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INTRODUCTION

Fate has been kind indeed to the scientific ideas of
Leonid Isaakovich Mandel'shtam. This pertains in par-
ticular to his ideas in the field of nonlinear oscillations
and one of its newly emerged subdivisions—the theory
of nonlinear waves (or, when one wishes to stress the
informality of the approach, the physics of nonlinear
waves). Mandel'shtam obtained classical results in
practically all areas of oscillation and wave theory, re-
sults that are still cited in original scientific papers
and not only in textbooks and works on the history of
science. Mandel'shtam nurtured a "nonlinear school of
physicists,"1 and his students and the students of his
students have to their credit many fundamental results
in nonlinear optics, nonlinear plasma theory, radio-
physics, and other nonlinear sciences. But this was not
the only role that Mandel'shtam had in the development
of nonlinear-oscillation theory. Perhaps no less im-
portant than his personal scientific contribution and his
preparation of students for the development of this the-

ory and then, thirty years later, nonlinear-wave theory
as well, was Mandel'shtam's original "oscillatory" line
of thought, which he demonstrated in his papers and
promoted all his life in lectures and informal visits. It
is, of course, very difficult to present a brief discus-
sion of modern oscillation and wave theory in such a
way that Mandel'shtam's imprint on this most modern
of sciences will be evident not only to the authors, but
also to the reader: "On the one hand, the ability to en-
compass the complex variety of phenomena from a sin-
gle perspective, to recognize in them with absolute
clarity features of similarity and difference, and to re-
produce everything that is significant in a simple and
lucid model; on the other hand, acute interest in the con-
crete individuality of the physical phenomenon... ."2 In
this paper, we undertake the specific attempt to view
the theory of nonlinear oscillations and waves in its
most contemporary form through Mandel'shtam's eyes.

In the words of Mandel'shtam himself, the theory of
oscillations and waves is a science with its own unique
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approach, which is based on the construction and study
of basic elementary oscillatory or wave models, has its
own "universal" language of oscillations, which it uses
to describe the basic oscillatory phenomena (resonance,
modulation, synchronization, scattering, etc.), and has
at its disposal rather general analytic and qualitative
methods that are adapted for analysis of these pheno-
mena. Knowledge of the basic models and phenomena
results in a special oscillatory intuition with whose aid
for example, "dark areas in optics are illuminated, as
by a searchlight, by study of oscillations in mechan-
ics."3 The effort to understand the mechanism of a
phenomenon using the simplest possible model, reex-
amination of this model from all aspects until it is fully
understood with the object of including it in the general
arsenal of oscillatory conceptions, all are highly char-
acteristic of Mandel'shtam's scientific and teaching ac-
tivity. Only after an effect had been observed and was
fully comprehended would he go from the basic elemen-
tary model to a concrete physical theory with all its
inherent detail.

Our paper is therefore devoted to basic models and
phenomena of the contemporary theory of nonlinear os-
cillations and waves. What are the present-day fea-
tures of this theory?

The theory of nonlinear oscillations was capable of
solving many problems and incorporated much know-
ledge even in Mandel'shtam's time. Nonlinear oscil-
lations had been fully investigated, coupled oscillations
of these oscillators had been analyzed, Andronov and
van der Pol had done most of the work on self-oscilla-
tion theory, the phenomena of synchronization and
competition had been discovered, and Vitt had even at-
tempted construction of a theory of self-oscillations of
distributed systems. In Mandel'shtam's time, however,
the theory of nonlinear oscillations was, with a few ex-
ceptions, a theory of systems with a small number of
degrees of freedom, systems that exhibited simple per-
iodic or quasiperiodic behavior. The modern theory,
on the other hand, is characterized by "lively interest"
in other extreme cases—it deals for the most part with
strongly nonlinear systems, investigates complex be-
havior (including randomization) in simple dynamic sys-
tems, and analyzes the response of a large number of
nonlinear oscillators to an external field, i.e., investi-
gates the behavior of ensembles. To make these pres-
ent-day aspects more evident, we begin each part of
the paper, which is subdivided into sections on "Oscil-
lators," "Self-oscillations," and "Modulation," with a
discussion of the classical models and effects. Where-
ever possible, the models of oscillation and wave the-
ory are set forth in parallel.

In speaking of the closeness of the nonlinear-oscil-
lation and wave theories as seen historically, we should
note that comparatively recently (during the 1960's),
the theory of nonlinear waves basically was still relying
heavily on the already accumulated experience of clas-
sical oscillation theory and developing in much the same
way as nonlinear-oscillation theory did during the
1930's. Characteristically, many results of that time
involve various methods of passing over to solutions
described by differential equations in ordinary phase

space. Here we refer, for example, to analysis of
stationary waves—solitons, shock waves, etc., the in-
teraction of a large number of waves, but in a narrow
spectral interval—modulation waves and some others.

This was a time of very rapid development of nonlin-
ear-wave theory—new effects were constantly being
discovered and "synthesized" by broadening the range
of activity, and exact and approximate methods were
being evolved. It would perhaps not even be an exag-
geration to say that this was a time in which results
could be obtained with comparative ease. By the end
of this period, a rather high level of understanding of
the experimental results had already been attained, in-
tuition had been developed, and it had become possible
to explain most of the nonlinear phenomena. However,
it must be stressed that nothing had as yet been con-
structed similar to the rigorous qualitative theory that
had been produced by Poincare and applied by Man-
del'shtam and his students to oscillatory systems with
a small number of degrees of freedom. It may prove
to be totally impossible to derive such a theory because
of insurmountable mathematical difficulties. So what
can we count on? Progress in solution of individual
classes of nonstationary problems with the aid of exact
methods, extensive use of computer experiments and
acquisition of rigorous results with the aid of comput-
ers, physical experiments, and the use of approximate
methods give hope for construction of a sufficiently
complete theory of nonlinear waves, also qualitative,
but this time in a different sense—in the sense of com-
bination of sufficiently lucid and simple concepts that
enable us to select transparent models for a very broad
class of phenomena and to determine the most adequate
quantitative-analysis method.

When we speak of the analogies between oscillations
and waves, we should note their great profundity and
diversity. It is sufficient to mention the well-known
analogy between spatial wave beats in stationary inter-
action in space and the time beats of oscillations. Just
as far-reaching is the analogy with oscillations of waves
interacting in time when their spatial structure is given.
There are also less trivial analogies—those between
nonstationary wave effects (for example, periodic mod-
ulation waves) and the interactions of oscillations in
ensembles of coupled nonlinear oscillators (recovery,
quasiperiodicity, etc.). In discussing these analogies,
however, the question arises as to why and up to what
point can a finite-dimensional (or, more precisely,
one of a small number of dimensions) system be juxta-
posed to a wave (distributed) system, i.e., when can
the problem be reduced to an analysis of a phase space
with a small number of dimensions?

The answer to this question, which is now almost ob-
vious, became clear essentially by the beginning of the
1960's,8·32 when nonlinear wave processes were anal-
yzed and compared in two extreme "cases"—in media
with strong dispersion and small nonlinearity and in
nonlinear media with weak dispersion. For example,
in propagation of a wave in a compressible gas or on
the surface of shallow water (no dispersion), the crest
of the wave will move faster than its base, the wave
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will be distorted continuously, and at a certain time it
will break—its profile must become nonunique. This
will happen with a wave of any finite amplitude (i.e.,
even with small nonlinearity). But such a process can
no longer be described by a finite-dimensional model.
It is convenient to explain this in the highly descriptive
spectral language. In a medium without dispersion,
small perturbations of all frequencies have the same
phase velocity. And therefore all harmonics, even weak
ones that appear as a result of nonlinearity, are in res-
onance with the main wave (synchronism) and, are ef-
fectively excited by it. Thus, if we wished to describe
the process with the aid of a set of harmonics, we would
find it necessary to consider an infinite number of them.

But if in the case of weak nonlinearity the dispersion
is large (as, for example, in the case of media used in
nonlinear optics), only a few waves may turn out to be
in synchronism—time and space resonance —and direct
analogies can be drawn with processes in oscillatory
systems with a small number of degrees of freedom.

It is noteworthy that Mandel'shtam and his students
and colleagues actually advanced these very modern
conceptions as to the influence of dispersion (the non-
equidistant nature of the spectrum for bounded sys-
tems) on the nature of the processes that take place in
the nonlinear distributed system already in the mid-
1930's. They were, it is true, concerned with bounded
distributed systems with lumped nonlinearities, but this
is not very fundamental here. This problem received
quite a bit of attention in a paper that they presented to
the Congress of the International Radio Union (1935)
under the title "New Investigations of Nonlinear Sys-
tems." In particular, concerning systems with strong
dispersion, in which the distribution of "overtones is
not karmonic"l) this paper states that: "In this case
the form of the stationary oscillations may be close to
sinusoidal. With the aid of a theory analogous to the
small parameter theory for systems with a finite num-
ber of degrees of freedom we can calculate the ampli-
tude, resolve the stability question, etc " 4 In the

other limiting case, that of no dispersion, i.e., when
there is a "harmonic overtone distribution" (a problem
investigated by A. A. Vitt in connection with his analysis
of the excitation of a violin string by a bow)—"station-
ary oscillations are always sharply nonsinusoidal."* It
is also observed that in distributed electronic (diode)
self-excited oscillators, "the exciting forces are small
and inertia becomes significant, and this is why the
oscillations are of nearly sinusoidal form."4 There is
no doubt that if powerful coherent-radiation sources had
been available at the time and that a need had arisen to
solve the corresponding nonlinear wave problems, there
would have been someone available to take these prob-
lems in hand!

1. OSCILLATORS

a) The marble in the chute

Considering the nonlinear oscillatory circuit and the
marble in the chute (Fig. 1) as his prime examples of

a b

FIG. 1. Nonlinear oscillators.

nonlinear oscillatory systems, Mandel'shtam notes in
his "Lectures on Oscillations" (1930-1932) that it is
reasonable "to imagine the entire qualitative picture of
the motions on the basis of the differential equation it-
self, without solving it."8 For the nonlinear oscillator
(NO)—a conservative nonlinear system with one degree
of freedom—this qualitative picture emerges complete
from the form of its phase portrait (Fig. 2). The mo-
tion of the NO is fully determined by its initial energy.
At low energies it describes small, harmonic oscilla-
tions. As the energy rises, the oscillations depart far-
ther from harmonic—most of the time in the periodic
motion is spent on the "slow" segments, on which the
marble rolls up to the top of the hump (Fig. la), and,
finally, at an initial energy equal to E0 = mgh, the mo-
tion of the marble will no longer be periodic at all. On
the phase plane (see Fig. 2), it is represented by the
separatrix passing from one saddle point to the other.
Thus, the motion of the NO is nonisochronous—the fre-
quency of the oscillations depends on their amplitude
(or energy). For motions not too close to the separa-
trix we can say that ω = ω(Α2).

To establish that a given dynamic system whose phase
space is a plane belongs to the class of NO, i.e., to
show that it is conservative, is by no means always as
simple as, for example, in the case of the NO described
by the equation

•«"-«(I—4-u) = 0, (l.D

whose phase plane appears in Fig. 2b. Actually, the in-
tegral of (1.1) is obvious: it is the energy integral w2

- M2 + M3/3 = const. Then the system

« 2 = — «2(^2 — (1.2)

which describes the ecological problem of the interac-
tion between two biological forms—herbivores and
carnivores—, appears at first glance to be nonconserv-
ative, and the integral found by Vitt,5 +p1u2 -v2

- vt lnw2 = const, looks nontrivial enough (see Fig. 2c
for the phase portrait of this NO).

We draw attention to a singular solution of (1.1),
which corresponds in the phase plane (see Fig. 2b) to
the separatrix loop, a trajectory that is doubly asymp-
totic to point O. At the moment, interest in such solu-
tions is very high in nonlinear-wave theory. For ex-
ample, waves on the surface of "shallow water" can be

' 'i.e., the natural frequencies of the system are not multiples
of one another.

