simple liquids in the neighborhood of the
triple point.

At first, the decrease in |/(ΛΓ)| and then the decrease
of the structure factor S(0) maintain mobility on a high
level. The electron remains free in liquid argon.

In contrast to the ease of argon, the reduced mobility
μ/μ0 in helium increases with increasing density Ν of
the gas in accordance with (1.5). The mobility vanishes
if we let the parameter \qN tend to unity. This is a
qualitatively correct result, since electrons in very
dense (and liquid) helium are "trapped" in "bubbles,"
having a mobility of ~0.I cm2/V· sec. This extrapola-
tion, of course, is not legitimate. However, we note
that the condition λ = I, where / is the free path, is the
trapping criterion proposed by Mott.42 It will be shown
in Sec. c) of Chap. 2 that the condition λ#ΛΤ = 1 is indeed
a criterion for localization on small density fluc-
tuations.43
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e) Annihilation of slow positrons in moderately dense
inert gases

The positron annihilation rate λ4 in matter is gov-
erned by the interaction of the positron with electrons
on the atoms of the media. At low densities, Xt is
proportional to the concentration Ν of the gas atoms3:

where r0 = e*/mc2 is the "classical radius" of the
electron, c is the velocity of light, and Zc(f is the effec-
tive number of electrons per atom of the gas. Ζ e f f

is about equal to the charge Ζ of the nucleus if the wave
function of the positron is not disturbed very much on
scattering of the positron on a gas atom, i.e., if the
interaction between them is small.

Anomalously large values of Zeff have been observed
in many rarefied gases and have been shown44 to result
from the formation of bound states between the positron
and an atom (molecule) of the gas. This and other re-
lated phenomena have been discussed in detail in the
reviews.3'45 Below we shall consider density effects
observed in inert gases, where the formation of bound
states is impossible and the positron remains free.
Several investigators have observed deviations (ex-
ceeding the limits of experimental error) from the
linear law \ ~N in these gases. We assume that these
deviations are related to density effects in the mobility
of slow electrons.

Let us discuss the experimental data. The annihila-
tion rate has been determined by reducing measure-
ments of the lifetimes of a large number of emitted
positrons in the medium. The lifetime of each was
measured by detecting two gamma quanta. The first
was emitted as a result of emission of a positron, while
the second was one of those emitted upon annihilation.
Reduction of annihilation time spectra (see, for ex-
ample, Ref. 3) gives the characteristics of a number
of phenomena, including the value of Xt. It appears
in the argument of the exponential expt-Xjt), which
approximates one of the short-lived components of the
time-distribution curve of positron annihilation (Fig. 6).

Some of the positrons that enter the medium form
light positronium atoms even before they are thermal-
ized. These positrons are also annihilated with time.
The annihilation rate of ortho-positronium can be
represented in the form

10'

ΰ>

• Ortho-W
"~ J

1 .

Slon
poiltront

background

\ , , , ,

too IM i*o
Channel number*. 0.66 mac/channel

As Ν— Ο, λ, tends to the vacuum value λ̂  = 7.2 · 10"
sec*1. The annihilation pick-off rate (or "quenching"
rate) A^ is governed by the interaction with electrons
of the medium. Z\tt is the effective number of elec-
trons per gas atom that are in the singlet state with
respect to the spin of the positron in the Ps atom. The
same time spectra of annihilation are used to de-
termine ^(w). A nonlinearity in the variation of λ2(Ν)
has been observed at large Ν in certain studies. It is
of equal interest to us as the same effect in \{N). In
the nature of its interaction with atoms of the gas,
positronium is closely similar to the electron in helium
in that it has a positive scattering length L of the
order of a0.

The results of annihilation-rate measurements for
ortho-positronium in dense helium appear in Fig. 7.
Deviations from linearity appear at Τ = 77 Κ, beginning
at N« 5 · 10"1 cm* V 0 · 4 7 · 4 8 and increasing with increasing
N. These deviations lower the annihilation rate
noticeably.

Much weaker but systematic density effects have
also been observed in the annihilation of positrons.
In Ref. 48, Xx(Af) began to increase at a rate somewhat
lower than Ν in helium at 77 Κ at Ν £8 · 1021 cm"3. On
the other hand, \(N) increases more rapidly, beginning
at N*> 3 · 1020 cm"3 in krypton at 300 K.49

A number of authors have discussed the factors lead-
ing to the nonlinear variation of annihilation rate usual-
ly in connection with experiments on ρ8.*»·*"·«β·50.52
The formation of positronium bubbles is not yet possible
under the conditions of these experiments; see Sec. b)
of Chap. 2. The cause of the anomaly may be scattering
on several atoms50 or an excluded-volume effect.29·30

The latter is less significant in gases because it is
determined by the parameter (32ir/3)Z,3W. The value of
this parameter is 0.084 at Ν = 5 · 1021 cm"3, since L
= 1.5a0. As for the first-named effect, it also lowers
Z\K by further disturbing the wave function of the
scattered positronium, and is determined by the param-
eter *qN (see Chap. 1, Sec. a). The value of this
parameter is 0.64.

Let us discuss the anomalies in λ1% Zttt decreases
in helium, apparently for the same reason. The
parameter XqN is 0.07 at tf = 8· 10" cm"3, since L
= -0.45αα. Because of the small value of the param-

FIG. 6. Time spectrum of positron annihilation In He*46 at Τ
= 5.5 Κ (ρ= 0.023 g«cm"*). The positronium and orthoposl-
tronlum (ortho-Ps) components and the background are indi-
cated.

FIG. 7. Orthopositronlum annihilation rate vs. helium den-
sity. Plotted points: 1) from Ref. 48 for Τ = 300 Κ; 2 and 3)
from Refs. 48 and 30 at 77 K; the line corresponds to ΖΛΙ

= 0.125 according to measurements49 at small N.
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eter, the observed deviation from linearity in At(AT)
is also small. The increase in Zett in krypton is
apparently due to a polarization effect [(see Chap. 1, a)],
which weakens the interaction of the positron with
atoms of the medium. The parameter 4it2o^N(3aoroL)'1,
which determines the magnitude of this effect,34 is
0.037 if L = ~4a0 and ro = a0.

2. BOUND STATES OF ELECTRONS, POSITRONS,
AND POSITRONIUM IN DENSE GASES

The phenomenon of self-trapping of light particles in
matter has long been known in the physics of the con-
densed state.5 3 One such particle is the polaron.54 In a
disordered medium, bound states of the electron (pos-
itron, positronium) are possible if the system gains
free energy when there is competition between the elec-
tron binding energy in the density-fluctuation field and
the work done to create the fluctuation.5·55 Transition
to the bound state occurs when the density rises or the
temperature drops—either factor intensifies the inter-
action effect. The nature of the self-trapped (fluctuon)
state depends on the nature of the interaction between
the electron and atoms (molecules) of the matter. If
repulsive forces dominate, the electron is localized
on a rarefaction fluctuation, and a "bubble" appears.
If attraction predominates, trapping may occur on a
condensation, with a "cluster" as the result. Forma-
tions of mixed type are also possible.6

Transition of electrons to the bound state has a
radical influence on a number of properties of the
matter. Positronium bubbles were the first to be
observed, since the annihilation time of positronium
in liquid helium was found to be several times larger
than expected.56·57 Anomalous behavior of electrons
injected into liquid helium was observed almost si-
multaneously with the discovery of the uncommonly
long lifetime of positronium.58*60 The mobility of the
electron was that of a massive formation (tens of M)
and not that of a light particle. Ferrell 2 9 and Kuper61

explained these effects. The strong exchange repulsion
between positronium (the electron) and He atoms favors
trapping of the light particle in a cavity. The cavity
radius is 15-18 A, and "102 He atoms are displaced
from it. The properties of bubbles in the liquid have
been studied thoroughly.61 " 6 5 l 7 t Z B Bubbles have been
observed not only in helium, but also in several other
nonpolar liquids.66'67

Study of self-trapped states in dense gases apparently
began with the experiment of Levine and Sanders68 to
determine electron mobility in gaseous helium. Elec-
tron bubbles are discussed in Sec. a). The next Section
b) is devoted to positronium bubbles and the annihila-
tion of positronium in gases. Clusters can form in a
dense gases if the polarizability of the atoms is
high.69·70 Section c) also discusses "orientation"
clusters in a medium of dipolar molecules. Anomalies
in the positron annihilation rate in a dense gas, which
have been interpreted as a result of condensation of the
gas around the positron, were first observed in Refs.
71 and 72. It was shown in Ref. 73 that positrons in
dense gases go over to self-trapped states, a curve of

the transition to the bound state was constructed, and
the presence of a critical point for the clusterization
phenomenon was predicted. Measurements741 have
confirmed the theoretical estimates. These problems
are discussed in Sec. d).

a) Electron bubbles in dense gases

Levine and Sanders68 presented a convincing demon-
stration of the existence of electron bubbles in dense
gaseous helium. The time-of-flight method was used
to measure mobility as a function of helium density at
Τ =4.2 Κ. It was found that the value of μ corresponds
to the mobility of free electrons at lawN, butapproach-
es the mobility of electrons in liquid helium at high N.
The μ(ΛΓ) discontinuity occurs in a very narrow range:
a density increase by only a small factor is accompan-
ied by a mobility increase of more than five orders of
magnitude (Fig. 8). Levine and Sanders also submitted
a qualitative explanation of this effect.76 They assumed
that the electrons are trapped in bubbles at high den-
sities, as is the case in liquid helium. As the density
is lowered, formation of bubbles becomes less favored,
and all electrons are free at low densities. Their
mobility may be several orders higher than the mobility
of the bubbles.

