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This review discusses a number of questions related to the use of the muon method for the study of

metals. The possibilities of the method for the study of normal metals, superconductors, and

ferromagnetic materials are analyzed. A systematic comparison of theory and experiment is made. It is

shown that the method permits determination of the local magnetic fields at crystallographic sites, the

type of magnetic structure in complicated ferromagnetic crystals (rare earth metals), analysis of the

magnetic texture (grain orientation) of electrical steels, diagnosis of the interstitial sites occupied by a

proton or muon, determination of the diffusion rate and the degree of distortion of the crystal lattice, and

study of phase transitions in rare earth metals and spin glasses. In normal metals the muon method

permits determination both of the muon diffusion rate and of the nature of diffusion (classical or

quantum), the Knight shift in the muon, the charge state of a proton or muon in the metal, and the

distortion of the crystal lattice. For superconductors the method permits information to be obtained

which is inaccessible by other means, particularly determination of the ratio of the normal and

superconducting phases and study of the dynamics of destruction and appearance of the superconducting

state. The prospects for development of the muon method for study of the properties of metals are

demonstrated.
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1. INTRODUCTION

When Garwin, Lederman, and Weinrich and inde-
pendently Friedman and Telegdi in 1957 observed the
nonconservation of parity in JT- μ -e decay,1·2 hardly
anyone supposed that this fundamental fact, which con-
firmed the nonconservation of parity in weak inter-
actions and which was extremely important for the
theory of elementary particles but apparently remote
from ordinary down-to-earth physics, would several
years later become the basis of a new method of in-
vestigation of the properties of matter and in partic-
ular would make it possible to obtain new data on solu-
tions of electrolytes.

We mention this particular example since it is hard
to think of more remote and at first glance unrelated

areas of physics and chemistry than the weak inter-
actions of elementary particles on the one hand and the
properties of electrolytes on the other. And, quite
aside from the absolute significance of the muon
method, from the prospects of its further develop-
ment, and from its possibilities, it must be acknowl-
edged that it is in such unexpected associations that one
finds the "inner beauty" of science, which in the final
analysis is what attracts all of those who are occupied
with science.

And since, if we believe the classicists, beauty is
the most basic and most valuable argument in favor
of a physical theory or experiment, the muon method
is assured of a brilliant future.

However, returning to prose, we hope to show that
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the muon method of study of matter has very definite
accomplishments at the present time and has been able
to recommend itself in a most worthy manner.

A final digression. The entire history of the muon
method illustrates once more that there is nothing
more practical than a good theory. Indeed, it is dif-
ficult to imagine that after only twenty years the work
of Lee and Yang on parity nonconservation in weak
interactions3 can already serve, for example, to de-
termine the technical properties of transformer steels
(magnetic texture or grain orientation), but as we
shall show the muonic method opens substantially new
possibilities in this area.

In fact, immediately after the first experiments on
verification of parity nonconservation in μ - e decay,
it could be grasped that we had obtained a new in-
strument for the study of very diverse properties of
matter.

The idea of the method is simple. As a result of the
nonconservation of parity the angular distribution of the
positrons from decay of a stationary polarized muon
is asymmetric with respect to the direction of the spin.
The muon decay reaction has the single channel
μ — e + ν + v. The mean life of a stationary muon is
TU =2.199 x 10"e sec, and the momentum distribution
of the decay positrons has the form4"7

± (1.1)

here x=p/pmm., where/» is the positron momentum,
and θ is the angle between the positron momentum and
the spin of the decaying muon (the polarization of the
muon).

The angular distribution has the form

/(θ) <ίθ ~ . (1.2)

As can be seen, the asymmetry parameter Λ depends
on the energy of the positron. In the distribution inte-
grated over energy, Λ = ξ/3. In the so-called V-A
variant of weak-interaction theory the value of ξ
should be - 1 .

In the experiments one analyzes the polarization of
muons produced in decay of pions (here in principle
one can obtain 100% polarization of the muons). For
positive muons the spin is directed opposite to the
direction of the momentum. In a medium the polariza-
tion of a muon changes with time, and the angular
distribution of the decay positrons integrated over
energy has the form

dN(f>, i)=4^-<r"V(l+a|P(<)|cos6)dQ<i<, (1.3)

where P(i) is the polarization of the muon at the mo-
ment of decay. The coefficient a depends on the de-
tecting apparatus. If decay positrons with different
energies are detected with the same efficiency, then
a = 1/3. The factor in front of the expression in
parentheses takes into account the correction for
decay of the muons.

Thus, from the distribution of the positrons we can
determine the direction of the muon spin at the mo-
ment of decay. In this way a polarized muon in matter

constitutes a unique magnetic probe. All of the ex-
perimental information is contained in the polarization
P(i) observed in magnetic fields parallel and perpen-
dicular to the initial polarization of the muon. Usually
one studies the average polarization (P), the preces-
sion frequency ωμ, and the rate of relaxation of the
polarization Λ. By measuring these parameters one
can obtain a wealth of information regarding a broad
spectrum of physical and chemical properties of mat-
ter. In many ways this information is close in nature
to that obtained by the Ε PR and NMR methods, but
frequently it is quite specific.

It is interesting to note that the arrangement for
detection of the decays is such that one always studies
only a single muon stopped in the target, and the final
data are obtained after collection of statistics on in-
dividual decays. This is one of the few cases in physics
when it is possible to study the properties of matter
by means of a single individual probe particle. A
detailed description of the experimental arrangement
can be found, for example, in Ref. 8.

In the initial stages the main purpose of the ex-
perimental studies was to check the V-A theory of
the weak interaction. A polarized beam of muons was
slowed down in a target, and then the asymmetry of
the decay was studied. Experiments were performed
in magnetic fields parallel and perpendicular to the
initial polarization of the beam. The degree of polar-
ization of the initial beam of muons, as a rule, was
close to 100%.

Since the initial velocity of the muons is close to
the velocity of light (v ~c), it is obvious that the time
of slowing down of a muon in matter to Bohr velocities
{υ ~ ac) is of the order r~l/c~ 10"10-10"9 sec (I is the
characteristic dimension of the target and a is the
fine-structure constant). Naturally, this time and
this length must not be confused with the average
stopping time and range of ionization (for gases, for
example, (τ) ~ 10"β sec). This in particular is re-
sponsible for the unsuitabillty of use of gas targets.
The number of stoppings is small, and to collect
sufficient statistics it is necessary either to "under-
stop" the beam or to use high-intensity beams.

For velocities of the order ac the cross sections
for interaction of a muon with the electrons of matter
rise rapidly. Since a positive muon, from the point of
view of atomic physics, is simply a light isotope of the
proton (9mM » rnt), as a rule at this stage it captures an
electron, forming a hydrogen-like atom of muonium
(chemical symbol Mu). Then the muonium is slowed
down very rapidly to thermal velocities (it is
"thermalized"). The thermalization time is estimated
to be of the order 10"u-10"13 sec.

The hypothesis of formation of the muonium atom
was proposed at the very beginning of these studies
in order to explain the fact that already after times of
the order 10'8-10"9 sec the muon has lost a very sub-
stantial fraction of its polarization in a large number
of cases.9·10 Simple estimates show the impossibility
of a significant depolarization of a bare muon in such
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short times. These estimates can easily be obtained
by recalling that the stochastic magnetic fields in most
materials are of the order 1-10 G, while the frequency
of the muon spin in a magnetic field is

An accomplishment of this period was the work
of the group at the Kurchatov Institute, where very
accurate measurements were made in strong lon-
gitudinal fields, permitting the initial polarization of
the muon to be preserved, and the fundamental result
A =1/3 was obtained for the asymmetry parameter A,
as predicted by the V-A theory of weak interactions.5·7

The next step, a very important one for the theory of
depolarization, was made by Nosov and Yakovleva.11

These authors noted for the first time that the Mu atom,
which is simply a light isotope of atomic hydrogen, can
enter into a chemical reaction with the atoms or mole-
cules of matter (the target), forming a diamagnetic
chemical compound.

In the same work a solution was obtained for limiting
cases of the equations describing the depolarization of
the muon spin in the muonium atom. The complete
theory of the muonium mechanism of depolarization
of positive muons in matter was developed in a series
of papers by Ivanter and Smilga.12"16

At the present time the muon method is being de-
veloped quite intensively both in the Soviet Union and in
other countries. Special prospects are related to the
construction of accelerators which will permit very
intense muon beams to be obtained (meson factories).
Even at the present time the number of publications
has exceeded one thousand, and the applications of the
method are quite diverse. In the present review we
shall confine ourselves to analysis of the possibilites
of the muon method for the study of metals. Up to the
present time there is no review article in the world's
literature where this problem has been discussed sys-
tematically and from a single point of view; for this
reason the lack of a clear understanding of the physical
bases is apparent in some experimental studies. It
should be noted that in regard to the study of metals
the muon method has at least one important advantage
compared to EPR and NMR, in which the size of the
sample studied is limited by the thickness of the skin
depth and the experiments can be carried out only in
colloidal particles or in thin films. For this latter
reason, the importance of various surface effects
increases rapidly on the one hand, and, on the other
hand it is necessary to perform an averaging over the
size of the particles. All of these factors hinder the
interpretation of the data. By means of muons one can
study massive samples and, furthermore, prior to the
introduction of high-current accelerators (meson
factories) only massive samples could be studied. At
the present time the thickness of the target for the
condensed phases can be reduced to several microns.

Up to the present time there is no unique answer to
the question of whether there exists a proton + electron
bound state in metals or, what amounts to the same
thing, whether the Mu atom exists in metals. Theo-

retical estimates are necessarily based on crude
models and frequently lead to contradictory conclu-
sions.1 7"2 6 The existing experimental data on the be-
havior of hydrogen in metals do not permit a unique
interpretation. The only direct experiment27·28 on the
search for the muonium atom in Zn, Al, and Cu un-
fortunately also cannot be interpreted uniquely. As will
be shown in detail below, the results can be explained
either by assuming that the Mu atom in a metal is very
highly "inflated" (or not formed at all), or by the fact
that the Kondo temperature 0 for Mu in the metals
studied is rather high (TK~ 200-300 K). The second
possibility also leads to uncertainty of the result. The
situation is complicated by the fact that reliable calcu-
lation of the Kondo temperature from first principles
is difficult, and the experimental data for various
paramagnetic centers in metals show that TK can
vary56 over the range 0.1-600 K. Thus, the question
is open. It is not excluded, for example, that the Mu
atom is formed in some metals and is not formed in
others.

The entire problem has not only a purely academic
nature, but also great practical value, since the be-
havior of hydrogen dissolved in a metal is of interest
in a wide range of problems of physics and the physics
and chemistry of metals.

Observation of the Mu atom in metals is substantially
more complicated than in nonconducting materials,
since the spin-spin coupling of the electron and muon
is highly attenuated as the result of strong exchange
scattering of the muonium electron by the electrons
of the medium—the thermal reservoir.2 9 Therefore,
regardless of whether the muonium atom is formed or
not, the muon behaves in its general features as if it
were a free particle: its spin precesses with a fre-
quency ωμ, and the depolarization is determined by the
direct interaction of the magnetic moment of the muon
with the magnetic moments of the nuclei. However, if
muonium is formed, the last two statements are only
approximately true, and in the following we shall in-
dicate a number of procedures permitting unique de-
termination of whether or not the Mu atom exists in a
metal.

Thus, in what follows we shall have in mind two
alternative variants: 1) in some interstitial site of
the crystal lattice there is a free muon; 2) the Mu
atom is formed.

If muonium is not formed, then we can write down
simple formal relations which are common for all
metals. The polarization of an ensemble of muons
P(t) can be represented as the convolution of the initial
polarization vector P(0) and a tensor of second rank:

Pa (t) = μαΡ (Ο Ρ» (0). (1.5)

11 The temperature TK below which the magnetization of the
cloud of conduction electrons compensates the magnetization
of the impurity if the exchange interaction is antiferromag-
netic.
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The tensor μα β(0 characterizes the magnetic properties
of the target-sample in an external field.

In the absence of diffusion, if the microscopic field
at the point of location of the muon can be considered
constant during the muon lifetime τμ, this tensor is
the result of averaging of the matrix

Λ ί (b, t) cos (γμδί) + «.>«»« sir

(1.6)
which determines the change of the polarization vector
in a magnetic field which is constant in time:

μαβ <t) = j Mat (b. ί) ΗΌ>) Λ = {Mat (')>; (1.7)

here na = ba/b,ylt is the gyromagnetic ratio for the
muon, and W(b) is the probability density of the muon's
finding itself in a microscopic field b.

