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"During my long life, I have recognized one truth-our en-

tire science appears primitive and undeveloped when compared

with reality, but it is still the greatest treasure we possess . . . "

A. Einstein

PROLOGUE

To the ancient philosophers it was obvious that the
celestial bodies cannot satisfy terrestrial laws. They
executed circular motions in accordance with a higher
harmony. Thus taught Aristotle, and thus was con-
structed the Ptolemaic system.

Newton was the first to decide otherwise. Discover-
ing that the laws of fall of bodies on the Earth are the
same as the ones that control the motion of planets, he

translator's note. Because I do not have ready access to
many of the original quotations from Einstein and other
authors given in Russian in this paper, I have had to trans-
late the already translated Russian in many cases.

opened up to scientists the limitless expanse of the Uni-
verse. But many years were still to pass before they
could follow Newton. It was only in the 19th century
that serious discussion about the nature of gravitational
forces began, and even at the dawn of the present cen-
tury little was known about these forces. Of course, it
must not be thought that everything said by Einstein was
completely new. Even Einstein's most radical idea of
identifying a physical interaction (gravitation) with the
geometry of space-time, which is the basis of the gen-
eral theory of relativity, had its predecessors. We
shall give here some striking remarks, which now ap-
pear prophetic. However, such prophetic anticipations
were rare, and few heard them. In this sense, the path
to the general theory of relativity was not a continuous
logical thread; there were no tributaries merging at a
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confluence into a broad river. Einstein's work is to be
seen rather as a waterfall encountered in a compara-
tively peaceful river.

But anticipations there were. Among the prophetic
voices, Nikolai Lobachevskii's in 1835 can be most
clearly heard:

"In nature we actually recognize only motion, without
which sense impressions are impossible. Thus, all
other concepts, for example, geometrical, are created
by our intellect artificially, being taken from the prop-
erties of motion; therefore, space, by itself, does not
exist separately for us. There cannot therefore by any
contradiction in our thinking if we suppose that some
forces in nature follow one particular Geometry and
others a different Geometry. And even if this is a pure
assumption for which other convincing arguments must
be found, there is no doubting the fact that forces pro-
duce everything: motion, velocity, time, mass, even
distance and angles".1 On June 10, 1854, Bernhard
Riemann read his habilitation address at Gottingen Uni-
versity (it was published only in 1868 by Dedekind). The
lecture was entitled "On the hypotheses which lie at the
base of geometry". In this lecture, Riemann said that
space must have some material base, something "real"
and that if space is identified with a continuous mani-
fold" it is necessary to explain the occurrence of

metrical relationships by something outside it, in bind-
ing forces which act upon it".2 However, he ended his
lecture with the words: "This carries us over into the
sphere of another science, that of physics, into which
the character and purpose of the present discussion will
not allow us to enter."2 In 1870, the Englishman Wil-
liam Clifford wrote: "I hold in fact (1) That small por-
tions of space are in fact of a nature analogous to little
hills on a surface which is on the average flat; namely,
that the ordinary laws of geometry are not valid in
them. (2) That this property of being curved or dis-
torted is continually being passed on from one portion
of space to another after the manner of a wave. (3) That
this variation of the curvature of space is what really
happens in that phenomenon which we call the motion of
matter, whether ponderable or etherial. (4) That in the
physical world nothing else takes place but this varia-
tion, subject (possibly) to the law of continuity."3

But none of these comments, in which we now find an-
cestral wisdom, bore fruit at their time. It was not
possible to construct a theory of gravitation from them.

' It was necessary to add to them physical principles, the
fundamental nature of which became clear to Einstein
alone. Above all, it was necessary to have the require-
ments of the special theory of relativity and the equality
of inertial and gravitational mass. The importance of
this last was already recognized by Newton. Using a
pendulum with weights of different materials, he proved
this equality with an error of less than 0.1%. In 1828,
Bessel increased the accuracy of Newton's experiments
by 60 times. It was only after more than half a century
that EbtvSs reawakened interest in the problem of the
equality of the two masses, the inertial and the gravi-
tational. Following Newton and Bessel, he saw in this
fact one of the most important laws of nature and re-

duced the error to ΙΟ'7 -ΙΟ"8 (1889-1909).1» And al-
though many understood the importance of the equality
of the masses and did sometimes attempt to explain it,
no one before Einstein attempted to take it as the basis
of the theory of gravitation.

Another approach to the theory of gravitation also ap-
peared possible. It is remarkable that as early as 1801
Soldner calculated the amount by which a ray of light
passing close by the Sun must be deflected.2> Assuming
that light is a material body,31 he concluded that the path
of light must be a hyperbola (as in the case of a comet),
and obtained the magnitude of the deflection from ele-
mentary theory. Inexplicably, as a result of a slip
Soldner obtained the result 2 x 0.84". A calculation in
accordance with the formulas of classical mechanics
should have given 0.84", a value close to that obtained
by Einstein in his first attempts to treat the influence
of a gravitational field on the propagation of light and
half the correct result obtained on the basis of the gen-
eral theory of relativity and confirmed by experiment.

Laplace was the first to pose the problem of the ve-
locity of propagation of gravitation. Within the frame-
work of Newtonian theory, Laplace attempted to take
into account retardation. As a result, he established a
lower limit for the velocity of propagation of gravita-
tion, but made a fatal mistake in that he introduced re-
tardation and calculated the effect in the first order in
the ratio of the velocity of a planet to the velocity of
light (in fact, this is an effect of second order!). If
there is to be no contradiction with observations, the
velocity of propagation of gravitation must (according
to Laplace) exceed the velocity of light by 10s times!

On another occasion, the formulas were more favor-
ably disposed to Laplace. Using an incorrect formula
for the kinetic energy of light, he correctly calculated
the gravitational radius and predicted the existence of
black holes. " . . . the attractive force of a heavenly body
could be so large, that light could not flow out of it", a
quotation that has now become classical.4 As this re-
mark was made during the last years of the 18th cen-
tury, Laplace's percipience is remarkable.4'

''in our time, Dicke's group has reduced the error to 10"11.
The highest accuracy has been achieved by V. B. BraginskU
and V. I. Panov, who have reduced the error even further to
10"12. At this accuracy, one can already assert that even the
weak forces do not violate the great principle. This principle
is also satisfied by systems in which there is an appreciable
gravitational energy (the Moon in the field of the Sun), gravi-
tational energy making equal contributions to both masses in
this case too.

''The calculation was published in the astronomical yearly
Berliner Astronomisches Jahrbuch; an English translation
can be found in the paper of S. L. Jaki, Found, of Phys., 8,
927 (1978). (cf. the even earlier investigations of Refs. 90
and 91.)
Soldner's work was used by Lenard in his attacks on Ein-
stein. This story is discussed by Jaki.

3>".. .It must not be thought that the objects which exist and
act on our senses do not have the properties of matter".

4)Laplace's arguments disappeared in later publications (be-
ginning with the third edition of his Exposition of the System
of the World").
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This remark of Laplace was recalled only recently
when the fantastic "black holes" came to be regarded
as real (at least in modern theories).