If trapping is possible, the ratio of the free-electron
concentration n/ to the trapped concentration n» is
determined by the magnitude and sign of the system
free energy change AF caused by a single trapping
event:

-^-=4βχρ(βΔί·). (2.1)

Determination of the AF in the argument of the ex-
ponential is the main task of the theory of self-trapped
electron states. Generally speaking, the average over
all possible atom configurations that realize trapped
electron states should appear in the right-hand side of
(2.1). In first approximation, however, it is suf-
ficient to use only the optimum atom-concentration
fluctuation, i.e., that which causes the largest decrease
in system free energy as a result of electron trapping.
The result will be the more accurate the deeper and
wider (and, consequently, the more improbable) the
optimum fluctuation that realizes the particular state.

The multiplier Λ applied to the exponential in (2.1)

μ, cm^/V · sec

10'

to>

№

10"

%
300 K\

-

-

10" i-10" J-m" 4-10* /1{cm-3

FIG. 8. Dependence of electron mobility μ on density Ν in
dense gaseous helium. Temperatures, T(K): 4.2 (1), 7.3 (2),
11.6 (3), 13.8 (4), 18.1 (5)75 and 20.3 (β).26
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takes the translational, rotational, and vibrational
degrees of freedom of the bubble into account. It is
very difficult to compute it properly, for essentially
the same reasons that obtain in determining the con-
centration of new-phase nuclei in nucleation theory. It
is usually assumed that this multiplier is of the order
of unity and depends weakly on the density and tempera-
ture of the gas as compared to exp(/3A.F).

Below we derive conditions for the appearance of
bubbles and their principal parameters, make a com-
parison with experiments, and discuss certain more
complex problems.

1) Elementary model. Let us assume that an elec-
tron is trapped in a spherical cavity of radius R that
contains no helium atoms (the "empty square well"
model).™·78 Then

Δ ί = _8(.R)+±Lfl»p> (2.2)

where ε(β) is the electron binding energy and p is the
gas pressure. The second term in (2.2) corresponds to
the work that must be done to create the cavity.

The free electron is in the average field of the atoms
surrounding it, a field whose magnitude is 2nt?NL/m
in the optical-pseudopotential approximation; here L
is the electron-on-atom scattering length.79 The bind-
ing energy of the trapped electron is smaller than this
value by the energy of its vibrations in the bubble. The
latter is well known for the square well.80 We shall
assume for simplicity that there are several levels in
the bubble. Then ε(β)~ (2vh*NL/m) - (n2H2/2mR2).
The optimum bubble size Ro can be obtained from the
condition minimizing &F:

If we neglect the role of the multiplier before the
exponential in (2.1), we can easily obtain a simple re-
lation between the density JVcl, the pressure pcU and
the temperature Τώ on the line of transition of the elec-
trons from the free to the trapped state, which it is
natural to determine with the condition AF(R0) = 0.
We obtain

5 / π \3/5
(2.4)

In a sufficiently rarefied gas, ρ =ΝΤ,

(2.5)

where \e=Jt/V2mT is the thermal wavelenfth of the
electron and c = *(5/3)5/i · 2" 8 / i «1.16. This relation
between Ncl and Tcl was obtained in Refs. 78, 81.

In He4, where L =0.62 A, relation (2.5) with ΤΛ

= 4.2 Κ gives ΝΛ = 5.2 · 1081 cm"3. This value is correct
in order of magnitude, and, more importantly, the
qualitative dependence N& - T\i^ is also correct. The
latter statement follows from Fig. 9, which was ob-
tained by processing the data shown in Fig. 8.

Quantitative agreement with experiment cannot be re-
quired of such a simple model. This is because some
of the assumptions were poorly based. Thus, we as-
sumed that the vibrational energy of the electron was
small in the ground state of the bubble as compared to

210" •

FIG. 9. ΝΛ(Τ) plot. The
circles represent experi-
ment.26·75.

the potential barrier height (4NLR2

0/*>> 1. Actually, we
find that 4NLR2

0/v = 5/3. This indicates that the exact
expression must be used for e(R). Here relation (2.5)
holds, but the constant c is reduced in the necessary
direction, c»0.59.7 8

The model is simple to use because the dependence
of ε on A is known. The models discussed in Refs. 23,
26, 75, 82, and 83, where similar results were ob-
tained, have the same advantage. The shape of the well
was also postulated in these papers. Actually, it
should be determined by self-consistent solution of the
problem.

2. The self-consistent-field approximation. The
complete derivation of the self-consistent-field ex-
pression can be found in Refs. 5, 6, 43, 76. Here we
write them out on the basis of simple qualitative con-
siderations.

Let us consider, in the classical limit, the free
energy F of the system formed by an electron in an
ideal gas. The part of F due to the interaction is
NT /dr(l - e'iY), where Ν is the density of the atoms
and V(r) is the electron-atom interaction potential.
In the absence of correlation between the electron and
the atoms, this quantity would equal NfV(r)dr. Thus,
the change AF in system free energy due to the ap-
pearance of correlation in the positions of the atoms
equals

(2.6)AF NT j U-W" — 1 + pV (r)] dr.

The generalization of this expression to the quantum
case is obvious. First, V(T) must be replaced by
V(r) = J V{r - r')| φ{τ')\2άτ', where φ is the wave func-
tion of the trapped electron. Second, it must be rec-
ognized that the average value of the electron's kinetic
energy is nonzero because of the zero-point vibra-
tions. This gives

βΔί· = λί j|V\|>(r)|*dr̂ Af j [i-WO_l+pV(r)](ir. (2.7)

Accordingly, the distribution of the atoms around the
electron is given not by the expression N(r)
=JVexp(-/3F), but by the more complex

|2<ir']. (2.8)

Now to answer the question as to the possibility of
electron trapping it is necessary to find the wave func-
tion of the electron in the self-consistent potential
/ V(r - r')[Mr') -N]dr'. This self-consistent equation
is typical for the theory of trapped states in disordered
systems. It is a particular case of the optimum-fluc-
tuation method proposed in Refs. 11, 12, 84 and widely
used in the theory of condensed disordered sys-
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terns.4"6'9'85 Analytic solution of the above equations
is evidently impossible because the form of the po-
tential V(r) is not known for all atoms and the equa-
tions are also nonlinear.

The problem is greatly simplified for gases whose
atoms have low polarizability (for example, helium) and
if the electron wavelength is considerably larger than
the effective radius of the electron-atom forces. The
pseudopotential (1.3) can then be used for V(r). This
gives for V(r)

V(T) = Ι ψ (Γ) (2.9)

We shall seek the solution by the direct variational
method.

We u s e the s implest approximation for the wave func-
tion of the electron ground state in the bubble:

This tr ial function i s exact for the ground state of an
osci l lator. It i s hoped that the relation (2.10) i s a good
approximation. After substitution of (2.10) into (2.9)
and (2.7), ΔΓ becomes a function of only the single
parameter λ, the wavelength of the electron in the
bubble:

(2.11)

(2-12)

where

As in the square-well model, the optimum bubble
size Xcl and the relation Ncl (Tcl) between the density
of the gas and the temperature on the transition line
can be obtained without difficulty from the conditions
AF = 0 and dAF/d\ =0. This relation is the same as
(2.5), except that the constant c« 0.42. At Tcl =4.2 K,
Ncl = 1.9 x 1021 cm"3, which is now very close to the
density at which the electron-mobility jump is ob-
served (Fig. 8).

The results obtained are valid if the conditions for
use of the optical pseudopotential, L«X c l and NclL

3

« 1 , and the macroscopic-bubble condition NciXei

 3

» 1 , are satisfied. Using expression (2.5), we see
that they are satisfied on the transition line if L«X f l.
We shall give some estimates. At T& =4.2 K, we
have λβ = 100 A, the optimum bubble size λ^ =25 A,
and the number of displaced atoms is greater than
one hundred. The theory is therefore valid.

3) Principal characteristics of bubbles. Figure 10
shows typical bubble-density profiles in He4 at Τ = 7.3
Κ. The bubble size (R a 25 A) decreases somewhat with
increasing Ν at constant temperature, and its shape
becomes more and more square. The residual number
of atoms inside the bubble decreases. Under the same
conditions, the electron binding energy in the bubble
changes from 0.07 eV at # = 2.5 · 1021 cm"3 to 0.1 eV
at Ν = 5 · 1021 cm"3. Optimum bubbles contain two or
three levels. This indicates that the classical de-
scription of trapped electron states that was used in
Refs. 86-89 is invalid. Another critique of those

0

-0.5

-ι ο

/

) 25 so

FIG. 10. Concentration of He4 atoms within bubble vs. dis-
tance to center of bubble atT = 7.3 K. Curve 1: ΛΤ = 2.5·1021

cm"3; curve 2: 5*1021cm"s.

papers will be found in Ref. 90.

Optical experiments are of great importance for
determination of electron-state structure in bubbles.
No such experiments have as yet been reported in
gases. In liquid helium, a current jump (and hence
also a mobility jump) has been observed under ex-
posure to electro-magnetic radiation.91 This effect is
governed by photoionization of the bubbles. Figure 11
shows the level of the detected signal as a function of
photon energy Ku.*1 The maximum at Kv* 0.9 eV
corresponds to photoionization of the bubble, and the
one at Hu=0.1 eV to the Is - 3/> transition. 91'«2 The
possibility of direct optical absorption and Raman scat-
tering of light by bubbles has also been investigated
theoretically.93'94 Estimates showed that reliable reg-
istration of these effects requires an electron concen-
tration of the order of 1012 cm"3. Such concentrations
are not yet attainable in actual experiments.

Figure 8 showed plots of injected-electron mobility
vs. density. A mobility jump occurs at low tempera-
tures, so that the bubble-formation density Ncl is
measured automatically. The transition becomes
smoother at high T. Measurements of μ(ΛΓ) were made
in Refs. 23-26 at high temperatures, 20<Γ<160 Κ.
We shall dwell only briefly on the mobility problem,
since it was discussed in Shikin's review.63

When both free and bound electrons are present in
the transitional range, we can write for μ95

(2.13)
f" n/+n6 '

where μ, and μ» are the mobilities of the free elec-
trons and the bubbles. We note first of all that the
gaskinetic approximation becomes invalid for μ, at
these densities (Sec. 1). The first attempt to mea-
sure μ/ under conditions such that electrons "of both
species" are present was made in Ref. 96. The μ./(Ν)
relation becomes more nearly exponential, but it is

FIG. 11. Detected-signal level///» vs. electron energy91 (/
Is the detected current aadp is the light flux).
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much smoother than μ(Ν). Theoretical investigation
of μ/(Ν) would be of definite interest, since the studies
made thus far8 6 '8 7·9 7"9 9 have not yet produced a solution
to this problem.