The microscopic field b is made up of the fields of all
dipoles of the sample, the external magnetic field, and
the contact field of the conduction electrons of the
metal. It is convenient to present b in the form

b=B'+br + Bcont, ( 1 > 8 )

where B' is the average (macroscopic) field produced
by all dipoles lying outside some small but macroscopic
cavity r constructed around the point of location of the
muon, and by the external sources; b r is the micro-
scopic field of all dipoles of the cavity r. The size
of the cavity r is chosen much smaller than the char-
acteristic length in which the macroscopic field B'
changes. For paramagnetic materials this length
can be due to the nonuniformity of the external field,
for superconductors of the second type it is determined
by the diameter of the superconducting filaments, and
for ferromagnetic materials it is determined by the
size of the domain or crystallite. The sum B'+b r

obviously does not depend on the shape of the cavity
r.2) For calculation of the microscopic field b r it is
best to use the well known method of Ewald. In prac-
tice it is convenient to choose the cavity r a s a sphere,
and in this case B' =B - (8TM/3), where Μ and Β are
the macroscopic magnetization and magnetic induction
in the region of the cavity. The contact field Β
oscillates with a frequency 1015-10l<? sec"1, and for
processes with characteristic times τ = 10"9-10"5 sec
its average value, which is proportional to the average
spin density of the point x, is important.

Let us see now what kind of information can be ob-
tained by analyzing Pu(t). Let us divide Ρβ(ί) into the
constant and oscillating parts of the polarization P%(t)
and P"a{t):

Ρ.(0 = *£+Λ(ί)«[μ5*+μ5*(0]Ρι>(0). (l.g)

where

μ£ί> (0 = <(δ«( - «αήρ) cos (γμ6ί)> + e«» ("6 sin <γμί>ί)> · U · 1 0 )

Experimentally P% and P"a are easily observed

2)We note that this statement and Eq. (1.8) are both rigorously
proved for crystals by means of the Ewald method, which we
shall discuss in more detail below.

individually: Pc

a, for example, can be found by taking
the average polarization value over a time interval
much greater than the period of its oscillations. Since
the tensor μα ί(ί) has nine independent components
in the general case, to determine it one must measure
projections of the vector P(f) onto three noncoplanar
directions for three independent values of P(0). Usual-
ly one can restrict oneself to a smaller number of
elements, since as a rule in magnetic respects the
target possesses symmetry axes.

As follows directly from Eq. (1.10), the tensor μ£β,
which we shall call the orientation tensor, is de-
termined by the constant part Pc

a. The real part of the
Fourier transform of μϊ,β(ί) in the argument γμί is the
result of averaging over angle the tensor δαΙί-ηαηΛ.

(1.11)Re K» <6> = W (b) b* dn.

The probability density of the field distribution in
modulus W1(b) = JwQo)b2dn, a s follows from Eq, (1.11),
i s determined by the convolution of the symmetric
tensor:

2WtM = ̂ 'm{b). (1.12)

From the imaginary part of the Fourier transform
of μ£β(ί) one can find the average direction of the field
with modulus b:

2 j nyW(b) 6»dn = eYae Im μαβ (b). (1.13)

We now turn to discussion of concrete metals.

2. NORMAL METALS

Recently the muon method of studying normal metals
has been developed at a particularly rapid rate.
Nevertheless we are at present in the initial stage of
systematic studies and the most interesting results
are still ahead.

a) The "muon" depolarization variant

Let us consider the regularities of the behavior of
the polarization P(i) of the muon, assuming that the Mu
atom is not formed. The most interesting information
can be obtained by analyzing the rate of depolarization.
The relaxation is determined only by the direct dipole-
dipole interactions of the magnetic moments of the
muon and the nuclei of the metal. In fact, the rate
of depolarization Λ in the conduction electrons can be
estimated from the well-known Korringa relation (see
for example Ref. 30): A»4irK'1(>'(i/y<,)

2A2feBr, where
Κ is the Knight-shift parameter in the muon (the shift
of the muon resonance frequency in an external mag-
netic field due to the average contact field, which is
produced by conduction electrons at the point of loca-
tion of the muon), kB is the Boltzmann constant, and Τ
is the absolute temperature. Since the relaxation rate
is proportional to the density of electrons taking part
in the scattering, it is evident that Λ is proportional
to the temperature of the medium. For most metals
which have been investigated Κ S10" 4 and even for
T~ ΙΟ3 Κ we obtain Λ~ 102 sec' 1 . Therefore the
Korringa relaxation can be neglected. The Knight
shift in the muon has been studied experimentally by
several authors. A summary of the data on the Knight
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shift in the muon as of 1976 can be found in the review
by Schenck.31

The muon-spin relaxation rate depends substantially
on whether the muon is diffusing or whether it is lo-
calized at interstitial sites. Therefore study of the
muon depolarization opens up prospects for measure-
ment of its diffusion rate.

Suppose that there are Ν different types of equilib-
rium positions for muons in the sample. These po-
sitions may be due to capture of muons in crystal-
lographically different interstitial sites, in impurity
atoms, in lattice defects, and so forth. The polari-
ization of muons localized in positions of type (i) is
determined by the evolution operator (matrix) G°(t),
so that in the absence of diffusion we have for the
observed polarization

(2.1)

where Wt is the probability of capture of muons in a
position of type (i) directly after thermalization. Ob-
viously the operator G°(f) is the result of averaging of
the matrix Mae(t), Eq. (1.6), over interstitial sites of
type (i). Diffusion processes can be described phe-
nomenologically by means of probabilities Xik of trans-
fer of a muon from a position of type (k) to a position
of type (t) per unit time. Let P^t) be the contribution
to the polarization from muons which at a moment of
time t are at locations of type (i); obviously P(f)
= Σ?=ι pd*) a n d pi(°) = WjP(O). The partial polariza-
tions Pi(<) satisfy the system of integral equations32:

t—t)P*(t)<ir, (2.2)

where λ, =ΣΖ·ι λ*( is t n e total probability of a jump of
the muon from a type (/) site per unit time. A Laplace
transformation reduces the system of equations (2.2)
to a system of linear algebraic equations with constant
coefficients, from which it is easy to find the Laplace
transform of the observed polarization. Thus, the
system (2.2) solves the problem of the behavior of the
polarization of diffusing muons if the operators G°(t)
are known.

b) Depolarization of nondiffusing muons

Let us first consider nondiffusing muons. The
Hamiltonian of the system has the form

Η = H№ + H, + HM + Hn; (2.3)

here H» is the interaction of the muon with the ex-
ternal magnetic field, Ht is the interaction of the
spins of the nuclei with the external fields, # μ ί is the
spin-spin interaction of the muon with the nuclei, and
Ηu is the interaction between the spins of the various
nuclei. Simple estimates show that the action of the
operator Htt in times t % 10"4 sec can be neglected.

We shall write the Hamiltonian Η in the form

(2.4)
where Ho is the basic Hamiltonian and V is a per-
turbation; the operator V includes the term Hul. The
specific form of breakdown of the Hamiltonian (2.4)
depends on the magnitude of the external field. As is

well known,33 the main contribution to depolarization is
from the part of the perturbing operator V which is
diagonal in the Ho representation (the so-called secular
part of the interaction). The meaning of separation of
the secular interactions can easily be understood in
classical language: for a rapid precession of the muon
and the nuclei the variable components of the local
field at the muon are averaged and the main action is
exerted by the static components. We note that in
this approximation only the polarization component
perpendicular to the external field relaxes.

In what follows we shall assume that the external
magnetic field Β is directed along the ζ axis and the
initial polarization of the muon is along the χ axis.
Then Ημ = -Κω,βη where ωιι = γιίΒ;Ηι = -Ηωι S,/,,+#g?
here ω7 =γΙΒ, and HQ is the quadrupole interaction of
the nuclei with the electric field gradient produced by
the muon. The importance of this interaction for
nuclei with spin I> 1/2 has been pointed out by Hart-
mann.34 It leads to the result that for the nuclei closest
to the muon the direction of the quantization axis does
not coincide with the ζ axis and depends on the mag-
nitude of the applied field B.

If the external field is large (Hu,HI»HliI), then
Ho =Ηβ +Hj , V =HtiI, and the secular part of the inter-
action has the form

Σ η' lhz-3 , (1,1,), (2.5)

where a, =Vj/rj is the unit vector directed from the
muon to the .7-th nucleus and i, is a unit vector directed
along the quantization axis of thej-th nucleus. The
complex muon polarization P,.(t)=Px(t)+iPy(t) is de-
termined by the obvious formula

P+ (t) = Sp [σ+ (i) ρ μ (0) ρ, (0)], (2.6)

where a.(f) = exp[iK-l(H0 +Vs)t]a, «p[-»Jrx(ff0 + Vs)t],ρμ(0)
= 1/2 +SxP(0), and P/(0) is the Gibbs density matrix of
the nuclear spin system. The nuclei are practically
always unpolarized. Calculations32 give

(2.7)

where

In the absence of quadrupole interactions we have
Ω, =Κγμ,γΙν]3[1 — 3(ajllY] and Eq. (2.7) goes over into the
formula obtained by Selivanov.35

As can be seen, the polarization vanishes an infinite
number of times, the first zero being reached at
t» v/[I + (l/2)]nf". The magnitude of the next max-
imum is ~1% of P(0).

For an approximate description one often uses the
expression P.(t) =exp(-iu>lit - a2t2)P.(0), where σ2 is
defined as the coefficient of t2 in the expansion of the
polarization amplitude in powers of time. From Eq.
(2.7) we find

(2.9)

The frequencies Ω, depend strongly on the directions
of the vectors i,, which are determined by the relation
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between the external magnetic field and the electric
field gradient. Hartmann34 gives a relation (J2(B) for
different orientations of Β with respect to the axes of
a monocrystalline sample and for various positions of
the muon at interstitial sites in the lattice. Com-
parison with the results of Camani et αΖ.3β shows that
in copper the muons are captured in octahedral sites.
To achieve quantitative agreement with the theoretical
dependence, the authors had to assume that the muon
expands the lattice by "5%.

If the quadrupole interaction is unimportant (the ex-
ternal magnetic field is very large), then σ2 is de-
termined by the well known van Vleck formula

(2.10)

We give a dependence of σ2 on the orientation of a
monocrystalline sample with cubic symmetry of the
lattice with respect to the external field:

(2.11)

where nlt n2, and w3 are the direction cosines of the
magnetic field with respect to the crystallographic
axes, Ao = ( l / 2 ) [ 7 Σ ί Τ ] β - 2 7 Σ , r j e c o s 4 ^ ] , A l

= (9/2)[— 2>J**J 6 + 5 S J 8 C O S 4 Q ! J ] » a n a ai is the angle
between the [001] axis and the direction from the
muon to the j - th nucleus. For polycrystalline samples

o2 = -7=-/(/ + l)(fiYuYi)2 2 rJ*· (2 12)
i

Let us consider now the case of an intermediate
magnetic field where ω μ » ω μ ί , u>t~ ω μ / ; here ω μ ί is the
field created by the nuclei at the muon (in frequency
units). Then Η0=Ημ, V =ΗμΙ +Hlt and instead of Eq.
(2.5) for V* we have

^ ( 2.13)

A calculation again leads to Eq. (2.7), but Ω} now has

the form

(2.14)

However, if there is a quadrupole interaction, then
for nuclei remote from the muon it is necessary in
the product (2.7) to take Sl} from Eq. (2.14), and for
near nuclei they must be taken from Eq. (2.8), in
which ij =a,: «•}·"= -2ΚγιιγΙτ]3α},. For σ2 we obtain

ν,Γ ^ 1+3(«JJ*

all
nuclei

M r 1 ] - (2·15>
The first term in Eq. (2.15) does not take quadrupole
interactions into account; it was obtained in Ref. 37.
However, the second term determines the contribution
of quadrupole interactions. We note that for single
crystals with cubic symmetry of the interstitial site
and for polycrystalline samples σ 2 has the form32

all
nuclei

(2.16)

and does not depend on the orientation of the external
field. For zero external field σ2 is a factor of two
larger than for an "intermediate" field.

Inclusion of quadrupole interactions leads to the

result that the calculated value of σ2 decreases by
about 30%. For example, for copper we obtain σ« 0.34
μββο"1 if the muon is localized in a tetrahedral site and
σ» 0.27 μββο"1 if it is localized in an octahedral site.
The latter value is in good agreement with the experi-
mental data of Grebinnik et al.,36 who obtained the value
σ = 0.252± 0.007 μββο'1. Exact agreement can be ob-
tained if we assume that the interstitial site is ex-
panded by ~3%.

c) Diffusion and "strange" diffusion of muons

Let us turn now to discussion of diffusing muons,
following the work of Mikaelyan and Smilga32; here we
first restrict ourselves to the case in which muons are
captured in equilibrium positions of only a single type.
This case is realized, apparently, in copper. Then
from Eq. (2.2) we have for the Laplace transform of
the polarization:

(2.17)

where λ =Xt = \ u is the frequency of jumps of the muon
and

P(p)

If λ is small in comparison with the eigenfrequencies
ωμ and ω; of the Hamiltonian Ho, then the high-frequen-
cy part of the field is averaged over the time spent by
the muon, and instead of the exact operator G° one can
use the function G° defined by Eq. (2.7). From Eq.
(2.17) we obtain

P,(i) = P,(0), (2.18)

At the present time one usually uses the well known
semiempirical formula33

P+ (<) = e-'"' exp [ - 2 -g- (*-λ< + Xt-1)] Ρ (0) ^

for description of experimental data.