2 )lh his next lecture on the same subject, Mandel'shtam notes:
"The most difficult thing for the physicist Is to obtain a mea-
sure of the required mathematical rigor. It would be more
correct to say that he must know how to determine this mea-
sure" (Lectures on Oscillations, 1972, p. 73.
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FIG. 2. Phase portraits of typical NO.

described approximately by the Korteweg-de Vries
equation, which has become popular during the last 15
years (although it was discovered back in 1895):

^Uxxx = 0. (1.3)

If interest is limited to waves traveling at constant vel-
ocity and not undergoing profile changes, w = u(x - Vt)
{stationary waves), Eq. (1.3) with V = V0 + u yields the
equation of the NO whose phase plane is shown in Fig.
2b. In this case, the doubly asymptotic path corre-
sponds to a soliton or solitary wave, which drops off
to zero at plus and minus infinity. Such essentially
nonsinusoidal waves were quite familiar to mathemati-
cians back at the beginning of the century, but they have
attracted the attention of physicists only in recent dec-
ades.

b) The spring pendulum and nonlinear optics

In 1931, following the appearance of Fermi's paper6

on the Raman spectra of the CO2 molecule, which dis-
cussed the internal resonances of this molecule, Man-
del'shtam suggested to A. A. Vitt and G. S. Gorelik that
they investigate resonant-interaction effects of nonlin-
early coupled oscillations in a surpassingly simple
model—the spring pendulum (Fig. 3a),7 whose equa-
tions, neglecting friction, have the form

(1.4)

«2 + "f «2= ρ ( "f- "l«2 + 2«!U2

It was found on solution by the averaging method that
when the parameter ratio k/m ~ ±g/l, i.e., when wTert

~ 2a>ang, energy is pumped periodically from angular to
vertical oscillations and vice versa, an effect that they
also confirmed experimentally.7

Thirty years later, solving the problem of the sta-

FIG. 4. Phase portraits of an NO describing energy exchange
between harmonics in a system with quadratic nonlinearity.
δ is the detuning, a) <5 = 0; b) |δ|/2σιΛ0<1; c) |ό |/2σ,Λ0>1.

tionary nonlinear operating regime of a parametric
traveling-wave amplifier,31 R. V. Khokhlov, a second-
generation student of Mandel'shtam, found that in prop-
agation along the amplifier, the pump wave 2o)0 param-
etrically amplifies the initial wave ω 0 , transferring al-
most all its energy to it.8 The reverse occurs in fur-
thur propagation—the strong wave ω0 generates a sec-
ond harmonic and then everything is repeated from the
beginning, i.e., we observe exactly the same pheno-
menon of periodic energy exchange between harmonics
that was calculated and observed by Vitt and Gorelik
(except in space rather than time) (see Fig. 3b). It is
noteworthy that in the same year, 1961, second-har-
monic generation was observed in propagation of a light
wave from a ruby laser in optically transparent non-
linear crystals (Franken10). Together with Khokhlov's
work, these experiments of Franken are regarded with
complete justification as the beginnings of modern non-
linear optics.

Assuming weak nonlinearity, the truncated (averaged)
equations for the amplitudes and phases of the ω and 2ω
oscillators interacting in time or in space are written
in the form8

(1.5)

Φ=-(2σ,Λ2-σ24Μ<:ο3φ-δ

(Φ =2ψ1 - ψ2 - δί, δ is the detuning from exact reso-
nance). These equations are easily reduced to an NO
equation by applying the energy integral v2A\{t)

a1Al and introducing the new vari-
ables X=A2sin$, Y=A2 cos4>. Figure 4 shows the phase
portraits of the resulting oscillator for various values
of the detuning δ. It is seen that under the assumptions
made as to the smallness of the nonlinearity (or, which
is the same thing, smallness of the initial excitation en-
ergies), a system of two nonlinearly coupled oscillators
demonstrates only very simple, quasiperiodic motions.
From the physical point of view, the differences be-
tween different motions of this kind (see Fig. 4) con-
sist merely in unequal depths of the energy beats be-
tween oscillators and the unequal periods of these beats.
As we shall see, this simple behavior is also inherent

FIG. 3. Spring pendulum; periodic energy exchange between
angular and vertical oscillations.

3 ) Such amplifiers were suggested in 1958 by P. Tien and
H. Suhl.9
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in many nonlinear systems that are at first glance very
complex.

Generation of subharmonics is a degenerate case of
the interaction of three resonantly coupled oscillators
or waves:

ω, = ω,|+ ω,, k (aj) = k (ω() + k (ω,), (1.6)

where ί{ω) characterizes the dispersion law of the
waves. With reference to the quantum-mechanical an-
alogy, this process is often called decay [the conditions
for frequency and wave-number resonance (1.6) can be
regarded as energy and momentum conservation laws
for the elementary event of merging of a pair of parti-
cles or decay of a single particle into a pair]. This
process, which corresponds to the first zone of param-
etric instability, was first investigated for waves by
Tien and Suhl, who proposed a distributed ferrite pa-
rametric amplifier. Another wave process, which cor-
responds to the second zone of parametric instability,
is now also very well known; it is the decay of a pair of
photons

2ci>, = o>i + ω,, 2k (ω,) = k, (ω,) + k, (ω,), (1.7)

in the same state. Processes of the type (1.7) generally
become significant when simple decays (1.6) are for-
bidden (because the synchronism condition is not satis-
fied). It is precisely this situation that we have, for ex-
ample, for waves on the surface of a deep liquid11 and
for waves in a plasma that have a nondecay dispersion
law.12

It is possible to say a great deal concerning the prop-
erties of resonant oscillator interaction on the basis of
the quantum analogy without really solving the problem.
For example, quasiparticles can fuse only "if there is
something to fuse with," i.e., if the number n3 of quanta
<o3 [or 2M3 for the process (1.7)] produced in the merg-
ing process is exactly equal to the smaller of the quan-
tum numbers w, or n2 that existed at the initial time.
The difference «i(0) - »2(0) will, however, remain un-
used and, therefore, will be preserved for all t: ny{t)
- « 2(0 = const. It is also obvious that the sum of the
number of quanta n3 that have already been produced by
time t and the number of quanta n2 that have not been
consumed by this time must also be constant, i.e.,
Μ3(ί) + η2(ί) = const. In wave theory, where η 3 ~|α^ | 2 , 7 6

these quantum-number conservation laws are usually
referred to as the Manley-Rowe relations. Since quan-
tum oscillators do not change quantum numbers on slow
variation of the system parameters, the number of
quanta is an adiabatic invariant.™ The adiabatic invari-
ant is violated if the oscillator transfers from one level
to another, something that may result, for example,
from resonant absorption of energy of an external field
of frequency Ω by the oscillator. Under suitable condi-
tions, this transfer, i.e., violation of adiabatic invari-
ance, can occur even at high multiplicities of resonance:
U) = /wfi, where w » l , i.e., when the external field is
varying very slowly. Applied to the classical oscillator,
this result concerning the violation of the adiabatic in-
variant due to resonance was first obtained by Man-
del' shtam and his students Andronov and Leontovich
back in 1928.8"

FIG. 5. Traces of paths on secant plane u t = 0 of phase space
of system (1.8) at μ=1. The initial energy £ 0 <l/12.

In decays of the type (1.6) or (1.7), as in subharmonic
generation, the response to the pump ω3 becomes sig-
nificant as the amplitudes of the amplified waves (oscil-
lators) Ui and o>2 increase, and the decay process gives
way to a fusion process. All this is then repeated—in
time for waves of specified spatial structure or in space
for stationary harmonic waves. Thus, even a system of
three weakly nonlinear oscillators also exhibits only
simple periodic (or quasiperiodic) behavior.

c) Complex motions of a simple system

It might appear on the basis of the above examples
that one could assert that a system of two (or even
three) coupled oscillators is a very simple system in
the sense that it demonstrates no "unforeseen" behav-
ior. However, we shall not jump to conclusions, but
instead consider how the system of two nonlinear cou-
pled oscillators

(1.8)

which was investigated comparatively recently (in
196413) not by averaging methods, but by detailed com-
puter modeling, will behave.4* It is just as simple in
form as (1.4). It is easily seen with the aid of the same
averaging method that when μ « 1 the oscillators exhibit
simple, quasiperiodic behavior. This will also be the
case when μ is not small (μ ~ 1) but the initial excitation
energies are [see Fig. 5, which shows the cross section
of the trajectories cut by the plane u1 = 0 in the three-
dimensional (ul, u2, ii2) phase space of (1.8); this space
becomes three-dimensional if the energy integral
- ( | + u2)u\ + ( | - ui/Z)u\ + |(M? + M|) = Ε is considered (at
μ = 1)]. We see that all the paths lie, as it were, on
smooth surfaces (toruses), i.e., the motion of the sys-
tems is conditionally periodic for arbitrary initial con-
ditions. System (1.8) is, after all, as simple as it ap-
peared! But let us consider what will happen if we in-
crease the oscillation energy of the oscillators. First,
the motion of the second oscillator will become strongly
nonlinear—motions near the separatrix of the single
NO will appear (compare Fig. 2b), and because of the
presence of the "external" force u\(t) we can no longer
say whether they will remain quasiperiodic or whether

4>Thts system is interesting for astrophysics: it models the
behavior of a star in the field of a galaxy with the potential
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FIG. 6. Complex motions of a system of two NO (1.8). a)
£ 0 = 0.125; b) £„= 0.167.

the type of motion will change from finite within the
separatrix to nonfinite outside of it.

Figure 6 shows results of numerical experiments with
two coupled NO (1.8) with initial energies E0>l/12. We
see that if the initial energy exceeds Eo = 1/12, which
still corresponds to simple motions, by only 0.004, the
phase path no longer winds around any surface, but ap-
pears to wander at random in a bounded region of phase
space! As Eo increases further, the region occupied by
the random motions becomes broader and that occupied
by simple motions contracts (see Fig. 6b). Thus, the
motion of two coupled NO in a simple model may be
very complex.

What is the source of this complexity? It is this ques-
tion that we shall now attempt to answer by examining a
model simpler than (1.8)—an NO in a periodic field.

d) Oscillator in a pulsating potential well

In our coupled NO model we shall assume that the mo-
tion of one of the oscillators (MJ is given and harmonic:

u—u + u* =μβίηί. (1.9)

When μ = 0 we know everything about this oscillator (see
Fig. 2b). Let us examine its behavior if μ « 1 . Physi-
cally, it appears obvious that a qualitative difference
between nonautonomous and autonomous motions will
appear if, under the action of an external force, the
operator enters regions with different behaviors (inside
or outside of the separatrix on the phase plane) at dif-
ferent times. This is easiest to see if the sinewave in
(1.9) is replaced by a periodic sequence of square puls-
es—twice in every period, the phase portrait of Fig. 2b
shifts to the left and then to the right by an amount of
the order of μ. For low-amplitude oscillations (near
the bottom of the well), these pulsations will go almost
unnoticed—the motions will remain simple. On the
other hand, motions near the separatrix may prove to
be complex.14 This complexity results from the exis-
tence, in the space of system (1.9), of the homoclinic
structure discovered by Poincare in connection with a
study of the three-body problem back in 1889.3 A com-
plete description of the paths within this structure was
given comparatively recently.49·69'90 It was found, in
particular that this structure contains a denumerable
set of unstable (saddle) periodic paths and that it is be-

FIG. 7. Examples of saddle-point periodic paths: a) two saddle
cycles; b) example of homoelinic path.

tween these paths (with a broad range of initial condi-
tions) that the "oscillator" wanders (Fig. 7).

e) Nonlinear Landau damping and Landau amplification

The problem of the behavior of a large number of os-
cillators, for example oscillators in the field of a peri-
odic wave, is a very old one. A theory of the dispersion
of light waves based on a model of oscillators embedded
in an elastic ether had appeared even before Maxwell.61

Then there appeared the classical electron theory,17 the
theory of sound-wave dispersion in gases and the dis-
persion of electromagnetic waves in the ionosphere.18

Mandel'shtam was also greatly interested in these prob-
lems; in particular, in 1941 he published a paper on the
refractive indices of media with bound and free elec-
trons. But all these are problems of the behavior of an
ensemble of linear oscillators. What are the conse-
quences of their nonlinearity? If even two coupled NO
can behave in a highly complex fashion, how will an en-
semble of these oscillators behave?

The first problems of this kind appeared about 20
years ago in electronics19 and plasma physics, specifi-
cally in connection with problems in acceleration and
heating of charged particles. Let us consider such a
problem in the case of an electron flux whose electron
velocity distribution function is represented in Fig. 8.
In a coordinate system bound to the sinusoidal wave
E(x,t)=(p0 cos(wt-kx) all particles can be classified
as trapped or transiting. Those whose velocities lie in
the range w/fe±Ve(po/m do not have enough energy to
overcome the potential barrier e<p0, and they oscillate
in the "well" of the wave, while those whose velocities
are outside of this range take practically no notice of
the wave (Fig. 9). Each t-th electron behaves like a
pendulum in the field of the sinusoidal wave:

Ui-f ω;sin «i = 0, i = 1, 2, . . . , Λ", (1,10)

Oscillations of the pendulum correspond to trapped
electrons and rotations to transiting electrons (see Fig.
9). Thus, the particles in the field of the wave consti-
tute an ensemble of identical nonlinear oscillators that
differ only in the initial values of their energies. How

5 ) This structure appears In three-dimensional space In the
neighborhood of a homoclinic path (see Fig. 7b).