The Newtonian theory of gravitation did not explain the
mechanism of gravitation. In the 18th and 19th centuries
not a few ether mechanisms were proposed for gravi-
tation; these were based either on analogy with the me-
chanics of continuous media and explained the attraction
by the pressure of a medium or by vibrational wave ef-
fects in a medium, or used Le Sage's model (ether-
kinetic hypotheses) and explained the attraction by the
screening of gravitating bodies "bombarded" by ether
particles. None of these attempts, still less the at-
tempts at an electrodynamic derivation or generaliza-
tion of Newton's law, met with success or has left any
visible trace in the modern theory of gravitation.5

While theory advanced erratically, contradictions be-
gan to accumulate in the observational material. They
were not so drastic as, for example, in the case of the
ultraviolet catastrophe, but the pedantic astronomers
still spoke of persistent deviations from the predictions
of Newtonian mechanics. In 1859, Laplace's student
Leverrier published a communication stating that the
motion of the planets does not agree with the calcula-
tions. The calculated motion of the perihelia of Mer-
cury and Mars due to the influence of the other planets
turns out to be smaller than the observed value by 38"
per century for Mercury and by 25" (corrected value
7") for Mars. Leverrier's own attempt to explain this
anomalous advance by a new hypothetical planet Vulcan
(whose orbit was to lie within Mercury's) did not lead
to success. Just as unsuccessful were attempts to ex-
plain the anomalies of Mercury by a ring of asteroids
between it and the Sun (Tisserand, 1891), a satellite of
Mercury (Haerdtl, 1894), and other similar hypotheses
based on hidden masses in the solar system. Various
modifications of Newton's law based on the analogy with
action-at-a-distance electrodynamics, or power-law
and exponential modfications (see below) also failed to
solve the problem.5 Without going into the details of
the history of celestial mechanics, let us merely say
that by the end of the 19th century the need for more
radical changes in our ideas about gravitational forces
was obvious. The analysis of the motion of the planets
made by Newcomb was also very important for Ein-
stein. In 1926, Einstein wrote a letter to Newcomb's
daughter (it was read at the unveiling of the memorial
to her father in 1935): "Your father was the last of the
great scientists who, considering this problem [the
perturbations in the motions of the planets] calculated
with great care the motions in the solar system. This
problem is so grandiose that only a few could work in-
dependently and sufficiently critically on its solution".6

The motion of the perihelion of Mercury was to be be-
come one of the touchstones of the general theory of
relativity.

But not only discrepancies between theory and ob-
servation in figures long after the decimal point in the
formulas of celestial mechanics warned of difficulties;
real major paradoxes were ripening. They lay in wait
for anyone who attempted to turn from the solar system

to an analysis of events on the scale of the Universe.

The first such danger was noted in 1874 by Neumann:
"If one assumes that the stars extend infinitely in all
directions, and that the mean density of this matter is
constant, and if Newton's law is valid, then the force
with which these stars act on our terrestrial globe is
quite undetermined, and can have any direction and
magnitude. Newton's law leads in such a case to an ab-
surd result and is therefore invalid in this case."7 This
paradox was analyzed in detail by Seeliger (and for this
reason it is usually named after him).

A resolution of the paradox was sought by Neumann
and Seeliger in exponential modifications of Newton's
law.

It should be said that Seeliger's paradox does not ap-
pear today so serious. For a nonstatic universe, one
can obtain correct formulas using Newton's theory of
gravitation,5' but at that time the universe was regarded
as a static system of fixed stars, and it did not seem
possible to eliminate the paradox.

A similar paradox was discovered even earlier by
de Cheseaux (1744) and Olbers (1826). They showed that
under the conditions of an infinite and static universe
filled uniformly with stars that have existed for ever
the energy flux must be infinite. In such a universe,
the night sky cannot be dark, and the universe must be
filled with radiation in thermal equilibrium with the
stars, i.e., it must have a very high temperature. In
fact, the universe does not have a hot background but
only the cooled cosmic microwave background radiation
at a temperature of 2.7 °K. To avoid the danger posed
by Olbers's paradox, it is sufficient that the stars be
of finite age and that the universe be subject to the laws
that follow from Einstein's equations. Only these laws
have led to a "cooling" of the sky that we observe. The
darkness of the night is striking evidence for the power
of these equations.

The successes of the Maxwellian theory of the elec-
tromagnetic field also suggested the possibility of a
field approach to the theory of gravitation. In this way,
one could hope to link gravitation to electromagnetism,
understand the propagation of gravitation in space, and
eliminate some of the difficulties mentioned above.
Maxwell himself already thought of a theory of the grav-
itational field but concluded that the energy density of
the field would be negative and he therefore abandoned
the further development of this approach.

At the turn of the present century, Volterra attempted
to develop a scalar field theory, and in 1900 Lorentz
constructed an electromagnetic theory of the gravita- .
tional field, interpreted in the general case as a vector
field; these theories also failed to solve the principal
difficulties.

Thus, at the start of the present century the situation
with regard to the theory of gravitation was clearly un-
satisfactory, although not so critical as in the case of
the electrodynamics of moving bodies or the theory of
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radiation. It was felt that the empirical anomalies in
celestial mechanics could be eliminated by a small cor-
rection to the inverse-square law. For this, it would
be sufficient to replace the square by the power 2
+1.6· 10"7 (Hall and Newcomb). The discovery of the
special theory of relativity not only posed the problem
of reconciling it with Newton's theory of gravitation but
also generated new hopes for the solution of the problem
of gravitation. However, the development of Lorentz-
covariant generalizations of Newton's law by Poincare
(1906) and Minkowski (1908), which did lead to the con-
clusion that gravitation propagates with the velocity of
light, still left the main difficulties unsolved.

In 1907, when Einstein's published his paper in which
he formulated for the first time the principle of equiva-
lence and discussed on its basis the influence of the
gravitational field on the propagation of light, he was
still occupying the post of a technical expert of the third
class at the patent office in Bern. Einstein's pioneering
approach to the problem of gravitation associated with
the idea of extending the restricted principle of relativ-
ity was not supported by other physicists, and Einstein
himself encountered great difficulties in extending it to
inhomogeneous gravitational fields. Moreover, in the
period 1908-1910he was intensively occupied with prob-
lems of quantum theory. It was only in 1911 that Ein-
stein returned to a theory of gravitation based on the
equivalence principle and predicted that the velocity of
light should depend on the gravitational potential.

On the basis of this dependence, the German theo-
retician Abraham put forward in 1911-1912 a scalar
theory of the gravitational field, which, however,
is not consistent with the principle of relativity. In
1912-1913, the Finnish physicist NordstrSm and the
German physicist Mie engaged actively in the develop-
ment of gravitational theories. They developed Lo-
rentz-covariant theories of the gravitational field that
are completely satisfactory from the logical point of
view but do not explain the anomalous advance of Mer-
cury's perihelion and do not predict deflection of light
in a gravitational field. Discussions with these physi-
cists and consideration of their theories was of great
importance for Einstein.

Leading German theoreticians such as Planck and von
Laue, who enthusiatically supported the special theory
of relativity, did not recognize the depth of Einstein's
ideas leading to the extension of relativity theory, but
they did not enter into an open polemic with him during
these years (1911-1915). Planck indirectly made an
important contribution to the development of the rela-
tivistic theory of gravitation. He was one of the first to
pose the problem of the equality of inertial and gravita-
tional mass in the light of the special theory of relativ-
ity. To him and Minkowski we owe the four-dimension-
al variational formulation of the principle of inertia,
which, as we shall see, played a key part in forming
the geometrical concept of gravitation that is the basis
of the general theory of relativity. As early as 1899
Planck had also drawn attention to the fact that the con-
stant of gravitation in conjunction with the velocity of
light and the constant that bears his name gives rise to

the so-called "natural system of units" (in which Boltz-
mann's constant is also included). The fundamental
length lp= ι/Κγ/c3 introduced by him in this system6*
plays a fundamental part in the quantum theory of grav-
itation currently emerging. Nevertheless, Planck re-
acted to the ideas of Einstein that led to the general
theory of relativity with great reserve. One cannot but
see in this similarities with the position of Einstein
himself with regard to quantum mechanics, one of the
founders of which was the very same Einstein. The
creations of the human mind not infrequently outgrow
their creators 1

Although Einstein acutely felt the lack of under standing
and support of the majority of his colleagues, he was
not completely alone. We must mention here especially
three of his friends. There was the astronomer
Freundlich, who actively prepared for astronomical ob-
servations with a view to obtaining experimental verifi-
cation of the principle of equivalence and the general
theory of relativity; then there was the mathematician
and student friend of Einstein Marcel Grossmann, who
helped him find and master the necessary mathematical
formalism; and finally there was the remarkable physi-
cist Ehrenfest, whose subtle and critical intellect made
him an inestimable interlocutor for many physicists in
the first third of the twentieth century.

