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The basic experimental data and the theory for autowave processes in active kinetic systems are reviewed.
Each volume element in such a system is in a state far from thermodynamic equilibrium, and the
different volume elements are coupled by transport processes. Some examples of these systems are certain
chemical and biological objects in which various types of waves and stable structures can be produced.
Mathematically, autowave processes are described by quasilinear and nonlinear parabolic equations.
These autowave processes are quite different from processes which occur in conservative systems, e.g.,
solitons. A classification of autowave processes is offered, and the experimental data are summarized. In
accordance with this classification, the review itself is organized in sections on the physics of the basic
models for autowave systems in a one-dimensional space and qualitative methods for studying them. The
basic cases are wave propagation, autonomous wave sources, spontaneous oscillations and quasistochastic
waves which are synchronized over the entire space, and the formation of dissipative structures. At
present, the primary fields of application of the theory of autowave processes are neural conductivity,
combustion, self-organization in living systems, etc. The necessary conditions for these autowave
situations are listed.
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" In the complex field of nonlinear oscillations,
some specific general concepts, positions, and methods
will crystallize and be adopted for general use by the
physicist to an even greater extent than is the case to-
day. These concepts, positions, and methods will be-
come obvious, and natural, and they will enable the phys-
icist to analyze complicated sets of phenomena. They
will become a powerful heuristic tool for new research.

The physicist interested in the modern problems of
oscillations must, in my opinion, be taking this ap-
proach right now. He must understand the existing
mathematical methods and approaches which are at the

basis of these problems, and he must learn how to use
them."

L. I. Mandel'shtam

(Preface to the book Theory of Oscillations, by A. A.
Andronov, A. A. Vitt, and S. E. Khaikin, published in
1935)

INTRODUCTION

Active distributed systems are a subject of consider-
able interest in several scientific disciplines. A variety
of complex wave processes can form, propagate, and be
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transformed in distributed systems. Important exam-
ples of these active media are discussed in recent mon-
ographs and reviews in nonlinear optics, hydrodyna-
mics, and plasma physics. The theory of wave proces-
ses has been described in the pages of this journal.1"4'6

Over the last decade, the methods of the theory of
nonlinear oscillations have come into use for the study
of entirely new phenomena in "active kinetic systems."
In chemistry and biology these are media in which auto-
catalytic reactions occur, biologically active mem-
branes and tissue, and communities of living organisms.
Some characteristic features of active kinetic media are
as follows: (a) There is a distributed source of energy
or of energy-rich substances, (b) Each volume element
of the medium is far from thermodynamic equilibrium;
in other words, it is an open thermodynamic system in
which some of the energy supplied by the distributed
source is dissipated, (c) A volume element is coupled
with neighboring volume elements by transport proces-
ses.

By analogy with self-excited oscillator systems, R. V.
Khokhlov has suggested that kinetic systems in which
waves or structures can arise as the result of an insta-
bility of a homogeneous state be called "autowave" sys-
tem s.1(

Some scientists abroad single out the theory of spon-
taneous organization and, in particular, the theory of
wave processes and structures in complex systems of
various natures, as a separate science: "synergetics."7

The theory of autowave processes, in contrast, is pres-
ently treated as a branch of general biophysics.8

The theory of autowave processes is of particular im-
portance for a rapidly developing branch of theoretical
biology: the mathematical simulation of biological kin-
etics at various levels of life. The primary goal of this
approach is to develop simple "basic" mathematical
models of extremely complex objects such as neurons,
differentiating cells, the chemical-mechanical organs
of motion, "life waves" in ecological systems, and sev-
eral others. In addition, there are some manmade
media, or physical analogs, in which autowave proces-
ses evolve in much the same way as they would in chem-
ical and biological systems. The main requirement im-
posed on these "basic" models is that it be possible to
qualitatively predict the bifurcations, discontinuities,
and instabilities "over the course of the life" in time
and space. As will be shown below, the qualitative the-
ory of quasilinear parabolic systems turns out to be a
suitable method for studying autowave processes in
many cases.

This review consists primarily of a formulation of
these basic models and a discussion of them in connec-
tion with the physical processes which occur in active

kinetic systems. At present we are still far away from
a unified and "elegant" theory of autowave processes,
but the models which have been developed, and the ana-
lysis of their solutions, have already led to several im-
portant results in biological and chemical kinetics and
for certain highly nonequilibrium physical objects.

(a) Classification of autowave processes; basic experimental
data

We begin by listing the types of autowave processes
which are presently known.

1. Propagating perturbations in the form of a travel-
ing pulse. 2. Wave generation by autonomous pulsed
sources—the case of "echos" and a stable guiding cen-
ter. 3. Standing waves. 4. Synchronized self-excited
oscillations over the entire space. 5. Quasistochastic
waves. 6. Dissipative structures—a steady-state, in-
homogeneous distribution of the variables in space.

The basic characteristics of the various types of auto-
wave processes and the main requirements which follow
from the sufficient conditions for the existence of these
processes are listed in Table ΙΠ at the end of this re-
view.

Before we go into the mathematical description, we
would like to discuss some typical autowave processes
which are observed in active systems. The basic char-
acteristics of these processes in various objects are
listed in Table I. We cannot guarantee that all the phen-
omena described here can be described by quasilinear
parabolic systems, but they all have certain features in
common: All occur in active (nonconservative) sys-

TABLE I. Types of autowave processes which have been ob-
served experimentally.

"Khokhlov used this definition in a comment on the doctoral
dissertation of Α. Μ. Zhabotinskrf.5 [The Russian word for
"self-excited oscillatory" and the Russian word for "auto-
wave" both begin with the prefix "aBTO-" (auto-). (Transla-
tor's note)].

Object
Velocity of
traveling-
pulse front

a) Isolated cells

1. Squid axon 9 · 1 0 '
2. FUtttned embryonic c e l l 1 2 · 1 3

3. Myxomycetesplasmodhim13

21 m/sec
0.2 μ/sec

30 μ/sec

b) Cell populations

4. Conducting jyjtem of the heart 1 4 · 1 5

5. Dog myocardium muscle15

β. Dog deltoid muscle16

7. Myofibril tissue culture17

8. Population of amebiform
ce l l s ' 8 . ' 9

9. Coral polyps2 0

10. Neuron network:
a) fast waves 2 1 · 2 2

b) slow wive»2 3

2 5 - 3 0 0 cm/sec

30 cm/sec
5 m/sec
50—200 μ/sec

40 μ/sec

50 cm/sec

1 0 - 5 0 cm/«ec
2—5 tnm/min

Duration of iso-
lated travel-
ing pulse

1 - 3 msec
60 sec

133^170 sec

50—50D u»ec

100 μκχ
10 msec
50—200 msec

5 min

0.02 aec

0.2 sec
3—5 min

c) Chemical reactions

11. Oxidation of an iron wire in
nitric ac id 2 4 · 2 5

.12. Oxidation of tribromoacetic add by
bromate in the presence of cerium
or iron catalyst ions; Belousov-
Zhabothukii reactions 5 ' 2 6 ' 2 7

a) traveling pulses
b) distipative structures

13. Oxidation of ammonia on
platinum2 8·2 9

14. Oxidation of carbon monoxide
on platinum28

2 m/sec

10->—lOcm/sec
0
0.5 cm/sec

5 m/sec

*

d) Physical media

IS. Standing striattons30

16. Lines of optoelectronic
elements31

0.075 sec

1—10 sec

Scale dimen-
sion, wave-
length

1
2—6 cm
10 μ i

4—5 mm ;

!

1,5-150 cm |

3 cm
5 cm i
10—20 μ

1 cm '

1 cm i

2—12 cm
β—25 mm !

15 cm

1 mm 1
1—10 mm 1
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tems, and the spatial coupling is through transport pro-
cesses in the broad sense of this term. In particular,
the similarities can be seen in the fact that the waves in
such systems cancel out when they collide. This is the
primary distinction from solition waves.3·9 Let us
briefly describe some of these objects and processes
(see Table I).

(1) A well-known example of an autowave process is
the propagation of a traveling pulse along a nerve fiber.
The active device is the membrane of the fiber, which
uses chemical energy to create a nonequilibrium distri-
bution of Na+, K+, Ca2 +, etc., ions (on both sides of it-
self). The physics of this process is described is some
recent reviews10·32 and books.9·33 Strictly speaking, the
propagation of a traveling pulse along a membrane is
described by hyperbolic telegraphist's equations. These
equations reduce to a parabolic system, which we will
examine below, for the case in which the resistance per
unit length is high (in the giant axon of the squid, for
example, it is ~10 lon/cm).32

(4) The conducting system of the heart consists of a
large number of cells of a variety of types. The activ-
ity of each cell is maintained by mechanisms analogous
to those which operate in the axons of neurons. The
coupling between cells in the intercellular medium is
apparently governed by ion currents and special sub-
stances ("mediators"). We know that a traveling pulse
can propagate "under normal conditions" along the fi-
bers of cardiac muscle. The appearance of autonomous
wave sources results in arrhythmia and fibrillations
(unsynchronized activity of the heart), which are patho-
logical for the organism.

(7) When myofibrils are treated with theophylline in a
culture of skeletal-muscle tissue, a wave-propagation
process is observed which does not involve a change in
the electric potential of the cell membrane.1 7

(8) At a certain stage in the existence of a population
of amebiform cells, an aggregation is observed which
is associated with a wavelike motion of these cells.
This aggregation process occurs in the following man-
ner: One of the cells begins to periodically secrete a
special substance, an "attractant" (cAMP). In re-
sponse, the neighboring cells secrete their own pulse
of cAMP about 15 sec after receiving the signal. Then
the cells move toward the source of the original signal.
There is a delay of about 100 sec in this motion. While
each cell is moving, it is apparently not susceptible to
further stimulation. This feature of the signaling
mechanism and of the response to the signnal guaran-
tees the propagation of a diverging signal wave and the
convergence of cells toward the central source. 1 8

(10) In networks of checking and exciting neurons,
waves of a collective pulsed activity of the neurons may
propagate. For example, in one of the structures of
the brain—the hippocampus—a wave of discharges of
pyramidal cells (exciting neurons) is observed.22 The
propagation velocity of the wave is 18-60 cm/sec. The
length of the responses and the repetition periods of the
regions of elevated pulsation are of the order of hun-
dreds of milliseconds. Similar results have been ob-

tained with an isolated stria of the cerebral cortex.2 1

When the cerebral cortex is stimulated locally by a
chemical, mechanical, or electrical agent, a depres-
sion wave arises and propagates along the cortex away
from the stimulus at 30-90 μ/sec. The propagating de-
pression is always accompanied by a change in the con-
stant cortex potential.23

(12) There are two reasons for the interest in Belou-
sov-Zhabotinskii reactions. First, experimentally,
chemical oscillations are very reproducible and are
comparatively easy to observe, on the basis of a change
in color. Second, these reactions are analogous to the
autowave processes which occur in real biological ob-
jects. In a distributed homogeneous system of this type,
A. M. Zhabotinskii and A. N. Zaikin observed sources
of activity which appeared only as the result of an in-
homogeneous initial perturbation, which they called
"guiding centers" (Fig. 1). It was in the same system
that dissipative structures (Fig. 2) and a two-dimen-
sional autowave process ["reverberators" (spiral
waves)] were first observed.33 There is also a situation
in which self-excited oscillations occur in an unsyn-
chronized manner at different points in space. This
case, sometimes called "chemical turbulence," is illus-
trated in Fig. 3 (see also the photographs in Refs. 5 and
33-35).