6)The problem of light propagation in such a medium was
solved by Rayleigh in 1869 as the answer to an examination
question put to him by Maxwell (see Eef. 16).
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FIG. 8. Electron velocity distribution functions: a) appear-
ance of oscillations tn the field of a periodic longitudinal wave;
b) formation of plateau.

will the ensemble behave in time? Since the interaction
of the oscillators has not yet been taken into account,
this question is answered quite simply on inspecting the
motion of the oscillators on the phase plane. If
9//9ι>|ν = ω/ι, <0, then at t=0 the greater portion of the
trapped particles will be in the lower halves of the
"cat's eyes" on the phase plane (Fig. 10). With time,
the nonisochronism of the oscillators will change this
region into a twisted spiral in which the number of turns
will increase continuously. Therefore, the number of
particles with different velocities will change continu-
ously and the distribution function/(V) will begin to
pulsate in the interval Δυ, becoming more and more
dissected (see Fig. 8). If we wait long enough, all the
oscillators should reassemble in the initial phase vol-
ume, since the motion of a conservative system (1.10)
of Ν oscillators is reversible. Physically, however, it
is obvious that no miracle will occur no matter how
long we wait: the particles will mix as a result of their
interaction, no matter how weak, with one another and
with the waves, i.e., they will uniformly fill the entire
region inside the separatrix and a plateau will form on
the distribution curve. Since the average particle kine-
tic energy then increases, the sinusoidal wave in which
the particles are oscillating loses part of its energy in
accelerating them. This loss of energy by a mono-
chromatic wave is often referred to as nonlinear Lan-
dau damping.20

If the particles have a nonequilibrium velocity dis-
tribution function, as, for example, in an electron
beam-plasma system, the reverse process is also pos-
sible and a wave of finite amplitude may be amplified.21

When the phase velocity of the wave "gets onto" the left
slope of the nonequilibrium distribution curve (Fig. 11),
the wave, building up as a result of nonlinear Landau
amplification (there are fewer slow particles to take
energy from the wave than there are fast ones to yield
it), will increase in amplitude and will capture transit-

FIG. 10. Evolution of phase volume in an ensemble of nonin-
teractlng oscillator electrons.

ing particles. However, this process of amplification
will obviously continue only until the numbers of fast
and slow particles on the left slope oif(V) are equal—
until the plateau forms and the wave becomes nonlinear
and stationary (quasilinear relaxation).

f) Chains of coupled nonlinear oscillators

These chains are an example of an ensemble of
strongly interacting NO with ordered structure. In-
terest in the behavior of such ensembles appeared al-
ready at the beginning of the century in connection with
the problem of the thermal conductivity and heat cap-
acity of crystalline solids. It is usually assumed in an-
alysis of thermal fluctuations in crystals that an ener-
gy kT in the classical theory or hv/{ehvfkT -1) in the
quantum theory is associated with each normal oscil-
lation (mode). But why is this universal distribution of
energy over the degrees of freedom established for ar-
bitrary initial conditions? How does thermalization oc-
cur? These were troublesome questions for everyone
interested in the theory of heat capacity and, of course,
for L. I. Mandel'shtam. The possibility of thermaliza-
tion was naturally related to the nonlinearity of the os-
cillators. However, the first attempt to confirm the
correctness of this general viewpoint by direct numeri-
cal computation (experiment) was not undertaken until
1952 by Fermi in collaboration with Pasta and Ulam.
They used a computer to investigate the behavior of a
chain of 64 nonlinearly coupled oscillators:

u,)"-(«i-Ui-i)"], i = l , 2 64,

(1.11)
where the exponent w of the nonlinearity was equal to
two or three, and observed features in the behavior of
the system "that surprised us from the very outset."22

The system was not becoming thermalized! Instead,
they first observed transfer of energy from the first
strongly excited mode to higher modes, but then all
the energy (to within 1%) was again collected in the

FIG. 9. Phase portrait of NO describing motions of trapped
and transiting particles tn the field of a wave.

TV.

FIG. 11. Electron velo-
city distribution tn a plas-
ma-beam system.
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FIG. 12. Dispersion law
for waves in a one-dimen-
sional chain.

first mode—the chain exhibited simple quasiperiodic
behavior. Thus, it became clear that if thermalization
is possible in chains of the type (1.11), its time is
anomalously large. This "insubordination" of chain
(1.11) to the prevailing conceptions was called the Fer-
mi-Pasta-Ulam paradox. The key to this paradox, i.e.,
the answer to the question as to why such a complex
system (and computer experiments were performed
later with as many as 250 oscillators) exhibits only
simple behavior, was found comparatively recently (in
196523). It developed that owing to a very unlikely com-
bination of circumstances, chains of the type (1.11)
were closely similar to fully integrable systems—mi-
nute "islands" in the space of all dynamic systems."
The fact that only simple behavior is possible in a fully
integrable system follows clearly from its reducibility
(using N- 2 of the Ν integrals) to the phase plane of an
NO, where all finite motions are periodic or lead to
equilibrium. This is indeed an irony of fate: even two
coupled NO can behave stochastically at a sufficiently
high excitation energy, but here the entire chain sud-
denly becomes a nearly integrable system.

As we have seen, to make evident full integrability is
not a simple matter even for a second-order system
(when phase space is a plane), and it is the more dif-
ficult for systems of the nonlinear chain type. We now
know, in particular, that a chain with an exponentially
decreasing interaction potential is also fully integrable;
this is the Tod chain:

un = exp («„+! — un) — exp (un — un-i) (1.12)

Unfortunately, there are no a priori integrability cri-
teria for such systems. But now we can answer the
question as to why an increase in the number of oscilla-
tors in the chain has practically no influence on the na-
ture of its behavior. Figure 12 shows the dispersion
characteristic of a one-dimensional chain. The number
of particles determines only the density of the points
forming this characteristic (i.e., the number of normal
oscillations of the chain), and has no effect at all on the
shape of the curve—the type of dispersion remains un-
changed. It is obvious that only the recovery time will
increase on excitation of the first mode in a longer

7)Unfortunately, we are unable to supply further details here,
but despite the "low power" of the set of integrable systems,
they play an exceptionally important role in the physics of
nonlinear waves—both as specific examples from which cer-
tain general mechanisms of nonlinear phenomena can be sur-
mised and as "standard" systems on the basis of whose
known solutions it is possible to construct approximate solu-
tions of "similar" nonintegrable systems (see Sec. 3).

'WW
ΆΑΑΑ-

FIG. 13. Periodic evolu-
tion of nonlinear waves in
LC networks.

•-ΛΛΛΛ
•ΛΛ/VV
chain—a longer time is required for distribution of the
initial energy over the larger number of normal oscil-
lators, but the nature of the energy exchange between
modes will not change. Nor will it change if we replace
an infinite quadratic chain with a continuous medium
having quadratic nonlinearity and a suitable dispersion
law (see Fig. 1281):

«II — " * * — ("*)*« — = 0. (1.13)

It was recently shown24 that with periodic boundary con-
ditions, this equation has an infinite set of independent
integrals of motion, i.e., the necessary condition for
full integrability is satisfied, although it has not yet
been possible to prove full integrability. This has been
possible (with arbitrary boundary conditions) for the
single-wave analog of (1.13)—the Korteweg-de Vries
(KDV) equation [see (1.3)]. The modified KDV equation
corresponding to chain (1.11) with cubic nonlinearity is
also found to be a fully integrable system:

ί ί , + Λ Ι + β«,« = 0. (1.14)

Even with the mixed nonlinearity (Q^M +a2u
2)ux , the

KDV equation was found to be fully integrable.

Figure 13 shows the results of physical experiments
with nonlinear LC networks that are described approxi-
mately by Eq. (1.3) or (1.14). Under sinewave excita-
tion at the boundary, there was almost complete
restoration along the network: the sinewave was trans-
formed into a periodic sequence of solitons, i.e., a
large number of harmonic oscillators was excited and
the solitons when reverted to the sinusoid—all harm-
onics returned their energy to the first.

Apparently the integrable systems form a discrete
set in the system space, and it is quite simple to "spoil"
an integrable system by transforming it into a system
with complex or stochastic behavior—it is only neces-
sary to "jiggle" the dispersion law or the nonlinearity.
If, for example, the dispersion law in (1.14) is made
steeper, if uxxx is replaced by uXXXIX , the stochastic

8 )H we substitute a continuous "nonlinear string" without dis-
persion for the chain, we arrive at a curious variant of the
"ultraviolet catastrophe": because of the unboundedness and
equidistant property of the normal oscillator-mode spectrum
of this string, the initial energy stored in a finite number of
modes will move continuously upward through the spectrum,
and there can be no periodic exchange of energy between
modes.
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FIG. 14. Multisoliton solutions in nonlinear networks:
numerical experiment; b) physical experiment.

a)

property is observed in the resulting new one-dimen-
sional medium even in the class of stationary waves
Μ = u( | =x - Vt). Such waves are described by the equa-
tion

"u + afi — Vu + u1 = 0. (1.15)

It has been shown26 that there is a region in the phase
space of this NO with complex behavior (homoclinic
structure). Figure 14a shows "numerical solutions of
(1.15) and Fig. 14b oscillograms of similar waves that
were observed in a nonlinear LC network with an equi-
valent circuit as shown in Fig. 15.

g) Solitons as particles

It would appear that solitons themselves, being rather
complex formations, and soliton periodic lattices
(cnoidal waves) should behave in very complex fashion
on interacting with one another. However, to judge
from numerous physical and numerical experiments,
this impression is not always accurate. To the con-
trary, solitons often behave surprisingly simply when
they interact: they are repelled, attracted, or oscillate
relative to one another (Fig. 16) just like classical par-
ticles! It was recently established that this superficial
analogy turns out to be quite a deep one with respect to
weakly interacting solitons (or cnoidal waves). If the
velocity difference (or, what is the same thing, the en-
ergy difference) between the solitons is small and the
distance between their maxima remains Jarge compared
to their effective width throughout the entire process,
their interaction is analogous in the literal sense to the
interaction of particles and is described by Newton's
equations. A soliton in the tail field of another soliton
behaves like a marble in a chute. For example, for a
pair of solitions we obtain the equation27

0, (1.16)
it'

•—v'gf(v, u) = 0,

where u is the distance between the solition maxima,

Ψ № rfr

FIG. 16. Collision of ton-
acoustic solitons.25

Distance

f(u) describes the force field of the tail of one solition
at the position of the other, and ν(β) is the soliton's
velocity as a function of energy. For small interaction,
equations similar to (1.16) can be derived from the in-
itial equations for the waves by representing the field in
the neighborhood of each soliton (its parameters are as-
sumed to be slowly-varying) in the form of an asymp-
totic series and then applying boundedness require-
ments to the terms of this series.

After the "soliton-particle" analogy has been estab-
lished [i.e., Eq. (1.16) has been derived], it is suffi-
cient to know only the form of the force function/(M),
i.e., the nature of the soliton tails, to describe the
soliton interaction. If f(u) is monotonic, the solitions
are repelled or attracted [Eq. (1.16) is, of course, no
longer valid if their fields overlap strongly.]91 But if
the solitons have oscillating tails, as in the cases of
solitons of capillary-gravity waves on shallow water29

or in a nonlinear artificial transmission line with in-
ductive coupling between links,27 then the function/(«)
is sign-variable and the solitons are alternatively re-
pelled and attracted to form an oscillating pair fa bound
state; Fig. 17).

The interactions of a large number of solitons of the
same type can be analyzed in similar fashion because
the nature of the tail does not depend on the number of
solitons sitting on it.

To this we add that the analogy between nonlinear
waves and oscillations is not so trivial as the mode an-
alogs to which we have now become accustomed.

2. SELF-OSCILLATIONS

a) What are they?