In the spring of 1913, Einstein and Grossmann com-
pleted a paper in which the new theory takes an almost
convincing form. This sketch of a tensor geometrical
and generally covariant theory of gravitation did not yet
contain the correct equations of the gravitational field.
Erroneous arguments hindered the authors from cor-
rectly evaluating the possibilities of the Riemann-
Christoffel and Ricci tensors for establishing the field
equations, and they strayed from the true path in giving
up the key requirement of general covariance of these
equations. After his transfer from Zurich to Berlin,
Einstein continued the work alone and was actually en-
gaged in an argument with himself, thinking up new
arguments only to refute them in a following paper. It
was only in November 1915 that he returned to the point
of departure—the requirement of general covariance of
the field equations.

A few months before this, in the summer of 1915,
Einstein had met at Gottingen the patriarch of mathe-
maticians—Hubert. Hubert was not only well ac-
quainted with the mathematical formalism of the theory
of relativity but for several years had already been
deeply interested in fundamental problems of physics.
It is probable that in discussions with Hubert Einstein
went through his arguments and doubts, which could
have helped him reject his own objections that were
hindering him from the final triumph. For his part,
Hilbert found in the theory of gravitation presented by
Einstein (in July 1915, the physical part of the theory
was almost completely clear) the desired field for his

6)Of course, in 1899 Planck did not yet have the constant h at
hts disposal and to define the system of units he used the con-
stant from Wien's law, which in modern theory is equal to
the ratio h/k.
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ideas concerning the axiomatization of physics and,
grasping the greatness of Einstein's ideas, joined in
the search for the most rational way of obtaining the
equations.

In November 1915, at a session of the Acadeny of
Sciences at Berlin, Einstein presented his new final
variant of the theory. During the same November at
GSttingen Hubert presented equations that he had ob-
tained in a completely different way on the basis of
Einstein's earlier papers and, possibly, on the basis
of what Einstein had told him.

These communications in November 1915 of Einstein
and Hubert strikingly reveal two different styles of
scientific investigation. Einstein believed in the har-
mony of the world, and he doggedly sought and found
global physical laws in nature. Hubert, the rigorous
logician, just as determinedly created an axiomatic
science.

As a result, the general theory of relativity is at once
a deeply physical and also rigorous mathematical the-
ory, redolent of beauty and greatness.

The establishment of the general covariant equations
of gravitation ended the exhausting search made by Ein-
stein for more than eight years (with some interrup-
tions). The relativistic theory of gravitation, or the
general theory of relativity, was basically his creation.
Grossmann helped in the finding and development of the
mathematical formalism of the theory. Hubert con-
vincingly demonstrated the great heuristic possibilities
of the variational principle and endowed the theory with
regal splendor and the perfection of mathematics. For
many years, the general theory of relativity was to be-
come the almost unattainable ideal for all future physi-
cal theories.

In the following sections, we shall follow in greater
detail the process of construction of the general theory
of relativity. Our main attention will be concentrated on
the formation of the geometrical concept of gravitation
(1911-1913) and the setting up of the generally covari-
ant equations of the gravitational field (1913-1915).

I. TOWARD A GEOMETRICAL CONCEPTION OF
GRAVITATION

The history of the creation of the relativistic theory
of gravitation can be divided into the following four
stages:

1) Discovery of the principle of equivalence and the
prediction on its basis of two gravitational-optical ef-
fects, 1907-1911.

2) Scalar theories, 1911-1912.

3) Development of the tensor geometrical concept of
gravitation, 1912-1913.

4) Search for the equations of the gravitational field,
1913-1915.

In the present paper, we shall be concerned only in
passing with the first two stages to the extent that they
are important for understanding the subsequent develop-
ment.

1. Equivalence principle and scalar theories

The principle of equivalence was discovered by Ein-
stein when he attempted to introduce gravitation in the
framework of the special theory of relativity and was
then confronted with the remarkable fact of the equality
of inertial and gravitational masses. Einstein inter-
preted this equality from the relativistic point of view
as " . . . the complete physical identity of a [homogen-
eous]7 ' gravitational field and a corresponding accel-
eration of the frame of reference (1907)".8 On the basis
of this principle, he immediately concluded that the rate
of physical processes must be changed in a gravitational
field; in particular, he predicted a shift in the frequen-
cy of the radiation of an atom on the surface of the Sun
and, finally, concluded that the velocity of light should
depend on the gravitational potential in accordance with
the formula

where Φ is the Newtonian scalar potential. From this
one can deduce directly a deflection of light in the
gravitational field of the Sun equal to 0.85", i.e., a de-
flection equal to half of the correct amount calculated
in 1915 on the basis of the general theory of relativity
(with allowance for the curvature of space).

The difficulties in the way of extending the equiva-
lence principle to inhomogeneous gravitational fields,
which are associated with a need to go beyond Lorentz
covariance and mean that the coordinates lose a direct
metrical meaning, and also intensive investigations in
quantum theory caused a delay of several years in the
further development of the theory of gravitation. It was
only in 1911 that Einstein returned to the problem of
gravitation, which to no small degree may have been
due to his recognition at that time of the possibility of
an experimental verification of light deflection in the
field of the Sun at the time of an eclipse.9

The equivalence principle actually provided the theory
of only homogeneous fields. For this, Einstein used the
concept of the Newtonian scalar potential. The first
scalar theory of arbitrary fields was created by Abra-
ham, who worked within the framework of the electro-
magnetic program and did not accept the special theory
of relativity. He saw the downfall of the special theory
of relativity in the dependence of the velocity of light on
the potential that follows from the equivalence princi-
ple, and used this dependence to construct a scalar the-
ory based on a generalization of Poisson's equation. He
proposed a four-dimensional wave equation of the sec-
ond order in which the density of rest mass, which is
not a scalar, appears as source of the field on the
right-hand side. Thus, Abraham's theory was not con-
sistent with the principle of relativity and encountered
difficulties when interpreted from the point of view of
the equivalence principle.

Much more satisfactory was the Lorentz-covariant
scalar theory of NordstrOm, the first variant of which

^Translator's Note. Explanatory interpolations of the Russian
authors are given throughout in square brackets.
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was developed by the Finnish theoretician in the fall of
1912. In the second variant of this theory, which was
formulated by him in the summer of 1913 and perfected
somewhat later by Einstein himself in collaboration
with the Dutch physicist Fokker (see below), the source
of the field is the trace of the energy-momentum tensor
(which is a scalar!). In this theory, the four-dimen-
sional Minkowski interval is multiplied by an arbitrary
function of the space-time coordinates and is trans-
formed into

ds* = Φ (j, y, z, t) {dx" + dy* + dz* — cW).

The equation of the light cone

ds2 = 0

is unchanged, and in this theory there is of course no
influence of the gravitational field on the propagation
of light.8' Ultimately, it was necessary to reject for
this reason both NordstrSm's theory, and also Mie's,
which is essentially equivalent to the first variant of
NordstrSm's theory.