(13, 14) In oxidation on platinum, three mechanisms
(gas-diffusion, migration, and thermal) can operate to
cause the propagation of a catalytic-reaction wave. The
joint effects of the various mechanisms lead to the ap-
pearance of several interesting new autowave pheno-

FIG. 1. Guiding centers in a self-excited oscillatory chemical
reaction, a: The interval between successive frames is 30
sec. T Q C =56sec, λα α = 0.55 cm (Ref. 5). b: Oscilloscope
traces of wave profiles at successive times t (sec). 1) 0; 2)
0.8; 3) 5.4; 4) 9.2; 5) 23.6 (Ref. 27).
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FIG. 2. Cellular dissipative structure in a self-excited oscil-
latory chemical reaction. The time interval between succes-
sive frames is 2 min (Ref. 5).

mena: (a) the propagation of a wave with a periodic
change in velocity, (b) pulsations in the coordinate of
the front near the equilibrium positions, (c) spontaneous
halts of the wave, and (d) dissipative structures. 2 8 ι 2 β

(b) Mathematical model for an active kinetic system

To show what is meant by "active distributed kinetic
system," we will describe an adequate for the purpose
and quite general mathematical model. We denote by x,
the components which are interacting with each other.
In chemistry these would be the temperature and the
concentrations of the reactants, while in biology they
would be the numbers of some living objects or other
per unit volume (or per unit area or per unit length).
When the interaction of the xi and their diffusion are
taken into account, the kinetic equations for a one-dim-
ensional space become

a.D

where Dlt and Du (i*j) are the diffusion coefficient and
the coefficient of mutual diffusion or the thermal con-
ductivity, and the F, are nonlinear functions which de-
scribe the interaction of the components. In most of the
models under consideration, the coefficients Dtl are
constant, and the coefficients Du (with i*j) are zero.
We will accordingly adopt these conditions for our anal-
ysis of the general model below, and we will make the

FIG. 3. Transition from regular wave propagation to compli-
cated, nearly random, motion of wavefronts ("chemical tur-
bulence" ).ss

appropriate refinements where necessary. The con-
struction of a model becomes substantially more diffi-
cult if there are directed fluxes of the components in the
system or if there are variable external sources.

If mixing occurs rapidly in the volume occupied by the
system, then the processes in any part of the volume
are synchronized, and the system can be described by
the "point" equations34

-%-=Λ(*ι, *Ϊ, ·•·.»»)· (1.2)

One of the basic mathematical indications of activity in
a kinetic system is the presence of unstable singularit-
ies. This result is closely associated with the autocata-
lytic properties of the objects under consideration.

In this review we will consider systems whose prop-
erties are governed by the nonlinear parabolic equations
in (I.I). We will also assume that at the boundaries of
the interval under consideration:

- î-l =0 (1.3)
or \T—V,

r—L

This condition is an extremely natural one for many
biological and chemical systems (it corresponds to im-
permeable boundaries). Before we take up the analysis
of system (I.I) we wish to point out that axiomatic mod-
els have played an important role in the study and ident-
ification of the characteristic modes of behavior of ac-
tive biological objects.

(c) Axiomatic models for active media

Historically, the development of the theory for the
propagation of nonlinear waves which is described by
models like that in (I.I) was accompanied by the devel-
opment of an "axiomatic" theory of excitable media.
The goal of this work was to describe propagation pro-
cesses in nervous systems and muscle systems and,
especially, fibrillations of the heart. The axiomatic the-
ory was founded in 1946 in a paper by Wiener and
Rosenbluth.38 In 1960, this approach was developed by
Gel'fand and Tsetlin,37 and at present the axiomatic the-
ory is being successfully developed in the Soviet
Union.33·38

In the axiomatic theory of active media, an object can
be described on different levels. In the simplest ver-
sion of the theory, the active medium consists of dis-
crete elements— finite automatons, which can be in only
one of two states: excited and refractory. Obviously,
the axiomatic theory can be applied without a detailed
knowledge of the kinetics of the real objects. Another
important advantage of this approach is that it is possi-
ble to analyze a broad class of problems in general for
form; furthermore, computer simultations are simple.
Axiomatic models are presently being used to study not
only nervous tissue but also chemical systems39 and
genetic networks.40 For example, spiral waves or rev-
erberators, which apparently are important in patho-
logical functioning of the heart, were predicted and
qualitatively explained before their experimental obser-
vation by Zhabotinskii and Zaikin.5·33·41

We must always face the question, however, of wheth-
er axiomatic models are suitable for the phenomena
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under study. For example, the "echo" (a mutual retrig-
gering of neighboring elements of a medium) was dis-
covered in a study of such a model, but the question
arose immediately of whether this effect actually oc-
curred in kinetic systems.1 3 5 The work was accordingly
continued, and the net result was the construction of
corresponding kinetic models of the type in (I.I), whose
analysis proved the existence of this effect.33 > 7 1 '8 1

Mathematically, the question of the correspondence of
the axiomatic and dynamic models is resolved by a ser-
ies of theorems, which assert, in particular, that any
discrete automaton is dynamically representable; the
converse assertion is generally not correct.4 2 In prac-
tice, the properties of discrete automatons must be
postulated from the dynamic properties of the point sys-
tem and a knowledge of the diffusion-coefficient matrix
Dir Attempts in this direction have been made, for ex-
ample, in Refs. 33, 34, 43, and 44. The Bulgarian sci-
entists Sendov and Tsanev have proposed models which
combine the discrete and kinetic descriptions of associ-
ations of differentiating cells.4 5·4 8

1. PROPAGATION OF PERTURBATIONS

(a) Propagation of a wavefront

The problem of wavefront propagation in active kinetic
systems first arose in connection with work on combus-
tion, the propagation of epidemics, and "genes."4 7·4 8

In the simplest case, of a one-dimensional space and a
single kinetic variable, the autowave processes are de-
scribed by the equation

±-F{x) + Dg.. (1.1)

Here x(t,r) can represent the concentration of "burnt"
fuel, the temperature, the number of living individuals
with certain properties per unit length, and so forth.
The function Fix) describes the rate of change of χ in
the corresponding point system [Eq. (1.2)]. Ordinarily,
Fix) can be described by curve 1 or curve 2 in Fig. 4.

If a growth law Fxix) holds in the system, any small
initial conditions or fluctuations above the zero level
can lead to the appearance of a "pulse" in a certain re-
gion of the space. In case 2, the system is protected by
some threshold γ, and autocatalytic growth can occur
where χ exceeds the threshold γ. This is the situation
in the case of appearance of nerve pulses, "spontaneous
combustion," etc.

Introducing the self-preserving variable

we can reduce the problem of the propagation velocity of
the front in (1.1) to the problem

ffxh

^ = 0, (1.3)

where W = dx/dq. The velocity ν is found by solving this
nonlinear equation with the boundary conditions W(0)
= W(1)=O.

The wave propagation velocity in system (1.1) was
found for the case F = FZ by Kolmogorov, Petrovskii,
and Piskunov47 back in 1937. As it turns out, the prop-
agation velocity for an autowave process in this case
lies in the range ι;,^ « v< <*>, where

vma = 2YDFU0). (1.4)

However, only a front moving at the minimum velocity
is asymptotically stable. The velocities higher than vmin

are a consequence of the instability of the original hom-
ogeneous state.

If Fix)=Fnix), then steady-state wavefront propaga-
tion can occur only at the velocity vQ. No general analy-
tic methods have been developed for solving the bound-
ary-value problem in (1.3). In some cases, a piece-
wise-linear approximation of FltUix) has been used. If
Fuix) is an antisymmetric polynomial, then W

* - χΫ. Let us assume, as an example,

Fn (χ) = 2τ lx> (1 — *) — yx (1 — x)h

then setting W= xil - x) in (1.3), we find49

(1.5)

(1.6)

FIG. 4. Two types of variation of the reaction rates with the
concentrations, corresponding to (1) no-threshold and (2)
threshold propagation of the wavefront.

Representation (1.6) is used to study the propagation of
cold flames in gas mixtures49 or the propagation of the
activity zone over the surface of a heterogeneous catal-
yst.2 8·2 9 In the latter case, χ is the surface density of
active centers. We might also point out that if the func-
tion Fix) has five or more zeros then several stable
waves, with different amplitudes, can be excited in sys-
tem (1.1) (Ref. 50).

(b) Basic model for a distributed relaxation system

Many of the phenomena associated with traveling
pulses which were mentioned in the Introduction can be
described by simple "basic" models for propagation of
perturbations:

£?-. (1.7)

]£· U·8)
In the models for chemical reactions, χ and y repre-

sent the reactant concentrations, while Fyix,y) and
F2ix,y) are the rates of the corresponding reactions.

In the simplest model for neural conductivity,9·10·33·89

x is the voltage on the cell membrane, and y is the
slowly varying conductivity of the potassium channels of
the membrane. The function Ftix,y) = [/„,(#) + / α ix, y)
+/K(*I3')]//IMX is the total current across the mem-
brane (normalized to a certain maximum value / m a x ) ,
the sum of the ion currents; F2ix,y) is a function which
determines the change in the slow potassium current;
Dy = 0; and Dt = b/2RC, where C is the capacitance per
unit length of the membrane, b is the fiber radius, and
R is the resistivity of the axoplasm. We note that the
model in (1.7), (1.8) must be refined even further for
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certain specific systems, e.g., cardiac fibers. At pres-
ent it is not clear how to take into account the circum-
stance that the fiber is not a hollow cable but instead
has a system of internal membranes. Furthermore,
higher-order systems are used in the Hodgkin-Huxley
theory for neural conductivity. Results from these
higher-order systems can be obtained primarily on
computers, but as a rule they simply refine the solu-
tions found with the basic models.8·10·41

The model of a neuron network consisting of exciting
and checking neurons can also be reduced to system
(1.7), (1.8) (Refs. 51 and 52). Here χ and y represent the
numbers of fibers in the active state per unit volume of
the network, in the axon trees of the exciting and check-
ing neurons, respectively.

In the modeling of objects of this type, the system
(1.7), (1.8) has the following particular features: (a) The
scale times for changes in the variables χ and y are
greatly different, (b) In the case y = const, the function
Ft(x) has an N-shaped curve. For chemical systems,
this means that χ is an autocatalytic variable, (c) For
many processes, DI»Dr Equations (1.7) and (1.8) can
thus be written in the following dimensionless, normal-
ized form:

"£•-'<·.»>+-£• - (1.9)

(1.10)

where ε « 1 . The maxima of F and φ over the range of
the variables are of the same order of magnitude. Here
x is the "fast" variable, while y is the "slow" one. The
null isoclines of system (1.9), (1.10) are shown in Fig.
5. From the relative arrangement of the null isoclines
we can see which cases occur in the corresponding point
systems: the slave case d), the trigger case (Π), or
the self-excited oscillatory case (ΠΙ). System (1.9),
(1.10) can be studied by either numerical or approximate
analytic methods. Let us briefly describe these analytic
methods.

(l)One method is similar to the iteration method.
First, the system of point equations is solved. Then the
resulting solutions are substituted into the right sides.
The results are linear diffusion equations with a source
which depends on the coordinates and the time. This
method has been used to calculate the velocity of a tra-
veling pulse in a nerve fiber,9·10·53 to determine the ef-

FIG. 5. Null isoclines of the basic model of a traveling pulse.
I) Slave mode; Π) trigger mode; III) self-excited oscillatory
mode.

feet of inhomogeneities of the fiber on the traveling
pulse,54 and to study the interaction of the traveling
pulse.55

(2) Another method is the separation of the space-
time motions into fast and slow motions. This method
can be used to study time-dependent processes. The
fast motion is the propagating excitation front. The
front velocity is determined from Eq. (1.9), where y is
treated as a fixed parameter. In this manner we deter-
mine the variation of the front velocity ν = v(y) with the
slow variable y near the front. In turn, y is found from
the equation for slow motions [Eqs. (1.9) and (1.10) with
ε =0]. The desired solution turns out to be composed of
regions of slow motions separated by fast-moving wave
fronts. This method has been used to study the forma-
tion of a steady-state traveling pulse and the disappear-
ance of an extended perturbation over a finite time,56

the propagation of a traveling pulse through a medium
with smooth inhomogeneities, the stopping of the decay
of a pulse, and the breakup of a stopped front.57'58 This
method of course does not work for problems involving
the formation of a fast front, and it cannot be applied to
a medium with inhomogeneities having a scale dimen-
sion of the order of the length of the front.