As Mandel'shtam put it, when we are speaking of the
generation, the creation of oscillations, we need an
"arrangement that makes it possible for stable un-
damped oscillations to ar i se . . . ; " "their oscillations
are stable in the sense that if we start them off from
some within broad limits arbitrary state, they oscil-
late with a definite period and a definite amplitude.
They have a tendency, irrespective of the initial con-
ditions, to settle into a defined regime."30 Andronov,
at the time one of Mandel'shtam's graduate students,
called systems that possess this property self-oscil-
latory and was the first to give them a clear-cut math-
ematical definition when he related self-oscillations to

x-1

FIG. 15. Equivalent circuit of line in which the nonlinear
waves shown in Fig. 14 were observed.

9 ) Most of the exact solutions that have been found illustrate
the repulsion of solitons.28
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FIG. 17. Oscillating pair of solitons.

Poincare limit cycles.31

The first self-excited oscillator "with a purpose" was
invented and built in 1657 by Huygens, who adapted a
pendulum to an old "pre-Galilean" clock and thus trans-
formed it into a precision instrument with high rate
stability (a theory of this clock was derived by Ν. Ν.
Bautin, a student of Andronov's). Later, self-oscilla-
tions were investigated in a control system with dry
friction,33·10> generators that produced electromagnetic
oscillations in the radio band appeared, and, finally,
the "three-elect rode cathode-ray-tube" or van der Pol
generator35 (Fig. 18). This circuit and the van der Pol
equation that describes it

'u — μ ( 1 — α«2) u + (oju = 0 (2.1)

are still, half a century later, our basic model for
self-oscillations in systems with one degree of freedom.
Figure 19 presents phase portraits of (2.1) with various
values of the nonlinearity parameter μ. When μ « 1 ,
the oscillations of the generator are nearly sinusoidal,
and the nonlinear friction merely "selects" the ampli-
tude of the stable limit cycle. An approximate (trun-
cated) equation for the complex amplitude of the oscil-
lations generated in this case has the form

•a_ ι L a i a |2 a\ (2 2)

The stable equilibrium state |σο |2=4/3α corresponds to
the limit cycle. Mandel'shtam and Papaleksi36 showed
that such an approximate solution of (2.1), i.e., u(t)
= \ao\ cos(u>0 t+φ) is similar to the unknown exact solu-
tion not only on the limited time interval T~ l/μ, but

10)Both Mandel'shtam himself and hts students are character-
ized by an exceptionally strict attitude to the facts of history
of science and to the accuracy of acknowledgement of priority
that this implies. In particular, Mandel'shtam and Andronov
believed until 1931 that they had been the first to Juxtapose
generation with limit cycles, but when they found that this
had been done intuitively nearly simultaneously with the dis-
covery of the limit cycles themselves, they took every op-
portunity to point this out: " . . . The following preliminary
remark is necessary if we are to avoid distortion of histori-
cal perspective. Ten years before the discovery of radio,
in a study of self-oscillations in an automatic-control device,
the French engineer Leaute (1885) investigated the phase
space of this device and draw integral curves and limit
cycles for it (without applying those names to them: he was
apparently unfamiliar with the paper that Poincare had pub-
lished a bit earlier, in which limit cycles made their first
appearance in mathematics). For reasons that we shall not
discuss here, Leaute's remarkable studies had been almost
completely forgotten."34

X LJ~
FIG. 18. Circuit of van
der Pol generator.

also on an infinite interval, i.e., as ί — «,113

But if the nonlinearity is not small, the oscillations
in the generator will be essentially nonsinusoidal, and
if μ » 1 they will be of the relaxation type, consisting
of segments of fast and slow motions. To find such dis-
continuous oscillations, Mandel'shtam and Papaleksi
proposed the use of the "jump hypothesis," which takes
account of the fact that the energy changes continuously
in the jumps. This idea enabled Andronov and Vitt not
only to understand the relaxation oscillations of the van
der Pol generator more clearly, but also to solve a
number of new problems, e.g., the problem of pulsed
oscillations in a multivibrator.38'13

Since practically all the experience of the classical
theory (at least for systems with nonsmall nonlinearity)
was related to analysis of self-oscillations on the phase
plane, the possibility of establishment of periodic mo-
tions that correspond to the limit cycle was associated
exclusively with dissipative systems in which undamped
oscillations occurred only at the expense of nonperiodic
energy sources. Only a few years ago, no one would
have thought of applying the term "self-oscillator" to
a nonlinear oscillator with friction under the action of
a periodic force:

ii + yu — an (1 — u2) = f sin at. (2.3)

But it is a self-oscillator: such a NO produces un-
damped oscillations whose parameters (intensity, fre-
quency, and, in the more general case, spectrum, etc).
do not depend on a finite variation of the initial condi-
tions and depend weakly on changes in the external
force. In particular, in the nonautonomous phase space
u,u, t of (2.3) there are stable periodic motions to which,
like to limit cycles of autonomous systems, correspond
stable stationary points (in Poincare's representation)
if we view the system stroboscopically at the period of
the external force.

Intensive studies of nonlinear dissipative systems
with a three-dimensional phase space have, in recent
years, made it possible to detect a completely new
class of self-oscillatory systems. These are noise
self-oscillators—dissipative systems that undergo
undamped random oscillations, oscillations with a
continuous spectrum, with energy drawn from nonnoise

We note that the nontrivial physical approach to the proof
of a purely mathematical problem that was used in this study
was highly productive, in particular, in justifying similar
approximate methods in the theory of nonlinear waves.37

1 2 ) Similar ideas were also used later in investigation of dis-
tributed nonlinear systems, in particular in deriving boun-
dary conditions at a discontinuity in the theory of electro-
magnetic shock waves.32

599 Sov. Phys. Usp. 22(8), Aug. 1979 A. V. Gaponov-Grekhov and M. I. Rabinovich 599



Ρ-0,1 μ-1

Ό

μΊΟ

FIG. 19. Phase portraits of van der Pol generator at various
values of nonlinearity: a) quasiharmontc oscillations; b)
strongly nonsinusoidal oscillations; c) relaxation oscillations.

sources .13> It is noteworthy that even the familiar oscil-
lator (2.3) is a noise self-oscillator over a broad range
of parameters. The discovery of stochastic self-oscil-
lations is perhaps the most brilliant achievement of
modern theory. But why did it not appear until now?

b) Simple and complex attractors

This was because from Poincare's time until recent-
ly, the limit cycle was the only example of a nontriyial
attracting set—an attractor—in the phase space of non-
linear dissipative systems.141 It is true that complex
multiloop limit cycles corresponding to complex peri-
odic self-oscillations were discovered quite a long time
ago. They were, in particular, observed experimental-
ly in an automatic temperature-control system by one
of Andronov's graduate students39 in the course of work
on an assigned program entitled "Transition from a
Plane to Three-Dimensional Space." Stable multiperi-
od motions were later observed in a study of synchron-
ization of self-excited oscillators.40 It would appear
that the discovery of complex limit cycles and then also
of bifurcations, which point the way to their further
complication, might have served to broaden our view
of self-oscillations. However, this did not actually take
place until somewhat later, on publication of numerical
experiments that demonstrated the existence of "non-
periodic phase fluxes" in dissipative nonequilibrium
systems (E. Lorenz, 196341). New mathematical ob-
jects, the complex attractors that Ruelle and Takens
called "strange attractors," made their appearance at
practically the same time in the abstract theory of dyn-
amic systems.42

As an example of a strange attractor—an attracting
set on which there are no stable paths and where they
all behave in a complex and confused fashion—we might
cite an attracting structure consisting of saddle-point

1 3 )As in the case of definition of periodic self-oscillations
(which Is based on limit cycles, a more rigorous definition
of stochastic self-osclllatlons requires an appropriate math-
ematical prototype. The strange attractor is such a proto-
type (see below).

14)Only attractors correspond to long-lived oscillations in
non-conservative systems.

FIG. 20. Two-circuit
self-excited oscillators.

cycles (when all paths that unwind from them tend to
cycles of the same structure). Such a set of saddle-
point cycles may be an "evolutionary vestige" of a
homoclinic structure: the "homoclinic" itself is a "del-
icate thing" in a dissipative system—it vanishes as a
result of a small change in parameters, but the sto-
chasticism that is produced may remain. It is in pre-
cisely this way, in particular, that the strange attrac-
tor is produced in the phase space of the nonautonomous
NO with friction [see (2.3)].

It is worthy of note that now, with this new view of
stochastic self-oscillations (as the actual complex dyn-
amics of a nonconservative system, and not as a fluc-
tuation amplifier\), they are being observed in essen-
tially very simple classical systems, such as coupled
self-oscillators or the relaxation oscillator with one-
and-a-half degrees of freedom.43·44 They are being
found because we now know precisely what to look for.151

We shall return again to stochastic self-oscillations
when we discuss concrete models. For the moment,
however, we shall briefly discuss classical results.

c) New interest in old problems. Self-oscillations in space

Figure 20 shows the schematic of the two-circuit
vacuum-tube oscillator that was investigated by van der
Pol and Andronov and Vitt nearly half a century ago.
Already then the most important effects characteristic
of the interaction of "elementary self-oscillators," e.g.,
such as (2.2), had been observed. The averaged equa-
tions for the complex amplitudes of such self-oscilla-
tory modes with independent frequencies have the form

a1 = vhlll-*,{\al\*+Jjpli\at\*)\a.j, / = 1, 2, ..., N. (2.4)

Figure 21 shows the phase portraits of this system for
Ν = 2 and various values of the parameters. They illus-
trate the classical effects of competition between modes,
and of the pulling and coexistence of oscillations. Be-
cause of the specifics of the nonlinearity in the van der
Pol generator, only the essentially trivial effect of si-
multaneous generation of two modes, which is possible
when they are weakly coupled (see Fig. 21d) went un-
noticed in Andronov and van der Pol's work (this case
is typical, for example, for a gas laser with an inhomo-
geneously broadened active-medium line). The compe-
tition phenomenon that is observed with strong mode

15> The same thing happened thirty years ago with limit cycles:
after Andronov announced a "hunt" for them, they were dis-
covered in chemistry, biology, ecology, and other often un-
expected fields, and "there was no getting away from them."
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FIG. 21. Phase portraits of system (2.4), Illustrating effects
of competition, pulling, and coexistence of oscillations (iV=2).

coupling is explained by the dependence of the nonlinear
damping of one of the modes on the amplitude (energy)
of the other. If the modes are equivalent and the cou-
pling is mutual, the generation regime of the mode that
predominated initially is established. A consequence of
the dependence on the initial conditions is that in order
to transfer the system from one regime to another is it
necessary to change the frequency of one of the modes
appreciabley, i.e., to change the tuning; here the val-
ues of the detuning are not the same for motion "out"
and "back" (hysteresis). The range of detunings in
which the generating frequency depends on prior his-
tory is known as the pulling range.

The last two decades have been a revival of interest
in these classical effects, which, thanks to Man-
del'shtam's school, have become almost commonplace.
This interest is associated primarily with the appear-
ance of active distributed systems (molecular and opti-
cal quantum generators [lasers], cyclotron-resonance
masers, etc.) and the creation of systems with large
numbers of active elements. In all cases when active
devices are combined into organized spatial structures
with the object of adding their powers or increasing
their efficiency, the resulting systems become analogs
of distributed systems. Only the type of dispersion of
the resulting "medium" depends on the manner in which
the active elements (Gunn diodes, LPD, etc.) are com-
bined.

Classical oscillatory effects are often extended lit-
erally to waves because of the aforementioned space-
time analogy between the interaction of normal oscil-
lations (modes) in time and the stationary interaction
of waves in space. As an example, Fig. 22 illustrates
the spatial analog of the effect in which oscillations

FIG. 23. Unsymmetrlc spatially inhomogeneous regime in a
cavity with ideal reflection filled with a nonlinear medium.

compete in an active nonlinear medium with viscosity
(high-frequency or low-frequency). This process is
described by Eqs. (2.4) with χ substituted for t. Work-
ing from the spatial-competition effect, we can, in par-
ticular, construct curious wave devices that take two or
more a priori unknown quasiharmonic signals and sep-
arate the one with the highest (or lowest) frequency.45

It is this wave-competition effect that also explains
the apparently altogether surprising establishment, in
a spatially symmetric distributed self-excited oscillator
(for example, with ideal reflection at the boundaries),
of stationary field distributions that are unsymmetric
along the χ coordinate, with one of the colliding waves
being dominant (Fig. 23). The equation for the ampli-
tudes alt2(x, t) of these waves using the simplest ideal-
izations46'47 can be written in the form

with the boundary conditions | a^x, t) | = \x = „ ( , 11 ai(x,t) \,
where I is the length of the cavity. The distribution of
intensities | â  _ 2(x) | 2 in the stationary regime is easily
reconstructed from the form of the paths on the phase
plane of (2.5) when d/dt=O (Fig. 24). In a short res-
onator, which does not allow time for competition to
appear, only a banal standing-wave regime is possible,
and a state of equilibrium on the line |ax \

2 =\a2 \
2 corre-

sponds to it on the phase plane of Fig. 24. In a long
resonator, on the other hand, colliding waves taking
energy from a common source suppress each other over
most of its length, evening out only near the reflecting
walls. As a result, the standing-wave regime turns out
to be unstable and one of the spatially inhomogenous
regimes to which paths of the type ebc correspond in
Fig. 24 is established.

d) Strong nonlinearity. More about nonlinear resonance

Another aspect of the interest in the classical prob-
lems of self-oscillation theory that has reappeared in

0 a
FIG. 22. Spatial competition of waves.