However, in 1913-1915, when Einstein had already
developed the tensor geometrical concept of gravita-
tion, he regarded the scalar theory as a perfectly valid
competitor, since it satisfied the four main require-
ments that in Einstein's opinion must be met by any rea-
reasonable theory of the gravitational field. He formu-
lated these requirements in the fall of 1913: "1. Ful-
fillment of the laws of conservation of momentum and
energy. 2. Equality of the inertial and gravitational
masses of closed systems. 3. Validity of the theory of
relativity in a restricted sense, i.e., the system of
equations must be covariant under linear orthogonal
substitutions (generalized Lorentz transformations).
4. The observed laws of nature must not depend on the
absolute values of the gravitational potential (or the
gravitational potentials)".10

Einstein, stimulated partly by Abraham's work, made
the next step along the path from the equivalence prin-
ciple to the theory of arbitrary fields in the direction of
a scalar theory. However, in contrast to Abraham, he
allowed the scalar approach only for treating static
fields. At the start of 1912, he formulated two variants
of a scalar theory of the static field, which, although
they did not satisfy Einstein (they were not completely
consistent with the equivalence principle and concerned
only static fields), nevertheless contained very impor-
tant ideas that played an important role in the develop-
ment of the tensor-geometrical theory of gravitation
(which in what follows we shall call the geometrical
theory).11>lz Einstein's scalar theory included the idea
of nonlinearity of the field equations and the idea of
representing the equation of free motion of a material
point in a gravitational field in the form of a variational
principle for the four-dimensional interval (the geodes-
ic principle).

2. Preliminary remarks on the geometrical theory of
gravitation

There are grounds for believing (see below) that al-
ready in the summer of 1912 Einstein recognized the
inadequacy of the scalar approach and the need for us-
ing a tensor approach. The use of tensors, or rather
symmetric tensors of the second rank, was suggested
by two circumstances. First, adoption of the four-di-
mensional Minkowski approach for describing static
fields led to a tensor gik that determines the metric of
space-time, a concept that arises from a generalization
of the metric of the special theory of relativity. Sec-
ond, in a relativisitic theory it would be more natural
to regard as the source of the gravitational field the
energy-momentum tensor T(k, in contrast to scalar
theories in which the tract Τ of this tensor is the field
source. In conjunction with the first consideration,
this ultimately led to a Riemannian structure of space-
time and to the Ricci tensor Gik as its main tensor
characteristic of second rank. It was the tensor ap-
proach that could be more naturally reconciled with the
requirements of relativity theory and the equivalence
principle.

It is curious that the tensor theory was criticized by
Abraham, who felt that the introduction of 10 "gravi-
tational forces" unjustifiably complicates the theory.
In fact, as we now know, the tensor approach is neces-
sary in a consistent four-dimensional metric concep-
tion, and only such a theory includes the equivalence
principle in a natural manner.

On his transfer from Prague to Zurich in October
1912, Einstein and the mathematician Marcel Gross-
mann, who was a Professor at the Zurich Polytechnic
and had been a student friend of Einstein, intensively
developed the tensor geometrical theory of gravitation.
In a letter to Sommerfeld on October 29, 1912, Ein-
stein wrote:

"I am now working exclusively on the problem of
gravitation and hope, with the assistance of a compan-
ion here, a mathematician, to eliminate all difficul-
ties. But I have never worked so hard in my life and I
now gain great respect for mathematics, the subtleties
of which, in my limitation, I previously regarded as a
luxury. Compared with this problem, the original the-
ory of relativity was child's play".13

The new theory was published in the joint paper of
Einstein and Grossmann: "Outline of a generalized the-
ory of relativity and theory of gravitation". The date on
which the paper was received by the editor of the jour-
nal is not indicated,14 but there are grounds for believ-
ing that the paper was finished in April or May of 1913
and submitted at that time.9'

8)There are two sources (each giving 0.85") of the deflection
of light: the "mass" of light, which is an effect due to the
special theory of relativity, and the curvature of space. In
the scalar theory, the two effects compensate each other; in
the tensor theory, they are added.

"This is confirmed by letters of Einstein to Laub on July 22,
1913 (Ref. 15) and to Mach on June 25, 1913 (Ref. 16). In the
first he writes that "two months ago I came to terms" with
the problem of gravitation. In the second he expresses the
hope that Mach has already obtained his "new paper on rela-
tivity and gravitation", which "I have at last finished after
unending labor and painful doubts". In addition, in a paper
submitted to the journal on July 24, 1913, Nordstrom refers
to the "Outline".1'
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3. Einstein and the genesis of the geometrical theory of
gravitation

Einstein himself spoke approximately 20 years after
the event about the development of the ideas forming
the basis of the "Outline" and, thus, the geometrical
concept of gravitation. In the Gibson lecture delivered
at the University of Glasgow (1933), having described
the essence of the problem associated with the coordi-
nates losing a direct physical (metrical) meaning on the
transition to accelerated systems, Einstein described
the further development of his thought as follows: "
For a long time I could not understand what coordinates
in physics could mean. The solution of this dilemma
was found only in 1912, through the following argument.
It was still necessary to find a new formulation of the
law of inertia, which, in the absence of a true "gravita-
tional field in an inertial coordinate system," would go
over into the Galilean formulation of the principle of
inertia. According to this last, a material point on
which no forces act is represented in four-dimensional
space by a straight line, i.e., by a shortest or, more
precisely, extremal curve. This concept presupposes
the existence of the length of a line element, i.e., a
metric. In the special theory of relativity, as was
shown by Minkowski, this metric is quasi-Euclidean,
i.e., the square of the "length" ds of the line element
is a definite quadratic function of the coordinate differ-
entials.

If one now introduces other coordinates by means of
a nonlinear transformation, then ds2 remains a homo-
geneous function of the coordinate differentials, but the
coefficients of this function (guv) will not be constants
but certain functions of the coordinates. Mathematical-
ly, this means that the physical (four-dimensional)
space has a Riemannian metric. The time-like exter-
nal curves of this metric determine the motion of a
material point subject to no other forces than gravita-
tional. The coefficients of this metric (#„„) simultan-
eously describe the gravitational field in the chosen co-
ordinate system. In this way, there was found a natu-
ral formulation of the equivalence principle, the ex-
tension of which to arbitrary gravitational fields ap-
peared very natural.10'

Thus, the above dilemma was resolved as follows: it
is not the coordinate differentials that have a real
physical meaning but only the Riemannian metric cor-
responding to them. This laid the foundations of the
general theory of relativity. However, two problems
still remained unsolved.

1. If the field equations are expressed in terms of
the special theory of relativity, how are they extended

10It is clear that not all gliv correspond to a true gravitational
field. Here, Einstein is speaking of a field relative to a
chosen coordinate system, which may be eliminated in a dif-
ferent system. (Footnote appended by the Russian authors.)

to the case of a Riemannian metric?