For λ^ 0 it follows from this that G°(i)
« βχρ(-ΐωμί - σ2ί2). If this expression is used in Eq.
(2.19), then for the two limiting cases λ « σ and λ » σ
Eqs. (2.19) and (2.20) coincide, while in the intermed-
iate region λ~σ, as a calculation shows, the dif-
ferences are insignificant. Thus, Eq. (2.20) gives a
qualitatively correct result.

For rapid diffusion ( λ » ω,) in calculation of P(i) it is
necessary to use Eq. (2.17) with the exact operator
ό°(/>+λ). The calculation is greatly simplified, how-
ever, as the result of the presence of the small pa-
rameter ωμ//λ (we recall that ω μ / is the field created
by the nuclei at the muon). We give only the final
formulas:

Here
1 ((ω,.,)') ωϋ+2λ'
3 ~7 ΐ

(2.21)

(2.22)
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It follows from this that for rapid diffusion the
precession frequency of the muons differs from ωμ,
the correction reaching several tenths of a percent
and decreasing rapidly with increase of the external
magnetic field and temperature. For example, in
copper in a field Β = 62 G for λ = ωμ it is ~0.38%.
Grebinnik et al27·2* carried out a search for the Mu
atom in copper on the basis of the temperature de-
pendence of the precession frequency; here a small
decrease of ω with increase of Τ was observed in a
field of 62 G and was not observed at a field of 700 G.
In principle this effect can be explained by means of the
first of Eqs. (2.22).

As follows from Eqs. (2.21) and (2.22), the longi-
tudinal component of the polarization (parallel to the
field) is damped at a rate At which reaches a maximum
for λ = ωμ and approaches zero both for λ « ω ( ΐ and for
λ » ωμ . In copper in a field of 62 G the maximum value
of Ax is-0.04 Msec"1.

The relaxation rate Λ2 of the transverse component
differs from the value given by Eq. (2.20). In fact,
for λ » σ we find from (2.20) Λ2=.2σ2/λ, where σ2 is
given by Eq. (2.9). In the case of a large external
field this result is valid for λ « ω,. For ωΙ« λ « ωμ

and for λ » ωμ we have respectively Λ2 = ((ωμ/)
2)/3λ

and Λ2 = 2((ωμί)
2)/3λ. Let us consider the fact that the

quantity ((α>μ/)
2) does not depend on the orientation of

the external magnetic field with respect to the axes
of the single crystal.

The equations (2.22) can be obtained also from the
well known Wangsness-Bloch equation. In Refs. 39
and 40 the muon polarization is calculated by means
of a somewhat modified Wangsness-Bloch equation (see
for example Ref. 41). This equation is used for large
correlation times, i.e., over the entire range of dif-
fusion velocities. In Ref. 39 the correlator of the local
field at the muon ({ha(t),he(0)})/2, knowledge of which
is necessary in this approach, is calculated quantum-
mechanically on the basis of the random-walk method.
For a comparison of the results with experiment, a
computer analysis is necessary. On the other hand,
in Ref. 40 it is assumed that the components of the local
field at the muon are statistically independent and the
correlator has the form (ha(t)hg(O)) =(Α2(0))δαβ/(ί). We
note that this assumption is valid only for not too strong
external fields (B S100 G), where the nuclei precess
slowly, or for very rapid diffusion. In the opposite
case it is necessary to take this precession into ac-
count in the correlator, and the formulas obtained in
that work become incorrect.

The formulas presented above show that with increase
of the frequency of jumps λ the relaxation rate of the
polarization component perpendicular to the external
field falls off monotonically, approaching zero. How-
ever, recently an unusual nonmonotonic dependence of
A(T) on temperature has been observed in a consider-
able number of metals.4 2"4 6 In niobium43·44 the relax-
ation rate first falls off and reaches a minimum for
T~25 K, then rises and reaches a plateau, and sub-
sequently drops again. A similar behavior of Λ(Τ) has
been observed also in bismuth.42 In tantalum and

beryllium45 the picture is somewhat different: in
tantalum the relaxation rate is low at low tempera-
tures, then rises, after which it falls off again. In
beryllium two plateaus are observed for Λ(Γ). In Ref.
46 the depolarization of muons in aluminum was in-
vestigated and it was established that Λ is very small
even at low temperatures. At the same time in the
alloy Al + 1% Cu the dependence A(T) is qualitatively
the same as in pure copper.

This behavior of Λ(Γ) can be explained if we assume
that in the crystal there are at least two types of
equilibrium positions of muons with different binding
energies. We shall not discuss here the possibilities
associated with coherent quantum diffusion, since it is
obvious that it can appear only in specially prepared
pure single crystals.

For definiteness we shall assume that the positions of
type (2) are more stable, i.e., λ 2 1 »λ 1 2 . As was
mentioned above, in the first approximation we can
assume that the amplitude of the polarization compo-
nent perpendicular to the external field for muons
localized in sites of types (1) and (2) falls off accord-
ing to laws exp(-ff2/2) and εχρ(-σ|/2), respectively.
We shall consider the region of temperatures for
which Xu » σι and \ 2 ~ λ 1 2 « 0. From the system of
equations (2.2) we can obtain156

Ρ (ή = {W, exp [ - (2σ;/λ,, + λ21) ί] + W2 exp (-σψ)

I

j
° (2.23)

If the sites (2) are due to capture into impurity
atoms, then W2

a0 and λ2 1/λ1 1»ο, where c is the rel-
ative concentration of the impurities. Then for λ^
« σ 2 in Eq. (2.23) the main contribution is from the
first term and we find for the relaxation rate

Λ«^+λ11«-|2ί- + Λ11. (2 24)

From this it follows that for λ η = σ1 V2/c the relaxation
rate is minimal, and Amin ~ 2al V2c. Thus, on decrease
of the impurity concentration the location of the min-
imum of A should be shifted toward higher tempera-
tures and Amin « σ ι · These conclusions are inconsistent
with the results obtained in niobium and bismuth.42"44

In fact, in these experiments samples with c~10"4 were
studied and it was found that Λ,,,ή/^β 0.35-0.6, while
the calculated value is ~0.03. Therefore the sites (1)
and (2) in this case are evidently interstitial sites of
different types. For a final clarification of the ques-
tion more detailed studies are necessary, for example,
measurement of the dependence of A on the concentra-
tion of the impurities.

d) Behavior of muon polarization on formation of a
muonium atom

In this section we shall discuss the principal reg-
ularities of muon polarization behavior if a Mu atom
is formed in a normal metal. The manifestation of the
qualitative regularities of the muon depolarization
process in this case has a fundamental nature, since
as we have already remarked above the question of
the charge state of a positive muon in metals has not
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been unambiguously solved at the present time.

The Mu atom in polarizable media (metals and semi-
conductors) has been discussed theoretically by several
authors.47"49 In Refs. 47 and 48 some regularities of
the muon polarization behavior were studied. In Ref. 48
it was correctly noted that in a polarizable medium the
magnetic moment of the muonium electron is renor-
malized, which was not taken into account in Ref. 47.
In other respects the initial equations, which were ob-
tained in Ref. 47 from phenomenological considerations
and in Ref. 48 on the basis of an analysis of exchange
scattering in a polarizable gas,50 are practically identi-
cal. However, the basic equations are, generally
speaking, erroneous, since they do not take into account
the inverse influence of the magnetic moment of the
nucleus (muon) on the electron spin. As a result, for
example, the muonium equilibrium state obtained in
these studies does not satisfy the Gibbs distribution
[see Eq. (15) of Ref. 47], In Ref. 49 a systematic
theory of the relaxation process was developed. We
shall present briefly the principal results.

We write the Hamiltonian of the system in the form

Η = ff0 + HT + V, ( 2.25)

where Ho is the Hamiltonian of the dynamical sub-
system (muonium), HT is the Hamiltonian of the
thermal reservoir, and V is the potential for inter-
action of the dynamical subsystem with the thermal
reservoir, the part of the interaction potential diagonal
in the thermal reservoir being equal to zero or as-
signed to HQ.

The explicit form of the interaction potential is de-
termined by the model of the thermal reservoir. In
metals the relaxation of the muonium electron spin is
due mainly to exchange scattering by the electrons of
the medium. As usual,51"54 the model Hamiltonian
used was

elements g (ωΙη)σ *„,

(2-28)

v Σ (2.26)

where oe and ot are the Pauli operators of the electrons
of the muonium and the medium, respectively; J is the
exchange integral and η is the density of electrons.

As a basis we took the well known relaxation equa-
tions of NMR and Ε PR theory (see for example Refs.
41 and 55). In the calculation it was assumed that the
wave functions of the conduction electrons of the metal
are plane waves and we neglected their distortion near
the muonium. Accordingly we did not consider effects
related to the Kondo effect, i.e., it was assumed that
the temperature T>TK—the Kondo temperature. It
was assumed also that the wave function of the muonium
is the s-function of a hydrogen-like atom. As a result
we obtained for the muonium spin density matrix the
equation

Κ ρ6ΐ + 4ίσ~ pGl + Ισ1, pGz]+H.c, (2.27)

where Heit is the Hamiltonian Ho with renormalized
magnetic moments of the muonium electron μβ and of
the muon μμ and a frequency of hyperfine interaction in
the metal ω0; G is a matrix with elementsgfa,n)a*ln,G
is a matrix with elements σϊη£(ωπΐ), G, is a matrix with

Κω1π = Et — En, where En are the eigenvalues of Ή*κ
and tf is the Fermi energy.

The coefficients g{fatn) determine the frequencies of
transitions between different levels and can be in-
terpreted as effective collision frequencies. We note
that for Ku)in»T the coefficients increase linearly
with increase of ω1η. This corresponds to the fact that
electrons with energy c^tf — Κω1η can also take part
in the scattering.

In the general case the system of equations (2.27)
breaks up into a system of five equations which de-
termine the longitudinal component P, of the polariza-
tion (the ζ axis is chosen in the direction of the ex-
ternal magnetic field B), two Hermitian-conjugate
systems of four equations which determine P± =PX

±iPs, and two Hermitian-conjugate equations.

In large external magnetic fields exp(Hw/2T)
5> 1(#ω = 2μ β £) the components of the density matrix
have two characteristic relaxation rates—fast and
slow. For the diagonal components of the density
matrix this corresponds to the fact that the popula-
tion of the two highest triplet levels falls off with a
short decay time [^(ω,,,)]*1, after which the system
approaches thermodynamic equilibrium relatively
slowly. In this case we have for the longitudinal com-
ponent of the polarization

JJe-T1'. (2.29)

For the condition Κω0, ζΚω<^Τ{ζ = \ μμ/μβ |) the inverse
value of the longitudinal relaxation time has the form

2? c t h ΐτ • (2.30)
The transverse components of the polarization vary
with time in the following manner:

where T2 =2Tt is the transverse relaxation time and the
precession frequency

Ω1 = ζω + ̂  (2.32)

does not depend on temperature.

For the condition /ίωο«Τ the formula (2.30) for the
longitudinal relaxation time coincides with the results
of Ref, 51. As can be seen from Eq. (2.32), one can
search for muonium in metals by measuring the shift
of Ωχ in comparison with the muon frequency ζω. At
the present time it is possible to resolve muon pre-
cession frequencies less than 10"" sec"1; therefore
the proposed experiment is possible for Β ~ 5 x 10 s -
104GandT~0.1K.

We note that if the relaxation time τ^τ», then in
principle one can search for muonium by analysis of
the equilibrium state, since the polarization P,(»)
differs appreciably from the equilibrium polarization
of a free muon Ρμ

Γ (°°) = th(»£ou/2X). In fact, in fields
Κω 2 Τ we have

). (2.33)

686 Sov. Phys. Usp. 22(9), Sept. 1979 Belousov ef a/. 686



For example, at Τ = 0.5 Κ, Β = 104 G, and u>0

= 0.1ωΟΒ(ω01, = 2.8χ 1010 sec"1 is the hyperfine splitting
frequency in vacuum) we have P^00)» 0.025, while
Pfi («)* 0.015. An experiment in a field perpendicular
to the polarization at the initial moment of time is
probably most suitable. We note that in such an ar-
rangement, one can carry out a compensation experi-
ment by reversing the direction of the field.

For high temperatures Τ » Κω, Ηω0 the matrices
G, G, and GM can be expanded in a complete set of
4 x 4 spin matrices. Equation (2.27) can now be
written in the following form, retaining only terms
linear in Ηω/Τ and Ηωο/Τ;

- ekln
- ^ [(ωησ".) ρ + ρ (ω.σ

(2.34)
The equation (2.34) differs from the equations of

Refs. 47 and 48 for description of relaxation processes
at infinite temperatures. The relaxation term is de-
termined by the polarization of the muonium electron,
and the stationary solution is the Gibbs distribution.

Solution of the system (2.34) is obtained by standard
methods.11"13 For the longitudinal component of the
muon polarization for ν» ω0 with accuracy to terms
of order (ωο/ι/)2 inclusive, we obtain

(2.35)

Equation (2.35) is valid also for y«u>0 with the dif-
ference that, in the equation for the polarization Ρ At),
rapidly oscillating terms are present which are
averaged in observation. Thus, as an interpolation
formula, Eq. (2.35) is satisfactory with no restric-
tions. Since ν °c Τ [see Eq. (2.28)], it is easy to see
that τ[ι has a maximum as a function of temperature.
The falling branch was obtained previously in Ref. 11.