W'-W FIG. 24. Phase portrait
of system (2.5).
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recent years is associated with progress in the study of
many essentially nonlinear, physically important sys-
tems with a three-dimensional phase space. They in-
clude both the aforementioned nonlinear oscillator with
friction under the action of a periodic force and the
Lorenz system now current in fluid dynamics, which
describes thermal convection in a layer of fluid heated
from below, and others.43·48

The groundwork for these recent advances was laid
almost half a century ago by Mandel'shtam and his stu-
dents, with Andronov leading the list. It must be said
that when Mandel' shtam's attention was drawn to the
generation of nonsinusoidal oscillations (about 1927),
only isolated problems had been solved in this area and
they appeared to be quite unique, if not casuistic. Thus,
Papaleksi solved the problem of strongly nonlinear os-
cillations in a rectifier by a storing-vp method [con-
version of the system to a piecewise-linear system with
subsequent conjugation of the integration constants (to
obtain continuity of the solution and the derivatives with
respect to t, or to satisfy "jump conditions")] (1911);
then A. Sommerfeld investigated forced oscillations of
an arc (1914), and Papaleksi considered periodic oscil-
lations in a vacuum-tube oscillator with a piecewise-
linear tube characteristic in 1922. But the question of
greatest fundamental importance—that as to the stabil-
ity of the periodic motions that were found—was not
even posed. It appears that the stability problem was
first solved by van der Pol for the particular case of
the relaxation oscillator, using graphical constructions
on the phase plane (1926). In 1927, Mandel'shtam sug-
gested to Andronov that he derive a general method for
investigation of the stability of periodic motions ob-
tained by the storing-up method and "attempt to provide
this method with a mathematical base." Out of this as-
signment arose Andronov's remarkable work "Poincare
Limit Cycles and Self-Oscillation Theory," which we
have already mentioned and in appraising which Man-
del'shtam noted that: " . . . here we have a mathematical
formalism that is indeed adequate to our nonlinear
problems and that does not have 'linear memories'... .
Working from this formalism, it will be possible to
create new concepts that are specific for nonlinear sys-
tems, to develop new insights that will enable us to
think nonlinearly." Extending these studies Andronov
and his colleagues with the aid of the Poincare-Brou-
wer-Birkhoff method of point maps succeeded in solv-
ing several strongly nonlinear problems concerning
self-oscillations in automatic control systems and, si-
multaneously, in answering Mandel'shtam's question as
to the stability of periodic solutions found by the stor-
ing-up method. As Andronov himself put it, "this entire
series of studies can be regarded from a certain point
of view as an embodiment of Mandel'shtam's old idea of
giving the storing-up method a mathematical education."

The general considerations formulated more than
thirty years ago (1944) by Andronov concerning the ap-
plication of point-transform theory to the study of con-
crete nonlinear systems, together with the idea of "his-
torical" or "embryological" investigation of the dyn-
amic system that he introduced into oscillation theory50

(i.e., investigating the evolution of phase-space struc-
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FIG. 25. Bifurcation diagram of Lorenz system.

tare as the system parameters are varied plus use of
Poincare's theory of bifurcation points and stability
reversal) have proven to be extremely productive. Re-
cent progress in understanding three-dimensional dyn-
amic systems, including the discovery of strange at-
tractors, has grown out of precisely these ideas.

The level of this understanding is, of course, still
very far from the level on which we understand the dyn-
amics of two-dimensional systems (and it is uncertain
whether it will catch up), but it is even now high enough
to permit bringing the entire power of modern mathe-
matics to bear on the analysis of concrete systems. Al-
so, and this is especially important, this level of un-
derstanding permits knowledgeable use of numerical
and analog modeling not simply to compute cases, but
for complete, including "embryological," investigation
of system dynamics with the aid of computer curve gen-
eration and image analysis. This approach even en-
ables us to produce fully rigorous results, or, in other
words, to prove theorems with the aid of the machine.

Thus, for example, self-oscillations in the Lorenz
system

u= —c(u — v),

υ = — v + ru — uw,

w = — bw + uv.

(2.6)

have now been investigated in detail. Figure 25 shows
the bifurcation diagram of the regime change of this
system. Let us describe these bifurcations very brief-
ly.19 They were investigated by a computer analysis of
the Poincare transform of the points of the secant plane
Σ, which passes transversally to the»; axis through the
nontrivial equilibrium states C1 > 2 (Fig. 26). This two-
dimensional map is found to be strongly compressed in
one of the directions (Θ on Σ; see Fig. 26) and stretched
in the other. Repeated application of the transformation
converts any cell on Σ into "lines" (they have Cantorian
fine structure), and the analysis can therefore be con-
fined to a one-dimensional mapping of the lines onto
themselves and onto each other. Figure 27 shows the

1 6 ) Much has been written recently on the Lorenz system and
its applications (see, for example, Ref. 43); for this reason,
we shall not even discuss the possible physical content of
the variables. Our purpose is to illustrate Andronov's idea
of an evolutionary approach to the study of dynamic systems
as exemplified by this altogether nontrivial case.

602 Sov. Phys. Usp. 22(8), Aug. 1979 A. V. Gaponov-Grekhov and M. I. Rabinovich 602



FIG. 26. Phase space of Lorenz system.

behavior of the unstable sepa rat rices of the zero equi-
librium state (saddle-node) that determines the prop-
erties of a one-dimensional map of this kind.

If r < rt, the separatrices describe damped pulsations
with the initial phase of the oscillations preserved; at
r=rlt the unstable separatrices are tangent to the
stable two-dimensional separatrix AB (see Fig. 26),
and air>rl they have transferred from their stable
focus Cj or C2 to an "alien" focus. Simultaneously, two
symmetrically disposed limit cycles are produced from
the loops of the separatrices, but they are unstable. At
r > r2, the separatrices tend to these newly formed
cycles rather than to the equilibrium states Cx and C2,
which, as before, remain stable: this is the time at
which yet another (other than C l i 2 ) attractor—the
strange attractor—makes its appearance.

Within this attractor, which is bounded by unstable
separatrices and cycles, the paths behave in very com-
plex fashion (the corresponding v(t) oscillogram ap-
pears in Fig. 28). This complexity is associated, in
particular, with the fact that a denumerable set of un-
stable cycles belongs to the attractor (which owe their
origin to the homoclinic structure that existed in the
past)—the path describes several revolutions around
one cycle, is then thrown off onto another, spins around
it, and so forth. Since, in addition to the strange at-

ΰ ρ

FIG. 27. Behavior of unstable separatrices in projection on
plane.

603 Sov. Phys. Usp. 22(8), Aug. 1979

FIG. 28. Oscillogram oiv(t) oscillations in Lorenz system.

tractor, there are two other "nonstrange" attractors in
this parameter region, whether or not a static regime
or a regime of stochastic pulsation is established in the
system depends on the initial conditions. As r increas-
es beyond r 2 , the radii of the unstable cycles decrease
and they "stick" to the equilibrium states d and C2 at
r=r~, passing their instability to them, i.e., only one
attractor—the strange one—remains in the phase space
of (2.6).

Use of results from the qualitative theory and com-
puter analysis of point transforms has also made it pos-
sible to investigate, in just as much detail, the self-
oscillations that arise in nonlinear resonance [see (2.3)].
Here, as in the nondissipative analog (1.9), it is possi-
ble to use Mel'nikov's method15 if both friction and the
external force are small for analytic determination of
the value of the force / at which the separatrices of the
saddle-point periodic motion touch and the homoclinic
structure arises. As / increases further, the structure
vanishes, but a denumerable number of periodic stable
and unstable motions remains within the attractor \u\
«//y (the region that all projectories only enter). Then,
after a sequence of bifurcations—splittings of stable
cycles—the motion becomes nonperiodic. Figure 29 il-
lustrates the behavior of such an oscillator in time:
that the motion is nonperiodic is clear.

e) Noise generators

The conceptions formed of stochastic self-oscillations
made it possible to construct an actual radio-band noise
generator.51 It is obtained by making quite minor mod-
ifications to the classical circuit of the van der Pol gen-
erator (Fig. 30)—introduction of a nonlinear element
with an S-shaped current-voltage characteristic into the
grid circuit. This element might, for example, be a
tunnel diode. Neglecting the nonlinearity of the tube

FIG. 29. Stochastic self-oscillations in system (2.3) (numeri-
cal experiment) .8T
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FIG. 30. Circuit of a sim-
ple noise generator.51

characteristic, we may write the equation of this sys-
tem thus:

(2.7)

where u^I/I m,u2 = V/Vm, t-t^ /JUC, h = (MS-rC)/
2ifLC is the growth increment of the oscillations in the
circuit, a = VmHh/CIm characterizes the influence of
the nonlinear element on these oscillations, and μ,
V.= (Vm/lm/LC)C1«l is a small parameter that allows
for the stray capacitance of the tunnel diode.

The operation of this generator can be described qual-
itatively as follows. As long as the current / and the
voltage ux are small, the tunnel diode has no signifi-
cant effect on the oscillations in the circuit, which build
up because of the negative resistance introduced by the
tube. Here the voltage across the tunnel diode, V(I), is
determined by the left-hand branch of the diode char-
acteristic. When the current reaches the value Im, the
diode switches over and the voltage Vm is established.
Then the current / decreases (here the voltage is de-
termined by the right-hand branch of the characteristic),
and the diode switches back (Fig. 31). In other words,
when the amplitude of the oscillations in the circuit be-
comes high enough, the losses increase discontinuously
and the amplitude of the oscillations drops. This means
that the generated signal should take the form of a se-
quence of trains of growing oscillations, and this is the
result obtained in experiments (Fig. 32). It cannot, of
course, be proven that the oscillations are stochastic
simply on the basis of these qualitative considerations.
Here it is necessary to turn to the mathematical model
(2.7) and to analyze the point maps.51 Figure 33 shows
the form of the map function for typical parameters of
an actual working generator. The transformation is a
stretching one in the region bounded by the light line
(attractor). This means that all paths on the attractor
are unstable17* and that the system forgets the initial
conditions as i — «—the probability density for obtain-
ing a given value of u on repeated use of the transfor-
mation tends to an invariant distribution that does not
depend on the probability density distribution of the in-
itial fluctuations. To this we add that the statistical
characteristics of the stationary-generation regime are
stable not only to initial perturbations, but also to con-

FIG. 31. Current-voltage
characteristic of a tunnel
diode.

FIG. 32. Oscillogram of oscillations in circuit of Fig. 30.

tinuously active external fluctuations. This is indeed a
noise generator!

f) Order from disorder. Synergetics

The disorganized behavior of a very simple nonlinear
system (pendulum in a periodic field or van der Pol gen-
erator supplemented with a nonlinear element) is, of
course, a perfectly astonishing phenomenon, but the
opposite case—the regular, well-organized behavior of
very complex disorganized systems with large and even
infinite numbers of degrees of freedom—is no less sur-
prising. Figure 34 shows spatial structures that arise
in a plane-parallel horizontal layer of silicone oil when
it is heated from below—an ordered structure of non-
trivial form arises out of the disordered initial distur-
bances irrespective of the dimensions of the container
or the geometry of its side walls. How can this mac-
roscopic structure appear in a nonequilibrium medium
that is homogeneous in the mean and in which distur-
bances of the most diverse and independent scales grow
out of fluctuations as a result of instability? A similar
question also arises in the attempt to explain, for ex-
ample, the spiral galaxies in astrophysics or rever-
berators—spiral waves—in biology and chemistry.52

The problem of the formation of ordered temporal and
spatial structures is a very general one; it is of interest
to physicists, biologists, sociologists, and even physi-
cians (epidemic waves). We now actually have a new
field of science—synergetics (Greek "working to-
gether"),18 which is concerned in a general way with
this and related problems of the existence, stability,
and breakdown (generation of turbulence) of highly or-
ganized structures in nonequilibrium systems of vari-
ous natures. But let us return to convection: how are
we to explain the formation of structures (Benard cells)
whose shape and scale do not depend, with finite limits,
on the initial and boundary conditions? Other pheno-
mena that were first investigated most completely be-
fore the war by Andronov are the mutual synchroniza-
tion and competition of various modes. The simplest
example for clarification is the case of convection in
silicone oil (see Fig. 34), which has a strong depen-
dence of viscosity on temperature, v(T). Convective
motions with a characteristic scale fe0 arise in the layer
of oil just above the instability threshold (Fig. 35). The
establishment of an elementary spatial structure in the

1 7 ) More precisely, nearly all of them, since the fate of perio-
dic paths that rest on the "crown" has not yet been clarified.
However, even If they are stable, they have an attraction re-
gion so small that they are not realized because of the fluc-
tuations present in the physical system.