The Stokes approximation is known to work quite
well for the mobility of bubbles in liquid He. Its use
is also justified in gases at high N. The Knudsen
approximation could be used in more rarefied gases.
However, an intermediate regime obtains at the tran-
sition densities and we have nothing better than the
interpolation formula78

Comparing Δί, with &Ft, we see that these effects are
of little importance in a gas because

|i1 = "* In ΛΛ\

where R is the radius of the bubble, TJ is the viscosity
of the gas, and Μ is the mass of the atom. These ex-
pressions do not take account of the excitation of in-
ternal degrees of freedom, which may occur when the
bubble interacts with the medium.

The surface of the bubble may vibrate. The presence
of excited vibrations may be significant in determining
the ratio H//nt: it may broaden electron levels, pro-
mote relaxation of the electrons into trapped states,
and influence mobility. Bubble vibrations in liquid He
were discussed in Refs. 94, 100, 101. Naturally, the
spherical mode has the smallest vibrational quantum
Κω. Analysis of the vibrations of an electron-containing
cavity in a gas leads to the expression

ω 2 = 4πΜΝΙ$ 8Λ» |s-B,· (2.15)

where F(R) is, as before, the free energy. It is
natural to call 2nNR3

0M/Z the effective mass m* of the
bubble. It is the same as the apparent mass in the
hydrodynamic approximation. It can be estimated by
using the known value of the apparent mass of a bubble
in a dense medium, which equals half the mass of the
displaced atoms,79 for m*: m*~ 2vNR3

0M/3 where Μ
is the mass of an atom of the gas. In liquid helium,
these values of m* agree with measurements: tn*
»100M.ltE On the transition line in a gas at Γ =4.2 Κ,
m* = (2ν/3)ΜΝαR3

O = Z2M. The quantity m* was mea-
sured indirectly in Ref. 103 and found to be surprisingly
small: 3«m*/M<5. This result remains unexplained.

Let us rewrite (2.15) in the form

At Τ =4.2 Κ and Ν = 1.5 · 1021 cm"' we have Κω» 0.8 Κ.
These vibrations are therefore excited. However, as
is usually assumed, they are unimportant in the ex-
ponential multiplier of (2.1).

Surface tension in the liquid is a significant factor.
The surface free energy &FS, defined as the excess
free energy associated with the missing neighbors of
surface-layer particles,104 competes in the expression
for AF with the change in the volume free energy
AFt = (4JT/3)/»H3. There is no surface energy at all in
a rarefied gas, and in a moderately dense gas it can be
expressed in terms of the second virial coefficient
B{T):

PAF. = — (4nfl») N.NB,

where N^N2?3 is the surface density of the atoms.

b) Positronium bubbles and positronium annihilation rate

Electron bubbles are formed as a result of strong
exchange repulsion between the electrons and atoms
of the gas (the role of the polarization interaction is
small). Therefore everything that was said above con-
cerning electron bubbles can be extended directly to
positronium bubbles, since the interaction of posi-
tronium with gas atoms is also of repulsive nature.
Thus, for example, the temperature dependence of the
gas density N& at which the formation of positronium
bubbles comes to be favored is easily expressed in
terms of the analogous quantity N& obtained for
electrons (2.5):

Λ^(Γ) = 22/3 (-^-)S/>Wd(r); (2.16)

here Le and Lj* are the scattering lengths of the elec-
tron and the positron on the atom and it has been recog-
nized that positronium has a mass of 2m. In helium,
for example, where Le s Lp, the regions of existence
of electron and positronium bubbles practically co-
incide.

1) Positronium annihilation rate. The annihilation
rate Â (iO increases linearly with Ν or is weakly non-
linear (see Chap. 1, Sec. e)) under the conditions of
weak interaction between the Ps and the gas atoms.
Transition of Ps atoms to the bubble state results in
qualitative changes in the λ2(Ν) relation (Fig. 12). The
annihilation rate decreases sharply at N~Na owing to
rarefaction of the gas around the positronium. These
effects were first observed in Refs. 71, 72 in gaseous
He4.

Let us discuss the ^(N) relation with allowance for
the possibility that the bubble may contain Ps. By
analogy with (2.13), we can write the following ex-
pression for Δλ2, the pick-off annihilation rate:

(2.17)

0.5

0?.

Λ-7

m-3
Δ-Ιΰ
o-ll

U.I ϋ.Ζ 0.5 1.0
N/Nc

FIG. 12. Pick-off annihilation rate of positronium vs. re-
duced density In He*. The solid curves represent (he numeri-
cal calculation,105 the dashed curves expressions (2.25) and
(2.26). The plotted points represent the experiment of Bef,
46. Temperatures T(K): 4.8 (1 and 7), 5.4 (2 and 8), 6.4
(3 and 9), 13 (4 and 10), 30 (5 and 11), and 300 (6).
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here njnf is the ratio of the probabilities that the Ps
is in the bound and free states and A\h and Δλ, are the
corresponding quenching rates. In accordance with
(1.16), A\f~N. The expression for Δλ, is more
complex:

Δλ6 = 4nrJcZJ,, f Ν (r) |ψ (r) |> dt, (2.18)

where N(r) is the atom-concentration distribution in
the bubble and ψ(τ) is the wave function of Ps in the
bubble. Thus,

(2.19)

Therefore the quenching rate (2.17) is determined by
the relative quantities njnf and ξ. It can be calculated
from the results of study of the positronium + gas
system at equilibrium.

Let us use the results of the preceding section. Ac-
cording to (2.8), Ν(τ)=Νβχρ(-βΫ). Choosing the trial
wave function φ(τ) in the form

(2.20)

(2.21)

where βΫ(Ο) = 6ΖΛ|/λ3, and λ is the wavelength of the
trapped Ps. Naturally, λ is close to Ro (2.3). The
exact expression that corresponds to ip(r) (2.20) differs
only in the numerical multiplier105

*(-•£•).

we obtain an expression for ξ:

. . 2ν*Γ(1/3) Κ*
2π πιρ,ρ '

where p is pressure of the gas and
the positronium atom.

(2.22)

is the mass of

The expressions derived here can be used for qual-
itative analysis of the quenching rate Δλ2 as a function
of the density and temperature of the gas when p =NT.
For example, let us consider Δλ2(ΛΓ) on an isotherm.
The formation of bubbles is not favored at low den-
sities, andA\2*A\f~N. When the density N=NcU ΔΧ,
begins to decrease, assuming at N>Nci a value Δλ2

=Δλ6 = ξΔλ, that is a small fraction of Δλ, and then
varying smoothly as Ν increases, A\2~tf/s. This
variation of Δλ̂ ίΛΓ) agrees with observations
(Figs. 12, 13).

2. Positronium annihilation rate in a nonideal gas.
Recent experiments48'106·107 on positronium annihilation
were made in a broader range of densities than the ex-
periments on electron mobility. At high densities, the
gas can no longer be regarded as ideal, and it is nec-
essary to consider the interaction among its atoms.
Allowance for repulsion between atoms, which pre-
vents bubble formation and may cause the bubbles to
vanish completely, is most important.

We use a lattice-gas model to write the change in the
free energy of the gas AFt in the case of localization
of positronium:

PAfi = A5 = j [ i V ( r ) l n 4 i l - i r 4 i £ l i I n i ^ i L j d r , (2.23)

where the constant b characterizes the interatomic
repulsion. Minimizing the free-energy change AF

FIG. 13. Pick-off annihilation rate of positronium vs. reduced
density in Ne. The solid curves represent numerical calcu-
lation,1* the dashed curves relations (2.25) and (2.26), and
the plotted symbols experiment.106 Temperatures T(K): 46
(1 and 3), 44 (4), 45 (5), 47.5 (6), and 300 (2).

= -c+AFt with respect to N(r)(6AF/6N = 0), we obtain
an expression for the distribution of atoms in the
bubble:

Ν (r) = Ν exp [ - βΡ (Γ)] [1 +JVb {exp [ - (2.24)

In contrast to (2.8), this expression does not allow
formation of a bubble atNb—1.

Substituting (2.24) into (2.19) and integrating with the
function (2.20), we obtain for ξ, which determines the
positronium quenching rate, instead of (2.21)

exp[-pT(0)] — 1}].
b ~ NV$V (0)

Accordingly, we rewrite (2.22) in the form

Γ 2 > / 3 Γ (1/3)

"L π __λ|*__-]ΐ/5
ln(l— Nb)\ i '

(2.25)

(2.26)

At low densities (JV6«1), expression (2.25) becomes
the previous relation (2.21). The repulsive interaction
between atoms of the gas, which tends to reduce the
size of the bubble and increase the kinetic energy of the
positronium and should therefore also increase Δλ2,
becomes important as the density increases. Relations
(2.25) and (2.26) indicate that even at moderate den-
sities Nb s 1, AXj-1 ln(l -M>)|2/5 under the conditions
of strong interaction, when

In the limit of matter compressed to the maximum
(ΛΓ6- 1), ξ tends abruptly to unity and Δλ^- Δλ,.
Therefore the bubbles vanish at high densities. This
conclusion was obtained within the framework of a
model that takes only the interatomic repulsion into
account. It is also valid at high T, when the inter-
atomic attraction has little influence, i.e., when
TCN«TNC, where Tc axidNc are the critical param-
eters of the gas.

With the object of quantitative comparison with ex- .
periments, the annihilation rate was calculated in
Ref. 105 from more accurate expressions for the free
energy, which make it possible to take better account
of the properties of the medium. Figure 12 presents
the results of a numerical calculation of Δλ2 for He4.
The best agreement with experiment46 was obtained
for the positronium-on-atom scattering length L = 1.5a0.
This value of L agrees well with the theoretical values
obtained in Refs. 108-110.