(c) Stationary traveling pulses

The stationary traveling pulse is one of the best-stud-
ied autowave processes.9·10·32 To determine the shape
of the stationary traveling pulse, we use the self-pre-
serving variable of (1.2) to make the transition from
(1.9) to (1.10) to a system of ordinary equations, and we
find the homocline trajectories in the phase space of
this system (these are the trajectories which go from
saddle to saddle). Figure 6 shows an illustrative nu-
merical calculation for the Nagumo system,9

which is a good basic model for a nerve pulse.

Two pulsed solutions can occur in system (1.11). One
corresponds to a stable traveling pulse of system (1.9),
(1.10). The corresponding phase trajectory and the
shape of the pulse are shown by curves 1 in Figs. 6b and
6c. For small values of ε, the phase trajectories cor-
responding to the rise and decay of the traveling pulse
lie in the {χ, χ) planes with y «const. This feature is
shown by the hatching in Fig. 6b. The second solution
(2 in Figs. 6b and 6c) corresponds to an unstable solu-
tion according to system (1.9), (1.10). Both solutions
can exist only at small values of ε—below some critical
value ε0 (Fig. 6a). The unstable pulse is a sort of
boundary which separates those perturbations which re-
lax to a stable equilibrium state and those which lead to
the formation of a stable traveling pulse. There are al-
so integral inequalities for perturbations which will be
damped.9·59 However, the problem of analyzing the ex-
citation conditions for traveling pulses is not fully re-
solved yet.

The eigenvalue problem in (1.11) has been solved ana-
lytically for the case ε « 1 through a separation of the
motions into fast and slow motions in Ref. 60. Approxi-
mate equations were derived there for the velocities of
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0.961

Stationary Damped
pulses propagation

FIG. 6. A traveling pulse in the Nagumo system, (1.11) (Ref.
9). a: Variation of the propagation velocity of stationary trav-
eling pulses with the extent to which the system is of a relaxa-
tion nature (ε), b: Trajectories of traveling pulses in the
(x,i,y) phase space, c: Stable (1) and unstable (2) stationary
traveling pulses. The dashed curves show examples of per-
turbations which relax to an equilibrium state or to a stable
traveling pulse (1).

(x-y)"°
\

FIG. 7. Formation of a traveling pulse in the case y <yc r· Top:
The function ν -ν (y) and the null isocline of the system, a)
Spatial distributions of χ (solid curves) and y (dot-dashed
curves); b) formation of the pulse on the (r ,i) plane. The
hatching corresponds to the region of the excited state.

both stationary traveling pulses.

Systems (1.7), (1.8) and, in particular, (1.11), also
permit stationary periodic solutions in the form of a
sequence of traveling pulses. This case corresponds to
periodic external agents. Some calculations of the pa-
rameters of such sequences can be found in Ref. 9.

(d) Formation of pulses

The process by which a stable, stationary traveling
pulse is formed can be traced easily for a system with
pronounced relaxation properties.58 For a qualitative
analysis we need to know the null isoclines of the sys-
tem F(x,y) = 0 and <p(x,y)=0, and we need to know how
the front propagation velocity varies with the slow vari-
able near the front, v = v(y). For any active medium,
a plot of the function v(y) intersects the Oy axis. We de-
note the corresponding value of y by ya.

Let us examine the simplest time-dependent process:
the formation of a traveling pulse in a system with slave
properties. Figure 7 shows the phase plane of the point
system. There is a single stable equilibrium point,
(x, y). If the initial conditions in the point system are
specified in such a manner that x0 >x but y0 =y, then the
working point reaches the isocline F{x,y) = 0 almost in-
stantaneously. Then it moves slowly to the breakoff
points, along the fast trajectory AC, and slowly back to
the intersection (x, y). Consequently, in response to an
initial perturbation the point system generates a single
pulse, which is nearly square.

In the distributed system in (1.9), (1.10), the events
occur in the following manner: We assume that the ini-
tial condition x(0,r) is specified in the form of a smooth
perturbation over a region of size greater than the dif-
fusion length LD and that y0 =y and maxx(0,r) =xo. Then

the initial profile of the perturbation becomes nearly
square over a time Δί~ε. The edges of the perturbed
region are shaped into stationary fronts (see Section 1),
which propagate in a symmetric manner in opposite di-
rections at the velocity v(y). It is thus sufficient to ex-
amine the evolution of the pulse in only one direction
(Fig. 7a). The crest of the traveling pulse is shaped by
the slow motion nearly independently at each point in
space. When the center of the region of the initial per-
turbation reaches the fast trajectory AC, there is again
a fast decay: the trailing edge of the traveling pulse,
which is moving in the same direction as the leading
edge, with the initial velocity v(yA). The process by
which the traveling pulse is formed is such that the vel-
ocities of the leading and trailing edges become equal
(Fig. 7).

The behavior is completely different if the intersec-
tion lies above the critical value (y >y ). In this case a
traveling pulse cannot propagate. The initial perturba-
tion collapses over a finite time interval (Fig. 8). The
cases in which a traveling pulse is formed in a medium
with a trigger characteristic are studied in Refs. 61 and
62. The null isoclines of the corresponding point sys-
tem are shown in Fig. 9, along with the variation of the
velocity with the slow variable. Depending on the rela-
tion between the velocities of the leading edge (v,) and

FIG. 8. Formation of a traveling pulse for the case S~>ycr.
Relaxation of a perturbation to a homogeneous state, repre-
sented on the (r,t) plane.
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FIG. 9. Diagram illustrating the formation of a traveling
pulse in a trigger system. The upper part shows the null iso-
clines of the system and the functions v=v<y). The maximum
propagation velocity of the trailing edge of the pulse Is higher
than the maximum velocity of the pulse front fos >t>i).

the trailing edge (vt), there can be different wave-prop-
agation regimes. If vt=v3 >vx =v, (Fig. 9), then a tra-
veling pulse of an excited state against the background
of an unexcited surrounding can propagate in this sys-
tem, in addition to the ordinary propagation of an iso-
lated wavefront. The arrows in Fig. 9 show the times at
which the external agent shapes the leading edge (if the
arrow points along the positive r axis) or the trailing
edge (if the arrow is in the opposite direction) of the ex-
citation pulse. In the opposite case (v3 < vx), this tra-
veling pulse of an excited state cannot be stationary. It
increases in activity during the propagation. Then the
traveling pulse of the unexcited state assumes a station-
ary shape against the background of the excited sur-
roundings.

There are many pieces of experimental evidence in
physiology that the function v(y) may be nonmonotonic.
We could cite, for example, papers which show a non-
monotonic variation of the velocity of a traveling pulse
with the level of the slow current across the membrane
of a cardiac fiber.83"86 Several stationary traveling pul-
ses can form in distributed media with such proper-
ties.*7 Figure 10 shows examples of the formation of
traveling pulses of various durations: Π the duration of
the initial perturbation is below the critical value, τ0

< τ 2 , a pulse of short duration τι arises in the system,
but if τ0 >τ2 then a traveling pulse of duration τ3 is pro-
duced. Furthermore, the trailing edge of the pulse may
come to a halt under certain conditions.57 A nonmono-
tonic variation v(y) could explain, in particular, the ex-
perimental bifurcation and extreme acceleration of the
cardiac action potential during high-frequency stimula-
tion or when the fiber is subjected to certain drugs.63

In summary, the simple model in (1.9), (1.10) leads to
a qualitative explanation of many characteristic features
of the production and propagation of traveling pulses in
active media. The same model yields good qualitative
predictions in a number of cases. When applied to the
neuron network with the parameters from Refs. 21-23,
for example, the model in (1.9), (1.10) leads to the fol-
lowing characteristics for a traveling pulse which is a
region of elevated neuron pulsation: a velocity -10 cm/

ο ο

FIG. 10. Propagation of a traveling pulse in the case of a non-
monotonic function ν =ν(y). a) The function ν =v(y) and the null
isocline of the system; b) formation of three traveling pulses
of different duration (τ) as a function of the Initial perturba-
tion; c) halt in the decay of a traveling pulse.

sec, a traveling-pulse length ~2 cm, and a rise time ~2
mm. These estimates agree well with the experimental
data available (see the Introduction).

It is important to note the distinction between these
traveling pulses and the nonlinear waves which are called
"solitons." A soliton is formed as the result of a
balancing of the effects of a nonlinearity and dispersion
in a conservative system. A soliton is a solitary wave
of the type which retains its shape and velocity in colli-
sions with other such waves.9 The stability of the tra-
veling pulse under discussion here, which is also a sol-
itary wave, is governed by the active properties of the
system. In a traveling pulse there is also a balance,
but in this case between the energy stored in the sys-
tem and its dissipation in the traveling pulse. When two
traveling pulses meet, they annihilate each other. Nat-
urally, the methods used to study these solitary waves
differing in mechanism are different in many respects.
Caution should thus be exercised in taking a common
approach to the analysis of similar phenomena in differ-
ent objects on the sole basis that they are both solitary
waves. On the other hand, these objects do have certain
general features, so that there are also general feat-
ures in the models used for studying them. For exam-
ple, the method of separating wave motions into fast
and slow which was used successfully to analyze the
models in (I.I) was first proposed by Khokhlov70 in a
study of processes in nonlinear electronics systems
which are described by hyperbolic systems of equations,
rather than by (I.I).

The most important features of the propagation of fast
pulses can be described perfectly well by the basic
model in (1.7), (1.8), which contains only two variables:
A fast variable and a slow on'e. This model can be used
to study the propagation of action potentials in nerve and
muscle fibers, regions of collective activity in neuron
ensembles, activity waves in autocatalytic chemical re-
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actions, and other phenomena.

At the present time the development of the theory of
traveling pulses in active media involves the following
topics: inhomogeneous media,10·41·68 the interaction of
several traveling pulses,10 and the use of models with
many variables.28

2. AUTONOMOUS WAVE SOURCES

In the preceding section we discussed the mechanism
for the propagation of waves in active media. The next
step is to study wave generation. If there is a region in
space in which the characteristic oscillation frequency
is higher than elsewhere, traveling waves will propa-
gate away from this region. If there are several such
sources, the medium is synchronized by the highest-
frequency source. This conclusion had already been
reached on the basis of the axiomatic theory.4·33·3*37·41

Using this theory, KrinskH and Kholopov135 predicted,
in 1967, the possible production of an autonomous wave
source of the "echo" type. Pursuit of this theory
showed that such sources are also predicted reliably
in kinetic models of the type in (I.I).3 3·7 1·8 1 ZhabotinskH
and Zaikin experimentally discovered a new type of
wave source—a "guiding center" (see the Introduction)—
in a homogeneous, chemically active medium. The first
models for guiding centers were offered in Refs. 27, 84,
and 85.

We will accordingly examine wave-generation prob-
lems on the basis of the model in (I.I). We will study
separately those solutions of (I.I), (1.3) which are near-
ly harmonic and definitely of a relaxation nature.

(a) Stability of homogeneous state

If the distributed system is in a homogeneous station-
ary state, the values of its variables are equal to the
coordinates of the singularity of the corresponding point
system, (1.2), which we denote by

{x, m, . . . ,*„•»> ( " » = 1 . 2 M), (2.1)

where m is the index of the singularity. We call equa-
tions which are written in a coordinate system with or-
igin at the m-th singularity the "reduced" equations. It
is easy to see that the homogeneous state x(t,r) = xtu is
actually a trivial solution of the boundary-value problem
for system (I.I) with neutral boundary conditions of the
second kind, (1.3), and also with boundary conditions of
the first kind and periodic conditions (a ring reactor).

The analysis of autowave systems should begin with a
study of the stability of a stationary homogeneous state.
In many cases, we need to study only small perturba-
tions of this state, i.e., the linearized reduced systems.
Any perturbation can be written as a superposition of
waves of the type

{pmkt-\—j- (2.2)

here k is the wave number, which determines the wave-
length, \mk = 2L/k. Everywhere below, where we can do
so without causing any confusion, we will omit the sub-
script "m," which labels the singularity. Substituting
(2.2) into the linearized system of equations, and using

the condition for the existence of nontrivial solutions of
this system, we find a dispersion relation which relates
the complex frequencies (/)m* = 6n)1±;wmll, the wavelength
Xm4 (or the wave numbers k), and the coefficients in sys-
tem (I.I)34:

; 1 + · • · + ?o m= (2.3)

If this state is unstable, then there is at least one
complex frequency p^, with δβ*>0. There are two types
of instabilities in active kinetic systems. In the case in
which the dispersion relation (2.3) for a wave with a
wavelength 2L/k has an even number of roots, pmkcGmll

>0, the instability is "oscillatory." An odd number of
roots corresponds to a "Turing instability," which leads
to the formation of stationary dissipative structures
(see Section 4 below).