1 8 ) The First International Symposium on Synergetics was
held in 1 9 7 2 , M and two more have been convened since, in
1974 and 1977.
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FIG. 33. Point map for
system (2.7) with μ=0.

form of convection waves corresponds to growth of dis-
turbances with a wave vector k^. But when viscosity
depends on temperature,19' this structure is found to be
unstable to the generation of modes with other orienta-
tions of the vector k, for example, waves disposed
across the original waves (their coexistence results in
the formation of rectangular structures). The v(T) re-
lation can usually be considered to be a quadratic one,
and we then obtain resonant coupling among three modes
ofthe same scale, k01 ± k^ = ±k03 (Fig. 36). Itisthesuper-
position of these modes with amplitudes that are equal and
phases -^(x.^-cosfe,,/^*· cosi (kgX+VWkoy)· cosi(...)
that are synchronized in space that corresponds to non-
trivial spatial structures in the form of hexahedral Ben-
ard cells (vt is the vertical component of the velocity of
the fluid)—fluid rises at the center of a cell and sinks
near its faces (or vice versa if 8v/dT>0). The orienta-
tion of the cells in space is arbitrary and depends on the
initial conditions. On the other hand, competition be-
tween modes of unequal scales ensures stability of the
particular structure against the appearance of others.

Let us cite one more example that indicates the role
of the mode-synchronization effect in the appearance of
ordered structures in nonequilibrium media. We refer
to the establishment of solitons, in particular in a ra-
dio-band active medium, where one-dimensional waves
are described by the equation

V{U + V;
d'u

Hz* (2.8)

here β characterizes the dispersion, v1§2 the low-fre-
quency and high-frequency dissipations, respectively,
and α the active nonlinearity. If the dispersion is
strong, the evolution of distrubances in this medium can
be described with a small number of modes, for exam-
ple, with frequencies ω and 2ω. The equations for their
amplitudes and phases are found, accurate to the terms
responsible for linear dissipation, to be similar to (1.5):

^ • = 4,4, cos Φ - M i .

= φ 2-2φ (),
(2.9)

but with the one fundamental difference that the signs in
the right-hand sides of the equations for Αλ and A2 are
the same. Physically, this means that the harmonics
are damped or grow simultaneously, i.e., the waves
exchange energy not with one another, but with the non-
equilibrium medium. Above the instability threshold,

1 9 )The temperature dependence of surface tension or other dis-
sipative parameters also produces similar effects.

FIG. 34. Benard cells in thermal convection.

given a favorable phase difference (Φ =0, π), the amp-
litudes of the harmonics increase without limit after a
finite time (or on a finite distance) within the framework
of this model: AK2~l/(t° - t)[t°~i/AU2(O)] and we
have explosive instability. It is very important that ex-
plosive instability is accompanied by rapid mutual syn-
chronization of the phases of the interacting waves.47

In the interaction of a large number of harmonics in a
medium without dispersion (/3=O),20) this synchroniza-
tion results in the establishment of nonlinear waves and
solitons in particular: u(x, t) =(3u1/a) ch"2

x[-Jv1/2v2{x -v01)], which have been observed experi-
mentally (Fig. 37). Unlike "conservative" solitons (see
Sec. I), these solitons propagate only at the linear-dis-
turbance velocity v0. The phase portrait of (2.8) for
j3 = 0 and stationary waves u = u(x -vot) coincides with
Fig. 2b.21>

A much more complex structure appears as a result
of mode synchronization in a nonequilibrium medium
with more than one dimension: a downward flowing film
of liquid. We can write an approximate equation for the
deviation u of the film surface from the undisturbed
level:

ut + 4uux + u,xx + A],u-nuyll^0 (2.10)

(«>0, Al=d2/dxz + d2/dy2). Figure 38 shows the numeri-
cal solution of this equation with w(# —±°°) = 0; it is a
horseshoe-shaped soliton with an oscillating leading
edge and a monotonically falling trailing edge. The
most surprising thing about this solution is that it gives
a rather good description of waves observed experi-
mentally in a real downward flowing film (Fig. 39).

It is difficult to predict the future of synergetics, but
it is already clear that this emerging science of self-
organization, although it overlaps considerably with the
theory of nonlinear oscillations and waves in nonequi-

2 0 ) In this case the number of interacting modes is limited by
high-frequency damping.

2 1 'The fact that the phase portrait of a self-oscillatory system
(for stationary waves) is the same as that of a conservative
oscillator would appear at first glance to be paradoxical.
However, this can be explained quite simply: owing to the
absence of dispersion, the energy balance of dissipation and
activity processes is satisfied simultaneously in this case for
a continuous set of finite stationary waves traveling at velo-
city v0. It is to these dissimilar waves that the continuum of
paths on the "conservative" phase plane corresponds (see
Fig. 2b).
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FIG. 35. Neutral curve
for thermal convection in
a layer.

librium media, is still entirely independent and attracts
specialists in a broad range of fields, just as the clas-
sical theory of nonlinear oscillations did in its day.

g) Generation of turbulence

The antipode of mutual synchronization of genera-
tors— mutual randomization—is new only as it applies
to a system consisting of a small number of coupled
self-oscillators.43·44 But, as we have already noted,
the fact of synchronization came as a surprise in en-
sembles consisting of large numbers of generators,
while chaotic and turbulent behavior appeared natural
and almost obvious. Therefore, the problem of the
generation of turbulence—stochastic self-oscillations
in a continuous medium28—was associated almost ex-
clusively with the excitation of a large number of "self-
oscillatory" modes with noncommensurable frequencies
and independent phases.58 Now that we have more dis-
tinct conceptions of randomness in self-oscillatory sys-
tems, it is clear that, on the one hand, the very fact of
excitation of a large number of degrees of freedom is
no longer adequate to explain the appearance of turbu-
lence and, on the other, that turbulence arises even
when the number of modes excited in the medium is
small. These are important and interesting problems,
and many people are working on them, but we cannot
discuss them in detail here and refer the reader to the
recently published review articles (Refs. 42, 43, 56).

To this we add only that unlike the classical oscilla-
tion theory of Mandel'shtam's time, which considered
only problems of the effects of fluctuations on nonlinear
systems, i.e., the transformation of fluctuations, mod-
ern oscillation theory shows very great interest in the
production of "statistics" in nonlinear dynamic sys-
tems.

3. MODULATION

a) Sinewave with variable amplitude and frequency

"Approximately simple" oscillations—oscillations
that deviate slowly from the sinewave—were discussed
by Rayleigh back in 1892, but the need for broad inves-
tigation of these oscillations appeared somewhat later
in connection with problems in the reception and trans-
mission of radio signals. "Without modulation there is
no signal.. .that for which radio technology was cre-
ated, transmission, does not exist."51 23) Questions

22) After the appearance of Landau's mode l , M G. S. Gorelik, 5L

a student of Mandel'shtam's, stated the relation of self-
oscillations to turbulence in the c learest t erms .

23) Today we would say that without modulation there Is no in-
formation.

"03

«ffZ FIG. 36. Resonant mode
triplet.

arose as soon as serious investigation of modulation
started: What is a modulated oscillation—a "sinewave
with variable amplitude and frequency" or a set of sine-
waves with different frequencies and amplitudes? In
other words, is there a difference between the temporal
(spatial-temporal for waves) and spectral (mode) ap-
proaches? It was these questions that were actually
discussed half a century ago when the problem of "nar-
rowing" the spectral band of a radio transmitter's fre-
quency-modulated signal arose; they reappeared a bit
later in analysis of the beat spectrum that appeared on
synchronization of a self-excited oscillator with a peri-
odic external force and, finally, quite recently in con-
nection with analysis of the dynamics of multimode (dis-
tributed) self-oscillatory systems with narrow gener-
ated spectra (lasers). Mandel'shtam was acutely aware
of this problem; back in 1908, he presented an experi-
ment at a Strasbourg University lecture in which he
demonstrated that side frequencies actually do appear
on modulation of an alternating current (a carrier). In
his lectures, Mandel'shtam answered these questions
as follows: " . . . It is necessary to know why we must
speak of a single oscillation of variable amplitude and
frequency, what is it that either we or nature intend to
do with this oscillation." In other words, the correct
result can be arrived at by using either approach, and
which one is the more adequate depends on the problem.

The radioengineering term "modulation" was essenti-
ally introduced into physics by Mandel'shtam. He used
the language of modulation when he discovered and de-
scribed the scattering of light by acoustic lattice oscil-
lations (Mandel'shtam-Brillouin scattering) or by atoms
or molecules of the medium (combination [Raman] scat-
tering). Mandel'shtam approached the problem of opti-
cal-image construction as though it were spatial modu-
lation, and at the same time it was he who first posed
the problem of frequency modulation in a self-excited
oscillator.2*

Mandel'shtam regarded as modulation any process of
slow changes in a high-frequency oscillatory system "in
which it has time to describe many free oscillations be-
fore their amplitude, frequency, and phase change to
any appreciable extent"; i.e., modulated oscillations in
the classical theory are quasiperiodic oscillations with
rather slowly varying parameters.

Does our understanding of modulation in the modern
theory differ from the classical notion? For the most
part, no; as before, we deal with oscillations or waves
with slowly varying parameters. In the modern theory,
however, the modulated oscillation or wave is by no
means necessarily a "sinewave with slowly varying

24)This problem was solved by S. M. Bytov, a graduate student
of Mandel'shtam's.62
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FIG. 37. Self-oscillations in the form of cnoidal waves (spec-
trum and oscillogram) as observed in an active line with ima-
ginary (dissipative) dispersion.

amplitude and frequency"; the shape of the elementary
oscillation or filling wave on which the modulation is
superimposed can be arbitrary within broad limits (for
example, a periodic cnoidal25' or sawtooth wave); we
may speak with some justification of modulation as a
slow change in certain parameters of motion even when
the "filling" is not periodic. And while the analysis of
modulated oscillations that are close to periodic non-
sinusoidal oscillations has roots in classical oscillation
theory, the investigation of slowly evolving nonperiodic
oscillations or waves is characteristic of the modern
theory alone. The first problem of this kind arose in
study of the behavior of nonlinear waves in media with
slowly varying parameters. Here we have a very clear-
cut example—the development of sea waves as they ap-
proach the shore. This problem was solved by analyz-
ing "quasisolitons"—waves similar to solitary station-
ary waves with amplitudes varying slowly due to the
inhomogeneity of the medium (which arises due to the
variability of depth near the shore). The most impor-
tant distinguishing feature of the modern theory is es-
sentially its broadening of the modulation concept to in-
clude not only processes in which modulation is trans-
formed, but also processes in which it is produced—
self-modulation.