The dashed curves in Fig. 12 were obtained by cal-
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culating Δλ_, in the approximate model (2.25), (2.26). It
conveys the qualitative features of

The annihilation rates of positronium in He3 (Ref.
107) and Ne (Ref. 106) were recently measured. The
observed effects indicate the presence of bubbles.
Figure 13 shows the experimental data for Ne and the
computed results of Ref. 105.

3) Trapping time. Up to this point, we have been
considering the properties of bubbles in the state of
thermodynamic equilibrium. The formation kinetics
of bubbles is also of great interest. Here the most
important characteristic is the time τ of bubble forma-
tion, i.e., the time of relaxation of the positronium
(electron) from the free to the bubble state.

The relaxation time of positronium in liquid helium is
in any event smaller than the annihilation time of
para-positronium in a vacuum, τ,,βΙΟ*10 sec. Para-
positronium bubbles in liquid He have actually been
observed and investigated.111 They could not appear
if τ< τ,. Positronium must lose an energy (J^ -By/2)
determined by the lower boundary of the Ore gap
(Ey is the ionization potential of the atom) within a time
shorter than rv and transfer to a bound state with forma-
tion of a cavity. We do not now have a consistent kinet-
ic theory of trapping, and for this reason we cite only
a few qualitative considerations that permit inferences
as to the order of magnitude of τ.

Positronium that forms in an atomic gas with an
energy ε> Τ is thermalized, losing energy in elastic
collisions (if the ε are not very large). The thermal-
ization time is of the order of (2m/M)Ve/2m .N1^ con-
sidering that the free path in a dense medium is near
N'1*. The thermalization time is around 10"" sec
if Ν = 2 · 1021 cm"* and ε = 1 eV. 1ίΝ^ΝΛ, thermalized
Ps atoms are trapped. Let us estimate this time τ on
the basis of a concept in which this process has two
steps, τ = τχ + τ2.

At the first step, the positronium, situated in a fluc-
tuation field with a density defect, η =N(r) -N< 0, is
thermalized. We again estimate the deceleration time
from the losses in elastic collisions, τί1

= (2m/M)-fF7mNxh, which gives τ^ΙΟ" 1 0 sec at
Γ =4.2 Κ and N= 2» 10 a cm"3. Actually, τχ may be
smaller because of energy losses in inelastic collis-
ions, which excite fluctuation vibrations, etc, The
time τ, should be smaller than or equal to the fluc-
tuation lifetime T/=K2/6D, where R is the dimension
of the fluctuation and D is the diffusion coefficient of
the gas. There is always a small Gaussian fluctuation,
but those that are most interesting are the ones that
have one energy level for positronium, say a weakly
bound one. Then size of the fluctuation is related to
« by R * (2ffLn)-lA, η = {2N/AvR3)1*. This makes it pos-
sible to estimate T/= 10"10 sec under the same condi-
tions.

The second trapping step corresponds to formation
of a cavity. After the positronium has lost its energy
(and perhaps been trapped on a weakly bound level), the
medium begins to receive pressure from it. The time
τ2 can be estimated as the time of expansion of the

cavity at the speed of sound or the thermal velocity:
T2=R0/u. This gives τ2» 10"u sec. According to
these rough estimates, therefore, T S I O ' 1 0 sec in
gaseous helium.

A time of the same order is also necessary for forma-
tion of an electron bubble after injection of electrons
into a gas. Accordingly, we shall discuss the mea-
surements of Refs, 112-114, from which we can esti-
mate the electron thermalization times in hydrogen and
helium. In these experiments, the cathode emitted
electrons with energies of ~1 eV, which then drifted
toward the anode under the action of a weak applied
field. The cathode and anode were separated by an
energy barrier formed by image forces and by this
field. If the electrons were thermalized before reaching
the barrier, they did not reach the anode. Figure 14
shows plots of the thermalization times against N; they
are of the order of 10"12 sec. The question as to why
the thermalization time decreases more rapidly than
l/N remains open. This may result from the appear-
ance of new vibrational degrees of freedom in dense
matter.112

Some information on the kinetic processes can also
be found in Refs. 115-117.

4) Energy barrier on surface of medium. The forma-
tion of bubbles is associated with a positive shift of
the boundary of the continuous spectrum of the posi-
tronium (electron) in the gas:

£ B _ i 2 ^ L . (2.27)

This formula, which is apparently due to Lenz,11* is
exact for a rarefied gas if NL3 « 1 . It becomes neces-
sary to consider interatomic correlation as the den-
sity increases, and this gives the expression119'120

£B = 2a»WLnr' (l -NL j g(r)

r~
< rfr) , (2.28)

where g(r) is the pair correlation function. If we take
interatomic repulsion into account, assuming that
g(r) = 0 at r « ra and g(r) = 1 at larger r, relation (2.28)
gives

. (2.29)
Expression (2.29) becomes invalid at large values of
the parameter NLr\.

An alternative approximation that can be used in
dense matter, when rt~rt (ra is the interparticle dis-
tance and (4t/3)Nrl = 1), is the Wigner-Seitz approxi-
mation.28'121 The electron is considered in a medium
that is broken down into equivalent spheres of radius

m" to·

FIG. 14. Thermalization time of hot electrons as a function
of gas density. 1) hydrogen; 2) helium.112·114
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rs, each of which contains a solid sphere of radius
L (L<rs) at its center. The electron also has a non-
zero minimum energy in such a medium:

EB = -~-, V« = t8[*o(r·—£)1· (2.30)

The Wigner-Seitz approximation should give quali-

tatively correct results at high liquid densities.

The quantity Eb is an energy barrier for electrons
injected from a rarefied gas into a dense medium.
Therefore, Eb has been measured in a number of
experiments.91·114·122·123» The results of Eb measure-
ments in injection of electrons into liquid He at
Ν = 2.2' 1022 cm"3 agree fairly well with one another and
give Eb~ 1,2 eV. This value and others measured at
N> 1022 cm"3 show fair agreement with (2.30).114 It
differs sharply from the value 0.67 eV that would be
obtained from the optical approximation (2.27). At
ΛΓ<1022 cm"3 the experimental error1 1 4 becomes
greater than the differences between approximations
(2.27)-(2.30). These differences decrease in turn
with decreasing density.

c) Electron clusters in heavy inert gases

In the preceding sections we have stressed repeatedly
that the main cause of the formation of electron and
positronium bubbles is the strong exchange repulsion
between these particles and atoms of the gas or liquid.
However, in addition to short-range repulsion, there
is also a long-range attraction. In the case of posi-
tronium, it is of a van der Waals nature and has a
minor role, and positronium has a positive scattering
length on atoms. This points to the possible existence
of positronium bubbles in any liquid or gas at suffi-
ciently low temperatures. In the case of the electron,
however, the polarization interaction is small only for
helium and hydrogen, and only for Ne does it become
comparable with the exchange interaction. The scat-
tering length on atoms for heavier inert gases is neg-
ative, and the interaction of the electron with these
atoms is attractive. Naturally, the existence of bubbles
in dense inert gases and liquids is impossible.28'116

However, bound states between the electron and the
medium are possible even in this case.70 They arise
on density bunches, i.e., in clusters, ultimately as a
result of the predominance of attractive forces at high
polar izabilities.

1) Large-radius clusters. Let us assume that the
wavelength of the trapped electron is the largest char-
acteristic length and considerably exceeds the ef-
fective radius of the potential V(r). We find that in this
case the clusterization condition can be expressed in
terms of the amplitude of scattering on this potential.
This is important, because the explicit form of the
potential V(r) is by no means always well known, where-
as experimental information is available on the ampli-
tude of electron scattering on the atom (molecule).
Such large-radius clusters can exist in a number of
gases, for example in xenon and in dense water vapor.

As usual, the change in free energy has the form

AF = Κ + U + TAS, (2.31)

where Κ is the kinetic energy of the electron and U is

its potential energy in the field created by the gas
atoms:

tf=/,|>|2V(r-R|)-ATM*), F=(v(r)dr. (2.32)
i

The magnitude of the field U depends on the fluctua-
tions of atomic density and it( is the radius vector of
the »th atom. Because of the random distribution of
atom coordinates, the probability density of U is of
complex form. Let us assume, however, that trapping
is most favored at a small deviation of U from its
average value. In this case (the random-field approxi-
mation), the probability density of U is proportional
to exp(-U2/2U2), where JW2 is the variance of the
random field. Recognizing that the change in entropy
is proportional to the logarithm of the probability,
we obtain

AF is a functional of φ and U. Minimizing it with
respect to U, we obtain

AF{$) = K-\$m. (2.33)

The quantity V2 will first be analyzed in general
form, expressed in terms of the Fourier components
of the potential V{q) and the square of the wave func-
tion <p{q):

V (q) = j V (r) efi' dr, φ (q) = j | ψ (r) |2 e'l' dr.

We obtain

Π* = Ν j [ j V (r - r') ψ2 (r') dr '] 2 dr = Ν (2π)"« j F* (q) φ* (q) dq.

(2.34)

If trapping is to be possible, it is obviously necessary
that the small fluctuation be of sufficient extent and that
the electron wave-length λ be large. If it exceeds the
effective range of the potential V(r), only the small
ί ^ λ ' 1 are essential in (2.34). We further recognize
that the effective-radius approximation18»·2 in the theory
of scattering of slow electrons on atoms relates V(q)
directly to the scattering amplitude f(q): V(q)
= 2nH2m'lf(q). This is a result of the fact that the
short-range component of V(r) can be described by
a delta-shaped pseudopotential, and the Born approxi-
mation is applicable to the long-range component.
Therefore

2(λ-')]. (2.35)

Thus, βΑΡ is expressed in terms of the amplitude
of electron scattering on an isolated atom. Since f(q)
is well known from experiments, (2.35) can be used
for qualitative analysis.