The transverse component of the polarization is de-
termined for f»a) o by a single root, as in the case of
strong fields (2.31), where with accuracy to terms of
order (ωο/νψ we have

--i ; £ . ^ (2.36)

;—{Λω,/2Γ)]>ω· / ω - (2 .37)

In Eq. (2.37) for ωο~10β sec"1 and v = iOaT sec"1, the
last term can be neglected even for Γ £ 1 Κ, and then
the precession frequency can be written as

(2.38)

which coincides with the precession frequency given
in Refs. 27 and 18. For v«u>0, ω the solution practially
coincides with the result obtained in Ref. 31.

The temperature dependence of the precession fre-
quency (2.38) is easily explained. In fact, in a mag-
netic field perpendicular to the initial polarization of
the muon, the electron of the Mu atom is rapidly
polarized along the field direction. Since it does not
belong to the Fermi gas of conduction electrons of the
metal, its polarization is determined simply by the

Boltzmann formula and turns out to be much greater
than the polarization of the conduction electrons.
Accordingly, a contact-field component appears at
the point of location of the muon parallel to the ex-
ternal magnetic field, and therefore the muon effective-
ly precesses in a field Bcxt + ABcont. As can be seen
from Eq. (2.35), the maximum of τ[ι is reached for
(8ι>Υ=ω2

0 + ω2. Here rj 1 i s

T - I (2.39)

Thus, a maximum can be observed even for u>0~107

sec"1, which for a field .S ~ ΙΟ^ΙΟ3 G corresponds to
τΓί,2χ~104-105 sec"1. Estimates give ι> = (108-101ο)Γ
sec"1, and accordingly the maximum should be observed
at a temperature Τ ~ 0.1-10 Κ (Fig. 1). In the region
where Eq. (2.36) is valid, the quantity T^1 does not
have a maximum and falls monotonically with increase
of temperature, and at the point of the maximum for
τϊι it takes on a value (for ω2»ω2,)

τ = τ ι
'2 Ί ω ΐ τ » 1-Γ(2ω2/ω5) ·

For specified values of ω and ω0, we always have

(2.40)

- 1
max"

It follows from Eq. (2.30) that the relaxation rate
Ti"max = rrV2 in strong fields (exp(Su>/2T)>> 1, o>» u>0)
rises linearly with increase of the temperature, and
therefore r^1 has a maximum; however, it is observed
at temperatures lower than the point of the maximum
for τί1. For fields Β ~ lO 3 -^ 5 G the maximum for τ~1

is reached at a temperature Τ ~ 0.1-10 K. For τ^1 in
these fields the maximum should be observed at a
temperature Τ ~ 10-100 K. Experimentally it is pos-
sible to observe muonium in such fields at the level
ωο~ 108-1010 sec"1. In the case where (8uf>> ο^ + ω2

Eqs. (2.35) and (2.36) go over to the corresponding
results of Ref. 51.

It should be specially emphasized that both the results
of Ref. 49 and the semiquantitative considerations
formulated previously in Refs. 27 and 28 are based on
a simplified model of the metal. Therefore all of the
conclusions of Ref. 49, like those of Refs. 27 and 28,
which apply to the equilibrium polarization of the

3i

to*

to1

to-1 10°
Τ. Η

FIG. 1. Dependence of relaxation rate τ Ϊ' of the longitudinal
component of polarization of a positive muon in muonium on
the temperature Τ for various values of the external magnetic
fields.
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electron and muon in the muonium atom, are valid only
in the case where T>TK, the Kondo temperature, when
the paramagnetic impurity is a Mu atom. In fact it is
well known56"58 that for T<TK the magnetic susceptibil-
ity of the impurity is small and does not depend on the
temperature. Therefore for T<TK the equilibrium
polarization of the electron and muon in a magnetic
field is practically equal to zero and does not depend on
T. In Refs. 27 and 28 with accuracy 0.1-0.01% no
temperature dependence of ωμ was observed in Al, Zn,
and Cu in the temperature range 4-90 K. This fact
can be interpreted not only as the absence of a μ*β'
bound state but also as the fact that Ts for the Mu atom
in these metals is greater than the temperature at
which the experiment was carried out. Reliable the-
oretical estimates of the Kondo temperature for this
impurity (in particular, for Mu) essentially do not
exist at the present time. As shown by the experiment
of Ref. 56, for alloys of various types 0.1 K<TK<600
K. Therefore the temperature correction to ωμ

could be observed at high temperatures (T~300-600 K),
where clearly T>TK. However, even for <·>„""«<#, the
correction will already amount to less than 0.1% for
T~100K.

We emphasize also that a clean experiment must be
carried out with metals (or isotopes) in which the
spins of the nuclei are equal to zero. Indeed, direct
dipole-dipole interactions can give a correction to the
precession frequency which depends on the diffusion
rate [see Eq. (2.22)]. It is also obvious that they can
make a decisive contribution to the relaxation rate.
Nevertheless the results of Refs. 27 and 28 provide
the basis for the assumption that if muonium exists
in Al, Zn, and Cu, it is highly "inflated" in view of
the screening of the Coulomb interaction by the con-
duction electrons of the metal. In this way these data
place in doubt the theoretical calculations carried out
in Ref. 26, where it was found that the hydrogen atom
in a metal has practically the same radius of the first
Bohr orbit as in vacuum.

Summing up, we can say that for search for the Mu
atom in metals it is appreciably more appropriate to
study the temperature dependence of the relaxation
rate, since the qualitative conclusions of Ref. 49, in
particular, the existence of a maximum for τ[ ι (Fig. 1),
do not depend on the temperature region in which we
are working ( r > T t o r T < T K ) .

Finally, we must note the following fact. It is evident,
if ν«ω 0 , that in transverse fields it is possible to ob-
serve precession with the muonium frequency. The
muonium atom is located in interstitial sites of the
crystal lattice. If the crystal field at the site has axial
symmetry, then the spin Hamiltonian of the muonium
is not isotropic,59 and in monocrystalline samples the
precession frequency will depend on the orientation of
the crystal in the magnetic field. It is natural to ex-
pect this pattern in semimetals. Hartmann et al.60 in-
vestigated the precession of the muon spin in samples
of As, Bi, and Sb. In the As and Bi samples they ob-
served a very small difference (less than 0.01%), and
in Sb a large difference, from the muonium precession

frequency observed in Cu. In monocrystalline Sb the
precession frequency depended on the orientation of the
sample in the magnetic field: The depolarization rate
was about 0.2 x 10* sec"1. The Sb lattice has axial
symmetry, and the data of Ref. 60 can be interpreted
as existence of Mu in Sb. It was also found that the
temperature dependence differs somewhat from T*1,
but this difference can also be explained by the non-
sphericity of the hyperfine-interaction Hamiltonian.61

It follows from Ref. 60 that the Kondo temperature for
Mu in Sb is less than 1 K.

3. SUPERCONDUCTORS

a) Study of type I and type II superconductors

Let us consider the possibilities that the muon
method presents for study of an inhomogeneous super-
conducting state.62"64 The conceptual aspect of the use
of muons reduces as before to the probing of internal
magnetic fields.82'63 As is well known, in supercon-
ductors very frequently a situation exists in which the
magnetic field partially penetrates the thickness of
the material. For example, this may be the so-called
intermediate state for Type I superconductors, when
as a result of geometrical factors for certain portions
of the material the external magnetic field exceeds the
critical field and as a result there arises a peculiar
mixture of the normal and superconducting phases,
often with a very queer geometry. Islands of the
normal phase with a frozen magnetic field may re-
main in a superconductor even after cooling to a
temperature much less than the critical temperature
Tc if the sample is substantially nonuniform in its
physical properties.

As a result of the same inhomogeneity factor in
Type I superconductors, normal-phase regions can
arise on partial destruction of the superconducting
state by a magnetic field or by currents. Generaliz-
ing, we can say that any superconductor-normal phase
transition of metals, in view of the inhomogeneity of
the material, can begin in individual seed regions.

At the present time it is rather complicated to
determine satisfactorily the volumes of the normal
and superconducting phases when both are present in
the sample. The volumes of the normal and super-
conducting phases are determined extremely easily
with the aid of positive muons. Let the external
magnetic field Β be perpendicular to the initial polar-
ization of the muons. Take the direction of polariza-
tion for the * axis and the direction of the field for the
ζ axis. Then, if there exists a mixture of normal and
superconducting phases in the sample with volumes
1 — d and d, respectively, the observed precession
pattern is described by the formula

Px (0 = (1 — d) \ cos (γί)ί) W (h) db + d,

Pv (t) = (1 _ d) \ sin (ybt) W (b) db.

(3.D

Here W(b) is the probability of a given value of field
in the normal phase. The initial polarization we assume
equal to unity.

688 Sov. Phys. Usp. 22(9), Sept. 1979 Belousov et al. 688



Actually, the superconducting phase enters into the
precession pattern as a single piece of the sample
in which there is no magnetic field. Averaging of the
functions cos(yW) and 8in(ybt) with a weight W(b) leads
as usual to a damping of the precession pattern. How-
ever, it follows from Eq. (3.1) that by measuring the
initial amplitude of the precession and the constant
component of the polarization we can find the values
of 1 -d and d, i.e., the relative concentrations of the
normal and superconducting phases. The error in the
determination of the parameter d is due in the last
analysis to the set of statistics and without great ex-
penditure of time an experiment can be performed at
the present time with accuracy 1% or better.

The probability W(b) is simply the time Fourier
amplitude of P(t), and by means of Eq. (3.1) we can
determine the probability of distribution of the mag-
netic field in the sample studied. We note also that the
muon method can be useful in observation of any phase
transitions, for example, in Kondo systems (for ex-
ample in alloys of the type (La^CejALj).84*88 If the
sample studied is thermally well stabilized, the muon
method is an extremely reliable instrument for mea-
surement of Tc. As has been noted in the litera-
ture,64'86·87 the existing methods of determination of
Tc on the basis of measurement of the magnetization
and electrical resistivity in Type I superconductors do
not provide the possibility of measuring Te for samples
which are inhomogeneous over their volume, i.e., of
determining the existence of residual islands (finely
dispersed admixtures) of the normal or superconducting
phase. An unambiguous conclusion regarding the
volume of the superconducting phase can be obtained
only by measuring the specific heat of the sample (the
electrons of the normal phase provide a contribution
to the heat capacity ce~T). Without discussing here the
comparative advantages of the two methods, we es-
tablish that by means of muons one can determine the
same quantity by a new, independent means.

In the study of phase transitions the muon method is
equally applicable to Type Π superconductors. In ad-
dition, since it is just Type II superconductors which,
on the one hand, present the greatest practical interest
and, on the other hand, are as a rule inhomogeneous
in their structure, which leads to irreversibility of
phase transitions, the method considered is most
promising for study of just these materials.

A magnetic field greater than HCl in a Type Π super-
conductor forms a completely definite structure (Fig.
2), and in accordance with Eq. (3.1) it is possible to

FIG. 2. Structure of magnetic flux for superconductors.
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find W(b) by means of muons. As follows from the
analytic solution obtained in the classic work of
Abrikosov88 for fields close to H^, the system of
filaments forms a two-dimensional lattice. For
temperatures substantially less than Tc and fields
differing appreciably from HC2, only numerical solu-
tions exist.88

The experimental study of the vortex structure in
Type Π superconductors has been carried out by
various means, of which the most promising have
turned out to be microphotography of surface powder
figures69 and neutron diffraction. The results have
shown that in most cases a triangular lattice is real-
ized, but in a number of samples a square lattice has
also been observed, as well as a layering of the sample
into macroscopic regions of the Meissner phase (Type
I superconductor) and a mixed state.86'67 The period
of the lattice in fields sufficiently large compared to
HC2 is of the order K^-IO3 A.

The idea of the possibility of studying a Type II
superconductor by means of muons was proposed by
Ivanter and Smilga in Ref. 70. In that work they cal-
culated the expected time dependence of the polariza-
tion P(t) for triangular and square lattices on the basis
of the Abrikosov solution and showed that on the basis
of the form of P(t) one can reliably distinguish the types
of plane lattice that arise. It is important to note that
they were analyzing the variant in which the muon
diffusion rate is small and in the course of 10"5-10'6

sec the muon can be displaced by distances small in
comparison with the period of the vortex structure.

It must be said that the question of the diffusion rate
of a muon in a Type II superconductor is rather unclear.
As a rule, Type Π superconductors are alloys with an
extremely irregular structure and numerous defects
in the lattice. Therefore quantum diffusion along the
regular lattice should be suppressed by scattering at
the impurities. On the other hand, one can expect
that the muons will be trapped in the defects and there-
fore it is difficult to obtain any theoretical estimates.

We note, however, the attractive possibility of a
purely experimental measurement of the diffusion
factor. It is evident that if the diffusion rate is suf-
ficiently high, then for each muon on the average we
will observe a precession in the effective average
field:

«0 = \bW(b) db. (3.2)

In this connection we note that

№> S = Φο, (3.3)

where S is the area per filament in the vortex lattice
(the area of the Bravais unit cell) and Φο = 2 x 10"7

G-cm2 i s the quantum of magnetic flux. For a tri-
angular lattice S = V3~az, where a i s the lattice period;
for a square lattice S =a 2 .