Like oscillations, modulation may arise as a result
of instability (self-modulation), may be forced (modu-
lation is transferred to the carrier from an external
source), or, finally, may be specified at the initial time
(an analog of free oscillations). To this we add that
there are now modulation analogs for nearly all nonlin-
ear oscillatory or wave effects. This pertains to ran-
domization and recovery effects, to nonlinear modula-
tion waves, etc. It is even easy to conceive of certain
effects in modulation on the basis of direct analogies
with oscillations. This will perhaps seem less surpris-
ing when we recall that in many cases the transforma-
tions that occur in the modulation spectrum in a nonlin-
ear system differ from the corresponding spectral
changes of the oscillations (or waves) themselves only
in that they occur at higher frequencies (are trans-
planted to the carrier frequency). Mandel'shtam at-
tached great importance to these analogies and made
masterful use of a general modulation approach: "Here

FIG. 38. Horseshoe soliton obtained in numerical solution of
Eq. (2.10).u

he could and did produce much that was quite remark-
able in the way of everything from fundamental physical
discoveries to casual remarks."5 7

b) Mandel'shtam's traveling lattices. Modulation of waves
by waves

Today, when we speak of modulation of waves by
waves, the picture of a periodic traveling lattice on
which the incident wave is diffracted (modulated) seems
so natural that we do not concern ourselves with its or-
igins. But Mandel'shtam was the first to see it. As
early as 1913, analyzing the scattering of light at the
interface between two media, he "materialized" the
terms of the spatial Fourier series independently of
Einstein and Debye, placing real periodic lattices in
correspondence to them (just as, somewhat earlier, he
had indicated the reality of spectral satellites in time
modulation of alternating current). But they were still
stationary lattices. Traveling lattices appeared five
years later. By that time, Debye's theory of the heat
capacity of solids, in which elastic (acoustic) waves
were presented as "storages" for energy of thermal
motion, was quite well known, and Mandel'shtam was
the first to point out that light scattered by thermal
fluctuations should be frequency-modulated by a travel-
ing acoustic wave (lattice) and found the frequencies of
the satellites v±: (v± - v)=±2nu(Ca0/C)aia(e/2) (v is the
frequency of the incident light, Cso and C are the vel-
ocities of sound and light, and θ is the scattering angle).
This was a prediction of the scattering of electromag-
netic waves by acoustic waves (Mandel'shtam-Brillouin

2 5 )A cnoidal wave, a periodic sequence of identical solitons,
is represented on the phase plane (see Fig. 2) by a closed
path near a separatrix.

FIG. 39. Waves on down-
ward flowing film.
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scattering)29—the first example of the process scatter-
ing of waves by waves that is now under broad investi-
gation in many areas.

Ten years later (in 1928) Mandel'shtam, working to-
gether with G. S. Landsberg on a study of the scattering
of light in crystals, attempted observation of spectral
satellites produced by modulation of light by sound.
However, they observed much stronger splitting, which
they explained in terms of modulation of the light by in-
frared vibrations of molecules. Thus was combination
[Raman] scattering of light—scattering of waves by os-
cillators—discovered.2" However, the scattering of
light by sound was not observed experimentally until
1932 and then in France and the United States.2 8 Man-
del'shtam—Brillouin scattering (MBS) and Raman scat-
tering (RS) constitute modulation as understood by Man-
del'shtam: " . . . In much the same way as you inject
your speech into the emission of a radio station by
means of modulation, so do atoms oscillating in a mole-
cule or crystal lattice tell us of their infrared vibra-
tions, using the frequency of the emitted light as a car-
rier." This modulation of an incident wave by specified
sources is usually called spontaneous scattering.

In the contemporary nonlinear theory, attention is
concentrated on processes discovered in the early
1960's: induced scattering by oscillations (IRS, 1962)
and by waves (IMBS, 1964).63~65 In induced scattering,
the incident wave itself amplifies the modulation
sources—oscillations of atoms or molecules in RS or
the sound wave in MBS. These processes constitute one
manifestation of the parametric instability that we have
already discussed—decay of the incident wave into a
resonant pair of waves or into a wave and an oscillation
(in RS).

When waves interact, modulation may either be pro-
duced or be transferred from one wave to another. The
first effect of this kind was actually observed back in
1930, when Tellegen (Luxembourg) and Lbov (Gor'kii)
tuned receivers to the frequency of a local radio station
and received the transmission (modulation) of a power-
ful station working on a totally different frequency—
cross-modulation. The Luxembourg-Gor'kii effect is
explained quite simply (1934 m): on passage of a strong
modulated wave (pump) through a volume of ionospheric
plasma, the coefficient of absorption for a weak wave
also passing through the volume is changed in accor-
dance with the modulation law specified by the plasma.
Thus the pump modulation is transferred to a different
carrier.

It is possible for modulation to cross not only from
the strong (pump) wave, but also from the weak (signal)

2 6 )By this time, Brillouin had already published some of his
results on the scattering of light by sound.

2 7 ' Combination scattering was discovered by Raman and
Krishnan simultaneously with Mandel'shtam and Landsberg.

2 8 ) The optical, Born branch of the dispersion curve had al-
ready been reported, but Mandel'shtam and his colleagues
were unaware of these studies: exchange of information had
not yet resumed after Interruption by the war. They identi-
fied this branch independently (M. A. Leontovich88).

wave in the presence of an unmodulated pump. One of
these possibilities is, as we know, embodied in the
superheterodyne receiver—the modulation is mainly
amplified at the intermediate frequency. The same
kind of "superheterodyne" process can also be brought
about for waves in a nonlinear medium with "intermedi-
ate"-frequency amplification.61 The equations for the
amplitudes of the parametrically coupled waves ω3 = Wj
+ ω0 in such a medium at a given pump (heterodyne) field
a0 = const can be written in the form (a3 is the amplitude
of the signal)

^• = ialat<h+yai, ^--UJ^at. (3.1)

This mechanism is of interest, of course, only if the
amplification of the intermediate wave is strong enough:
y » F = |α ο | νσ 1 σ 2 . Here the evolution of the signal and
intermediate waves along the " receiver " is described
by the following solution of (3.1):

a, (*,<) = a,(0,

a,(x, <) = « 3 (0,

(»'*•-1), (3.2)

here a3(0, f) is the modulated signal wave at the en-
trance (x = 0) into the nonlinear medium [a2(0, t) = 0].
The process of signal amplification in a wave super-
heterodyne receiver can be described as follows. First,
there is slight amplification of the intermediate wave
ax, onto which the modulation that existed at the boun-
dary is transferred from the signal wave, in the inter-
val 0<χ^.ί/γ; then the intermediate wave carrying the
signal-wave modulation is strongly amplified in the
range 1/γ·&χ·&χο = 1η(1/δ)/γ, and, finally, the amplified
modulation is transferred to the signal wave: x>x0.
This process is obviously also possible with a low fre-
quency pump.

The modulation of waves by waves is not always man-
ifested in forms as familiar as slow variation of wave
amplitudes or phases. Thus, when colliding waves in-
teract even in an isotropic nonlinear medium, their
type of polarization may also change—the plane of lin-
early polarized waves may rotate, linear polarization
may be converted into elliptical, and so forth. Let us
illustrate one of these effects with a specific example,
considering the interaction, in time, of spatially homo-
geneous colliding waves of the same frequency in an
optically active medium (laser). Let the angle between
the field vectors of these linearly polarized waves be
initially very small. What happens to them then? The
polarization planes of the opposed waves will rotate in
opposite directions. A possible mechanism of this is
as follows. Each of the waves deexcites active particles
whose dipole moments are aligned along its field; as a
result, the component of the opposed wave with exactly
the same polarization now propagates without amplifi-
cation and only those of its components that have a
somewhat different polarization are amplified. "Re-
pulsion of polarizations " will result from this curious
competition of colliding waves. The polarization rota-
tion is totally different in the stationary case (Fig. 40).
Here the polarization vectors of the colliding waves
are rotated in the same direction."* This time the effect
is fundamentally spatial. Indeed, a periodic lattice forms
in the medium on passage of the colliding waves and re-
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FIG. 40. Rotation of polarization in nonlinear interaction of
colliding waves.

fleets the components of each wave with mutually or-
thogonal polarization differently. It is because of this
difference that the polarization vectors of the colliding
waves are rotated.

The polarization-rotation effect of colliding waves
was confirmed experimentally back in 1970 for a reso-
nance isotropic active medium.67 It has now been ob-
served in a wide variety of isotropic media. Since the
magnitude of the effect—the angle of rotation or the el-
lipticity of the polarization of the colliding waves—de-
pends in a very subtle fashion on the properties of the
nonlinear media, this effect has proven useful for their
diagnosis giving rise to nonlinear polarization spec-
troscopy.69

c) Modulation recovery

It was observed in the very first experiments with
IMBS and IRS in optics that the backscattered beam ap-
proximately repeats the evolution of the pump beam in
the backward direction in time. It was then found that
in many experimental situations the scattered wave ex-
actly reproduces a complex-conjugate incident wave
that is strongly modulated in the transverse direction.70

Duplication of the backscattered (Stokes) wave in the
backward direction of the optical path traversed by the
pump signifies that a limited region in which scattering
occurs behaves as a mirror. But this is not an ordin-
ary mirror: the reflected wave duplicates the optical
path of the incident wave in forward time only when its
phase front is conjugate with the pump, i.e., ap(r)~a$(r).
Here the total phase of the wave exp[iu>t-ikx+i<p] var-
ies as it propagates in the -x direction in the same way
as that of the incident wave in the backward time direc-
tion. This is why effects in which the transverse mod-
ulation of the pump beam is reproduced in induced-
scattering radiation have come to be known as "wave-
front inversions."

The fact that the scattering volume acts as a nontrivi-
al mirror is related to the selective manner of amplifi-
cation of the Stokes wave (which grows out of noise) in
the field of a pump broken up in r. If the pump phase
front is unmodulated, Stokes waves with arbitrary
transverse structure are amplified equally in its field;
but if it is sufficiently cut up, a Stokes wave modulated
in r in such a way that its maxima fall onto the minima
of the pump and vice versa is not amplified as well as
one that duplicates the pump profile. Formally, this
can be explained as follows: the total power (averaged
across the beam) of the backscattered wave is described
by the equation71 dP/dx = -g(x)P(x), where the gain in
the direction of propagation is

If, given the condition that ao(r) varies rapidly, the
pump and initial-noise intensities are uncorrelated in
r, the gain is g=G(\ao(r)\2) (quadruple correlations
decay into pair correlations). But if |ap(r)\2~\ao(r)|2,
the increment will be twice as large. Since the two ap-
pear in the argument of the exponential and the total
gain along χ is quite large, it is certain that from the
backscattered noise background there will be extracted
the wave with the inverted wave front. Such effects are
now being discussed widely in nonlinear optics in rela-
tion to the possibility of self-correcting transfer of
powerful laser radiation over long distances—adaptive
nonlinear optics.11'12

d) Self-modulation

Let us perform a simple experiment: at the boundary
of an LC transmission line or chain of oscillators with a
cubic nonlinearity [see (1.14)] we apply a sinusoidal os-
cillation whose frequency lies in the range of strong
dispersion a>(fe) (for example where the dispersion curve
of Fig. 12 starts to bend), with the result that the har-
monics arising due to the nonlinearity are out of syn-
chronism with the main wave (and, consequently, do not
build up). What kind of oscillation will we observe at
the other end of the line? Figure 41 shows the answer
in oscillogram form: the oscillations are found to be
modulated! We would not have expected this because we
intuitively link the appearance of modulation (in the nar-
row sense of the word) only to the transfer of informa-
tion concerning a low-frequency signal to a high-fre-
quency carrier. As we have already seen, the physical
nature of this process may vary greatly, but there must
be some source of modulation! But this is not evident
in our experiment. This example illustrates the phen-
omenon of self-modulation—modulation occurs as a re-
sult of development of parametric instability along the
line, in this case with the result that satellite waves
appear with frequencies ωι and ω2 near ω0, where ω1

+ ω2 = 2α>0 [compare the decay of a pair of quanta in the
same state (1.7)]. This version of parametric instabil-
ity is called modulation instability in the theory of non-
linear waves.7 6·8 3

To describe this and related phenomena in greater

g(x) =
β J <j0 (r) oj (r) « p (r) a · (r) d>r

J|ap(r)|>i«r
(3.3)

FIG. 41. Self-modulation of wave in nonlinear transmission
line: a) appearance of modulation; b) evolution of sinusoidal
modulation wave.
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detail, we shall be obliged to return to the basic equa-
tion of the theory of modulated waves in nonlinear med-
ia—the nonlinear parabolic equation or nonlinear Schro-
dinger equation73:

( da , da \ i d9® d*a
~~dt~'~V~dx') 2~dfi~~dxr

-4Ε-Δ1α-^(|. |»)α: (3.4)

here a is the complex amplitude of the wave
exp[-i(u>i-kr)], k is its wave number, andcn char-
acterizes the degree of nonlinearity of the medium; for
light waves, for example, *fc~n is a nonlinear increment
to the refractive index. For the simpler case of plane
waves we can write instead of (3.4)

the terms in the parentheses describe modulation waves
traveling at the group velocity in a linear medium with-
out dispersion; the parabolic term ~d2w/dft2 is respon-
sible for dispersion spreading, and α for the magnitude
and sign of the nonlinearity.29' As we shall presently
see, modulation instability is possible only with a cer-
tain relation between the signs of the nonlinearity and
the dispersion of group velocity: a<f2w/dfc2<0.75 The
physical mechanism of this limitation (which is usually
called Lighthill condition) is most easily understood by
discussing self-modulation not in space-time language,
i.e., not from an analysis of (3.5), but in spectral lan-
guage, confining the analysis to the interaction of only
three oscillator waves that form a wave with sinusoidal
modulation.