Before analyzing the dispersion relation (2.3), we
would like to point out yet another problem in whose sol-
ution this relation is used—namely, the study of dis-
crete analogs of autowave systems, consisting of sever-
al diffusion-coupled reactors. Many of the general
properties of autowave systems can be determined by
studying the discrete analog, since they are governed
by the structure of the phase space of the corresponding
point system and the particular features of the diffusion
coupling. Analysis of discrete systems consisting of
few elements is also of independent interest.71'74·94

The simplest discrete system consists of two diffu-
sion-coupled reactors:

d
-τ—X\t = Fi f^ii» £|2i · · ·) *̂ in) *T~ &t {^2t^~^il)t

(2.4)

where the first subscript on a variable specifies the re-
actor, while the second specifies the variable. The
model in (2.4) can be used to help make the transition
from a point system to a distributed system. For ex-
ample, if the steady-state concentrations in the first
and second cells are different, and if this situation is
stable for certain values of the permeability coefficients
dt, then we should expect nontrivial stationary states in
the corresponding distributed system. In (2.4) it is fre-
quently convenient to use different variables:

ι j . .

which pick out antisymmetric states. The coordinates
in (2.5) are normal coordinates. Characteristic equa-
tions for (2.4) can be found from (2.3) by setting *=0
and ir2k2 =2. The existence of roots with δ*>0 for Eq.
(2.3) in the case k = 0 implies an instability with respect
to in-phase perturbations, while the existence of such
roots in the case ir2k2 =2 implies an instability with re-
spect to out-of-phase perturbations.

An informative characteristic of system (I.I) is the
variation of δΛ with the wave number k. Figures l la and
lib show variations of δ4 with k typical of systems with
two variables.34 Other plots of this behavior can be
found by making a parallel translation with respect to
the coordinate axes of the curves in Figs, l la and lib.
Analysis of these curves shows that in systems with two
variables the oscillatory instability for waves of finite
length can exist only when the corresponding point sys-

623 Sov. Phys. Usp. 22(8), Aug. 1979 Vasil'evef a/. 623



FIG. 11. Typical curves of the real parts of the roots of the
dispersion relation (2.3) vs the wave number k. a, b) Systems
with two variables*4; c) system with three variables
in the corresponding dispersion relation in (2.3)].TS

tern (fe = 0) is a self-excited oscillatory system. The
Turing instability, on the other hand, can occur even if
the stationary state of the point/system is stable (this
situation could not occur for a system with a single var-
iable). If the point system is a self-excited oscillatory
system, then there are always possible values of the
diffusion coefficients such that the Turning instability
occurs.

Among self-excited oscillatory systems with three and
more variables, there are some in which the Turning
instability does not occur, regardless of the diffusion
coefficients. On the other hand, in certain three-com-
ponent systems the self-excited oscillatory instability
can occur even if there are no self-excited oscillations
in the point system. The corresponding variation of δ»
with k is shown in Fig. l ie (Ref. 75).

The mechanism for this effect can be illustrated for
the following system76:

-3 . -
(2.6)

For a fixed value of A (B>A2 +1), the first two equa-
tions in (2.6) describe a self-oscillatory subsystem or a
"brusselator."84 The third equation in (2.6) describes a
feedback which retards the growth of the oscillations
and can in fact turn them into damped oscillations. The
diffusion of component A smooths over those spatial in-
homogeneities in this component which arise in the
course of the oscillations; this diffusion thus reduces
the effect of this feedback. Then for small wave num-
bers, at which diffusion is relatively unimportant, the
feedback through the variable A can be strong enough to
damp the perturbations. At higher wave numbers, the
feedback is weakened, the oscillation growth rate may
become positive, and the perturbation amplitude will in-
crease (Fig. l ie). At large wave numbers, as in two-
component systems, δ necessarily becomes negative
because of the diffusion of the variables χ and y.

We would especially like to emphasize the possible
occurrence of instabilities of a homogeneous state in
distributed systems with mutual diffusion of the compon-
ents in the case in which the point systems have a stable
singularity for arbitrary values of the parameters. In-
terestingly, these oscillatory instabilities can occur

only in systems having three or more variables, while
the Turing instabilities can also occur in systems with
two variables. The coefficients of mutual diffusion can
be small in comparison with those for self-diffusion.
This result implies that it is important to study trans-
port processes in nonequilibrium media being investi-
gated.

(b) Standing waves

An analysis of the quasiharmonic self-excited oscilla-
tions in a distributed system, (I.I), and that of oscilla-
tions in the simple discrete model in (2.4) have much in
common. Specifically, any solution of system (I.I) can
be written as the series

Au (t) cos- (2.7)

In the description of a quasiharmonic standing wave,
only a few terms of the series in (2.7) are important.
Substituting the truncated version of series (2.7) into
(I.I), and averaging over the spatial variable, we find
ordinary differential equations for the mode amplitudes
Akl. Pursuing the analysis for two modes (fe = 0 and k
ΦΟ), we find that the resulting equations for Aki are
equivalent to the equations of the simple discrete sys-
tem in (2.4), written in terms of the normal coordinates
in (2.5). These equations are analyzed by the method of
slowly varying amplitudes: Aki(t) = aki(et)cos(ukt)(c
« mint{w^}). As a result, we find truncated equations
for the aki, and the analysis of these equations is a ra-
ther simple problem.75·76

In two-component systems which have only odd non-
linearities, there is an asynchronous damping of out-of-
phase oscillations [the variables Δ in (2.4) or modes
with feitO] by in-phase oscillations (the variables S or
the mode with k =0). In other words, only in-phase os-
cillations are stable. If the nonlinearities of the re-
duced system also contain even terms, as is character-
istic of "chemical" systems, then out-of-phase oscilla-
tions are possible. The shape of these oscillations,
however, is far from harmonic/'·33·71·78"78 Quasihar-
monic standing waves are unstable in two-component
systems.34·76·78

In three-component systems, out-of-phase oscilla-
tions can suppress synchronous oscillations.75·78 In
these cases, a standing wave is obviously stable. A
standing wave is observed in its "purest" form when
self-excited oscillations do not arise in the point sys-
tem. If, on the other hand, the conditions for self-ex-
citation of in-phase oscillations are satisfied, these os-
cillations are also stable. Several standing waves with
different wavelengths and oscillation frequencies can be
stable. The switch from one mode to another is initi-
ated by finite perturbations. Such systems can thus be
thought of as frequency triggers. The frequencies of the
out-of-phase stable oscillations are higher than the fre-
quency for self-excited oscillations of the point system.

These standing waves exist* for example, in the sys-
tem in (2.6) (Ref. 75). Another example76 is one of the
Belousov-Zhabotinskii reaction models, the "oregona-
tor," 7 9 · 8 0
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d'y
Ι (2.8)

where χ, y, ζ are the concentrations of Ce4+ (Fe3+), the
autocatalyst, and the inhibitor (bromide), respectively.
This system differs from (2.6) in that a self-excited os-
cillatory subsystem cannot be segregated within it, so
that the mechanism for the building up of the out-of-
phase oscillations is different from that described for
(2.6). It is pertinent to note that such build-up occurs
at large values of D,, and stationary dissipative struc-
tures exist in this model at large values of Dx, as will
be shown in Section 4 below.

(c) The guiding-center problem

We turn now to the problems of generation of travel-
ing pulses in relaxation systems. In inhomogeneous sys-
tems, the source of traveling waves may be regions in
which the characteristic frequency of the oscillations is
higher than in the surrounding space, so that the situa-
tion is stable. A source of this type is called a "rhythm
leader" or "pacemaker." The basic problem of the
wave theory, however, is to study traveling-wave
sources in homogeneous media.5·33·34·95

This problem was first studied on the basis of the
axiomatic models.33'38·41 Wave sources were found and
labeled "echoes." These sources exist because of a
sequential retriggering of neighboring elements of the
medium. On the other hand, the wave sources which
arise in the course of chemical reactions in a homogen-
eous medium have been labeled "guiding centers."5 The
medium can be either a self-excited oscillatory medium
or a slave medium. In the latter case it is particularly
clear that it is the guiding-center mechanism which is
responsible for the periodic situation. Since the echo
mechanism does not completely explain the experiment-
al facts, other types of wave sources have been studied
with the help of models with three variables. In certain
cases below we will refer to the wave sources with a
common term, "guiding centers," but it should be re-
called that different mechanisms are responsible for
their operation.

Let us examine the echo mechanism in more detail.
A study of the axiomatic models shows that the echo can
exist only if the pulse length τ is related to the refrac-
tory time R in accordance with τ/R >0.5; with the
source having a zero dimension.33·38 Analogous condi-
tions have been found for two slave relaxation oscilla-
tors coupled by diffusion.71 The further development of
the echo theory is based on the use of model (I.I),
which contains two variables.

For a system with pronounced relaxation properties,
(1.9), (1.10), it has been shown by means of the charac-
teristic υ = v(y) that the excitation front must come to a
stop for a pulse source to form. The subsequent evolu-
tion of the stopped excitation front can take either of two
paths. If the velocities of the slow motions on the op-
posite sides of the fixed front are chosen appropriately
(when the nonlinear characteristics /=0,<p = 0 are sym-

metric—the velocities of the slow motions are
equal57·58), the front will split up (Fig. 12a). If the slow
motions are not matched, the front moves off in the di-
rection in which the changes in the slow variable are
faster (Fig. 12b). These processes result from insta-
bilities for certain perturbations, which carry the front
off in one direction or the other or lead to a breakup.
The condition τ >R/2 when applied to Eqs. (1.9) and
(1.10) means that the velocity of the slow motions in the
rest region is higher than the velocity of the slow mo-
tions in the excitation region. Here the following pro-
cesses occur (Fig. 13): After the stop, the excitation
front propagates into a region in which the system is in
a state of rest. As long as the front is immobile, how-
ever, an inhomogeneity forms in the distribution of the
slow variable at the stopping point, rs. The result is .
the formation of a new stopped front, which again moves
away (after a certain time) into a region in which the
system is in a state of rest. At a certain instant, how-
ever, the front—after stopping—nevertheless goes into
the region of the excited state. This happens the
sooner, the greater is the difference between the vel-
ocities of the slow motions in the states of rest and ex-
citation. Then a source of the echo type ceases to
exist.58·81 An opposite case is that in which the length
of the excitation pulse is shorter than the time required
to restore the system to the rest state70 (x <R/2). Then
the pulse stops at y =ya, and after a certain time the
front moves off in the direction in which the system is
in the excited state. After this time, the system can no
longer be excited by internal processes.

Periodic operation of an echo source is possible in
self-excited, slave, and trigger systems. In this case,
however, there must be a definite matching of the vel-
ocities of the slow motions on the different sides of the
fixed excitation front, so that a special choice of pa-
rameters for the system is necessary. Figure 14 shows
a periodic breakup of the front. Small deviations from
the selected parameter values lead to destruction of the
source after generation of a few pulses. The periodic

FIG. 12. Evolution of an excitation front at the point at which
it stops. Shown at the top are diagrams of the processes In the
(r,i) plane, a) Separation of the front from the stopping point;
b) departure of the front from the stopping point.
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FIG. 13. Evolution of excitation regions as a function of the
relationship between the pulse duration τ and the refractory
period R. In the case T>^R there is an "echo" wave source.

operation of a one-dimensional source is thus not a
"coarse" situation with respect to variations in the pa-
rameters of the system.