2. What are the differential equations that determine
the Riemannian metric itself (i.e., £•„„)?

I worked on these problems from 1912 to 1914 in col-
laboration with my friend Marcel Grossmann. We found
that mathematical methods for the solution of the first
problem already existed in a ready form in the abso-
lute differential calculus of Ricci and Levi-Civita.
With regard to the second problem, for its solution we
required differential equations of second order in the
guv. We soon saw that these expressions were already
provided by Riemann (the curvature tensor). Already
two years before the publication of the general theory
of relativity we studied the correct equations of the
gravitational field, but we were not persuaded of their
physical applicability. In contrast, I even supposed
that they could not be confirmed experimentally. More-
over, it seemed to me, on the basis of very general
considerations, that one could show that a law of grav-
itation invariant under arbitrary coordinate transfor-
mations is incompatible with the principle of causality.
This error cost me two years of extremely hard work
until I saw the error at the end of 1915 and found a con-
nection between the theory and data of astronomical
observations, after which I returned with repentance to
the Riemannian curvature".18

The difficulties standing in the way of extending the
equivalence principle to arbitrary gravitational fields
(the loss by the coordinates of a direct physical mean-
ing and the absence of indications how the Lorentz
group should be extended) arose already in 1907 and,
essentially, interrupted further advance. The way out
of these difficulties was found by Einstein shortly be-
fore his transfer from Prague to Zurich (probably, in
the summer of 1912). Of decisive importance was the
analysis of "reducible" gravitational fields, i.e., fields
that can be eliminated by a coordinate transformation,
in the framework of four-dimensional Minkowskian
geometry. The principal role then passed from the
coordinates to the metric, and the principle of inertia
obtained a simple geometrical formulation. The tran-
sition to uniformly accelerated frames of reference
transformed the pseudo-Euclidean metric into a Rie-
mannian ("reducible") metric: ds2 = gjkdxidxk. In ac-
cordance with the equivalence principle, the coordi-
nates of the metric tensor characterized not only
space-time but also the gravitational field. The iner-
tial motion of a material point was described as motion
along a geodesic in a Riemannian space. This geomet-
rization of "reducible" fields opened up the way to the
construction of a theory of arbitrary gravitational
fields: it was only necessary to give up the condition
that the general Riemannian metric be reducible to a
pseudo-Euclidean metric by a simple coordinate trans-
formation. This led to a completely new view of grav-
itation and, with it, of the geometry of space-time, the
new view being associated with the transition to Rie-
mannian geometry and interpretation of its metric ten-
sor as a gravitational potential. The special principle
of relativity was generalized in such a way that the Lo-
rentz group was replaced by the group of arbitrary con-
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tinuous coordinate transformations.11'

According to Einstein's recollections, the ideas
which provided the foundation of the general theory of
relativity were developed before he moved to Zurich.
The solution of the further problems associated with
correct allowance for the influence of gravitation on
other physical processes, the search for the differen-
tial equations for the g^ (i.e., the equations of the
gravitational field) and so forth required the use of a
completely new field of mathematics. With this stage
there begins the joint work of Einstein and Grossmann,
who was the author of a number of papers on differen-
tial and nonEuclidean geometry. Grossmann found the
appropriate mathematical formalism: the absolute dif-
ferential calculus of Ricci and Levi-Civita (tensor anal-
ysis in an η-dimensional Riemannian space). It was
evidently this mathematics that "inspired great re-
spect" in Einstein and, compared with this first out-
line of the general theory of relativity the original the-
ory of relativity did indeed appear as "child's play".

4. Premises of the geometrical theory (Einstein's papers in
1912)

The history described in Einstein's recollections can
also be followed in his papers. Essentially, these are
the four papers written by Einstein between February
and July 1912 during his stay in Prague: the first two
papers (February11 and March12) were devoted to scalar
theories of the static field (published May 23); the
third paper, in which he discussed Machian effects in
these theories, was probably written in May and pub-
lished in July19; the fourth, which is devoted to the
polemic with Abraham and entitled "Answer to Abra-
ham's comment", was received by the editor of the
Annalen der Physik on July 4 and published on August
13 (Ref. 20).

The fundamental difficulties associated with the co-
ordinates losing their direct physical meaning and the
absence of a clear indication of the form of the ex-
tended transformation group are not mentioned explic-
itly in either the review of 1907 (Ref. 8) nor in the pa-
per of 1911 (Ref. 9). The difficulties are indicated very
clearly in the paper of Ref. 20: ".. .The equivalence
principle opens up an interesting avenue—the equations
of the theory of relativity including gravitation must
also be invariant under transformations of acceleration
(and rotation). However, the route to this aim appears
very difficult to us. It can already be seen from the

' very special case of gravitation of masses at rest so

1 1 )The path that led to Einstein's equations is very different
from the path taken in the development of quantum field theo-
ries, which led physics to generalizations of Maxwell's equa-
tions. If the searches for equations of gravitation by Lorentz,
Abraham and possible successors had led them to wave equa-
tions with spin 2, they would have led to correct results.
However, this was recognized only in the work of Thirring
(1961), Feynman (1963), and Ogievetskii and Polubarinov
(1963), which was based on the quantum theory of relativistic
fields. But these theories, which have no geometrical con-
tent, cannot lead to cosmological consequences (at least, not
naturally). Thus, Einstein's path is still unique.

far considered that the space-time coordinates lose
their simple physical meaning and one cannot predict
what form the general equations of space-time trans-
formations should have".21

Not long before this Einstein's attitude to Minkowski's
four-dimensional concept, which for several years he
had regarded as mere formalism, changed. In 1910,
he considered briefly for the first time the possibility
of a four-dimensional representation of Lorentz trans-
formations, emphasizing its "formal" nature.22 In
1911, in his talk "The theory of relativity" at the meet-
ing of the Society of Natural Scientists at Zurich he
said: "Finally, a few words on the extremely interest-
ing mathematical direction that the theory has been
given principally by the mathematician Μ ink ow ski, who
has unfortunately died so prematurely... . The furth-
er use of this formal equality [of the spatial coordi-
nates and the time coordinate] has led to an extremely
perspicuous exposition of the theory of relativity and
greatly facilitated its applications. Physical events are
represented in a four-dimensional world, and the
space-time relationships between them are represented
in this four-dimensional world by geometrical theo-
rems".23 It was the use of the four-dimensional ap-
proach to the theory of static fields, added by Einstein
in the corrections of the proofs of the March paper,
that was, after the equivalence principle, the second
important step toward the geometrical interpretation
of gravitation. In contrast to Abraham, Einstein did
not use the four-dimensional technique in his papers on
the scalar theories. A certain justification for this was
the fact that he restricted himself to considering static
fields and the conviction that the special theory of rel-
ativity loses its validity in the presence of gravitational
fields. In addition, Einstein also allowed the possibility
of deviation of the geometry of space from Euclidean
geometry.12' The changed attitude to the four-dimen-
sional formulation of special relativity and the realiza-
tion that the four-dimensional approach is applicable
in the presence of gravitation (stimulated by Abra-
ham's papers) led to the discovery of the possibility of
extending the four-dimensional formulation of the prin-
ciple of inertia in relativistic mechanics to the case of
motion of a material point in a static gravitational
field. Important here were, of course, considerations
associated with the correspondence principle that Ein-
stein used effectively in the construction of new theo-
ries. He noted that the four-dimensional variational
formulation of the equations of motion of a free particle
in special relativity, found as early as 1906 by
Planck,25

6J<fo = 0, (1)

(where ds2 = c2dt2-dx2 - dy2 -dz2 is the four-dimen-
sional interval in special relativity) also remains valid

1 2 )He pointed out just such a possibility in the February paper:
"Thus, for example, it is very probable that they [I.e., the
Euclidean relations] do not hold in a uniformly rotating
frame, in which, because of the Lorentz contraction, the
ratio of the circumference to the diameter must differ from
» when our definition of length is used" .M
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in the theory of static fields if the velocity of light is
regarded as a function of the coordinates: c=c(x,y,z).
Thus, Einstein actually arrived at the conclusion that
the four-dimensional interval, or the metric of space-
time, in a static gravitational field has the form13'

ds1 =c* (i, y, z) dl* — dz* — dy* — dz\ (2)

The fundamental nature of the concept of the interval in
the special theory of relativity was demonstrated by
Minkowski, Planck, von Laue, and others.27 It now
became essential in the relativistic theory of gravita-
tion as well. This also indicated the way to the resolu-
tion of the difficulty associated with the coordinates
losing their direct physical meaning: it is the metric
and not the coordinates themselves that must acquire
a real physical meaning.