Equations similar to (1.5) are derived from (3.5) for
the complex amplitudes of the satellites ω ± and the car-
rier a)0:

Τ-3ίΓ^)β±= — ««Φ*; (3.6)

here it has been recognized that because of the spectral
proximity of the satellites, the detuning is given by
δ = 2ω0 - w(fe0 +fe) - o(fe0 - ft) ~ (d*u/dk2) k2. The param-
etric increment γ with which the amplitude of the satel-
lite increases in a given carrier field equals

"T-(-gr) . (3.7)

Since the spatial scale of the modulation may be arbi-
trary, a necessary (and sufficient as ft—0) condition for
modulation instability is αω№< 0. Its physical content
is now also clear: for instability to appear, the nonlin-
ear detuning ~a | α012 must compensate the linear detun-
ing ~{d2w/dk2)k2. The dependence of the increment on
the modulation scale is shown in Fig. 42: for short-
wave modulation, when A2(ir2/a | a0 \

 2)~1d2w/dk2, the
nonlinear detuning is no longer capable of compensating
the dispersion spreading and the modulation does not
deepen (the increment becomes imaginary). The self-
modulation effect was predicted in 1965 7 5 and was ob-
served experimentally a year later for waves on the
surface of a liquid.11 Presumably,78 this effect has a
bearing on the explanation of the "seventh wave" phen-
omenon.

FIG. 42. Increment vs.
modulation scale.

Iff V?

Let us turn to the analysis of the evolution of modu-
lation waves within the framework of the linearized
equation (3.4). For these waves we obtain the disper-
sion law
Q(k, k±) = vk

2WThe parabolic equation that describes beam diffraction was
first derived by M. A. Leontovich in 1944.

(3.8)
which yields directly, specifically for one-dimensional
waves fej. = 0, the modulation-instability increment (3.7)
that is already known to us. But what happens within
the framework of our basic model (3.4) to small multi-
dimensional disturbances? Assuming for simplicity in
(3.8) that fe = 0, we find that for k\<Aa\ao\

2kJv the
quantity Q(kx) is purely imaginary—those multidimen-
sional perturbations grow whose frequency is equal to
the filling frequency! The physical manifestation of this
is as follows. If a plane wave of frequency ω0 is im-
pressed on the boundary of a nonlinear medium whose
dielectric permittivity increases with field strength,
the wave is transformed to a periodic (in the trans-
verse direction) system of beams as it propagates: it
is self-focused.77 This is a stationary spatial variant
of parametric instability or decay of a pair of quanta in
the same state 2ko-k,+k2+Ak(|ao |

2) (Fig. 43).

e) Recovery

The nonlinear stage in the development of modulation
instability depends on the asymptotic behavior of the in-
itial disturbance as | # | — °°. If the perturbation is peri-
odic in space, the sinusoidal modulation waves that
build up as a result of modulation instability will under-
go nonlinear distortion—one or more solitons will be
formed in the period of the wave, but the solitons will
then be smoothed and the wave will revert to its initial
state, the whole process will then be repeated, and so
forth. Modulation waves on the surface of a deep liquid
behave in precisely this way (Fig. 44). A remarkable
and astonishing phenomenon! And we would indeed be
surprised if we had no "nonlinear experience" and had
never observed something very similar: we recall Fig.
13, which illustrates the behavior of a periodic dis-
turbance in a nonlinear network or a one-dimensional
"medium." Exactly the same thing happens—the sine-
wave turns into a periodic sequence of solitons, a
cnoidal wave, which then evolves back into a sinewave
and so forth, i.e., a recovery effect is observed. The
physical explanation of this similarity is easy. The
nature of the nonlinear evolution is determined both for
"waves without filling"—waves of the field itself—and

FIG. 43. Decay of pair of
quanta in the same state.
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FIG. 44. Stationary waves and recovery for modulation waves on the surface of a deep liquid.88

for modulation waves by two competing effects—nonlin-
ear contraction and dispersion spreading. The shape
and other parameters of the periodic modulation wave
must be specially adjusted if these effects are to offset
each other exactly throughout the entire space. Such
singular modulation waves do exist in the stationary
modulation waves that were first investigated in 1966.78

But this is an exception. For all other periodic dis-
turbances, the "contraction" and "spreading" effects
predominate by turns in the same way as kinetic energy
becomes potential energy and vice versa in the oscilla-
tions of a pendulum. This is what determines the peri-
odic evolution of a disturbance with periodic boundary
conditions that develops as a result of modulation in-
stability.

In its formal mathematical aspect, the effect of mod-
ulation-wave recovery in self-focusing media (or media
with modulation instability) follows from the full inte-
grability of the nonlinear Schrbdinger equation with per-
iodic boundary conditions.78 In this case the nonlinear
wave has a discrete spectrum (because of dispersion,
higher-numbered harmonics can be regarded as non-
resonant and hence the spectrum as limited), and a
mode description can be used for more detailed under-
standing of the recovery mechanism. In the simplest
case, modulation instability results in resonant inter-
action of only three modes—the carrier and satellites

symmetric about it. The equations for their intensities
Ao and-Ai =A2 bear a very close resemblance to the
truncated equations of the spring pendulum [cf. (1.5)]:

(3.9)

The phase portraits of the partially integrated system
(3.9) in the variables x= V2A^cos^/2), Υ = V5^s
are shown in Fig. 45: almost all the motions are peri-
odic, consistent with periodic energy exchange between
the satellites and the carrier.

In the less trivial case in which many satellites grow
simultaneously as a result of modulation instability,
everything is essentially similar except that the shape
of the nonlinear wave may be quite complex at the in-
termediate stage (see Fig. 46).

f) Radiosolitons

The analogy that we have established in the behavior
of periodic field waves and modulation waves in non-
linear media can also be extended to nonperiodic waves,
and to solitons in particular. As we shall soon see,

s-r, ε< 1/z s-f, t/z<E<2 s-1, oz
FIG. 45. Phase portraits of system (3.9).

't t
FIG. 46. Radiosolitons on deep water.
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solitons of the nonlinear Schr'odinger equation—radio -
solitons— behave like videosolitons, including KDV sol-
tions .30) Experiments with radiosolitons on deep water80

indicate that their parameters do not change on colliding
or overtaking, and there is only a jump in the phase of
the filling. Radiosolitons are found to be stable forma-
tions within the framework of the one-dimensional the-
ory.

However, most modulation solitions, like field soli-
tons (see Ref. 81), are found to be unstable with respect
to non-one-dimensional perturbations.

In particular, a waveguide channel of infinite length
and a stationary packet with infinite front dimensions
that has a finite wavelength in the direction of propa-
gation are unstable. This can be made clear by quite
graphic though not altogether rigorous energy consider-
ations.83 In (3.4) let εη( | a |2) a = a \ a | 2 a; then the field
under consideration is characterized by an energy

+ -£Γ|ν\1β|* + α|β|']; (3.10)

further, (3.4) has another integral -N = J\a\2dr, whose
meaning is the number of quasiparticles (quanta) in the
wave. Let the wave packet be characterized by the di-
mension I and the number of particles N = J\a\2dr
»(a)21m, where m is the dimensionality of the packet.
Then, recognizing that the number of particles in the
packet is conserved, we have for its amplitude a(t)
*/JVZ(i)"m/2and, for the energy, Η~(ά2ω/ά^){Ν/12)
-(a2VVZm). Here the first term is responsible for
diffraction spreading of the packet and the second term
for its nonlinear contraction. This expression shows
that a scale lo = {d2w/dk2)2/aN for which the packet
energy will be minimal (dH/dl\,o = 0) exists in the one-
dimensional case, and we may hope that a soliton with
these parameters will be stable. The behavior of the
two-dimensional pulse m = 2 will obviously depend on the
initial conditions: if ω">αΝ*α\α\2/12, then the energy
minimum is reached as I — °° and the pulse spreads; but
if u>"<a\a\2/l2, the energy is minimal as I — 0, and the
soliton contracts to a point or collapses. The evolution
of a three-dimensional soliton should also end in col-
lapse: at m = 3, nonlinear contraction predominates
over diffraction spreading.

Bearing in mind the stability of radiosolitons in one-
dimensional systems, it is natural to use such solitons
as undisturbed (unmodulated) solutions for study of a
broad range of models similar to the "standard" mod-
el—the nonlinear Schrodinger equation. Here we inves-
tigate the behavior of one of these models, namely:

at—2"»«- |β|*α = γ (a+axx)-p\a\'a, (3.11)

which describes the nonlinear evolution of modulated
waves in nonequilibrium media (the term ~y describes
the spectrally narrow increment of the waves and

p\a\2a their nonlinear damping). In the approxima-
tion of small damping and a spectrally narrow incre-
ment, Eq. (3.11) has now been derived for Tollmien-
Schlichting waves in a boundary layer, Langmuir waves
excited by an electron beam, concentration waves of
chemical reactions, .etc. (see, for example, Ref. 84).

Like the standard conservative model, (3.11) has a
solution in the form of an unmodulated harmonic wave
with amplitude α=τ/γ/ρ exp(iyi/p). With yp<l, this
wave is unstable to periodic disturbances with wave
numbers k< V2y(l - γρ)/ρ(1 + yi). At very small ampli-
fication and damping (y,p«l), the development of this
instability should result, as in the undisturbed model
(for initial disturbances that decrease rapidly at infin-
ity), in a steady-state solution in the form of a sequence
of solitons

(3.12)

whose amplitude and velocity will now vary in time.
Let us find equations for the parameters of such "mod-
ulated" radiosolitons. For this purpose, we determine
the rate of change of the particle number N = J\a\2dx
and of the quasimomentumP=Ji(axa* -a*a)dx— the
integrals of the conservative model—and then use (3.12)
to find equations for A(t) and V{t):

Ζ ν (3.13)
dt 3

We see that as t— °°, all solitons stop and their ampli-
tudes become equalized A - Ao = V6/[l + (4p/y)]. Thus,
the initial periodic disturbance evolves into a lattice
of modulation solitons.31'

If the amplification and damping are too small
(y,p~l), the initial perturbation evolves in a complete-
ly different manner: complex behavior arises as a re-
sult of the development of modulation instability.85

We have already encountered the fact that the appear-
ance of simple or complex behavior in a dynamic sys-
tem is related to the "distance" from the system to the
nearest fully integrable system. For (3.11), this sys-
tem is the nonlinear SchrSdinger equation with periodic
boundary conditions.3S In particular, at γ «ρ « 1 , the
distance between (3.5) and (3.11) is small and the be-
havior of (3.11) is simple, but as the distance increases
(γ, ρ ~ 1), numerical modeling84 indicates that random-
ness arises in the system (3.11) with periodic boundary
conditions.

This review of the modern theory of nonlinear oscil-
lations and waves and its links to the creative output of
L. I. Mandel'shtam does not, of course, pretend to
completeness. Many aspects of this relation have not

3 0 ) Practically all the effects known In the theory of nonlinear
"waves without filling" are also observed for modulation
waves. In addition to those under discussion here, mention
must also be made of simple and shock modulation waves.82

3 1 ) Η the interaction of solitons via the exponentially falling
tails Is taken into account, the result of evolution will be
ambiguous. In particular, It can be shown in the case γ
« ρ that Eq. (3.17) with periodic boundary conditions has a
finite number of asymptotically stable periodic solutions.
The periodic soliton lattice Is the simplest.

32>The Integrablllly of (3.5) with arbitrary boundary conditions
has not yet been proven.
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been touched upon or have been mentioned only in pas-
sing. However, we hope that the importance and pro-
ductivity of Mandel'shtam's contribution to the science
of oscillations and waves will be evident even from the
material given above.

The authors thank Ya. B. Zel'dovich, M. L. Levin,
S. M. Rytov, Μ. Μ. Sushchik, and V. I. Talanov for
helpful discussions.
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