It is easily verified that trapping is possible if the
scattering amplitude decreases with increasing elec-
tron energy. Figure 15 shows the form of AF(\) qual-
itatively for L < 0, i.e., for atoms exhibiting the
Ramsauer effect. The increment AF increases mon-
otonically at small N/T (curve 1) and trapping is not
favored; as N/T increases, AF goes negative (curve 2)
and passes through a minimum. Stabilization of the
clusters is ensured by competition between the short-
range and polarization interactions.
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FIG. 15. Qualitative form
of free-energy change AF
vs. electron wavelength λ.

For subsequent analysis we shall use an expression
for f(q) in terms of the screening length L and the
polarizability a:

The cross sections obtained from (2.36) for the scat-
tering of electrons on inert-gas atoms agree closely
with the experimental values.18*·2 Substituting (2.36)
in (2.35), we obtain βΔ-F expressed in terms of the two
interaction characteristics L and a. This information
on V(r) is sufficient in the long-wave limit. Here we
avoid the familiar difficulty that arises in taking ac-
count of polarization —the divergence of the potential
ae2/2r4 and the need to cut it off at small r [cf. (1.6)].

The characteristic dimension Xm of the cluster is
easily obtained from the condition for minimum free
energy (3F/3X = 0)43·70·.

16

3a0 | L | (2.37)

The density Nal(T) beginning at which bound electrons
predominate over free electrons can be determined
from the condition AF(\J =0:

(2.38)

Substituting (2.38) into (2.37), we obtain the value of
Xj,, which determines the size of the clusters on the
transition line Ν =Nti(t):

«.=- (2.39)

AtN=Nd, the energy binding the electron in the cluster
e=#2/2m(X°,)2, and the cluster contains one energy
level.

Estimates made for Xe in Ref. 43 indicated for the
first time that electron clusters may exist in it. To-
gether with the equilibrium phase diagram, Fig. 16
shows a plot of Nci(T) for Xe (L = -7.1a0,

137 a = 27.2a*).
Most of the electrons are trapped at Ν>ΝΛ. Then the

/V,cm-3

5-llf •

SIO"
600 T, /!

FIG. 16. Value of density N& at which localization of electrons
occurs in Xe (2); gas-liquid phase-coexistence curve (1), and
curve corresponding to NB{T) = 1. B(T) Is the second virlal
coefficient of the Interaction between atoms.

sizes of the clusters are around 10-15 A and they
contain about 50 atoms.

The range in which (2.37)-(2.39) are valid on the
line N=NCL(T) is determined from the conditions for
validity of the Gaussian approximation (| U\ sViJ2),
the long-wave approximation (2.35) (λ» |ζ, | ,λ 2 »α/α 0 ),
and the macroscopic cluster-size requirement
(2VA3»1). This gives

Λ^ΐ.>λρ»ξ^1, |Ζ,|«ξλ(,, a < l V i JVC|XJ13>1. (2.40)

All of these inequalities are easily satisfied in Xe on
the segment of the Ν=ΝΛ{Τ) curve shown in Fig. 16.
The most important one—the first—can be rewritten
I & λβ, where I is the free path. If the latter is smaller
than the wavelength, this indicates trapping according
to Mott.4

Ways to detect clusters in experiments were proposed
in Refs. 43, 70. Observation of a mobility jump at
Ν 2ΝΛ like the jump observed in dense helium on forma-
tion of bubbles would enable us to determine JVcl(T).2'
At N^Na, the presence of clusters leads to the ap-
pearance of an infrared absorption band in the range in
which the gas is perfectly transparent as a result of
cluster photoionization. This band lies in the frequency
range va ε/ΤΝΙδΟΟ cm"1, and its measurement makes
it possible to determine the electron binding energy in
the cluster. AtN>Nci, the injected electrons have
very low mobility. Irradiation of the gas with a light
source of frequency of the order of ν results in photo-
ionization and a sharp mobility jump. This experi-
ment, which was performed in liquid He4,91 made it
possible to determine the electron binding energy in a
bubble. A similar experiment can be designed to
determine the properties of clusters.

Large-radius electron clusters can also exist in
other gases, including molecular ones. For example,
in neopentane (C(CH3)4), whose molecules are sym-
metric and possess high polarizability, the existence
region of clusters is similar to that found for Xe. Be-
low we shall discuss the possibility of cluster forma-
tion in gases of dipolar molecules. On the other hand,
in gases whose atoms possess low polarizability (for
example, Ar and methane CH4), formation of clusters
is not favored even though the scattering length is
negative.

2) Small-radius fluctuons. Small-radius complexes
may exist in dense gases in addition to large-radius
clusters. The tendency to their formation can be traced
in Fig. 15. As λ increases, the &F curve undergoes
a new, qualitative change (curve 3, which corresponds
to large N/T), passing through a second maximum and
even decreasing without limit. However, allowance
for the repulsion of atoms within the fluctuon may
stabilize the complex, as indicated by the dashed curve
in Fig. 15. Then small-radius complexes will exist
side-by-side with large clusters, with their concentra-

2)A substantial decrease in electron mobility was recently"3"
observed near the "gas-liquid" phase coexistence curve
In measurements of electron drift velocities in dense gas-
eous xenon; this apparently indicates self-trapping of elec-
trons with formation of clusters.
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tions related as exp[-β(AFs-AFι)), where AFS and
AF, are the values of AF at the corresponding minima
of the AF(\) curve.

Many of the electrons are localized in small-radius
complexes at low temperatures in the state of thermo-
dynamic equilibrium.43 Also at low temperatures,
however, fluctuons are produced on small Gaussian
fluctuations of large radius (see Chap. 2, Sec. b), and
this initially results in the formation of large-radius
clusters. They are separated by an energy barrier
from the small-radius complexes and may have rather
long lifetimes. In actual experiments, these times
may be found comparable to the characteristic time of
the measurements. In that case, the small-radius
complexes will not be observed.

The properties of small-radius fluctuons differ sig-
nificantly from the properties of large clusters. The
simplest way to verify this is to refer to the square-
well model. Let us assume that it is possible for an
electron to be trapped in a spherical fluctuon of radius
R with rectangular walls, the density Nx of the atoms
within which differs from the average Ν by an amount
AN {N1 =N + AN). Normally, the field acting on the
electron in a fluctuon is assumed equal to 2vK2LAN/m.
In the case of high polarizability a of the atoms, how-
ever, it is necessary to remember that the scattering
length L is an integral characteristic of potential
V(r), and that all distances out to infinity contribute
to it. On the other hand, the wave function of the
trapped electron decreases exponentially at distances
greater than R. Thus, we must exclude the contribu-
tion to L from distances r>R. This is equivalent to
introducing an additional field equal to 4πΑΝ f~V(r)r2dr
= 2irae2AN/R. Then, assuming that the potential well
is sufficiently deep, we can write for the binding en-
ergy ε of the electron in the fluctuon

2nh*L&N

As usual, the change in free energy as a result of elec-
tron trapping in the fluctuon AF = -c+TAS, where
AS(R) = (4n/3)R3[Nl x hi(Nt/N) - AN). The concentra-
tion of the atoms within the fluctuon can be found from
the minimum condition:

It follows from (2.41) that large-radius (R>\ L\aja)
fluctuons are clusters (N^N) if L<0, while small-
radius fluctuons (R < | L\ ao/a) are more likely to be
bubbles (ΛΓΧ <Ν). Mixed-type formations—cavities sur-
rounded by bunches of atoms—apparently exist in the
intermediate range. The cavity is formed as a result
of short-range exchange repulsion between the electron
and the atoms, and the bunching by polarization at-
traction.

In the case of small clusters, the optimum size Rn

and the Nci(T) are given by expressions that agree
with (2.37) and (2.38) within a constant. On the line of
transition to trapped states ΝΛ(Τ)

tures, the Gaussian approximation is valid, and the
interaction among the atoms in the cluster can be
neglected. ΛΓΧ increases with decreasing temperature,
and it becomes important to take this interaction into
account. Naturally, allowance for the interatomic re-
pulsion is mandatory for small-radius fluctuons.

The role of interatomic repulsion can be traced most
simply with the aid of the lattice-gas approximation,
remaining within the framework of the square-well
model. In this case, the entropy change [see (2.23)]

(2.43)

Minimizing Δ F with respectTo Nlt we obtain instead
of (2.41)

( — 3λ|ί·/Λ3)
-13Γ. (2.44)

and Δ F(R) takes the form

(2.45)

at high densities (Nb- 1)βΑΡ« v2X\/R2, i.e., allowance
for repulsion does indeed result in the appearance of a
second minimum of AF(R) and eliminate its nonphysical
behavior at small R. The conditions under which small-
radius clusters are formed and their properties can be
determined from the conditions dAF/dR and AF = 0.
The resulting expressions are quite cumbersome and
will not be printed here.

3) Correct account of polarization and interatomic
interaction. Comparison with experiment. The simple
model presented in the preceding section indicates the
importance of considering the polarization interaction
and predicts the existence of new quasiparticles—
clusters. However, the results obtained are only
qualitative because of the assumptions made. The
self-consistent-field method was used in Ref. 43 to
take correct account of polarization interaction in the
case of fluctuations of arbitrary depth and shape, and
not only the repulsion, but also the attraction between
atoms of the gas was considered. Applied to light
inert gases, this made is possible to establish the
influence of polarization interaction on the properties
of bubbles in He and H2.

In the self-consistent-field method, the change in
system free energy as a result of electron trapping,
with formation of either a bubble or a cluster, is
determined by expression (2.7), in which the effective
potential V(r) equals

. (2.46)

It has been shown43 that if the electron wavelength
λ in the cluster or bubble is sufficiently large, i.e.,
if

V(r) can be written in the form

-dt'. (2.47)

(2.42)

Relation (2.42) indicates that JVt ^N at high tempera-

We observe that this expression does not contain di-
vergences as r— 0, and that all information on the
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interaction potential is present in well-known char-
acteristics—the scattering length L and the polariza-
bility a. This is directly related to the theory of
scattering of slow electrons on atoms,18»'2 which ex-
presses the scattering amplitude only in terms of L
and a.