In principle, the metric (2) had already implied a
curved space with nonzero curvature and Ricci ten-

sors
2 7 .

(»,; = !, 2, 3),

However, in the presence of only a linear dependence of
the velocity of light on the coordinates, i.e., in the case
of "reducible" (homogeneous) fields, the curvature ten-
sor vanishes and space-time remains flat.

However, at this stage, Einstein was not yet using the
formalism of the theory of curvature. He restricted
himself to the remark: "The Hamiltonian equation
written down at the end [i.e., Eq. (1) with the corre-
sponding interval (2)] gives an indication of how the
equations of motion of a material point in a dynamical
gravitational field must be constructed".28 It followed
that the equations expressing the principle of inertia in
the presence of gravitation can be interpreted by means
of the equations of geodesies in a four-dimensional
space with generalized (differing from pseudo-Eu-
clidean) metric (2). As the next step, one could con-
sider the Riemannian metric

= gth dx, dxh (3)
and the equations of geodesies in Riemannian space.
However, in the spring of 1912 it was not yet clear to
Einstein how this could be reconciled with the scalar
nature of the field potential. But already in the July
polemical note there is a striking passage that reveals
Einstein's awareness that neither the scalar nor the
vector approach to the problem of gravitation could
succeed: "If the gravitational field can be interpreted
in the sense of our present relativity theory, this can
be done in only two ways. The vector of the gravita-
tional field can be represented either as a four-vector
[scalar potential] or a six-vector [vector potential].
In each of these cases, one obtains transformation for-
mulas for the transition to a uniformly and rectilinear -
ly moving frame of reference. Using these formulas
and the formulas for transforming the ponderomotive

i3 )By a transformation of the time cydf *c(x,y,z)dt(c(,=const)
that is different at different points of space the interval is re-
duced to the Minkowski interval with different clock rates at
different points.

forces one can find the forces that in both cases act on
a material point moving in a static gravitational field.
However, one then obtains results that contradict the
consequences drawn above on the basis of the gravita-
tional mass of energy [i.e., from the equivalence prin-
ciple]. Thus, a gravitational field vector cannot ap-
parently be introduced without contradictions into the
scheme of the present theory of relativity".29

This conclusion could have led Einstein to the idea of
using a tensor potential had he remained within the
framework of the special theory of relativity. But Ein-
stein saw a way out in extending the relativity principle
on the basis of the equivalence principle, leaving open
the question of the nature of the potential. Still, the
conviction that the scalar and vector approaches and no
prospects in conjunction with the understanding of the
part played by non-Euclidean Riemannian geometry led
right up to the tensor geometrical concept of gravitation.

Although Einstein's papers published in 1912 and di-
rectly preceding the "Outline" did not contain explicit
references to the Riemannian structure of space-time,
the identification of the metric tensor with the gravita-
tional potential, and so forth, we see clearly the roots
from which the composite parts of the future theory
were to develop.

A further argument in favor of the correctness of the
chosen path associated with the equivalence principle
and extension of the relativity principle was seen by
Einstein in the fact that in this manner (in the frame-
work of the scalar theory of static fields) the Machian
idea that the inertial mass of a material point should
depend on the masses surrounding it finds confirma-
tion. This idea was the subject of the paper of Ref. 19,
which was completed in May and appeared in July. The
result obtained in this paper is that the "presence of
the shell Κ of inertial mass (M) increases the inertial
mass (m) of the material point Ρ within it" in accord-
ance with the formula

ι kmM
m m +

where R is the radius of the shell, k is the gravitational
constant, and c0 is the velocity of light in vacuum. Ein-
stein comments further that "This suggests that the in-
ertia of a material point is entirely due to the influence
of all other masses through an interaction of some
kind."30 For the first time, he here refers to Mach:
"This completely coincides with the point of view put
forward by Mach in his ingenious investigations of this
problem". He hoped to realize this idea fully in a the-
ory of arbitrary fields. However, such an idea now ap-
pears incomprehensible. In the expression written
down above, m' depends explicitly on the potential,
which should not lead (on account of the equivalence
principle) to observable effects.14'

14>Mach's idea that there is a connection between the inertia of
bodies and the action of the masses of distant stars ("Mach's
principle") appeared promising to Einstein. He discussed
this idea in connection with closed models of the universe.
It has now become clear that more realistic models do not
satisfy Mach's principle, which Einstein himself was forced
to abandon.
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5. Einstein in Prague— scientific encounters

Einstein's Prague publications and his recollections
about the Prague period of his life convincingly demon-
strate the key role of this period in the development of
the tensor-geometrical theory of gravitation. Com-
parison of this material with the biographical litera-
ture, the recollections about Einstein, and the corre-
spondence belonging to this period indicates that Ein-
stein's various scientific contacts with other scientists
were extremely fruitful. We must mention here above
all the mathematician G. Pick, the physicist Ehren-
fest, and the astronomer Freundlich. Finally, it was
precisely in this period that his discussion with Abra-
ham developed most intensively. Einstein even earlier
had felt a great influence of Mach,15> but in the German
University in Prague, of which the first rector had been
Mach and at which his students were working (A.
Lampa, G. Pick, and others), this influence of Mach's
ideas obtained a new momentum. At the beginning of
his stay in Prague, Einstein became acquainted with
Ehrenfest. The acquaintance was through correspon-
dence,16» a correspondence beginning between them in
April (Einstein's first letter to Ehrenfest was dated
April 12, 1911).32 One of the question that they seem
to have discussed in the correspondence was the so-
called "Ehrenfest paradox". This paradox, which
played a large part in the development of the relativ-
istic theory of rigid bodies, was described by Ehren-
fest in 1909 in a short note, which, on the basis of the
special theory of relativity, proved the impossibility
of setting an absolutely rigid disk into uniform rota-
tion about its central axis.33 Assuming the possibility
of such rotation, Ehrenfest arrived at his paradox,
which takes the form that, through the Lorentz con-
traction, the length of the circumference decreases
whereas the radius remains unchanged. As it happens,
in May 1911 Einstein submitted to the Physikalische
Zeitschrift a short paper in which, referring to Ehren-
fest's thought experiment, he proves the reality of the
Lorentz contraction.34 In accordance with the equiva-
lence principle, uniformly accelerated rectilinear mo-

1S)In a letter to Mach in August 1909 he wrote: "Of course, I
know well your main works, among which I particularly value
your book on mechanics".31 In this book, Einstein was great-
ly impressed by the criticism of the basic concepts of New-
tonian mechanics, i.e., "absolute space" and "absolute
time". The understanding of the relative nature of accelera-
tion and the very possibility of a different viewpoint with re-
gard to established concepts must have been close to Ein-
stein. However, Mach's philosophical ideas and his inter-
pretation of natural science as "analysis of sensations" could
not be reconciled with the development of the theory of quanta
and the special theory of relativity. For Einstein, they rap-
idly lost all value.

16)Elnstein and Ehrenfest became personally acquainted in
January 1912. Shortly after meeting Einstein, Ehrenfest
wrote to A. F. Ioffe: ".. .1 was with Einstein—Einstein is
absolutely unique. I was simply overwhelmed by the inex-
haustibility of his ideas, on the one hand, and the absolute
accuracy and asceticism (1!) of his thinking, on the other!
In addition, he is extremely simple, full of the joy of living,
healthily natural, and very acute, —he is exceptionally sin-
cere and musically gifted—".35

tion of a frame of reference is equivalent to a homo-
geneous gravitational field; one could attempt to as-
sociate with a more complicated field uniform rota-
tion, which, in accordance with Ehrenfest's thought
experiment, would lead to violation of the Euclidean
relationships. Thus arose the idea of curvature of
space in the presence of gravitation. Indeed, in the
February paper on the theory of a static field there is
a reference to "Ehrenfest's disk (or cylinder)". It is
also pointed out there that the use of absolutely rigid
rods in accelerated frames of reference could lead to
non-Euclidean relationships.24 Subsequently, Ein-
stein frequently used Ehrenfest's thought experiment
with the rotating disk to demonstrate how non-
Euclidean relationships can be generated in noninertial
frames of reference.