The destruction of guiding centers also occurs when
the dimensions of the system are reduced to the charac-
teristic dimension of the guiding center. A guiding cen-
ter of the echo type has a characteristic dimension of
the order of the length of the excitation front.58

For systems with two variables there are also exam-
ples of numerical calculations of one-dimensional
sources; the details of the operation of these sources
are still difficult to explain by qualitative methods.82 It
should be noted that in the operation of such a source
there are also situations which are similar to the break-
up of a stopped excitation front. Another example is a
source in a medium with a trigger inhomogeneity.83 An
excitation pulse is incident on an inhomogeneity with
trigger properties; then the fixed front begins to gener-
ate pulses. The mechanism for the operation of such a
source is not yet fully understood.

(d) Stable guiding centers

In the system discussed above, with two variables,
stable periodic pulse generation can occur only if the
parameters have certain special values. Guiding cen-
ters of the echo type which are stable with respect to
variations in the parameters can apparently be obtained
in a model with two variables if the function ν = v{y) is
not monotonic.

Another approach to the study of stable self-excited
wave generation is to use models with three variables.
Stabilization of the echo through the use of a third vari-

/mini wit

able is possible, but the corresponding models have not
yet been studied. On the other hand, we do know of
three-component systems in which the mechanism for
the stabilization of non-echo guiding centers is based on
differences in the nature of the processes which occur
in the region in which the traveling pulse is formed and
in the region of its steady-state propagation. It is be-
cause of the third variable that these differences can
accelerate the slow-motion step in the region of wave
initiation, leading to the formation of a stable guiding
center.

Let us examine two types of models. Their point sys-
tems contain a self-excited oscillatory subsystem of two
variables, and the third variable determines the addi-
tional, retarding feedback, which has an important ef-
fect on the parameters of the self-excited oscillation.
In a distributed system, a traveling pulse is formed
primarily by a self-excited oscillatory subsystem,
while the nature of the propagation of the third variable
is governed by changes in the shape of this pulse. For
example, let us consider the following model27 (a simi-
lar model has been studied in Ref. 84):

or

(2.10)

(2.11)

where Dx»Dy,D,;9{t) = 0 for ξ<ΟοΓ 0(ξ) = 1 for ξ>0.

The variables χ and y in (2.9) for a fixed value of ζ
and for ε « 1 form a relaxation self-excited oscillatory
subsystem, for which the corresponding phase plane is
shown in Fig. 15. This subsystem is a reduced model of
the Belousov-Zhabotinskii reaction in (2.8). For a
given distribution of null isoclines, the motion of the
representative point of the subsystem along the upper
part of the y-null-isoclines is essentially independent of
the values of z, while the motion along the lower part
does depend on z: specifically, this motion is acceler-
ated at large values of z.

In a distributed system, the projection onto the x-y
phase plane of the representative point in the guiding-

FIG. 14. Examples of the operation of traveling-wave
sources—periodic division of fronts.51'58

FIG. 15. Guiding center in system (2.9)-(2.10). a: Null iso-
clines of subsystem (2.9) and projections of the integral curves
("limiting" cycles) onto the phase plane of the subsystem from
the spatial points r0 = O and r = l . b: Distribution of max{z(r,t)}
(the results of a numerical integration on a computer; Κ -1,

ε = ΐ/0 = 1Ο-ί, ρ = 5, •Λ=10Γ3, q = 4, τ = 1, c = 0, γ = 0.02, W=0,
Λ = 0.1, Dx = Dt=0, and ZJy=0.2).
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center region is a cycle which envelops all the phase
trajectories corresponding to traveling waves in the re-
gions of space far from the guiding center. By this we
mean that in the region of the guiding center diffusion
retards the transition of the representative point from
the lower to the upper branch of the y-null-isocline. In
other regions of space, the waves which are traveling
away from the guiding center simply accelerate this
transition. It thus follows from the third equation of the
system [(2.10) or (2.11)] that in the wave-trigger region
there will be a max ( r{z(i,r)}, as shown in Fig. 15,
which is plotted from the results of a numerical simula-
tion. Such a distribution of max,r{z(t, r)} leads to a
sharp decrease in the time of the slow motions in the
trigger region and thus to a stable guiding center.

To illustrate another mechanism for stabilization of a
guiding center, we use the method27

£ - * - , . , + f l k * S . , (2.12)

—.^W+Kx-Rz + D,-^, ^ ^

where now D, »DX, Dy.

Figure 16 shows the phase plane of the relaxation self-
excited oscillatory subsystem in (2.12) (z is fixed). The
velocity of the working point depends on z: in the verti-
cal region I it increases with increasing z, while in the
horizontal region ΠΙ it decreases. In the sloping region
Π there are fast motions, which are only slightly depen-
dent on z. In the complete system of equations, (2.12),
(2.13), ζ increases when the projection of the represent-
ative point is in the horizontal region or decreases in
the vertical region.

Figure 17 shows profiles of waves traveling away
from the region of the guiding center. The diffusion of
the ζ component leads to a flattening of its spatial pro-
file. This effect has the following consequences: (a)
When the projection of the representative point of the
guiding-center region is in the horizontal region, the
diffusion slightly reduces the value of the ζ component
in this region, (b) When this projection is in the vertic-
al region, the diffusion increases the value of the ζ
component. The diffusion of the ζ componenet thus ac-
celerates the motion in the region of the guiding center
in comparison with the motions in other parts of the
space. These processes make the guiding-center situa-
tion stable.

Stable guiding centers can exist in the systems dis-

/z TSz I B+l χ

in Ί7Τ
FIG. 16. Structure of the phase plane for self-excited oscilla-
tory subsystem (2.12).
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FIG. 17. Wave profiles at successive times in the guiding-
center mode of system (2.12)-(2.13). These are the results of
a numerical integration on a computer. JB = 36, W=0.36, Κ
= 0.05, Λ = 1, Ζ>Ι=2.5·10-4, Dy = 0, D,= 2.5'10-3(TGC

= 3.3;Γ0 = 3.6) (Ref. 27).

cussed above even when oscillations do not arise in the
point system. For a guiding center to exist, as a rule,
the point system must possess a high degree of relaxa-
tion. Otherwise there will be a situation with "moving"
guiding centers; i.e., the region of the wave source will
change its coordinate in space from period to period.
With a subsequent lessening of the degree of relaxation
of the system, a standing wave may be obtained.

Up to this point we have been talking about systems
with a simple diffusion (i.e., with a diagonal diffusion
matrix). However, mutual diffusion of components can
be extremely important in autowave systems. In Ref.
85, for example, there is a study of a three-component
model in which the self-excited oscillatory subsystem
("brusselator") acts on the third variable only through
mutual diffusion; without this mutual diffusion, the
events would be the same as in a two-component sys-
tem. A numerical simulation has shown that this model
has a stable guiding center. The mechanism for the
formation of a stable guiding center is precisely the
same as discussed in the example of system (2.12),
(2.13).

A variety of sources of wave self-excitation in active
media have now been identified. A common feature in
the operation of these sources is that the oscillation
frequency throughout space is higher than the frequency
corresponding to the in-phase case. On the basis of this
property we can suggest a simple and reliable method
for determining whether autonomous wave sources can
exist. A perturbation, localized in space and time,
should be introduced into the medium, and the change in
the oscillation frequency at a point in space accessible
experimentally should be monitored.

Let us compare the experimental data with the models
for autonomous wave sources. Figure 1 shows the dis-
tributions of Fe3+ at successive times for the guiding-
center case of the Belousov-Zhabotinskii reaction (here
Fe3+ is a slow variable). The scale time for the in-
crease in the Fe3+ concentration in the traveling pulse
is about | of the oscillation period. Since the condition
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τ/Λ >0.5 must be satisfied for the echo case to occur,
wave generation in these experiments cannot be ex-
plained by any mechanism of this type. At the same
time, the basic guiding-center models with three vari-
ables give a correct description of the general features
of the observed effects.

Guiding centers arise because of supertheshold per-
turbations of the homogeneous state. Experimentally,
guiding centers may appear spontaneously in the course
of in-phase oscillations. Macroscopic fluctuations can
thus occur in the these reactions. The existence of such
fluctuations has yet to be explained theoretically.

Finally, we wish to point out that mutual diffusion can
have an important effect on the stability of a homogen-
eous state in nonequilibrium systems and can lead to the
formation of guiding centers.

3. THE SYNCHRONIZATION PROBLEM

(a) Synchronous self-excited oscillations in
inhomogeneous systems

Some of the basic autowave modes which are import-
ant in the activity of an individual cell or an entire or-
ganism are the synchronous self-excited oscillations of
kinetic variables over the entire space under consider-
ation. A theory for the synchronization of second-order
two-component systems with diffusion coupling is de-
rived in Ref. 34. Let us examine the basic results of
this theory.

If the system is inhomogeneous because the functions
F{ vary with the coordinate, e.g., because of a variation
in the temperature, the illumination, etc., then syn-
chronization is not mandatory.

A discrete analog in radio physics of a self-excited
oscillatory system with diffusion coupling would be rep-
resented by chains of Ν self-excited, galvanically cou-
pled oscillators. Such a chain is described by a system
of equations of the type

-^p- = Ft (x,, yt) + dx ( i i + l - 2x, + *,_,
(3.1)

where x{ and yt are the dynamic variables in generator
i, dx=Dx(N/L)2,dy=Dy{N/L)2, and the structure of the
equations for the first and ΛΓ-th elements is governed by
the boundary conditions (L is the length of the system).

In biology, the discrete analogs could be tissues con-
sisting of individual cells, and the coupling coefficients
dx and dy would be governed by the permeability of the
membranes and the intercellular gaps. Self-excited os-
cillatory biochemical reactions such as dark photo-
synthesis93 or glycolysis33 can occur in the individual
cells.

Equations (3.1) have been studied in detail for the case
of nearly harmonic oscillations. Under these condi-
tions, the effective step-by-step truncation method de-
veloped by Khokhlov88 can be used for the equations de-
scribing the evolution of the amplitudes and phases of
the chain of self-excited oscillators. The synchroniza-
tion band Δ, is given by

(3.2)

The function /(AT) depends onN, the number of genera-
tors, and on the nature of the distribution of character-
istic frequencies of the self-excited oscillations. This
function reaches a maximum if the deviation from reso-
nance is introduced in the generator which is at the cen-
ter of the chain.34·87

As a rule, autowave processes are of a relaxation na-
ture in nonequilibrium kinetic systems. Let us assume,
as before, that χ is the fast variable, while y is the
slow variable, and let us assume that the growth rate in
the self-excited oscillatory system increases by a fac-
tor of x. Then according to Ref. 88 we have, instead of
(3.2),

Δ,~ί,χ+-£.. (3.3)

This means that the synchronization efficiency in the
case of coupling through the slow variable is increased
by a factor of x, while that in the case of coupling
through the fast variable is, on the contrary, reduced.
In the following subsection we will consider some cases
in which desynchronization of self-excited oscillations
in space occurs in a relaxation system with dy = 0; i.e.,
we consider cases in which A s-0 in the limit *-*».

Along a chain of generators which are detuned with re-
spect to each other, or, correspondingly, along a dis-
tributed, inhomogeneous self-excited oscillatory sys-
tem, a stationary distribution of the phase "gradient" is
established. Asa result, a phase wave will travel along
the system once per period. Visually, this effect is ob-
served as a traveling color wave in thin and long tubes
in which a Belousov-Zhabotinskii reaction is occurring,
when some sort of inhomogeneity is introduced in the
tube.5 (Phase waves should not be confused with waves
which diverge from a guiding center.)

We can demonstrate the usefulness of models in the
form of a chain of diffusion-coupled oscillators for in-
terpreting the guiding-center phenomenon. As mention-
ed in Section 2, stable guiding centers can apparently
exist only in three-component self-excited oscillatory
systems. In radio physics, such a distributed system
would correspond to a chain of oscillators with "one and
one-half" oscillatory degrees of freedom, e.g., oscil-
lators with an inertial nonlinearity. The stable out-of-
phase case of synchronized self-excited oscillations can
occur along with the in-phase case in systems of two
such diffusion-coupled oscillators with three dynamic
variables.7* The synchronization frequency here is
higher than the frequency of the partial self-excited os-
cillations. Let us assume that at first all the oscilla-
tors in the chain are operating in the mode of in-phase
synchronous self-excited oscillations. If the phase of
the self-excited oscillations in one of these oscillators
changes abruptly by an angle on the order of π, then a
local "region" with self-excited oscillations at a higher
frequency forms in the chain. Such a region can be in-
terpreted as a guiding center.