In Ref. 43, the interatomic interaction was taken into
account in the pair approximation in the lattice-gas
model.6 The calculation was made with the trial wave
function (2.10). Figure 17 presents the results of
numerical calculation of Δ F{\) in Xe for three values
of Τ and densities such that &F, =0, i.e., when the
number of free electrons was equal to number of
electrons trapped in large-radius clusters. Figure 17
indicates that there are no small-radius clusters at
high temperatures (curve 1). As the temperature
declines, they appear, and may even come to pre-
dominate (curve 3). Calculated results for ^ ( Γ ) in
Xe appear in Fig. 18.

In gases in which the electron is for the most part
repelled from atoms (L>0), allowance for polarizability
may also produce significant corrections. Figure 18
shows Ncl(T) curves plotted for He4 and H2 with and
without allowance for the polarization interaction. We
see that allowance for this interaction lowers Ncl, and
by larger amounts the higher the temperature. The
correction due to this effect is small in He because
α is small. In H2, allowance for the polarization inter-
action lowers N& by 20-50%. Figure 18 also shows
values obtained for Ncl in electron-mobility experi-
ments in He4.23

It is clearly seen from Fig. 18 that the Nd(T) rela-
tions for He4 and H2 are qualitatively different from the
relation in Xe. Actually, according to (2.5), we have
ΝΛ~Τ2/ί in the case of bubbles, while (2.38) gives
Ncl ~ Τ for clusters.

4) Orientation clusters in a gas of dipolar mole -
cules. In a medium of polar molecules, trapping may
be due not so much to density bunching (or rarefaction)
around the charge as to preferential orientation of the
dipoles to the charge. This results from the lack of
central symmetry of the electron-molecule interaction
potential:

V(r) £!>, (2.48)

where d is the dipole moment of the molecule. Such

-ZM ,.
1.0 2M 3.0 Af/A

FIG. 17. Plots of (3Δ.Ρ against λβ/λ to Xe.43 Curves for
which AF, = 0 are shown: 1) Τ = 700 Κ, ΑΑ=2.5 -1021 cnT3; 2)
T=600K, Ν-Ι,β'Κ^οΐη"*; 3)f=500K, Μ 8

If-

2.0 3.0 Τ

FIG. 18. Value of reduced density ^ci(T)»Ai'ci(r)/^c at which
electron trapping occurs6'; curves 1-6. Curves 1 and 2 for
He4 and curves 3 and 4 for H2 (curves 2 and 4 do not take ac-
count of Hie polarization Interaction); curves 5 and 6 for Xe
(curve 6 Is the Gaussian approximation with the Interaction
between atoms); 7,8) phase-coexistence curves in Xe and He4,
respectively. The symbols are experimental values of ΝΛ to
He4 (Ref. 23) (f=T/Te).

an orientation cluster is similar to the hydrated or
solvent-separated electron, both of which have been
thoroughly studied in experiment and theoretical*
l y 124-126 However, the conditions in a gas differ
favorably from those in polar liquids. A whole series
of difficulties that are basically associated in liquids
with the allowance for the short-range component of
the potential V(r) disappears in the more rarefied sys-
tem. In the absence of experimental data, this enables
us to indicate the range in which such states may
exist.127

By analogy with the problem of electron state in
strongly polarized gases, we may assume that the
electron can be trapped in the case of small devia-
tions of the interaction energy from the average. It is
then possible to use formula (2.23) to calculate &F,
introducing the structure factor S(k) to take account of
the interaction among gas molecules. Then

(2.49)

(2.50)

where #(R) is the binary correlation function of the
molecules. The interaction among the molecules that
compose the excess density over the average [ second
term in (2.50)] and the interaction between them and the
homogeneous background (third term) contribute to
&F. The explicit dependence of S on k is determined
by the inhomogeneity of the medium that results from
clusterization.

The intermolecular interaction in a moderately dense
gas can be described in the pair approximation. The
intermolecular potential u(R) has a short-range repul-
sive isotropic component and a long-range dipole-
dipole component

(2.51)

;
"8

Since uL(R) depends on the mutual orientation of
the dipoles dx and cLj, &F must be averaged over it,
and this will be done below. The interaction (2.51) is
attractive in a homogeneous gas and repulsive in an
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oriented-dipole medium.128

We shall confine ourselves to the case of high temper-
atures, in which 0|«.i(H)|«l. The structure factor
then has the form

S (k) « 1 — 2Nb — βϋχ. (k) — 2NB (T),

where uL(k) = 4ir(/fe ·dj)(k ·d2)/k2 is the Fourier transform
of (2.51), b is the quadrupled intrinsic "volume" of
the molecule, and B(T) is the second virial coefficient.

In the adiabatic approximation, in which the charac-
teristic electronic times are much smaller than the
times of spatial displacement and the times of re-
orientation of the dipoles in the localization region,
the wave function ψ(τ) must be spherically symmetric.
In this case, V(R) equals

|<>(r)|».4nr»dr.

compatible with (2.55) if

We find the minimum of Δ·ί{φ} by the variational
method, using the trial function (2.15). We obtain

(2.53)
here and below all quantities are expressed in atomic
units. Variation with respect to λ gives

(2.54)

where λ0 is the wavelength of the trapped electron.
The intermolecular interaction increases the size of
the cluster, preventing it from forming. In the first
approximation, however, X'1 =N\%d*. This makes it
possible to rewrite the condition for dominance of
trapped over free states, β\Δ/"(λο)| s i , in a different
form:

8πλ|<Ρ (2.55)

The criterion (2.55) is analogous to (2.40) and q is the
Born cross section for scattering of the electron on
the dipole.

The distribution of the excess molecules in the
cluster, n(R, Ω), over the coordinates R and the
orientations (Ω is the angle between d and R) is given
by Boltzmann's formula

n(R, Ω) — 1). (2.56)

It is essential that n(R,«) = -£VF(R) in the present
approximation. Therefore bunching around the elec-
tron does not occur and n(R) = /»(R,n)dfl/4ir = 0. The
states are purely orientational. They are similar to
large-radius polarons. Unlike the polaron, however,
the self-trapped state of an electron in a disordered
medium is localized almost in the literal sense, since
the mobility of this massive particle is extremely low.

We recall that the expressions derived above are
valid if β\ V(R)|«1 [the depth (2.52) is proportional
to d cos(d · R)A2] and Νλ3

0» 1. These inequalities are

(2.57)
Naturally, the range of validity is limited to small
dipole moments d. This would appear to prohibit
application of the theory to water vapor, since it has
d = 0.725, i.e., not small. But the literal inequalities
(2.57) contain small numerical multipliers. This
enables us our expressions to indicate the limit of
trapping Nci(T) on a density-temperature diagram.
Curve 2 in Fig. 19 is that of Ncl(T). At Τ =1000 Κ on
curve 2, the clusters contain a large number of mole-
cules {4n/2>)Nr%& 50, where r0 is the cluster "radius"
determined from the condition (4jr/3)r*| tp{O)\* = l.
Mutual repulsion of the dipoles results in a steeper
NBl(T) curve.

Trapped states of electrons in water were found in
Ref. 128a. The liquid range was investigated most
thoroughly, but measurements were also made at
Τ > Te up to Τ = 390 C atp « Pc. The absorption spectrum
of water was measured as electrons were injected into
it. As in studies of liquid helium at supercritical
temperatures, there was an absorption band corre-
sponding to transition of the electron from the fluc-
tuon ground state to the continuous spectrum. The
absorption maximum was observed at a light-quantum
energy of » 1 eV. As Fig. 19 shows, the density level
pc is quite far from the clusterization curve 2. There-
fore the approximation of small extended fluctuations
becomes invalid. On the other hand, we should expect
dense clusters around the electron. Such states were
discussed in Ref. 128b, the results of which agree well
with the experimental data of Refs. 128a and b. Ab-
sorption-spectrum measurements were made on the
saturated-vapor line in Ref. 128c.

d) Positron clusters. Critical point of clusterization
phenomenon

Unusual behavior of the positron annihilation rate \
has been observed71·72 in experiments on the annihila-
tion of positrons in dense gaseous He4 at low tempera-
tures. At high temperatures, \ is independent of Τ as
usual and proportional to the density Ν of the gas (see
below, Fig. 20). At a certain "critical" temperature
Γοι, λχ increases jumpwise and reaches the values
characteristic for liquid He4. It is natural to attribute
this increase in annihilation rate to an increase in the
density of the atoms around the positron—as a result
of either chemical bonding or polarization of the medium
and formation of positron clusters analogous to the
electron clusters discussed in the preceding section.

1000 T, X

FIG. 19. Density-temperature diagram of water. 1, 3) phase
equilibrium curves; curve 2 represents ΝΛ (Τ).
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FIG. 20. Positron annihilation rate in gaseous He4. Densities
(g/cm5): 0.016 (L), 0.023 (2), and 0.030 (3).

This analogy becomes more obvious when it is remem-
bered that the scattering length of positrons on atoms
is negative, i.e., as in the case of electrons, at-
tractive forces predominate in heavy inert gases.

Bound states of the positron with He4 atoms in the
ground state apparently do not exist.129 Another pos-
sibility has been discussed.46 Working essentially
from Atkins's model,130 which is valid for heavy clas-
sical ions, Canter et a/.48 made estimates that did not
confirm the possibility of cluster formation in He4.
Thus the question as to the nature of clusters in both
helium and argon108 remained open. The possibility
of positron-cluster formation in dense gases was af-
firmed in Ref. 73. Here the existence region of the
clusters was found to be limited not only at the low-
density end but also at high densities, and to be ad-
jacent to the "gas-liquid" phase coexistence curve on
the higher-temperature side. This made it possible
to predict the existence of a "critical" temperature
for the positron clusterization effect, above which
clusters are absent. "Critical" clusterization points
were recently observed in He4 and He3.74*

1) Positron clusters and annihilation of slow pos-
itrons. All of the basic effects that can be observed
in a change in the annihilation rate of slow positrons
follow from a simple model:

1) the interaction of e* with the atom is described
by a Fermi pseudopotential with a scattering length
L (1.3);

2) the lattice-gas approximation is used for the
entropy change AS with allowance for both inter-
atomic repulsion and attraction;

3) e* is localized in a spherical volume of radius R
that is uniformly filled by atoms at the highest possible
density 1/6.