It is evident that Eq. (3.3) is valid if the muon during
its lifetime travels a distance much greater than the
spatial period of the vortex structure, i.e., ( r ) ~ 1 0 " 5 -
10"4 cm. Then the effective field in which each muon
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precesses will not depend on the initial conditions, and
on the basis of the precession pattern we shall deter-
mine the field φ) with a characteristic stochastic
spread near this value.

As can be seen from Eq. (3.3), if the period of the
lattice for given conditions and a given sample is
measured by an independent means (for example, by
means of decoration microscopy), then we can find
(6) and compare it with the observed pattern. How-
ever, the most direct possibility of manifestation of
the diffusion of positive muons consists in a parallel
study of the sample by means of negative muons.

Negative muons are captured by nuclei into a K
orbit and, although they lose a significant fraction of
their polarization in the cascade process, the re-
maining polarization is sufficient to reveal the pre-
cession pattern. Since the diffusion factor is excluded
for negative muons, we obtain here the true distribu-
tion W(b). By comparing data on experiments with μ*
and μ" mesons we can separate the role of diffusion.

Without going into details, we note only that in ex-
periments with μ" mesons it is convenient for sim-
plicity of the analysis to select isotopes with zero spins
of the nuclei.

At the present time data have been published71·72

on studies of the alloy Pbo,eoIno.lo and of Nb by the
muon method. The principal results of these authors
are shown in Fig. 3.

As can be seen, in the transition of the sample to
the superconducting state the Fourier amplitude cor-
responding to the value of the external field falls off
with reduction of the temperature both for Pbln and Nb.
On cooling of a Pbln sample in an external field to a
temperature 3 Κ a second peak appears which the
authors interpret as the probability of arrival of a
muon at the saddle point between normal filaments.
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FIG. 3. Fourier transformation of amplitudes of muon pol-
arization precession in Nb and in P

For niobium they observe only a decrease of the
Fourier amplitude [or W(b)] corresponding to the ex-
ternal field value, and the authors somewhat unex-
pectedly interpret this circumstance as an indication
of rapid diffusion of muons in niobium. As is clear
from the foregoing, a shift of the maximum Fourier
amplitude in diffusion should be observed to the region
of fields lower than the external field, and also a char-
acteristic Gaussian broadening of the line. We note
that in Nb the external field, as can be seen from Fig.
3, is 524 G, which is significantly less than the
critical field He~ 2 x 10s G. Therefore in the mixed
state we cannot expect in practice a constant field value
over the cross section of the sample, and (b) should
differ appreciably from the external field B.

At first glance the results of the authors show that in
Nb the vortex filaments have a sharp boundary which
separates the normal and superconducting phases. In
the absence of diffusion in this case we would observe
the pattern shown in Fig. 3. However, in view of the
extraordinarily compressed form of the article and the
practical absence of detailed discussion by the authors
it is difficult to draw any definite conclusions regarding
the results of the experiment.

Summing up, we can conclude that the muon method
can turn out to be an extremely convenient tool for
investigation of the vortex structures in Type Π super-
conductors. It appears that it can compete effectively
with neutron diffraction73 and it is obviously of great
interest to study the same samples simultaneously by
the two methods under appropriate conditions. The
study of vortex structures in the flow regime may also
turn out to be very promising. It is obvious that the
motion of filaments on flow of a transport current for
the observed precession pattern will lead to the same
defects as the diffusion of muons in a fixed vortex
lattice. On the basis of estimates and the experimental
data (which, however, are not too reliable"6·"7) in the
flow regime the velocities of the filaments are of the
order 10" l-l cm/sec, and during the muon lifetime
of 10"6 sec they can move by a distance of the order of
the period of the filament lattice.

b) Possibilities of observation of the Mu atom in type I
superconductors

Let us consider now the possibility of observing the
muonium atom in Type I superconductors. At tempera-
tures close to the critical temperature T~ Tc most
electrons of a superconductor belong to the normal
phase, and as in a normal metal the exchange scat-
tering is quite intense. However, on further reduction
of the temperature more and more conduction elec-
trons drop into the Cooper condensate and no longer
take part in exchange scattering. The number of elec-
trons in the superconducting phase is determined by
the characteristic exponential dependence on T, and
accordingly the frequency of exchanges of the electron
spin, v, falls off exponentially with temperature.74"78

Therefore, by lowering the temperature in super-
conductors, it is easy to traverse the entire region of
variation of ν from c » u>0 to i/« u>0. In the analysis
of muon spin relaxation in Type I superconductors it

690 Sov. Phys. Usp. 22(9), Sept. 1979 Belousov etal. 690



is necessary to take into account also the relaxation
associated with direct interaction of the muon magnetic
moment with the medium. This may be, for example,
a dipole-dipole interaction with the magnetic moments
of the nuclei or the well known Korringa relaxation.

The Wangsness-Bloch equations for the spin density
matrix of muonium have the form77

(σμρσμ-3ρ); (3.4)

here Vy. is the relaxation frequency for the muon spin.
It is easy to see that Eq. (3.4) is obtained immediately
if we only assume that the medium is isotropic and the
relaxation process depends linearly on the spin density
matrix of the subsystem.

As was noted earlier, it is customary to neglect the
relaxation due to direct interaction of the muon mag-
netic moment with the random fields of the medium,
since v^ is significantly less than v. Actually it is
easy to show38 that the ratio ν/νμ is at least of the order
of the ratio of the squares of the corresponding mag-
netic moments:

(—Μ J»4-104.

However, as soon as ν» ω0 and the spin coupling of the
muon with the rapidly relaxing electron spin is broken,
then, as was shown in the preceding section, the
muonium mechanism of relaxation leads to times τ
~ 10"5-10"6 sec. As is well known, relaxation times
resulting from the direct dipole-dipole interaction are
of the same order. Therefore it is useful to find gen-
eral relations. This problem has been discussed and
solved in Ref. 77, where the solution of the system of
equations (3.4) was analyzed in the case Β =0 and simple
formulas were obtained for P(t) and the averaging polar-
ization (P) =3(N-Nt)/N0) where No is the total number
of decays recorded in an experiment and N. and Nt

are the total numbers of decays backward and for-
ward. Referring to the study indicated for details, let
us go over to analysis of the possibilities for an ex-
periment in superconductors.

It is well known that the nuclear spin relaxation rate
in superconductors at temperatures substantially below
Tc falls off, roughly speaking, as exp(-A/T), where Δ
is the gap width.74"76 As has been pointed out, this is
explained by the fact that the number of free electrons
in superconductors drops exponentially with tempera-
ture. Although a quantitative calculation of the electron
spin relaxation rate in the electron subsystem in
superconductors is difficult because the perturbation
theory used in the BCS theory in calculation of the
nuclear spin relaxation rate is inapplicable, the
qualitative relationship naturally should be retained.
Thus, lowering the temperature to values much less
than Tc, we can achieve a decrease of the electron
spin relaxation rate by several orders of magnitude.
(We note that many superconductors satisfy the semi-
empirical relation that for T«TC the energy gap is
A»2TC.) The Mu atom is a paramagnetic center intro-
duced into the metal, and accordingly the wave func-
tion of the superconductor is distorted near it. How-
ever, as shown by estimates and experimental data on

superconducting alloys with magnetic impurities,
this distortion should not lead to a complete destruc-
tion of the superconducting state near a paramagnetic
impurity. Therefore for exchange of the electron spin
in a Mu atom it is necessary as before to expend a
certain energy.

Thus, if the muon forms muonium in a supercon-
ductor, then by lowering the temperature we can
easily achieve fulfillment of the condition ^ « ω 0 , i.e.,
we can obtain for the muonium the conditions which are
ordinarily observed in good insulators. The complete
theory of the behavior of P(t) in this case has been de-
veloped in Refs. 12-16. As was shown in that work, the
average polarization (P), which is equal to approximate-
ly unity in an ordinary metal, will decrease rapidly
to values close to one half when with reduction of the
temperature we reach the region where i'«a>0. Here
it may turn out that in the intermediate region (P)
passes through a minimum.12'13 However, if the muon
does not form a bound state with an electron in the
semiconductor, then the average polarization retains
values close to unity, reacting only weakly to change of
temperature. In fact, the nuclear spin relaxation rates
in an electron subsystem at low temperatures are small
and during the possible muon observation time (~10"e

sec) do not lead to an appreciable change of the
polarization.

It must be emphasized that the picture described will
be observed only in the case when the magnetic mo-
ments of the nuclei of the superconductor are equal to
zero and there is no dipole-dipole relaxation of the
electron and muon spins. It is therefore necessary in
an experiment to choose appropriate isotopes of the
superconductors. Many superconductors are known
which have isotopes with zero nuclear spin. For ex-
ample, we point out Zn(r c = 0.65 K), Pb(Tc = 7.3 K),
Sn(Tc = 4.2 K), Nb(Tc = 3 K), and so forth. (A complete
table of superconducting elements is given, for ex-
ample, in the book by Rose-Innes and Rhoderick.76)
Therefore the choice of appropriate objects for ex-
periments does not present difficulties.

We note in conclusion that for complete analysis great
interest is presented by setting up experiments in
parallel in isotopes of superconductors having nonzero
nuclear spins. The rate of dipole relaxation of the
muon spin, as shown by theoretical estimates and
experiments, should be of the order 104-106 sec ' 1 .
Accordingly we can expect values 106-108 sec"1 for
the dipole relaxation rate of the electron spin. If
muonium does not exist, then by measuring P(t) and
(P) at temperatures much less than Tc we can measure
the rate of dipole-dipole relaxation of the nuclear spin
in bulk samples of the superconductor. So far as is
known to the authors, there is no other similar pos-
sibility. If muonium exists, then by making measure-
ments in isotopes with different magnetic moments of
the nuclei and in this way changing τ, we can determine
through measurements of P(t) and (P) first, the pa-
rameters νμ and τ for the muon and, second, the de-
pendence of τ on the value of the nuclear magnetic
moment.
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In parallel with the use of positive muons it is of
great interest to use also negative muons. The pos-
sibilities of study of the precession of μ" and the
prospects of this technique for analysis of the proper-
ties of superconductors have been discussed in Refs.
63 and 78. It appears to us that the muon method opens
up extensive prospects for the study of superconductors,
and we can only regret that the experimental studies
in this field have really not yet begun.

4. FERROMAGNETIC METALS

a) Study of internal magnetic fields by means of muons

Study of the properties of ferromagnetic materials
by means of positive muons was begun comparatively
recently. The first experimental papers 7 8" 8 5 appeared
in 1973-1975, but interest in this field has been growing
continuously and at the present time about fifty papers
exist. The first object of study has been the classical
ferromagnetic materials Fe, Co, and Ni. Measure-
ments of the fields at the muon in polycrystalline
samples at room temperature carried out in the early
studies showed that the field at the muon is constant
right up to the point of complete magnetisation of the
sample. At the present time rather extensive exper-
imental data have been accumulated for single crystals
and polycrystalline samples of Ni, Co, and Fe at
various temperatures and external magnetic fields.7 9 '9 5

In a Co single crystal the variation of the direction of
the axis of easy magnetization has been traced for
500<T<600 K, and also the phase transition from
hexagonal close packed to face centered cubic at
Τ = 690 κ . 8 9 · 9 0 Similar measurements have been
made in a polycrystalline sample of Gd. 9 0 · 9 2 · 9 8 " 1 0 1

Many experimental and theoretical studies have been
devoted to the determination of the contact fields in
Ni, Co, and Fe. We note that the theoretical calcula-
tions 1 0 2" 1 0 8 of the contact fields do not yet provide
agreement with experiment. A comparison of the
theoretical calculations with the experimental results,
and a detailed bibliography, have been given in several
reviews.31'90·109

Recently more and more attention is being devoted to
the study of ferromagnetic properties of the rare earth
metals, 9 0 · 9 2 · 9 8" 1 0 0 · 1 1 0" 1 1 5 to alloys of the type PdFe,9 9

and to magnetic dielectrics.1 1 8 We note also that in
Ref. 117 the transition to the ordered magnetic state in
spin glasses has been observed.