If inhomogeneous initial conditions are specified in a
distributed system, then the synchronous self-excited
oscillations are established throughout the system in a
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finite time. The propagation velocity of the synchron-
ous regime for a quasiharmonic autowave process can
be estimated from (o> s δ)

For simplicity we are assuming Dx =DV =D here.

Using (3.4), we can estimate the maximum volume of
total internal mixing, within which all the processes are
synchronized. The characteristic dimension of this vol-
ume, L*, is found from

— si — = Γ or £·<4π
(3.5)

For estimates we can also use the propagation veloc-
ities of traveling pulses, from Table I.

Using L*, we can determine the minimum number of
partitions of the distributed system in the construction
of its discrete analog:

*-··£-£•· N<TJT· (3.6)

Table Π shows estimates of L* for various self-excited
oscillatory processes. It can be seen that biochemical
self-excited oscillations are synchronous self-excited
oscillations within individual living cells and even entire
"organs," for example, for cardiac muscle and for the
leaf of a green plant. On the other hand, molecular dif-
fusion is not always sufficient to synchronize a
Belousov-Zhabotinskii reaction. Complex autowave
processes which occur in a plane are observed in reac-
tors with a thin layer of reactant solution (with a thick-
ness less than 1 mm).

(b) Desynchronization of self-excited oscillations.
Quasistochastic waves

When there is a random perturbation of the phase dif-
ference between the self-excited oscillations at two
points in space, c and d, a complex transitional case
can arise: quasistochastic waves.

Yakhno et al.77 have derived specific conditions for the
existence of complex relaxation-type self-excited oscil-
lations in space [for systems of the type in (1.9), (1.10)
with two ^-shaped null isoclines), and they have re-
ported a corresponding computer simulation. To find an

TABLE II.
region.

Estimates of the dimensions of the synchronous

Self-excited oscillatory
piocea

Dirk photosynthesis
reactions

Self-excited osculations in
glycolyjis

Beloutov-Zhabotinsku
reactions

Self-excited osdOationi of
csfuukc muscle

Self-excited oscillations in a
neuron network
(fast waves)

*-¥

13 h

10 min

0.1—
1 min

IKC

0.5sec

0.2
0.5
0.2
0.5
0.2
0.5

!

!

L*. cm

Molecular dif-
fusion,

D ~ 10-»
cm/sec

4.0
10.0
0.45
1.13

0.06—0.15
0.15—0.37

Forced mixing
/>e i f~io-s
cm/sec

45
11.3
5-15

12.5—37.5

Excitable
medium

1 mm

10 cm

D period of self-excited oscillations; ω) angular frequency;
δ) growth rate of system.

analytic equation, they adopted the following assump-
tions: A perturbation was imposed on the homogeneous
distribution of the variables χ and y at the initial time.
The change in the variable y at the two points c and d
was studied. It was assumed that Ay=yc-yi«ynax

- 3Ίηΐη a n d h < Lci « vT0, where lf is the length of the
traveling-pulse front, LM is the distance between points
c and d, and To is the period of the characteristic self-
excited oscillations. If the values of 31 at points c and d
do not converge with the passage of time, a desynchron-
ization occurs in the system. The desynchronization
conditions can then be written

>1. (3.7)

The growth rate δ* can be expressed in terms of the
characteristics of the slow motions at points c and d.

Figure 18 shows an example of the formation of a
quasistochastic wave in a system of the Nagumo type,
in (1.11) (Ref. 77), calculated through a computer simu-
lation. The perturbations in case c are found by shifting
the initial χ and y distributions for case b over a dis-
tance 0.01L. We see that, beginning at i = 6.0, the χ and
y distributions are very different. The smooth distribu-
tion of the slow variable converts into a random "cellu-
lar" structure (cf. the photograph in Fig. 3).

Complicated spatial regimes have also been found
through numerical calculations for other self-excited
oscillatory models of chemical systems.7·27#82189"91 It
can be suggested that the process by which a quasihar-
monic concentration wave forms is closely related to
the processes by which the solutions of dynamic sys-
tems become stochastic, i.e., processes of the strange-
attractor type.4

These complex regimes can be used as one explana-
tion for the fibrillation regime in the self-excited oscil-
latory regions of cardiac muscle.33·77 It is tempting to
use this desynchronization process to explain the com-
plex picture of the motion of excited regions which is
observed in the cerebral cortex (see Fig. 18d, taken
from Ref. 92).

It can be seen from Figs. 18a and 18d that the features
of the process on the (r, t) plane are very similar. It
should be noted, however, that it is not yet possible to
use the existing models for neuron ensembles to explain
the origin of the spatial desynchronization of oscilla-
tions.52

In summary, if a point system has self-excited oscil-
latory properties, then two opposing processes always
occur. One maintains the synchronous self-excited os-
cillations through diffusion coupling in the slow variable,
while the other can lead to a desynchronization and to
the appearance of quasistochastic waves through cou-
pling in the fast variable.

4. INHOMOGENEOUS STATIONARY STATES.
DISSIPATIVE STRUCTURES

An organic part of the large and interesting range of
problems of the theory of active kinetic systems con-
sists of the problem of the spontaneous disruption of
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homogeneous states and disruptions of the symmetry of
systems. In Section 3 it was shown that the general
model in (I.I) describes two types of instabilities of a
homogeneous state. The oscillatory instability leads to
the formation of standing waves and also of other, more
complicated dynamic modes. In the present section we
are concerned with the stationary inhomogeneous states
which result from the Turing instability. The study of
these states was begun by Turing98 in 1952 and has been
continued by the Prigogine school at Brussels ,2·97·9*112·137

where these structures have been named "dissipative
structures". This term emphasizes the thermodynamic
aspect of the problem: The dissipative structures are
created and exist in thermodynamically open systems
because of dissipative processes involving the utiliza-
tion of entropy, energy, etc. Prigogine and his col-
leagues were the first to point out the common nature of
such phenomena as chemical dissipative structures and
shaping in hydrodynamics, where Benard cells, for ex-
ample, are also dissipative structures.

Frequently, especially by authors working abroad, the
term "dissipative structure" is understood as repre-
senting a variety of self-organization phenomena in non-
equilibrium media, not only the chemical dissipative
structures described by (I.I). In Ref. 99, dissipative
structures are classified according to the types of grad-
ients of the variables (chemical or electric potentials,
the pressure, etc.) which maintain the existence of
these structures. There are many papers reporting the
observation of dissipative structures in whose formation
several factors are simultaneously important: chemical
reactions, hydrodynamic forces, electric fields, and
biological phenomena (e.g., chemotaxis).7·99"108

Research on dissipative structures is important in
biology, especially for the biology of growth, in the

problem of the shaping of organisms. It was not without
reason that the first and fundamental paper by Turing
was entitled "Chemical foundations of morphogenesis."98

The problem is as follows: In the development of an or-
ganism from a fertilized egg cell to an adult individual,
we can distinguish several stages in which there is a
spontaneous disruption of symmetry. The first is the
formation of an axial axis, i.e., the disruption of the
cylindrical symmetry of the embryo. In the later
stages, an orginally homogeneous fragment breaks up
(there is a disruption of the translational symmetry),
and there are other effects of the same type. As a rule,
external agents wh ich are capable of disrupting the sym-
symmetry are so weak that they can be ignored as cau- .
sal factors. The capability of disrupting symmetry is
thus an internal property of the developing organism.
The shape of the organism (either the final shape or the
shape in one of the intermediate stages) is predeter-
mined; i.e., information on this shape is already pres-
ent in the fertilized egg. A dissipative structure which
appears in the organism can accordingly be called an
"intrinsic structure," and this term would serve to em-
phasize the fact that information on this structure is in-
corporated in the system itself, rather than introduced
into the system from without. Several questions arise:
Under what conditions can this occur? How does the
process evolve? How is it regulated? These questions
are obviously typical of the theory of autowave proces-
ses, so in answering them we can use the results from
the study of the basic models of dissipative structures.

In this review we are dealing with only those systems
which can be modeled by equations like (I.I). Among
these systems are not only chemical (or biochemical)
systems but also ecological systems104·105·118 and sys-
tems of population genetics.108 An interesting example
of a dissipative structure was suggested by Blumental,107
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who studied lateral diffusion on the surface of a mem-
brane for the case in which cooperative effects occurred
as the components were transported across the mem-
brane. The system describing standing striations30 is
similar to (I.I).

The basic goals of this section are thus to introduce
the reader to the methods for solving the problems and
to the results which have been found and to discuss
briefly the applications and the directions for further
development of the theory.

(a) Conditions for the existence of dissipative
structures

Mathematical models of the type in (I.I) can describe
spatially inhomogeneous states (dissipative structures)
as well as stationary homogeneous states, as in (1.1).
Let us examine the conditions for the existence of such
stationary solutions. We will assume that the following
natural restriction is met: The point kinetics of the
models under study is physically realizable; i.e., the
point system has no solutions which increase without
bound.

Turing used the following conditions for the appear-
ance of stable dissipative structures: (1) The stationary
state of the point system is a stable focus (the basic
model with two variables). (2) There is an interval of
wave numbers (fe„„„,*„,„) for which the dispersion rela-
tion in (2.3) has two real roots with different signs. If
the conditions are satisfied, the variation of 6t with k
is as shown in Fig. l la.

These conditions do not cover all the cases in which
the models in (I.I) have stationary solutions of the dis-
sipative-structure type. A more general condition,
which is not restricted to two-component systems, is
the following condition75·76: If the free term in the dis-
persion relation (2.3) is negative at a certain wave num-
ber k[qo(k)< 0], then the distributed system has at
least one stationary solution of the dissipative-structure
type. The use of these conditions for the existence of
solutions, in contrast with the preceding conditions,
presupposes that the next step in the study of the model
is to analyze the stability of the dissipative structures.

For the simplest discrete models and for single-com-
ponent systems, this assertion can be proved rigorously
and in fact quite simply. For multicomponent systems,
no proof which is completely rigorous mathematically
has been found. For systems with a single variable
(neutral boundary conditions), Chafee109 showed that in-
homogeneous stationary states of systems of this type
are unstable. An analogous assertion was proved inde-
pendently by Belentsev et al.,110 who also showed that in
a single-component system with permeable ends there
is a stable inhomogeneous stationary state. Metastable
dissipative structures are possible in single-component
systems if the diffusion coefficients vary along χ. This
case is discussed in more detail in subsection d; for the
time being we will consider systems with » * 2.

It is useful to keep in mind that the conditions listed
for the existence of dissipative structures are analo-
gous to the conditions for a "trigger" nature of lumped

systems. Furthermore, in many regards dissipative
structures can be thought of as states of a distributed
trigger. The condition qB(k) < 0 means that the disper-
sion relation has an odd number of roots with positive
real parts, i.e., that the homogeneous state is unstable
(the Turing instability). These conditions are only suf-
ficient conditions. Below we will discuss some situa-
tions in which dissipative structures exist, in which the
condition qo(k) < 0 does not hold, and in which dissipa-
tive structures are produced under stringent conditions.

The inequality qo(k) < 0 is the condition for the self-
excitation of a mode with a period 2L/k. If there are no
zero terms among the diagonal elements of the diffu-
sion-coefficient matrix, the spectrum of excited modes
is finite. Then near bifurcation values of the param-
eters we can use the methods of perturbation theory to
construct solutions. If the diffusion coefficient of an
autocatalytic variable is zero, and if the conditions
qo(k)< 0 hold for some k, then the spectrum of excited
modes is unbounded. In this case the solutions—the so-
called contrasting dissipative structures—have discon-
tinuities.76

The stationary states of the model in (I.I) satisfy the
system of equations

Ir. Τ. Χ ) = 0 (4.Dft d-r,

supplemented with boundary conditions, e.g., those in
(1.3). Written in this form, these equations clearly
show the similarities between this problem and the
problems of the theory of nonlinear oscillations. The
only distinctive feature is that the boundary conditions
must be taken into account. In the subsections below we
will discuss separately the cases of quasiharmonic and
"contrasting" dissipative structures. First, however,
we will consider the example of the simplest discrete
model, since the results are quite graphic and at the
same time give a qualitatively correct picture of the
stationary inhomogeneous states in active systems.