For this model

(2.58)
The first term in (2.58) is the kinetic energy of e*, the
second is the potential energy, ΑΛΓ = 6"1 -Ν is the ex-
cess density of the atoms in the cluster, a=Tc/Nc, and
b = l/2Ne.

The region in which a large fraction of the positrons
is localized is bounded by the Nel(Tcl) curve determined

by the equation system Af = 0, d^F/dR =0. Solving it,
we obtain Ν&(ΤΛ) (or Ta(Jfcl)) and the optimum-cluster
size,Rcl:

" " " ' L " ~" (2.59)

(2.60)

where c = 16(3/5)5yVs/i!, \C=K/Λβη?Γ0. The existence
region of the clusters is naturally bounded both on the
side of low Ν and on the high-JV side, since the com-
pressibility of the matter is limited. This also follows
from formula (2.59), which has two roots ΝΛ at low
temperatures. These two values of ΝΛ move together
as the temperature rises and are finally equal at Tol

= T*. Equation (2.59) has no solutions at tempera-
tures above T* at any N, i.e., formation of clusters is
thermodynamically unfavorable at T>T*.

Thus, the existence region of the clusters, which is
bounded by the N&(Tcl) curve, borders on the two-
phase region of the gas, having a "critical" tempera-
ture T*>TC. We may write with sufficient accuracy

0.41 —^0.851Ζ,|6/2λ»6-3/ί) , #·«0.286->. (2.61)

The results obtained here are valid only for extended
clusters, which must contain a large number of atoms
and have densities close to the close-packed value.
This implies satisfaction of the inequalities

(2.62)
Let us make estimates for Ar and Ne. We assume

LAT =-3.5a0 (according to Ref. 131, -3 3 ^ ^ - 4 α 0 )
and ί,Η, = -0.6α0.

132 For Ar we obtain Γ*» 1.6Γ,., i.e.,
there is a rather broad existence region of clusters.
This is consistent with the experiment of Ref. 106,
where a sharp increase in the annihilation rate of
e* in Ar was observed under certain conditions. In
Ne, Γ* is practically equal to Tc and, consequently,
clusters can exist only in a very narrow region. In
fact, no anomalies of the annihilation rate in Ne were
observed in Ref. 106.

Figure 20 shows a plot of Xt(T) in He4 as measured
in Refs. 72 and 46 at three different densities. We see
that Xt is practically independent of Ν and Τ at low
temperatures and has values \L that are characteristic
for liquid He4 (in liquid He4 at the saturation vapor
pressure, for example, λ^δ.Ο· 108 sec"1 at 4.2 Κ
and 5.5 · 10"8 sec"1 at the λ-point46). At high tempera-
tures, A-^Xj, it is independent of Τ and proportional
to N, and has values XQ that all characteristic for all
gases at high temperatures [see formula (1.15)]. It is
natural to determine the temperature T& from the
condition that the poeitron can, with equal probability,
be either free or localized at the given density Ν and
T = T* (\(T,N)\T.TC1=[\S№)+*-L]/2)· The Telm values
obtained in this way appear in Fig. 21. Also included
are values of T^fff) for Ar that were obtained by sim-
ilar reduction of the experimental data from Ref. 106.

Numerical calculations were made in Ref. 73 by the
self-consistent-field method for quantitative compari-
son with experiment, much as in the case of electron
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clusters (see the preceding section and Ref. 43). The
interaction between the atoms in the cluster was taken
into account within the framework of a van der Waals
model with constants a and b obtained by reduction of
the empirical equation of state in the appropriate den-
sity and temperature ranges. The calculated results
for He4 and Ar appear in Fig. 21. A large fraction of
the positrons is localized inside the Ncl(T) curves, and
the annihilation rate approaches the liquid rate \L.
The plotted N& points obtained in Refs. 46 and 106 cor-
respond to the low-temperature part of the lower
branch of the Ν&(Τ) curve. It was shown in Ref. 73
that the range of variation of the parameters must be
broadened, especially in temperature, to determine
the critical clusterization point. This was done in a
recent study (Ref. 74a), which will be discussed
below.

The curves in the figure show that the formation of
clusters is not favored over almost the entire upper
branch of the gas-liquid phase-coexistence curve
(i.e., in the liquid), but that they can exist near the
actual critical point. This quite consistent with the
recently observed sharp increase of λχ in liquid He3

at Τ =3.05 Κ, i.e., near Tc,
l33 which attests to tran-

sition of the positrons to a trapped state. As for the
liquid, no anomalies in the variation of Xt were ob-
served far from Tc.

Let us indicate certain characteristics of positron
clusters. At Γ =7 Κ in He4, they have a size ~25a0,
consistent of ~300 atoms, and have a binding energy
of ~0.1 eV. The density in the cluster is around
2.5JVC, i.e., it corresponds to the density of the liquid.

2) Critical point of clusterization. The transition of
positrons (electrons, positronium) from the free to the
trapped state takes place abruptly, in a narrow temper-
ature range, and can be treated as a smeared second-
order phase transition in the positron subsystem. On
the other hand, a thermodynamically stable region of
elevated (lowered) density forms around the light
particle on formation of clusters (bubbles) and can be
treated as a new-phase zone. This makes the tran-
sition initiated by the light particles similar to an
ordinary gas-liquid phase transition, except that it
occurs in microscopic volumes. This analogy is most
conspicuous in the case of positron clusters, where the
shape of the Ncl(T) curve, which bounds the region of
cluster existence, is very similar to that of the gas-
liquid coexistence curve, and both of them have a
critical point.

The upper branch of the iVcl(T) curve results from the
fact that the interatomic interaction increases with in-
creasing density. Here the compressibility of the gas
drops sharply and the work that must be done to create
a fluctuation increases. Trapping becomes thermo-
dynamically unfavorable. These arguments apply not
only to clusters, but also to bubbles, for which a sim-
ilar N^T) branch and critical point could exist in
principle. However, there is a qualitative difference
between bubbles and clusters: the density of the atoms
is low within a bubble and the compressibility of the
gas is always near unity (even if the average density
of the gas is high and its compressibility « 1 ) , while
in clusters the density of the atoms is always higher
than the average, and, accordingly, the compressibility
is below-average. Therefore even if an upper N^iT)
branch does exist for bubbles, it lies much higher than
the corresponding branch for clusters. Quantitative
estimates made in Ref. 28 indicated that the formation
of electron bubbles in He4 is thermodynamically favored
all the way up the melting point and, consequently, that
the upper N^iT) branch may lie exclusively in the solid
phase.

The existence region of positron clusters in He4 and
He3 was determined experimentally in Ref. 74a. As in
Refs. 46, 72, and 106, the positron annihilation rate
was measured as a function of density at various tem-
peratures, but the range of variation of the parameters
was broadened considerably for both density and
temperature.

The Nci(T) curve bounding the cluster existence region
in Ref. 74a agrees qualitatively with the region pro-
posed by Khrapak and Yakubov73 and confirms their
prediction of a critical temperature T*. The measured
parameters of the critical point for the microscopic
phase transition (He4: Γ* = 8.4 Κ, W* = 1022 cm"3; He3:
Γ* = 6.6 Κ, JV* = 9.1021 cm"3) also agree fairly well with
theory.73 The positron-clustering phenomenon was
analyzed in Refs. 74b and c within the framework of the
model proposed in Ref. 73. Among other things, the
known values of the trapped-positron wave function and
formulas similar to (2.17) and (2.18) were used to
compute the positron annihilation rate λι# The results
of the calculation74" for He4 appear in Fig. 22b. They
agree well with experiment, which is represented in
Fig. 22a.

The information obtained in Ref. 74a on the proper-
ties of the clusters themselves is consistent with the

as Id i.s T/TC

FIG. 21. Phase-coexistence curves (1) and clusterization
curves ΝΛ(Τ) (2). Hie solid curves are for He4, the dashed
curves for Ar, and the symbols represent experiment.46·106

60 -

20
I

- I

^ , -

r~
\

I

' Λ/

He»

1 1 1

X
i/

/ He»

0.5 1.0 1.5 20 a.S 1.0 1.5 2.0
N-IO-*2,m4

a) b >

FIG. 22. Annihilation rate \ t of slow positrons in He4, a)
experiment"1·"; b) theory.74*
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estimates of Ref. 73. Thus, the dimension of the clus-
ters was found equal to 10-20 A, while the density of
the atoms in the cluster was 2-3 times the critical
density Ne of the gas.

According to (2.61), a rising sequence of T*/Te

should be observed in other inert gases. It is smallest
in Ne and, accordingly, no anomalies in the annihila-
tion rate have been detected in Ne. l o e The ratio T*/Tc

can be measured in Ar if the temperature variation
range of Ref. 106 is broadened. The values of T*/Tc

should be larger for heavy inert gases (Kr, Xe) than
in the case of Ar.

The electron clustering region should also be
bounded in temperature. This also pertains to clusters
in Xe[Chap. 2, Sec. c)]. The ratio T*/Tc is some-
where in the region of 1000 K. A critical point may
also exist for fluctuons in dense water vapor.