After a brief summary of the main experimental
studies, we shall turn to a theoretical analysis of the
behavior of a muon in ferromagnetic metals. Follow-
ing Refs. 63 and 118-121, we shall make a calculation
of the magnetic fields acting on a muon stopped in some
interstitial site of the ferromagnetic material. In cal-
culation of the microfield we shall assume that the
lattice atoms are localized at sites and shall neglect
the distortion of the lattice around the muon. A re-
liable theoretical calculation with inclusion of the de-
formation is hardly possible at the present time, but as
will be shown below the distortion of the unit cell can
be determined experimentally from the discrepancy

between the experimental field values acting on the
muon and the theoretical values. In accordance with
Eq. (1.8) the local field acting on the muon is

(4.1)
We recall that here b r is the field of the dipoles in a
Lorentz sphere and Β and Μ are respectively the
macroscopic field and the magnetization of the domain.
We emphasize that Β and Μ differ from the average
macroscopic fields and magnetizations (B) and (M)
which are usually used in the equations of magneto-
statics. Actually the vectors (B) and <M> are the re-
sult of averaging over many domains and, for example,
in a sample of ellipsoidal shape in an external uniform
magnetic field they are constant. The vectors Β and
Μ obviously change their direction in the transition
from domain to domain and, furthermore, the macro-
scopic field Β inside a domain can, generally speaking,
change both in magnitude and in direction within a single
domain. The domain magnetization Μ is the saturation
magnetization at a given temperature and coincides with
the averaged magnetization (M) only for a completely
magnetized (single-domain) sample. A theoretical
calculation of the field Β can be carried out only by
means of the thermodynamic theory of magnetization,
and at the present time has been carried out only for
definite models of ferromagnetic materials. For "good"
ferromagnetic materials in any not completely mag-
netized sample it turns out that Β =4πΜ over the entire
domain and correspondingly Η = Β - 4irM = 0. However,
this fact is neither trivial nor general. Actually it
has been established in Ref. 89 that for magnetization
of a Co single crystal in a direction perpendicular to
the easy magnetization axis the macroscopic field in a
domain rises monotonically from the very first stage
of the magnetization.

Although in the first studies on the theory of the
application of the muon method to the study of ferro-
magnetic materials6 3·1 2 0·1 2 1 a clearcut definition was
already given and calculations were made of the field
acting on the muon, all experimental studies up to the
present t ime 7 9 " 8 1 · 8 3 " 1 0 1 · 1 1 0 " 1 1 7 · 1 4 1 have used erroneous
formulas for the field acting on the muon. Specifically,
authors have failed to understand the fact that the
macroscopic field inside the domain Β cannot be cal-
culated only on the basis of the equations of magneto-
statics; in other words, they are confusing the con-
cepts of Β and (B).

Generally speaking, both the magnitude and the di-
rection of the field Β can be influenced by the shape
and location of the surrounding domains, as well as
by the demagnetizing fields, which depend on the con-
centration and shape of random foreign inclusions
and internal stresses, and for polycrystalline mater-
ials also on the location of the crystallites.1 2 2"1 2 8 The
contribution of the closest domains can be estimated
roughly by assuming them to be uniformly magnetized
spheres. Then it is easy to see that δ£~0.1Μ«4τΓΛί,
which is significantly less than the macroscopic field
of the domain, but the spread in values of the field b
arising from this may be one of the causes of damping
of the polarization vector P(i).
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Let us turn to calculation of the microscopic field of
the dipoles br(x). We shall then assume that the field
of the magnetic moment of each lattice site coincides
with the field of a point dipole. This is equivalent to
the statement that the density of magnetic moment is
distributed with spherical symmetry with respect to a
given site. According to the data of neutron diffraction
experiments124"135 in fee and bee lattices the symmetry
of the distribution is cubic, while in hep lattices it is
close to spherical.

The components of the microfield from dipoles of a
macroscopic region r are calculated from the formula

7=177,5, °

—(1)1" (4.2)

where I is the number of the unit cell, k is the number
of the atom inside the cell, and Λί* is the magnetic
dipole moment of the atom; obviously ν~ιΝΜΛ=Μ.

A direct calculation on the basis of Eq. (4.2) is
difficult, since the series in Eq. (4.2) converges con-
ditionally. This series can be calculated by Ewald's
method,138"140 and here b r can be .represented as

(b,)a = -4πηα,Λ/β + <*„„*/„, (4.3)

where the first term is the demagnetizing field of a
uniformly magnetized region r in which the demag-
netization coefficients «a S take into account the geom-
etry of the region r (for a sphere »<»β = δ αί/ 3 )· The
second term in Eq. (4.3) b'a=aaiM&—the so-called
internal dipole field—does not depend either on the
geometry or on the size of the region r, and the
tensor aae depends only on what kind of site the muon
is stopped in. As can be seen directly from Eq. (4.2)
we have the fold aaa = 4i, and therefore for inter-
stitial sites in an fee lattice which have three axes of
fourth order in an octahedral site and of third order in
a tetrahedral site (Fig. 4), this tensor is a multiple
of the unit tensor αβ β = 4πδββ/3. It is easy to show that
in bec and hep lattices the two diagonal components
coincide. According to Ewald the components of the
tensor αα β are calculated from the formula

aat = VJf-' 2 [ 2 R'Hali(R\x-x(l

k) j )

(4.4)
where Ν is the number of atoms in the unit cell, V is
the volume of the unit cell, and R—an arbitrary posi-
tive number—is the series separation parameter for the
direct lattice and the reciprocal lattice,

S(u) = ( — u)

(4.5)

(4.6)

y(A) is the reciprocal lattice vector, and h is the Miller
index.

Equation (4.3) is applicable, strictly speaking, only
for infinite size of the region r. However, the error
in the calculations can be arbitrarily small. Corre-
sponding estimates for a sphere, a flat disk, and a long
cylinder were obtained in Refs. 136 and 137 and have
the form

6ft = 0(-£-)'6, (4.7)

where a is the lattice period and L is the characteristic
dimension of the macroscopic region.

Calculation of the nonzero components of the tensor
aae has been carried out by computer.83·118"121 As usual,
one of the coordinate axes was chosen parallel to the
symmetry axis of the tensor. The results of this cal-
culation for Ol and Tl sites are given in Table I.

Substituting Eq. (4.3) into Eq. (4.1), we write the
field b acting on the muon as

ft* = Ba — 4πΜα + (Bcont)a + «αβ^ρ- (4.8)

It should be noted that, as can be seen from Figs.
4-6, in a bee lattice the crystallographically equivalent
sites Olt O2, O3 or Tlt T2, T3 in the presence of a
distinguished direction given by the magnetization Μ
become nonequivalent magnetically and the fields b at
them are different. In an hep lattice the fields b in
crystallographically equivalent sites are equal, and in
an fee lattice the field b is identical at all sites.

From the data given in I it is evident that at
interstitial sites of a nondeformed fee lattice the field
b' is equal to 4^M/3, and that at crystallographically
equivalent sites of a nondeformed hep lattice b' has the
same value but the magnitude and direction depend on
the direction of magnetization.

Since even for rapid diffusion a muon should not
go beyond the limits of a single domain, the behavior
of the polarization in nickel and cobalt, where the field
at crystallographically equivalent interstitial sites has
a single value, will not depend greatly on the diffusion
of the muons. In iron, where the microscopic field
can take on several values, the diffusion of the muons
will lead to a qualitative change of the precession
pattern.

In fact, it is clear from simple qualitative consid-

FIG. 4. Lattice of Nl with octahedral interstitial site Ο and
tetrahedral interstitial site T.

TABLE I. Components of the tensor α α β in
various interstitial sites.

Type of lattice
and site

bec, octahedral
bec, tetrahedral
fee, octahedral
fee, tetrahedral
hep, octahedral
hep, tetrahedral

" XX

—1.165
5.707
4.188
4.188
4.2411
4.082

—1.165
5.707
4.188
4.188
4.24!l
4.082

22

14.9,10
1.152
4.188
4.188
4.086
4.4Ί2

0
(I

0
0

0
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FIG. 5. Lattice of Co
with octahedral site Ο
and tetrahedral site T.

erations that, for rapid diffusion in a bcc lattice,
single-frequency spin precession should be observed
in a field averaged over all sites.3> As can be seen
from Eqs. (4.2) and (4.3) and simple symmetry con-
siderations, on averaging both over Ο sites and Τ sites
the term aaiMe in Eq. (4.3) is constant and equal to
4ττΜβ/3 for an arbitrary direction (with respect to the
crystallographic axes) of the magnetization. (This can
be deduced directly from Table I.) Therefore for
rapid diffusion even in a polycrystalline sample
single-frequency precession will be observed.

Some refinement is necessary, however. At the
initial moment of time the muon can both at Ο and Τ
sites. One of the states is obviously metastable. Then
two variants are possible: 1) outside of the dependence
on the inital state, all muons diffuse over Ο and Τ
sites, arbitrarily changing the type of site in the dif-
fusion process. 2) All muons transfer to stable sites
and diffuse only over them. 3) Each muon diffuses only
over sites of its own type. In the latter variant there
are two forms of muons in the sample: Ο muons and Τ
muons. Since the contact fields at Ο and Γ sites should,
generally speaking, differ substantially, in this case we
must expect a two-frequency precession. Accordingly,
the observation of single-frequency precession indicates
that one of the first two possibilities is realized.

Let us turn now to discussion of the experimental
data.

At room temperature all authors have observed only
a single precession frequency in Fe and a relatively
small relaxation rate (Λ = 5-10 μββο"1).85 On reduction
of the temperature to liquid-nitrogen temperature the
relaxation rate rises rapidly.9 3 1 4 1 In one of the latter
experiments141 observation of several muon-spin pre-
cession frequencies was reported in an Fe single
crystal at Γ = 10 Κ. However, there is unfortunately
no detailed description of the results available as yet.
The data of another experimental group94 seem also to
indicate that at 23 Κ multifrequency precession is ob-
served, although the spectrum of precession fre-
quencies is not given. At higher temperatures, as in
all other studies, single-frequency precession is ob-
served. The fact that at Τ =300 Κ only one frequency
is observed and the precession signal disappears rapid-
ly with reduction of the temperature indicates unam-

3)We shall give a rigorous theoretical proof of this statement
below.

A
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/ν / //
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FIG. 6. Lattice of Fe with octahedral sites O, and O2 and
tetrahedral sites T, and T2.

biguously a rapid diffusion of the muon on the basis
of an activation mechanism. The authors' interpreta-
tion of the observed six frequencies141 is somewhat
arbitrary: one is completely ignored, three are com-
pared with a tetrahedral site, and two with an octa-
hedral site. However, the entire study has the nature
of a preliminary report, and the main result must be
considered that at Γ = 10 Κ multifrequency precession
is observed. As follows from the discussion above,83'121

on dropping of a muon into tetrahedral and octahedral
sites only four frequencies should be observed in iron
single crystals in the absence of diffusion and an ex-
ternal field. However that may be, the results of
Refs. 94 and 141 apparently indicate the absence of
quantum diffusion of the muon in Fe.

Interesting data have been obtained in study of the
magnetization of Fe, Co, Ni, and Gd. 7 9 · 8 5 · 1 4 2 In iron
and nickel the microscopic field at the muon remains
unchanged until the sample is magnetized to saturation.
Gurevich et aZ.85 studied thin oblate ellipsoids of rota-
tion magnetized along a major axis. After the sample
becomes single-domained, an obvious effect is ob-
served upon further increase of the external field:
the change in the field at the muon was equal to the
change of the external field. It is an interesting fact
that in materials the field Β inside a domain does not
change with high magnetic permeability upon magnetiza-
tion of the sample. Nevertheless, as can be seen from
the well known formula of magnetostatics,

ffi = (1 _ n) <H> + nx <B>, (49)

where S8 is the external field and η is the demagnetiz-
ing factor. For small n, there should be an appreciable
average field (£) inside the sample already in the initial
state of magnetization4' (samples with η =0.11 and
η = 0.04 were used in Ref. 85).

Since <B> =<H> +4n(M> = μ(Η>, in the initial stage for
large μ~103-104 (l-w)(H>«w<B>, in spite of the fact
that η ~ 0.1. Therefore at the point of complete satura-
tion of the sample the relation 3) Μ, * 4ΙΓΜΜ», is ful-
filled approximately. It must be recalled, however,

4)We everywhere call the magnetic induction (B> since it is ap-
propriate to call it the average field. Use of the generally ac-
cepted terminology would be extremely awkard in our article.
It must be said that at present the historically Justified and
understandable confusion with the designation of (B)—mag-
metic induction, and of (H)—magnetic field, has been rati-
fied by the SI system a century ago.
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that μ(Η) decreases on approach to saturation, ap-
proaching unity, and actually 58 Mt < 4πηΜΜ. As can
be seen from Eq. (4.8), the macroscopic part of the
field acting on the muon is Β - 4ττΜΜι =Η. The problem
of determining the "field" Η inside the domain, as we
mentioned above, is a problem of the thermodynamic
theory of ferromagnetic materials 1 2 4 · 1 4 3 ' 1 4 4 and is di-
rectly related to calculation of the free energy of a
ferromagnetic material. For a definite model of the
ferromagnetic material it has been shown theoretically
that Η~ 0 for arbitrary magnetization of the sample.144

As we have pointed out, it was established in Ref. 89,
in the case of magnetization of a cobalt single crystal
along the difficult axis it was established that the field
Η begins to change even in the initial stage of mag-
netization. For Fe and Ni near saturation the field Η
inside a domain also should differ somewhat from zero.
This can be observed in a more detailed analysis of the
transition region near saturation. Usually ellipsoids
are used as samples, and therefore the macroscopic
field of a domain is Β = (Β) and therefore is determined
by the demagnetizing coefficients of the ellipsoid.