The well-known "brusselator" model, proposed in
Ref. 115, has played a role in the development of the
theory of dissipative structures like that played by the
van der Pol system for the theory of nonlinear oscilla-
tions. The corresponding point system,

(4.2)
-=Bx—x'i

has a single stationary state: x=A,y=B/A. At B>BOK

= 1 +A2, there is a stable limiting cycle. In a system of
two such reactors, coupled by diffusion, as in (2.4),
other stationary states may exist. If we use the normal
coordinates in (2.5) we can reduce the problem to the
simple equation75

where qo(2) is the free term in the dispersion relation
of the model, and dx and dy are the coefficients of the
diffusion coupling. If qo(2) < 0, the equation of the in-
homogeneous states in (4.3) obviously has a real solu-
tion in all cases. This conclusion means that a system
of two diffusion-coupled reactors is analogous to an
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electronic flip-flop with two stable stationary states
[±Δ*, where Δ* is the solution of (4.3)]. The state with
Δτ = 0 is unstable. There can also be so-called sub-
critical flip-flops [qo(2)>0]. In this case the states Δχ

= 0 and ±Δ*2 are stable, while the states ±Δ*1(|Δ*1 |
< |Δ* 21) are unstable. The state diagrams of the dis-
crete model are similar to those shown for the distri-
buted system in Fig. 19. We note that the subcritical
flip-flops result from the quadratic terms in the re-
duced system. The boundedness of the solutions is a
consequence of the cubic terms. This circumstance
should be kept in mind in choosing approximate methods
for analyzing distributed systems.

(b) Quasiharmonic distributions

The simplest approach to the solution of problem (4.1)
is to use the harmonic-balance method.111 It is useful
to keep in mind that, if we restrict this analysis to the
zeroth (k = 0) and fundamental modes, then the equations
for the corresponding amplitudes are equivalent to the
equations for the stationary solutions of the discrete
model in (2.4), written in terms of the variables S and
Δ in (2.5) (Ref. 75). A more systematic approach to the
solution of the problem is to use the various modifica-
tions of the small-parameter method which is tradition-
al in the theory of non-linear oscillations.7 5·9 8·1 1 2·1 1 3 We
can outline the use of this method to solve the boundary-
value problem.

Following the method of Bogolyubov, we find a bifur-
cation value of the new parameter B=Bk for the equation
qo(k,B)=0 (Here B is the parameter of the point sys-
tem). From system (4.1) we pick out the linear opera-
tor j^CBj) (the generating system), which has a nontrivi-
al eigenfunction of period 2L/k for the zeroth eigenval-
ue. The eigenfunction satisfies the boundary conditions.
We write it as P&k(r). We rewrite (4.1) as

where Φ contains only terms which are nonlinear in x.
We further assume

(4.5)

and we expand the solution in (4.1) in powers of P»:

iM^fmM-p^iri+fjinW-r..· . (4.6)

Substituting (4.5) and (4.6) into (4.4), and collecting
terms with identical powers of Ph, we find a sequence of
linear systems for determining x r , x n > etc. The right

so 85 \m^<^ioosoo me

FIG. 19. Dissipative structures in a "brusselator" system,
(4.6). a, b) Variation of the amplitudes of the harmonic com-
ponents with the values of the parameter Β (the dashed curves
show unstable states), a) Λ = 2, 1^=0.08, 2),= 0.4, L = V, b) A
= 10, Dx=0.75, Dy=1.0, i = l .

side of the system for xT contains P»x», while that for
x n contains only P4x fc and z , . As usual, the P s are
found from the condition for the absence of secular terms
terms in (4.4). For this condition to hold, the right side
of (4.4) must be orthogonal to the eigenfunction of period
2L/k of the adjoint operator <th(Bk):

L

\l(Bh-B)(Phxh + Ppii + Plxli-Jr...) + <!>(xh + Plx1+...)]xldr = O. (4.7)
ο

From Eq. (4.7) we can find the amplitude of the station-
ary dissipative structure. It is easy to see that the left
side is equal to the nonlinear correction for the oscilla-
tion period, and this correction must be zero by virtue
of the boundary conditions. A particular feature of the
boundary-value problem in (4.1) is that the generating
system can be constructed for various values of Bk.
Equation (4.7) has real solutions Pk for those wave-
lengths 2L/k for which qo(k,B) < 0. The systems can
thus have dissipative structures with different peri-
ods.7 5·1 1 1·1 1 4

Let us examine the characteristics of the dissipative
structures in (I.I) using the example of the brusselator
distributed model. The corresponding point system was
given earlier, in (4.2). The problem with periodic
boundary conditions for the same model was solved in
Ref. 113, and that with conditions of the first kind was
solved in Refs. 75, 98, and 112. For boundary condi-
tions of the second kind in (1.3), in the approximation
which retains cubic terms in P | , the steady-state distri-
bution is7 5

where Co, C2, and C3 are constants which depend on A,
B, Dx, and Dr An equation for y{r) can be written in a
similar way. The amplitude Pk is determined from
(4.7), which takes the following form after the integrals
are evaluated:

o. (4.8)

The coefficients in (4.8) are expressed in terms of the
parameters of the distributed model; <% is always posi-
tive, so that if qo(k) < 0 then Eq. (4.8) has a nontrivial
solution. The expression for αγ can be either positive or
negative if Β < Bk. In the latter case there are subcrit-
ical dissipative structures. Both types of bifurcations
are shown in Fig. 19. These curves are drawn from the
results of a numerical integration of the system. These
results agree well with the results calculated from (4.8)
in the case a1>0 with Β =Bk. For bifurcations of another
type, this approximation is much less accurate, be-
cause the convergence of the method improves with in-
creasing values of the ratios Ph/A and qo(k)/(2k*Dy/L2).
Nevertheless, this method does lead to an accurate pic-
ture of the bifurcations at the point Β =5».

An important problem in the theory of dissipative
structures is to analyze the stability of inhomogeneous
states. The simplest approach is to analyze the stabil-
ity of dissipative structures with respect to perturba-
tions with a fixed shape.111 In'this manner it is found
that for the large values B>BOIC the dissipative struc-
tures are unstable with respect to in-phase perturba-
tions75 (Fig. 19).
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We can describe one class of sufficient conditions for
the instability of dissipative structures. We project the
stationary solution {x(r),y(r)} onto the (x,y) phase
plane. For a boundary-value problem, this projection
is an unclosed curve. If this projection lies entirely in
the incremental region of the corresponding point sys-
tem, then such a dissipative structure is unstable.
These conditions lead to the following fact: If Bk < Box

for bifurcations of the first kind (Fig. 19a), then stable
dissipative structures with a period 2L/k cannot occur
in the system. The fact that any dissipative structure
becomes unstable at large values of Β is also a conse-
quence of these conditions.

Systems can have stable solutions of the dissipative-
structure type with different wavelengths. How is a
transition between these solutions made in the case of
slow changes in the parameters? Figure 20 shows how
P t varies with L, the length of the system.114 Charac-
teristic features of this variation are the presence of a
hysteresis loop and an abrupt transition between dissip-
ative structures with different shapes. In the language
of the theory of oscillations, this hysteresis would be
attributed to a nonequivalence of the nonlinear trans-
formations of the first harmonic into the second and
back; i.e., the hysteresis is not a consequence of the
particular model but a common feature of dissipative
structures.

(c) Contrasting dissipative structures

In the theory of dissipative structures, the case of
small diffusion coefficients for the autocatalytic vari-
able Dx in (4.6) deserves special consideration.76 As an
example we consider the system

(4.9)

FIG. 20. Hysteresis transitions between dissipative structures
with different shapes upon a change in the length of the system
(4.6). a) Variation of the amplitudes of the harmonic compo-
nents (P*) with Z. (A = 10, 5 = 99, Dx=0.75, Dy=l); b) initial and
final states in the transition from a dissipative structure with
k = 1 to a dissipative structure with k =2.

where y is the autocatalytic variable. Equations (4.9)
are derived from the models for the Belousov-Zhabo-
tinskii self-excited oscillatory reaction proposed in
Refs. 5 and 80 [see (2.8)]. The characteristics of the
dissipative structure in this system, for diffusion coef-
ficients which are comparable in magnitude, are the
same as those discussed above. Since this system is a
model of a medium in which dissipative structures have
been studied experimentally, it is interesting to com-
pare the experimental and calculated wavelengths: For
reasonable parameters of the point system and for dif-
fusion coefficients of 10'5 cm2/sec, the model describes
dissipative structures with a period of 0.2-2 cm, in
agreement with experiment.

Let us construct some discontinuous stationary solu-
tions of system (4.9). For this purpose we consider the
null isoclines of the corresponding point system (Figs.
21 and 22). We assume Dy = 0; then the projection of any
stationary solution must be situated on a y-null isocline
which is ΛΓ-shaped. This null isocline is described by a
multivalued function y(x) which can be approximated by
three single-valued functions: yA(x), ^sW* a n c* ^eW—
for each of the regions of the isocline. Substituting yA

and yB in turn into the first equation of system (4.9), we
find three parabolic equations for the single variable x.

The projection of the dissipative structure is in re-
gions A and Β (Figs. 21 and 22). In region .A, the local
terms of the diffusion equation for x, are positive, while
the diffusion term in negative; in region B, we have the
opposite situation. For the equations in these regions

0.2 -.

χ

10

0.5

0.35

Λ

'' HiΜ
Ι

, \ι

0.5
a

—ti χ

v<f

{
J ι ,

1.0

\y

1/4

1
-7

0.25 0.5 0.75 1.0

0.25 05 075 1.0 r

c

FIG. 21. Localized dissipative structures in system (4.6) (Ref.
76). a) Projection of the dissipative structure onto the phase
plane of the point system (F= 1,7= 0.5,^=0 = 500, y.= \,q = 6,
T = 0.5,C = 1,X>I=0.05,Z)J, = 0); b, c) shape of localized dissipa-
tive structures (in case c, the length of the region of the initial
perturbation is greater than the critical length L^).
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FIG. 22. Contrasting dlssipative structure in system (4.9).

we can solve the first boundary-value problem: xA\r-T

= 0 etc., where rp is the coordinate of the discontinuity.
The resulting solutions should be joined at the discontin-
uities in the continuous variable x. Taking into account
the difference in signs of the local terms at A and B, we
easily see that the joining results is a closed system of
equations. The coordinates j% of the "discontinuities''
are governed by the initial conditions; in other words,
they are quite arbitrary. Figure 21 shows localized
dissipative structures. The parameters of such a dis-
sipative structure do not depend on the length of the sys-
tem, but they are governed by the initial conditions.
Specifically, for perturbations in small regions, the
dissipative structures have a single peak, while for
broader perturbations the distribution has several
peaks.

In the case Dy=0 there can, in principle, be aperiodic
dissipative structures with a varying period. This is a
consequence of the arbitrariness in the choice of the y
coordinate of the joining point j%. If our problem is to
find solutions which are also meaningful at small but
nonvanishing values of the coefficients Dy, then x0 is de-
termined unambiguously. Specifically, with £>„#(), the
discontinuities should develop into a steep front. In a
stationary state, this front should be fixed. This event
is possible only if x= *cr[f(*cr) = 0; see Section 1],
Since the values of XQ are the same for all the discontin-
uity fronts, there can be only periodic solutions in the
limit 2),-0. The period of these solutions is always
less than some xmax. Short waves, however, are estab-
lished only after specially chosen initial conditions..
There is a wide range of perturbations which lead to the
formation of long waves.