3. CERTAIN APPLICATIONS

The phenomena considered above are interesting not
only for experimental physics, but also for many spe-
cific applications, Most of them make use of the
properties of the system in external fields. Here,
problems of kinetics in dense systems that have not
yet been solved often press into the foreground. Let
us discuss some of the applications in order to stress
this once again and identify unsolved problems.

a) TheTownsend ionization coefficient

Electrons injected into a cold gas may, in an ex-
ternal electric field /, acquire energy sufficient to
ionize atoms of the gas with which they collide. The
result is an electron avalanche, i.e., the number of
electrons increases exponentially. The argument of the
exponential contains a quantity a, which is known as
the first Townsend ionization coefficient:

"IT· (3.1)

where P< is the average frequency of ionization and W
is the drift velocity. It is known that the value of
η = a/F depends only on the ratio F/N for a given
gas. 1"

The quantity a is of prime importance for a number
of phenomena involving the development of ionization,
e.g., for the sparkover phenomenon. The values of a
for rarefied gases are well known. Interest in very
high densities has recently been stimulated by the
problem of creating counters that work in condensed
media. Figure 23 presents early experimental data
obtained in liquid Xe.135 They demonstrate the radical
departure from the universal curve 1 obtained in
rarefied gas.

Let us discuss the density effects that influence the
Townsend coefficient.136 To determine the energy ε
of the electrons in the field F, we write their energy
balance, equating the elastic losses to the Joulean
heat:

δεν = eFW. (3,2

The notation of Chap. 1 has been used here. The
structure factor (1.14) may differ considerably from

10* -

FIG. 23. Hots of η against F/p. The symbols represent mea-
surements to Xe at density p= 3.06 g/cm1 and T= 163 K.185

Curve 1 represents experiment in rarefied gas, curves 2 and
3 the calculation made In Ref. 136.

unity in dense matter and must be taken into account
in writing the drift velocity W^eF/mvSiO).*1 Recogniz-
ing that the cross section q for scattering of an elec-
tron on an Xe atom increases with the electron's energy
as ε3*5,137 we find from (3.1) that ζ~(ΡΛ/&5(ϋ)ψ*.
Since ε is of electron-volt order, the implicit assump-
tions are satisfied. First, the nonpairing effects on
scattering are small [ see Chap. 1, Sec. b)]. Second,
all electrons were assued to be free, since the high
kinetic-energy values prevent trapping (see Chap. 2).

We next draw attention to the fact that the sharp de-
pendence of η on F/N (Fig. 23) is due chiefly to the
exponential dependence of η on Ejt, where Ev is the
ionization energy (the other relationships are power-
law). The second density effect is governed by the
decrease in El that results from the boundary shift
of the continuous spectrum:

(3.3)ΔΕ, , - £ , (ΛΓ) = -

This shift is governed by the electron-atom interaction
[ written in the optical approximation (2.27)] and by the
ion-atom interaction. Under certain conditions, the
ground-state shift must also be taken into account.138

Thus, η depends exponentially on EL(N)[NVS(0)/FF/S,
while in the rarefied gas it depended on E^/Ff'*. As
a result, η becomes the function

in matter—the same function that we have for the
rarefied gas, η = (Ρ/Ν).13β

The result obtained makes it possible to use the
η(Ρ/Ν) relation (curve 1), shifting it along the axis
of abscissas in accordance with the values of S(0) and
Ei^/E^ This results in curve 2, which describes
the results of the measurements qualitatively.

The actual situation is more complex. The interac-
tion not only shifts the boundary of the continuous
spectrum, but also strongly modifies the spectrum of
electronic states. This raises the question of ioniza-
tion and excitation kinetics in the dense system. The
only thing that can be said at present is that the excita-
tion losses of electron energy in the liquid (with sub-
sequent deexcitation) are sharply reduced. In fact, the
discrete spectrum has only one (or two) weakly bound
levels of the exciton type. Curve 3 in Fig. 23 was
plotted without considering any losses at all, thereby
bounding η from above. The nature of the excitation
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and ionization kinetics in the dense gas remains
unclear.

b) Corona discharge in cryogenic helium

Much attention is currently being given to the di-
electric strengths of liquid and dense gaseous helium
in connection with the development of high-voltage
superconductive systems (cables, magnets).138·140 The
high dielectric strength of helium in homogeneous
electric fields139'141 indicates that it might be used not
only as a refrigerant, but also as a good insulator.
Study of the electrical discharge under conditions of a
strongly inhomogeneous field, for example a corona
discharge,142 is important for specification of optimum
working conditions for specific systems. This is
because sparkover may be initiated at microscopic
projections on the surface of the electrodes, with ap-
pearance of a local corona, at high electric-field
strengths. Initiation of the corona discharge is re-
sponsible on the one hand for the bulk of the energy
losses in the line (cable) at subsparkover voltages.
Theoretical study of the corona discharge and spark-
over in cryogenic helium encounters major difficulties
owing to lack of the necessary information on the kine-
tics of ionization in dense gases, on the kinetics of
trapping, and on the spatial distribution of the charge
(when either free or trapped electrons diffuse) and a
whole series of nonequilibrium phenomena of which
practically nothing is known in the dense-gas case.

Goncharov and Levitov142 investigated the corona
discharge in cryogenic helium. In this discharge, the
electrode gap usually contains an extended compara-
tively homogeneous region ("corona trail") in which
thermalized charges drift in the external field. It is
most accessible for inspection. The mobilities of
positive and negative charges have been estimated on
the basis of the recorded volt-ampere characteristics.
The electron mobility was found to be very low in
liquid helium, corresponding to that of electron bub-
bles, while in supercritical helium the mobility
changed abruptly from that of free electrons to that
of bubbles as the temperature or pressure was varied.
Both the absolute mobility values and the critical den-
sity values at which the sharp change in mobility oc-
curred agreed well with the corresponding values ob-
tained from time-of-flight measurements and dis-
cussed in Chap. 2, Sec. a). This indicates an impor-
tant role for trapped electron states in cryogenic dis-
charges in helium.

In very strong fields, the electrons are heated by the
field and the system becomes nonequilibrium. The sit-
uation is simplified to a degree if heating of the elec-
trons also results in disruption of the localized states.
The average energy level ε in the field F can be
estimated from the electron-energy balance. Equating
the Joulean heat to the losses in elastic collisions with
atoms and regarding the cross section q for scattering
of an electron on an atom as independent of energy and
the electron energy itself as large compared to the
temperature of the gas, we obtain a simple expression
for ε:

If the free electrons are heated to energies ε»Τ, the
energy gain upon transition to the bound bubble state is
no longer equal to NV (estimate according to the max-
imum). Going over to the bound state, a hot electron
must lose an energy ε, and if the latter is larger than
NV, there is no energy advantage at all. Consequently,
if ~t>NV, the existence of bubbles is found to be un-
favorable. Let us estimate this level Fu equating
ε =NV. We obtain

Ft* 60 V/cm under conditions corresponding to the
beginning of localization in helium at Γ =4.2 Κ.

High field values arise in the puncture of dielectric
media. The dependence of the breakdown voltage in
helium on temperature and pressure was investigated
in Ref. 142. Figure 24 shows the temperature de-
pendence of the sparkover voltage U^, of negative
polarity at a pressure of 6 atm with its conspicuous
maximum. In the neighborhood of this peak, the value
of the puncture voltage increases by a large factor,
but it still remains much smaller than in the homo-
geneous-field case.141 The reason for the appearance
of the peak remains unclear. It is no doubt related to
features of ionization and recombination kinetics in
dense matter that are still poorly understood.

c) Electrical conductivity of a nonideal weakly
ionized plasma

In an equilibrium plasma, electrons appear not as a
result of injection, but on thermal ionization. If the
degree of ionization is low and the density of the neu-
tral atoms is high, interaction between the charged and
neutral particles may radically change certain pro-
perties of the matter. An example is a plasma of
mercury and alkali-metal vapors at temperatures
around 2000 Κ and densities of the order of 1021

cm"3.10

The most interesting effects are, first, the increase
in electrical conductivity due to the interaction, which

16 T,K

FIG. 24. Sparkoyer voltage of helium vs. temperature. 1)
t/,0, Inhomogeneous field142 [needle (Λ = 0.01 mm)-plane;
electrode gaprf=9 mm]; 2) J7BO/10, homogeneous field141

[sphere (Λ = 11 mm)-plane; equivalent electrode gap rf = 9 mm];
p = 6 atm.
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FIG. 25. Density-temperature diagram for Xe. The two-
phase region is shaded; the clusterization region is bounded by
the ΝΛ curve; curves of equal conductivity are given for σ
= 1 and 10 i r W " 1 with addition of 2% Cs.

lowers the ionization potential,143'138'144 and, second,
localization of some of the electrons in clusters.69

Experimental studies of the mercury and alkali plasma
at Γ ~ 2000 Κ are extremely difficult. In our view, a
good system for investigation of density effects is
dense xenon with a small additive of easily ionized
Cs, which yields electrons.

Figure 25 shows a density-temperature diagram for
this system. It has been shown that the clusterization
region is adjacent to the two-phase xenon region [Chap.
1, Sec. c)]. Theoretical equal-conductivity lines for
σ = 1 and 10 U'1 cm"1 are given for the case in which
2% Cs is added to the xenon. Let us discuss Fig. 25 in
greater detail.

We first draw attention to the fact that the conductiv-
ity σ does not decrease with increasing Ν at high den-
sities, as it does in the rarefied plasma, but increases
to reach high values. This is because of the large
value of AEX—the decrease in the ionization potential;
βΛΕι» 1. This quantity is evaluated with a formula
similar to (3.3) with other effects also taken into
account—the formation of Cs£ and XeCs* ions and the
ground-level shift. The electron concentration

increases with Ν at densities Ν 21020 cm"3, which is
what produces the high values of σ. The mobility is
determined by (1.1) at high T. The values of σ at
smaller Τ would be of greatest interest. The mobility
corrections discussed in Chap. 1, especially the inter-
ference correction (1.4), rise sharply in the region
next to Ncl. Determination of σ becomes very complex
in the localization region because it is necessary to
have not only the cluster mobility, but also a properly
conditioned separation of the electron collective into
conduction electrons and electrons that are bound into
clusters. Measurements of σ in this region and regions
contiguous to it might shed light on these difficult
questions, which are general ones in the problem of
electron states in dense disordered systems.
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