The results of Refs. 79-95 have permitted determina-
tion of the contact field at the muon in Fe, Ni, and Co.
This characteristic of a ferromagnetic material ob-
viously is important in determination of the magnetiza-
bility of the conduction electrons. Attempts to calculate
the contact field at the muon theoretically have been
made in Refs. 102-107, 145, and 146. For a more
accurate experimental determination of the contact
field at the muon it is necessary to study carefully the
behavior of the field at the muon near the point of
complete magnetization. It is of considerable interest
to conduct experiments on protons in ferromagnetic
metals in parallel NMR.

Let us now consider the case of low (helium) tem-
peratures, in which there is no diffusion. We shall
use the results of calculation of the components of the
tensor of the internal dipole field for construction of a
theory of the muon method in uniformly magnetized
single crystals of nickel, cobalt, and iron. Let
WQo) = W(m)—the probability that the muon be in a
field b(m)—take on a discrete set of values; then ac-
cording to Eq. (1.7)

(4.10)
In nickel and cobalt, as can be seen from Table I, the
fields b ' and, accordingly, b have only a single value if
the muon occupies crystallographically equivalent inter-
stitial sites (octahedral or tetrahedral). In cobalt the
field values are different for tetrahedral and octahedral
sites and differ from 4JTM/3. In iron there are three
values of the field b ' in the general case and accordingly
three frequencies each in octahedral and tethedral sites.
If the crystal is magnetized along the easy axis [100]
or along the face diagonal [110], the precession is
two-frequency. Here and everywhere below we shall
assume that the muon drops into sites of a single type;
usually it is assumed that these are octahedral sites.

For magnetization along the [100] axis the field direc-
tions are collinear with the external field at all sites,
and for magnetization along the [110] axis they are dif-
ferent. Finally, if the crystal is magnetized along the
principal cube diagonal (the [111] axis), there is only
one frequency. However, the directions of the field
in different but crystallographically equivalent sites
in this case are not the same. This circumstance leads
to a very peculiar behavior of the muons. If the
initial polarization P(0) is directed along the [111]
axis, Eq. (4.8) takes the form

Ρ (t) = Icos2 θ + sin2 θ cos (ybt)] Ρ (0), (4.11)

where θ is the angle between b and the [111] direction
and

Thus, in spite of the fact that the direction of polar-
ization is always constant, its magnitude experiences
oscillations. The relation (4.9) can be used for deter-
mination of BcoM.

As can be seen from Table I, the dependence of the
modulus of the field b ' on the direction Μ in iron and
cobalt is substantially different in tetrahedral and
octahedral sites. Thus, the possibility appears of
diagnosing the type of interstitial site on the basis of
the change of the precession frequency of the muon
polarization in magnetization in different directions.
For example, in iron in magnetization along the [100]
axis the field b ' is directed along the vector Μ at
two octahedral sites and opposite to it in four. The
contact field is collinear with the vector Μ and in
saturation is constant in modulus. Graf et al.m

studied unmagnetized Co at Τ = 4.2 Κ. Here it was
found that the relaxation rate is Λ~ 10β sec"1. Ex-
periments with a sample completely magnetized along
the easy axis have permitted elucidation of the causes
of the relaxation. According to the data of Refs. 82
and 83, Bmnt =-10.6 kG. As is well known, in iron
4nM = 21.6 kG. It is then easy to see that by increasing
the field we can obtain a situation where the field turns
out to be zero in four interstitial sites. In this case
the amplitude of precession obviously decreases by a
factor of three and only one frequency remains. If the
muon has stopped in a tetrahedral site, this field also
exists but, in addition, there is a field in which the
precession amplitude decreases by a factor of one and
one half.

In single crystals of cobalt and iron magnetized to
saturation there is the possibility of measuring Β
and b ' . As an example let us consider the case in
which a single crystal of iron is magnetized along the
[100] axis. As was shown previously, the vector b in
this case takes on two values in crystallographically
equivalent sites, and the directions of b at the sites
are collinear. Then for determination of b ' we have

b' (1) — b> (2) = b (1) — b (2), b' (1) + 2b' (2) = AnM. (4.13)

In derivation of the system of equations (4.13) we
utilized the property aaa =4JT.

The vector of the microscopic field b is known from
experiment. The macroscopic field is known as soon
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as the demagnetizing factor of the ellipsoid is known.

From the system (4.13) and Eq. (4.8) it is easy to
obtain

(4.14)

Bcom = -B + ±-

We note that determination of the internal dipole
field can be carried out by magnetizing a single crystal
in any direction, for example [110]. To determine the
contact field in single crystals of cobalt it is necessary
to choose two directions of magnetization: along the
axis of the hexagonal lattice and an arbitrary direction
in the basal plane.

Comparing the quantities 6'(1) and 6'(2) with the
theoretical values, we can estimate the degree of
distortion of an interstitial site on implantation of a
muon.

b) Possibilities of the method in study of deformations of
crystal lattices

We shall show that the muon method gives the pos-
sibility of studying deformations of the crystal lattices
of nickel, cobalt, and iron. Study of the deformations
and the state of stress of lattices is based on the de-
pendence of the field b ' and the precession frequency
of the muon polarization on the deformation of the
lattice (Table Π). The change of the internal field on
deformation of the lattice can be described as follows.
The components of the tensor ά β β for the deformed
lattices can be represented in the form of a sum of the
components of the tensor aai for undeformed lattices
and the fold of some tensor of fourth rank Γ α β τ 6 and a
tensor of second rank of the relative deformations
ε.•'rf

(4.15)

Using Eqs. (4.7), (4.10), and (4.15) for the muon
spin precession frequency a», we have

ω» - y* lBa — AnMa + (Bcont). + aa^Mt + Γα((τ4Λί^,1'. (4.16)

The components of the tensor Γ α β τ 5 can be found from
the equation

(4.17)

Here it is essential that the following condition be
satisfied:

TABLE Π. Components of the tensor TaBr6

at various sites.

Type of
lattice and site

bcc, octahedral
bcc, tetiahedral
fee, octahedral
fee, tetrahedral
hep, octahedral
hep, tetrahedral

—13.8
—14.2
—23.8

12.0
2.16

—7.60

—5.60
16.90
11.90

—6.00
3.57
0.222

r

XXZZ

19.40
—2.70
11.90

-6.00
-5.73

7.38

r

zzzz

-38.8
5.4

—23.8
12.0
11.5

—14.8

0. ( 4 > l 8)
In undeformed nickel the symmetry of the tensor

α β β is cubic. If a single crystal of nickel is deformed
along the ζ axis, the cubic symmetry is destroyed and
the field acting on the muon depends on the angle be-
tween Μ and the ζ axis for a given value of M. In the
nickel lattice the tensor Γ β β χ 6 is characterized by axial
symmetry, i.e., the following properties exist:

1 z ι z Zi 1 xxyy — * yy z z , Ι χχχχ = — "

(4.19)
We shall show that in the lattices of cobalt and iron,

deformation can lead to a change of the number of pre-
cession frequencies. In fact, in these metals the
tensor a a e has axial symmetry. On deformation the
axial symmetry may be destroyed, since the compo-
nents of the tensor Γ β β τ β have the following properties:

^ « M ~ * yyyy ^ ^ : i m Ι χ χ ζ ζ — Ι ϊ ρ ζ ζ ^ixxyyt

ΓχΧΧΧ — —(1 xxyy "Γ Ιχχζζ)* Γ ζ ζ ι ζ = —2TX X z z,

(4.20)
It follows from Eqs. (4.12) that in a deformed lattice
of cobalt the number of precession frequencies can
change when the muon is in an octahedral site for any
direction of the deformation axis not coinciding with
the axis of the hexagonal lattice, while deformation of
an iron crystal produces a change of the number of
precession frequencies of the muon polarization when
they are in both octahedral and tetrahedral sites. The
components of the tensor Γαβ,.β for the interstitial sites
of fee, hep, and bcc lattices are given in Table II.

In iron magnetized along the [100] axis and deformed
along the [010] or [001] axes, instead of two-frequency
precession there will appear three-frequency preces-
sion and beats will be observed. Thus, if the vector
P(0) is perpendicular to the field b =6n, we find ac-
cording to Eqs. (4.10) and (1.5) that
3P (t) = Ρ (0) cos ω (1) t + IV (0) η (1) ] sin ω (1) t

+ 2 (P (0) cos ω (2) t
+ [P (0) η (2)] sin ω (2) t) cos Ωί,

(4.21)
where

ω(1) = TV [6 (1) + ΓχΙΖΖΛίε], (4.22)

Γχ*«ζ + ΓΖ Ζ Ι Ζ)1, (4.23)

4 ι - Γ ζ , ζ « ) . (4.24)

As was pointed out above, 6(1) and 6(2) can be de-
termined from experiments on the precession of muons
in undeformed lattices.

The location of a muon in the nickel lattice can be
determined if we take into account that the components
of the tensor Γ β β τ 6 have different signs in octahedral
and tetrahedral sites. For example, if we magnetize
nickel along the ζ axis and deform it along the same
axis, then the field at an octahedral site falls off and
that at a tetrahedral site increases. To determine
the type of interstitial site in cobalt, the crystal must
be deformed along a lattice axis not coinciding with the
ζ axis. Then if beats are observed on deformation the
interstitial site is octahedral, and if the precession for
any direction of deformation is single-frequency the
site is tetrahedral. In particular, if a cobalt single
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crystal is deformed along an axis lying in the basal
plane (the χ axis) and magnetized along the same axis
and the polarization P(0) is directed along the ζ axis,
then when a muon falls into an octahedral site we have

3P (0 = (1 + 2 cos Ωί) [Ρ (0) cos ωί + [Ρ (0) η] sin ωί], (4.25)

where
ω = νΛ η = b/b, 8Ω = 3γμ (ΓΧΙ« — Γχχη) Με.

c) Determination of magnetic grain orientation (texture)

We shall now show that the muon method permits
study of the question, which is extremely important for
practical purposes, of the magnetic grain orientation of
transformer steels.

In unoriented unmagnetized materials the spread
of the magnetic field modulus does not depend on the
direction. If the grain orientation of the material has
cubic symmetry, the symmetry of the easy-plane—
square type, the field distribution as a rule has
similar symmetry. Therefore in such materials we
can assume Wfo) = W(b)W(n) and the vector Μ is
collinear with the axes of easy magnetization. It
follows from geometrical considerations that the di-
rections of the principal axes of the tensor (ηαηβ) in
nickel and iron coincide with the [100], [010], and [001]
axes. In single crystals of cobalt one of the principal
axes coincides with the axis of the hexagonal lattice,
and the two others can be chosen arbitrarily. For non-
zero components of the tensor μα ί(ί) in these axes we
obtain [see Eq. (1.7)] we have

2μχχ (t) = 2μιιν (t) = l - </>;> + (1 + («{)) μ (ί),

μ« (t) = <"!>+(!-<«;» μ (0, < 4 · 2 6 '

(4.27)

axis:

where

μ (<) = (cos at).

If we assume that

(4-28)

where W(m) is the probability of occurrence of a muon
in an interstitial site with an average value of the field
modulus <jb(m)), then the function μ(ί) will have the
form

μ(0 = 2 W(m)cos y» ( 4 . 2 9)

In nickel and cobalt the modulus of the field 6 takes
on a single value and therefore W = l; in unmagnetized
iron W(l) = l/3 and W(2) = 2/3.

The muon polarization P(f) for unoriented single crys-
tals of Ni and Co, coincides in direction with the
initial polarization for materials possessing cubic
symmetry of magnetic orientation, and also for
polycrystalline samples (ni) = 1/3, in accord with
Eqs. (4.26), (1.5), and (1.9) and

In the case when symmetry of the "easy-plane" type
or square symmetry occurs, («|) =0, and the initial
polarization lies in the xy plane, we have

-ί-Ρ(θ), ρ(0=4-Ρ(0)μ(0, (4.31)

and when the initial polarization is parallel to the ζ

= Ρ(0)μ(ί). (4.32)

The domain structure with square symmetry has been
observed by neutron diffraction in unmagnetized single
crystals of silicon iron having the shape of a cylinder
cut along the [100] axis, according to Elyutin et al.,1*1

who also showed that a rotation of the magnetization
vector of the domains occurs upon application of an
external field along the axis of the cylinder. It should
be noted that the value of (nj) and the muon spin pre-
cession frequency change upon rotation of the magneti-
zation vector; here if the magnetization is parallel to
the [111] axis, all three frequencies coincide and one
should observe single-frequency precession, and for
magnetization along the [110] axis—two-frequency
precession.

In the case of uniaxial oriented unmagnetized ma-
terials the behavior of the muon polarization is de-
scribed by the formula

Pc = <η·> Ρ (0), Ρ» (0 = Ρ (0) (1 - <«·» μ (0 (4.33)

when the initial polarization is parallel to the grain
orientation axis z, and by the formula

P" = -i(l -<B|» Ρ (0), Ρ-(ί) = 4-(1+<η»)Ρ(0)μ(0 (4.34)

when the initial polarization is perpendicular to the
grain orientation axis.