There is no doubt that Einstein did not fortuituously
turn his attention to Ehrenfest's paradox, which he re-
lated organically to the difficulties encountered in
transforming the equivalence principle into a consistent
theory of arbitrary gravitational fields.

In the above papers on the scalar theory of static
fields, Einstein used so-called "pocket" measuring
instruments (i.e., instruments that could be carried
along with an observer). This term was also due to
Ehrenfest. The introduction of this concept indicates
that Einstein recognized the need for the development
of "infinitesimal thinking" but initially attempted to de-
velop it on a physical, operational-measuring basis,
whereas the problem required solution of the equations
of four-dimensional Riemannian differential geometry.

We should comment briefly on the contacts between
Einstein and the astronomer Freundlich and the math-
ematician Pick. Freundlich had heard of Einstein's
predictions of deflection of light and of Einstein's de-
sire to make contact with astronomers. The contact
soon took place. The correspondence of Einstein with
Freundlich reveals the great importance that Einstein
attached to experimental verification of consequences
of the equivalence principle.36 Einstein's conviction of
the possibility of such verification of the theory by as-
tronomical observations, which was energetically sup-
ported by Freundlich, was undoubtedly an important
stimulus for the further development of the theory.

It is known from the biographical literature that one
of Einstein's closest friends in Prague was the mathe-
matician G. Pick. According to the evidence of P.
Frank, who succeeded Einstein in the department of
theoretical physics after his departure for Zurich and
who knew Pick well, it was Pick who drew Einstein's
attention to "absolute differential calculus" and Rie-
mannian geometry as the most appropriate mathemati-
cal formalism for constructing a relativistic theory of
gravitation.37 However, Einstein never mentioned Pick
in connection with the mathematical formalism of the
general theory of relativity.

Among Einstein's correspondents during the Prague
period, we can mention the eminent Polish physicist
M. Smoluchowski, in a letter to whom dated March 24,
1912 he wrote, in particular: "However, I have not yet
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succeeded in finding the dynamical laws of the gravi-
tational field. A simple scheme of four dimensions on
an equal footing in the form used by Minkowski is here
invalid".38 This letter confirms once more that from
the spring of 1912 Einstein was persistently seeking a
way of modifying Minkowski's four-dimensional con-
cept with a view to applying it to the theory of arbi-
trary gravitational fields. In Prague, Einstein entered
a world in which his interests met an active response,
and his mathematical accoutrement was probably sig-
nificantly extended, and the part played by mathemat-
ics in his work became more significant.39 By the fall
of 1912, the problem of gravitation appeared to him in
a different aspect.

6. Einstein's third letter to Mach

From October 1912 to April-May 1913, after the
transfer to Zurich, Einstein, in contact with Gross-
mann, who helped him master the new field of math-
ematics, worked persistently on the foundations of the
geometrical theory, the first published exposition of
which was the "Outline".14 However, there are good
grounds for assuming that there is a much earlier al-
beit very brief exposition of the main ideas of the theory
given by Einstein and contained in the third of the four
letters which he is known to have written to Mach. Al-
though the letter is not dated, it was evidently written
on the eve of the New Year (1913), since it ends with
New Year greetings, and the contents of the letter rule
out other possibilities with a high degree of probability.
If this dating is accepted, the letter contains the first
known outline of the geometrical theory of gravitation:
"I am very grateful for the friendly interest you show
in the new theory [Mach's letters to Einstein have not
survived, and one can only assume that Einstein sent
him reprints of his papers on the theory of a static
field]. The mathematical difficulties that one encoun-
ters in following up these ideas are unfortunately very
difficult for me too. I am greatly pleased that the de-
velopment of the theory reveals clearly the depth and
importance of your investigations into the foundations
of classical mechanics. I still cannot understand how
Planck, whom I otherwise have learnt to value more
than almost anyone else, could have shown so little
understanding of your aims.1 7 ' I may say he also does
not accept my new theory.

I cannot reproach him for that; for so far all that I
can bring forward in favor of my new theory is the fol-
lowing epistemological argument. For me, it is ab-
surd to ascribe physical properties to "space". The
totality of masses generates a Guv field (the gravita-
tional field), which, in its turn, controls the unfold-
ing of all processes, including the propagation of
light rays and the behavior of rods and clocks. Initial-
ly, events are referred to four absolutely arbitrary

space-time variables. If the conservation laws for mo-
mentum and energy are to be satisfied, these must then
be specialized in such a manner that only (and all) lin-
ear transformations lead from one allowed frame of
reference to another. The frame of reference is, as it
were, adapted to the existing world by means of the en-
ergy theorem and loses its nebulous a priori existence.

I shall shortly send you some accounts of the matter
in which the formal aspect is kept as short as possible
and the factual aspect is developed as far as possible.
But I do not succeed fully in these abstract matters in
making a complete separation of the essence of the
matter from the form.

With best wishes for the New Year

Very respectfully, yours

A. Einstein".1 8'

Thus, if the proposal about the dating of this letter to
December 1912 or January 1913 is correct, Einstein
and Grossmann had by the beginning of 1913 already
advanced far in the creation of a geometrical theory of
gravitation based on the principle of general covari-
ance. However, they had not apparently succeeded in
giving a generally covariant formulation to the law of
conservation of energy and momentum, and they had
come to the conclusion that the linearly covariant form
of this law restricts the class of allowed transforma-
tions to linear transformations. Judging from the let-
ter, this solution did not satisfy Einstein, since it led
to difficulties in the search for the equations of the
gravitational field. It may be assumed that difficulties
of both physical and mathematical nature delayed the
publication of the paper.

7. "How did Einstein do this?"19·

But let us return to the "Outline". The physical part
of the "Outline", which was written by Einstein, begins
as follows: "The theory presented here arose from the
conviction that the proportionality between inertial and
gravitational mass is an exact law of nature that must
be reflected already in the very foundations of theoreti-
cal physics".14 Einstein passes from the equality of the
masses to the equivalence principle. The next link in
the chain of arguments, which Einstein had already
found in the spring of 1912, is the four-dimensional
formulation of the equations of motion of a material
point in a static field, this having the same form as the
equations of motion of a free material point in the spe-
cial theory of relativity but with a coordinate-dependent
velocity of light:

(4)6 f ds = δ \ V —dx* — dy2 — dz* + c* d? = 0,

where c = c(x,y,z). The generalization of the relativity
principle that follows from this entails the existence of

1 T )In 1908-1910, Planck violently attacked Mach's philosophi-
cal views but gave him his due in drawing the attention of
natural scientists to the operational—measurement aspects
of scientific theory. However, Planck did not appreciate
Mach's ideas about the relativity of motion as developed in
Mach's Mechanics, in contrast to Einstein.

18)This letter was published for the first time in 1963.40 A
Russian translation, which contains some inaccuracies, is
given in the book of Ref. 41.

19)This is the title of a section of a paper by R. Dicke which
briefly describes the evolution of Einstein's thought on the
path to the general theory of relativity.
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a class of allowed coordinate transformations broader
than the Lorentz group, that leave Eq. (4) invariant in
the presence of a static field. The interval ds2 takes
the form

ώ 2 - Σ Bik άχι dxk,

where g(h=gill(x,y,z,t).