Asa rule, "contrasting" dissipative structures are
established by a self-adjustment process: A peak forms
in the distribution near the local perturbation; then
another peak forms beside it; and so forth. In the pre-
vious system, this case was typical of only subcritical
structures which arise under stringent conditions. Self-
adjustment has also been observed experimentally.5

In system (4.9), continuous solutions are possible in
the case Dy = 0. Their amplitudes are smaller than the

"contrasting" values, and these solutions are projected
onto region AB of the null isocline (Fig. 22). Stationary
states of this type, however, are unstable. Their pro-
jection lies in the incremental region of the phase plane
of the point system. This fact can also be explained on
the basis that these states are described completely by
a single homogeneous equation, and such dissipative
structures are unstable, as mentioned earlier.109

If the parameters of the system depend on a spatial
variable, then structures analogous to localized dissip-
ative structures (Fig. 21) can also be observed when all
components of the system are diffusing.2·13β The "ab-
sence of diffusion" of certain components is possible in
compartmentalized (discrete) systems, e.g., in biolog-
ical objects having a cellular structure. Furthermore,
in media of this type the equation ι;(#α)=0 has an inter-
val of values of xa as a solution.117; in other words, at
small values of Dy the aperiodic dissipative structures
turn out to be stable. Stable, localized dissipative
structures are apparently also possible in multicompon-
ent systems in the case of very nonlinear transport pro-
cesses, even for a nonvanishing mobility of the compon-
ents. For many "nonbiological" objects, the equation D,
= 0 should be understood in a limiting sense, and only
periodic "contrasting" dissipative structures should be
considered.

(d) Metastable dissipative structures

Up to this point we have been discussing the simplest
basic models of dissipative structures, which contain no
fewer than two kinetic variables and which have constant
diffusion coefficients. In the case in which the diffusion
coefficient or thermal conductivity itself varies with the
kinetic variables, even single-component systems ac-
quire completely different properties.

The possibility of self-organization was predicted the-
oretically by Samarskii, Kurdyumov, et ai.118·119 in dis-
sipative media which are described by the nonlinear
heat-conduction equations

^ r = a r ' + ^ - ( p r - ^ . r ) , (4.10)

where α, β, I, and m are constants, and τ is the tem-
perature.

Let us examine some of the predicted effects.2»

1. In the case l>m + l (the L mode in the terminology
of Refs. 118 and 119), the heat wavefront does not prop-
agate into the cold medium but instead forms a region of
a metastable heat-localization region, which contracts
over a finite time. In this region, the temperature and
the amount of heat can increase to infinity. Realistical-
ly, an upper bound would be imposed by either heat loss
or by the exhaustion of fuel. The reason for the heat
localization is the formation of a concave temperature
profile at the heat wavefront.

2. If the initial conditions are such that several meta-
stable-localization regions develop, these regions will
interact with each other. Then either one of the regions

'The case a = 0 was discussed previously by Zel'dovich, Kom-
paneets, and Barenblatt.1 2 0""2
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will survive, or a certain structure of these regions
will be established.

3. The dimension or the fundamental length L* of the
metastable region is predicted by the theory:

^j/Xr·-1"1. (4.1D

4. Metastable regions are also formed in two-dimen-
sional spatial regions; these regions are called "ther-
mal crystals" in Ref. 123. The shape of these crystals
has been determined by computer simulation.

Figure 23a shows the evolution of the metastable re-
gion and, for comparison, the behavior of the initial
thermal fluctuation in the case in which the condition I
>ra + l does not hold (Fig. 23b). It is important to note
that during the period in which the metastable region is
established (in the accentuation regime) gasdynamic ef-
fects are negligible. The equations thus ignore the dif-
fusion of the fuel and of the reaction products.

It is most likely that a prediction of these effects is
important for a study of the processes which occur in a
laser plasma, in cosmogony, and in fusion reactors.1 2 4

Using Prigogine's terminology,97·98 we can justifiably
call these metastable combusion regions "metastable
dissipative structures."

(e) Some comments and conclusions

The most important theoretical problem in the initial
stages of studying a new effect is to predict the proper-
ties of the objects in which the effect can be observed
and to predict the conditions for the occurrence of the
effect. Analysis of dynamic models like that in (I.I)
leads to the basic characteristics of the media in which
dissipative structures can be produced, and it leads to
an explanation of the experimental data. Let us briefly
examine the results.

In distributed two-component systems without mutual
diffusion, stationary dissipative structures can arise if
the corresponding point systems are either self-oscilla-
tory systems or trigger systems or potentially self-
excited oscillatory systems (i.e., if there is a limiting
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FIG. 23. Fronts of the combustion region In system (4.10)
(Refs. 118 and 119). a) Metastable self-focusing region (l>m

+ 1); b) propagation of a temperature front (I < m+ 1).

cycle for certain values of the kinetic coefficients). If
all the Dit are equal, then dissipative structures are
possible only in self-excited oscillatory trigger sys-
tems. In such media, dissipative structures compete
with the regime of in-phase self-excited oscillations,
and the range of parameters in which dissipative struc-
tures are stable is small in comparison with the range
corresponding to self-excited oscillation. Potentially
self-excited oscillatory systems are thus of particular
interest. In such systems, dissipative structures are
possible only if the diffusion coefficient of a nonauto-
catalytic variable (a variable for which dFt/Bx{ < 0) is
large. The number of media in which dissipative struc-
tures can be observed expands considerably if mutual
diffusion is taken into account. Let us consider an ex-
ample. The lumped system

has a single singularity, with positive coordinates. This
singularity is a stable point for any positive values of
the parameters. Nevertheless, in the distributed sys-
tem in (I.I) for any Dxy=Dyx< 0 there is a value Aa such
that at A >AC, stationary dissipative structures are cre-
ated. It is pertinent to recall here that the equalities
Dxy=Dyx = 0 are possible only if Dxx=Dyy (Ref. 125). In
the same monograph there are data from measurements
of the mutual diffusion coefficients in strong electrolytic
solutions. It turns out that in certain cases these coef-
ficients are comparable in magnitude to the coefficients
of self-diffusion.

There is a single distinction between systems with two
and with more variables with regard to dissipative
structures. The presence of a limiting cycle in a two-
component model indicates that at certainvalues of DH

there will be stationary solutions of the dissipative-
structure type. In the case of a "stringent" limiting
cycle, dissipative structures can be produced only in a
stringent case. Already among three-component models
we can find examples of systems with limiting cycles in
which no stationary dissipative-structure solutions ex-
ist for any values of Di{. Apart from this an analysis of
models more complicated than the basic models reveals
no qualitatively new properties of dissipative structures.

A natural extension of the dynamic theory of dissipa-
tive structures would be to study the fluctuations of var-
iables near critical points, e.g., at the critical length of
a system (Fig. 20). This problem has not yet been com-
pletely solved, but experience has been acquired in the
stochastic modeling of dissipative structures.7·1 2 6 Work
of this type reveals new properties of active systems
and is of assistance in pursuing the analogy between
transitions in nonequilibrium systems and phase transi-
tions in equilibrium systems.7·127 On the other hand,
stochastic modeling should establish the range of applic-
ability of the theory of dissipative structures for certain
biological objects which are characterized by extremely
low concentrations.126

The range of applications of the theory of dissipative
structures is growing steadily. New approaches to the
modeling of dissipative structures are also being devel-
oped. In Refs. 51 and 52, for example, the language of
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the theory of dynamic systems and of finite automatons
is combined in a description of the structure of a colony
of cells which are dividing and differentiating. Κ a pri-
ori conditions are incorporated in these models regard-
ing the switching of modes in the cell, then in the rep-
resentations proposed by Chernavskii and Ruygrok128 the
switching events during the differentiation of the cells
are consequences of the physical picture of the phase
space of the corresponding point system. In this model,
the point system can have both one and three stationary
states. It can thus be used to follow bifurcations of the
saddle-point type upon changes in the parameters. The
appearance of several states is interpreted in biological
terms as the appearance of an ability to differentiate.
The model thus makes it possible to study the mutual ef-
fects of two important processes: morphogenesis and
differentiation. The model dissipative structures and
processes in specific biological objects (in particular,
in hydra) have been compared by Belousov, Chernavskii,
and Dorfman.129·130 It is important to note that these
processes occur against the background of a lengthening
of the object. In this connection, it becomes particular-
ly important to study the bifurcations along the length of
the system. In particular, hysteresis transitions (Fig.
20) correspond to the fact that bud formation in hydra
begins when a certain length is reached.131 The proces-
ses associated with dissipative structures are apparent-
ly also important at other levels of organization of liv-
ing material. InRefs. 76 and 82, for example, the role

played by dissipative structures and guiding centers in
memory mechanisms is discussed.

Finally, we list some problems faced by the theory of
dissipative structures: (1) a detailed study of fluctua-
tions near critical points, (2) a study of dissipative
structures in systems with active transport and also in
systems in which the diffusion coefficients are strongly
dependent on the concentrations, (3) a search for the
stability conditions of dissipative structures with vari-
ous shapes in a plane and in a volume (as of the pres-
ent, only numerical results132 are available), and (4) a
study of the conditions for the existence of dissipative
structures in active systems with convection.30·133

CONCLUSION

We will conclude with Table ΠΙ, which lists the basic
sufficient conditions for the existence of various types
of autowave processes. In addition to the equations,
this table gives references to the literature and to fig-
ures which illustrate the conditions for the existence of
some basic model or other. The following notation is
used here: (1) xly x2, and x3 are constant parameters
of the point system, which are to be determined; (2) ^
and D22 are the concentration and diffusion coefficient of
the autocatalytic variable; (3) a point system of type Τ
is a trigger system, one of type 0 is a self-excited os-
cillatory system, one of PO is a potentially self-excited
oscillatory system, and one of type NO is a non-self-

TABLE ΙΠ. Summary of the characteristics of the autowave pro-
cesses which have been studied.

Type of autowave
proem

Diffusion
coefficient

Characteristics (type)
of point system Velocity

Ref-
er-
ence

1.Synchronized self-
excited ofcfllstioiu

2.D«ynchronizatioD
(quniitochaitic wives);

3· Wsvc propegitioii;

3.1 l»Uted
front

3.2. Traveling
pulses

4. Stable

centen:

4.1. Division of
wave-fronts
(echo)
4.2. Stabilization of
the starting region of
the wave

5. Standing waves

6. Dinipatjve
«ruc-
turcs:
6.1 Metas-
table

6.2. Quasihar-
monk

6.3. Contrast-
ing and
localized

ι > Χ ι

2 D > x 4

2 Dn

On » D,,

Ο, PO,

Τ, Fig. 4

Fig. 4,
= *>0

x,-nuU isocline of JV
sample. Figs. 7,8, 9.

T, O, PO; Fig. 10

O, PO; Figs. 15, 16

O, PO

>2]/"icD

SA, S7

17, 77

», 41

8, 68,
I·

υ { φ ί ) . .
Dij φ 0 (1 φ Ι) Ο, ΡΟ , NO

2 D = ax>

Dl, Φ o'
T, O, PO

, Ο, PO-, NO

j[2-null isocline of Ν
imple, Figs. 21 and 22

is, 7·

us,
119,
1SS
,«.

M-UI,
1SS
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excited oscillatory system (it has a single stable singu-
larity, which is stable for any values of the param-
eters).

Finally, we would like to pose the following question:
Are the basic models discussed here sufficiently gener-
al? In other words, is it possible to use a single model
to describe and study the entire range of observed ef-
fects? This question should be answered in the affirm-
ative. For example, the basic model in (2.8) for the
Belousov-Zhabotinskii reactions describes all possible
regimes. The model is switched from one regime to
another (from a guiding center to a dissipative structure
ture, from synchronous self-excited oscillations to a
guiding center, and so forth) through a variation of the
coefficients in the corresponding equations. This flexi-
bility of the basic models can be adopted as a basic
measure of their quality and suitability. Furthermore,
there is hope that these models can be used to construct
a general qualitative theory for the autowave phenomena
discussed above.

As Khokhlov134 has shown so well, the modern theory
of nonlinear wave processes is intimately related to all
the scientific work by Leonid Isaakovich Mandel'shtam,
a pioneer in the physics of nonlinear oscillations. In
particular, the emerging qualitative theory of autowave
pehnomena is based entirely on the qualitative theory of
nonlinear lumped systems which was developed by
Mandel'shtam's pupil A. A. Andronov, and by other
eminent Soviet scientists.

We wish to thank D. S. Chernavskii, at whose initia-
tive this review was undertaken, for many useful dis-
cussions.
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