Thus, the muon method gives a simple means of
determining the grain orientation axes and the dis-
tribution of internal fields in ferromagnetic materials.
This prospect is particularly real for the analysis of
magnetic grain orientation in transformer steels.

d) Diffusion of muons in iron single crystals

Let us consider the diffusion of muons in single
crystals of iron magnetized along the [001] axis and
along the principal cube diagonal [111]. For mag-
netization along the easy axis [001] the field b takes
on two different values, both in octahedral sites and
tetrahedral sites. In what follows we shall assume for
definiteness that the muons are located in and diffused
over octahedral sites.

First consider the case in which the magnetization
is directed along the [001] axis. Here the internal
fields have two different values: b(l) at a 0 t site and
b(2) at O2 and O3 sites (see Fig. 6). It is evident that
W(l) = 1/3 and W(2) =2/3. If we assume that the muon
"jumps" only to the closest interstitial site, then
λ12 =λ/2, λ21 =λ, where λ is the frequency of jumps over
interstitial sites.

The fields b(l) and b(2) are directed along the ζ
axis, and therefore Pt does not change, and for the
transverse component Pt we obtain from the system
of equations (2.2)119

P+ (0 = (

here

4_β-(ν--ίω->') Ρ+ (0); (4.35)

697 Sov. Phys. Usp. 22(9), Sept. 1979 Belousov et al. 697



ΐ-ί + 2ix

ν ± = —

The relaxation rates are given in Fig. 7. It can be
seen that for all χ the value of v. is several times
larger than ut, and therefore the principal contribution where
to the polarization is from the first term in Eq. (4.35).
For *~ 0.9, vt has a maximum, i.e., the most rapid
depolarization should be observed for λ

In the limiting cases of fast diffusion (*» 1) and
slow diffusion the expressions (4.35) and (4.36) are
simplified and simple answers are obtained for the
polarization. In the first case

P+ (t) = exp (—i (ω) ί) exp (-Λ,ί) Ρ+ (0),

where
(4.37)

(ω) » W (1) ω (1) + W (2) <ο (2),

For slow diffusion

(4.39)
i.e., two-frequency precession should be observed
with relaxation times proportional to the diffusion rate.

In the case in which the magnetization is directed
along the [111] axis, in octahedral sites there are three
values of the microfield different in direction but
identical in modulus. For λ » ω (fast diffusion, co=
in the coordinate system whose Ζ axis is directed
along the [111] axis we find

P, (9 «*.(<>) exp (-Λχί).

P+ (t) = P+(0)exp [ - ( i <ω)+4-Λ,) ί ] ,

•where

(ω) = 4"Υιι|1>(1) + ·>(2) + 1>(3)| = γμί>,, Λ, =

For slow diffusion

(4.40)

(4.41)

(4.42)

W S.0 3.0 4.0 t.O ZO du 4.0 S.0 KO

FIG. 7. Dependence of ν k and A± on * (ω = ω(1) - ω(2)/2).
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Ρ, (t) - {cos* θ βχρ ( — sin» θ - | λί )

+sin* θ cos ωί • exp [—-1- (1 + cos* θ) λί ]} Ρ, (0).

(4.43)
Here θ is the angle between the [111] direction and the
microfield, which is determined by Eq. (4.12). Nat-
urally as λ - 0 Eq. (4.43) goes over into Eq. (4.11).

In iron the characteristic microf ields are of the order
of several kilogauss and accordingly the maximum re-
laxation can be expected for λ~ 10* sec' 1 . Data on
diffusion of hydrogen in iron give λ = λοβχρ(-φ/Τ),

sec"1 and the activation barrier
is φ = 500 -1000 Κ. Therefore at room temperature
λ~ 1011 sec"1 (Ref. 148). It follows from this that at
low temperatures (of the order of helium temperatures)
superbarrier diffusion can be suppressed practically
completely and the only possible form remaining is
so-called quantum diffusion, the theory of which has
been developed in Refs. 149-151. Since the internal
magnetic fields in completely magnetized single crys-
tals of iron can be accurately measured,8* and there is
no stochastic spread either in magnitude or in direc-
tion, they represent an ideal object for investigation of
muon diffusion, particularly for the study of quantum
diffusion. The existence of a maximum in the relax-
ation rate also greatly facilitates the analysis, inter-
pretation, and identification of the causes of damping.

e) Use of the method for study of rare earth metals

We now turn to a brief description of the possibilities
of the muon method for investigation of rare earth
metals (REM). The muon method is evoking special
interest in this connection. In fact, although there is
a direct method of study of the magnetic structures of
REM—neutron diffraction, nevertheless, in view of
the complicated nature of these structures, the
deciphering of neutron diffraction data for many cases
has been the subject of discussion.152 A detailed
analysis of the entire problem is given in the book by
Taylor and Darby.152

It appears that the muon method is the most direct
means of identification of the magnetic structures of
REM. Naturally the experiments are best carried out
in single-crystal samples but, as experiments show,153

interesting data can be obtained for the simplest struc-
tures even in polycrystalline samples. At the present
time several experimental studies have been pub-
lished90·92'93'96"101 and a purely qualitative explanation
has been given for the behavior of the precession fre-
quency as a function of temperature in REM. As yet
no calculation has been made of the dipole fields at
crystallographically possible interstitial sites even
for the simplest magnetic structures and especially
for the complicated antiferromagnetic structures of
REM. For the simplest structures with magnetic mo-
ments of all lattice atoms constant both in magnitude
and direction, the dipole field is easily calculated by
means of the theory presented above. Such structures
are probably to be found, in Dy at T<85 K, in Gd at
temperatures below 293 K, and in Tb at temperatures
below 221 K. These metals have a somewhat distorted
hep lattice, and for calculation of the dipole fields one
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can use the results of calculation of the tensor aaB

given in Table I. For hep lattices the components of
the tensor are determined only by the ratio c/a; the
maximum deviation of this ratio from co/ao = 1.633 in
an ideal hep lattice in all REM is less than 4%, i.e.,
they are all described as a hep lattice weakly deformed
along the C axis: z,M = (c - co)/co = 0.6124(c/a - 1.633).
Using Eq. (4.13) and the values of aai and r m t from
Table II, we have for the quantity Δ

A = o I ! t — r = - T [att—j-j

f 0.0514 + 3.509 (l.633 — -j-) for octahedral site ,

I —0.107-4.53(1.633—j-) for tetrahedral site.

(4.44)
We note that the value of Δ given in Refs. 90 and 92 is

incorrect. Accordingly, the plots for the dipole fields
at the muon in octahedral and tetrahedral sites there
are also erroneous.

Knowing the dipole fields and the magnetization of
the domain, one can evaluate the contact fields at the
muon. As has been shown by experiments in Gd, the
resulting field at the muon is of the order of 1 kG.
For an accurate determination of the contact fields and
elucidation of the location of the muon in the lattice, it
is necessary to make measurements in uniformly
magnetized single crystals and in deformed single
crystals. The possibilities of similar experiments
have already been discussed in detail for Fe. In REM,
as in Co, the field Η from neighboring domains in an
unmagnetized sample can penetrate most rapidly into
the domain where the muon has stopped, which leads
to a spread of the fields in the domain and to damping
of the amplitude of the polarization oscillations. For
this reason a high rate of damping should be observed
in polycrystalline samples. As a result of the com-
paratively large magnetic anisotropy constants, the re-
laxation rate will increase with increase in the ex-
ternal field, which has also been observed experi-
mentally.96

Let us illustrate briefly the possibilities of the meth-
od, discussing the qualitative features of the behavior
of the dipole fields in REM (with hep structure), in
which, in the transition from one hexagonal plane to
another, the magnetic-moment vectors of the atoms
are rotated by an angle φ around the hexagonal axis
(the 2 axis), remaining constant in modulus. Of the ferro-
magnetic materials this structure (a conical spiral) is
found in Ho and Er for T< 20 Κ and also Tb, Dy, and Ho in
the antiferromagnetic state (spiral inbasalplane).152 Since
the magnetic moment of the atoms varies within a
single crystallographic unit cell, Eq. (4.2) for the di-
pole field must be written in the form

depend on h at all. The transverse components are
conveniently written in the form

Mi (h) = M% (h) + iM*y (h) = Ml (0) Λ ( 4 > 4 6 )

From Eq. (4.45) it is easy to see that at interstitial
sites located on the hexagonal symmetry axes, the only
component of the dipole field that is different from
zero, and that is proportional to Μ J, will be b',
-auM

x

tv. Here ν is the specific volume and aMt is
determined by Eq. (4.44). From Eqs. (4.45) and (4.46)
it follows that

6+ (h) = να (φ) M% (0) e'"». (4.47)

For a conical spiral structure in which the mag-
netic moment of the atom forms an angle θ with the
hexagonal axis, the magnetic field at an interstitial site
is inclined to this axis at an angle fl': cos0' = bjb, b

In the case discussed, the vector M%(l

k) is constant
in each hexagonal plane and therefore its direction will
depend only on the index h that determines the number
of the plane. Therefore it is convenient in Eq. (4.45)
to change the order of summation, carrying it out first
over each plane. Obviously the component M\ does not

f 'V; after averaging over all sites of a
single type (for simplicity, as usual, we assume that
the muon sticks in sites of a single type), we have the
following, in accord with Eq. (1.7), for the nonzero
components of the tensor μαβ(0 which determines the
behavior of the polarization, and without account of
damping

μ™ (0 = μΪΒ (ί) = 1/2 [sin2 θ' + (1 + cos2 θ') cos ωί],

Ρ ζ ζ (t) — cos2 θ' + sin2 θ' cos ωί. (4.48)

In the particular case of a spiral structure in the
basal plane, the polarization is given by formulas sim-
ilar to (4.31) and (4.32), which describe the magnetic
grain orientation of the easy-plane type. Thus, on
change of the direction of initial polarization of the
muon .P(O) with respect to the C axis, the ratio of the
constant and oscillating parts of the muon spin polar-
ization will change, and in this way we have the pos-
sibility of measuring the angle Θ.

A different situation exists in the antiferromagnetic
material Cr, in which the magnetic structure is of the
spin density wave type with a period of 58 lattice con-
stants. In the absence of diffusion, complete depolar-
ization should be observed as a result of the large
choice of precession frequencies. However, diffusion
plays an important role both in Fe and Cr with a
bec structure, right down to a few degrees K, and
precession is observed98 in a field close to the ex-
ternal field. The dipole fields produce rather rapid
damping: the relaxation rate is Λ~ 107 sec"1 and drops
rapidly in the transition of Cr to the paramagnetic
state.

It should be emphasized particularly that the relax-
ation rate Λ in the muon method is extremely sensitive
to magnetic phase transitions. For example, in REM
antiferromagnetic transitions have been observed at
the N6el temperature, and in Cr it has been possible
to trace clearly the phase transition between states
with two types of spin density waves.

f) Muonium in ferromagnetic metals

There are at present no direct indications that the
Mu atom exists in ferromagnetic metals. We note,
however, that the results of Refs. 92, 94, and 109
can in principle be interpreted by means of the hy-
pothesis of formation of the Mu atom in iron. The ob-
served dependence b(T) of the field at the muon on the
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temperature did not agree with the Well known Bril-
louin function BS(T), i.e, the contact field at the muon
varied with Τ and not in proportion to the magnetiza-
tion. For Fe, for example, the deviation reaches 30%.
Generally speaking, this is just what should occur if
the Mu atom is formed. The electron of muonium in a
ferromagnetic material, as the result of strong ex-
change interactions with the electrons of the metal,
can turn out to be highly polarized. In accordance with
the discussion in Chapter 2, an additional field ΔΒ
= -ΚωοηΡβ/2μμ is then induced at the muon. The elec-
tron polarization is Pe =ϋΛ(β,Ηη/Τ), where Hcx is the
effective resultant exchange field produced by the s
and d electrons of the ferromagnetic material at the
muonium electron. Obviously we can assume that
Η ex~M(T). We note that a similar discussion for Mn
ions in Fe has been given in Refs. 154 and 155.

The contact field of the s electrons at the muon is
also determined by the Brillouin function BK(T)
=BK(O)BS(T), and we finally obtain for the field b{T)
at the muon

(4.49)

Here Tex is determined by the exchange integrals. An
illustrative evaluation of ω^, and Ttx from the data of
Ref. 94 leads to reasonable values Ku>om/2iiu

a 10 kG
rex~3000 K. It is also of interest to carry out ex-
periments in external fields greater than the satura-
tion field. Then an additional term appears in the
right-hand side of Eq. (4.49).

The deviation from the Brillouin law in the contact
fields is observed also in other ferromagnetic mater-
ials, but as yet there is no serious reason to relate
these deviations to the existence of Mu in these
metals, although one must not forget this possibility.
We note in conclusion that special interest is pre-
sented by the search for muonium in ferrites and anti-
ferromagnetic dielectrics.

5. CONCLUSION

In this paper we have discussed only the group of
problems related to use of the muon method for study
of metals, leaving aside numerous other possibilities.
The first results of the muon method in the study of
metals already show that experimental physics has
obtained a new tool which permits study of the internal
magnetic fields in metals, various phase transitions,
the properties of the superconducting state, quadrupole
interactions, deformations of a crystal lattice on ar-
rival of a muon at an interstitial site, quantum and
classical diffusion of a muon over the lattice, the
charge state of the muon (or proton), and a number of
other questions of metal physics.

We note particularly that for ferromagnetic metals
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