In the special theory of relativity, the interval has
the form

ds* = dx» + dy* + dz* — <?dt\

and in the case of a static field the velocity of light c
= c(x,y,z) is a measure of the gravitational potential.

Thus, "on the basis of the part played by ds in the
law of motion of a material point," Einstein summar-
izes, "the invariant ds must be an absolute invariant".44

This approach is consistent with Einstein's aim to
achieve a generalization of the relativity principle that
would in no way restrict the class of admissible frames
of reference. We may mention that in this he saw a real-
ization of Mach's ideas aimed at eliminating space-time
absolutes. This kind of thought led directly to the prin-
ciple of general covariance: "In the ordinary theory of
relativity, only linear orthogonal transformations are
allowed. We shall show that to describe the influence
of a gravitational field on material processes it is nec-
essary to write down equations covariant under arbi-
trary transformations".44 It followed from the invari-
ance of ds that the gravitational potential gik is a covar-
iant tensor of second rank. This justified Einstein's as-
sertion from the summer of 1912 that scalar and vec-
tor potentials are unsatisfactory. Simultaneously, one
of the main problems—the loss by the coordinates of
their direct physical meaning—was solved. Since the
metric ds now took over the main physical role, and
was understood as "an invariant measure for the dis-
tance between two neighboring space-time points", the
distance corresponding to given differentials "could be
measured only if the gw that determine the gravitation-
al field are known". This meant that the "the gravita-
tional field influences measuring rods and clocks in a
completely definite manner". In other words, the ge-
ometry of space-time, like the gravitational field, is
determined by the tensor guv and acquired a Rieman-
nian structure. The idea of a non-Euclidean space,
which Einstein had been mulling over at least since the
spring of 1912 also acquired a precise expression. The
non-Euclidean nature of the geometry was of an infi-
nitesimal nature. Einstein especially emphasized the
local validity of the special theory of relativity and the
possibility of using "pocket" rigid rods and clocks.

Thus, the part played by the interval ds in the emerg-
ing theory and in its mathematical formalism was es-
tablished; the properties of ds are described in the
"Mathematical Part" of the "Outline". "The mathe-
matical formalism for constructing the vector analysis
of a gravitational field characterized by the invariant
element of length

&? = Σ ίίμν *£μ dzv.

which is how Grossmann begins his exposition—is es-
sentially contained in the fundamental paper of Chris-

toffel on the transformation of quadratic differential
forms. Using Christoffel's results, Ricci and Levi-
Civita developed their method of absolute, i.e., inde-
pendent of a coordinate system, differential calculus,
which makes it possible to cast the differential equa-
tions of mathematical physics in an invariant form".43

This formalism was then used by Einstein in the
"Physical Part" to derive the energy—momentum con-
servation law (in differential form) of a material sys-
tem characterized by an energy—momentum tensor in
the presence of a gravitational field. The study of the
conservation law begins with the case of "continuously
distributed uncoupled masses", and it is then asserted
that the obtained result

-£j ~βϊΓ^' ""* (5)

is also valid for arbitrary material systems with ener-
gy—momentum tensor θμμ. The proof of the general
covariance of (5) is based on a representation of the
left-hand side of (5) by means of the covariant diver-
gence of the tensor 6UV. Einstein comments that the
second term on the left-hand side "expresses the in-
fluence of the gravitational field on the material pro-
cess". In Sec. 6, he shows further that the equations
of all physical processes that take place in the gravi-
tational field can be obtained by the generally covariant
reformulation of the corresponding Lorentz-covariant
equations. In this manner, one can take into account
the influence of the gravitational field on these physical
processes. Simultaneously, one obtains the possibility
of representing them in generally covariant form. Ein-
stein realizes this procedure by taking the example of
Maxwell's equations, in connection with which he also
notes the work of the Viennese theoretician Kottler,
who is also referred to by Grossmann in the "Mathe-
matical Part" as one of those who used the calculus of
Ricci and Levi-Civita in physics before Einstein.20'

II. GENERALLY COVARIANT EQUATIONS OF
GRAVITATION. EINSTEIN'S PATH

The problem of the equations of the gravitational field
now became the central problem. An appreciable frac-
tion of both parts of the "Outline" is devoted to pre-
cisely this problem. It was only after two and a half

2 0 )Kottler's dissertation "Ober die Raumzeitlinien der minkow-
sktschen Welt" was presented at the session of the Viennese
Academy of Sciences on July 4, 1912 and published in Octo-
ber of that year.4 5 The main idea of the paper is to apply to
the problems of electron theory the methods of the theory of
integral forms of Goursat and the theory of invariants of
differential quadratic forms of Ricci and Levi-CIvita. The
possibility of using these methods was based on the four-di-
mensional formalism of Minkowski. In particular, Kottler
gave a generally covariant formulation of Maxwell's equa-
tions. He did not consider the problem of gravitation and
did not relate this formulation to the geometry of space-time.
Kottler also referred to a paper of the English theoretician
Bateman, who already in 1910 attempted to use the theory of
integral forms and the calculus of Ricci and Levi-Civita.46

In this paper, Bateman actually established the conformal
invariance of Maxwell's equations.
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years that Einstein after "unending labor and painful
doubt" was able to find the correct solution to the prob-
lem of the field equations.

1. 'Two years before the publication of the general
theory of relativity we had already studiedthe correct
equations of the gravitational field..."

Thus wrote Einstein in his recollections in 1938.18

Indeed, the modern reader, studying the "Outline",
cannot but be surprised by seeing how close Einstein
and Grossmann were to the correct solution of the prob-
lem of the field equations.

On the basis of the correspondence principle, Ein-
stein posed the problem of a generally covariant and
tensor generalization of the Poisson equation for the
scalar potential:

Δφ = 4πκρ,

where ρ is the "matter" density, and κ is the gravita-
tional constant. In the most general form, the first,
as yet devoid of concrete content equations are written
down:

Γμν = κθμν, (6)

where 0μι/ is the energy—momentum tensor of the
"matter", which in a relativistic approach must re-
place the noninvariant scalar "matter" density p, and
Fuv is some as yet unknown generally covariant tensor
of the second rank that generalizes the Laplacian and
is therefore composed of derivatives of the potential
guv up to second order. The rank of the tensor Γ ul/ is
determined by the rank of the energy—momentum ten-
sor ew. The requirement of general covariance of Eq.
(6) is determined by the general principle of relativity,
while the actual form of these equations is determined
by the correspondence principle (in the limit of weak
fields and low velocities, Eqs. (6) must go over into
Poisson's equation). In a space free of "matter", the
required equations take the form

Γ μ ν = 0,

i.e., they are completely analogous to the Laplace equa-
tion. The problem of the tensor Γ μν reduces to finding
a nontrivial generally covariant tensor of second rank
composed of the derivatives of the g^v with respect to
the coordinates up to the second order that is simultan-
eously a sufficiently general characteristic of curved
space.

The "absolute differential calculus" had in its arsenal
a tensor of the required form, namely, the Ricci ten-
sor Guv, which is the contraction of the Riemann-Chris-
toffel tensor.2 1 ' In the "Mathematical Part" of the "Out-
line", Grossmann wrote47: "These generalized differ-
ential tensors may also be helpful for forming the dif-
ferential equations of the gravitational field. Indeed,
one can immediately point out the covariant tensor Gim

of second rank and second order that could occur in

these equations, namely

dm = g Y« (Ik, Im) = Ύ, {ik, km). "

Here, γ^ν is the contravariant metric tensor (which is
now denoted by guv), and (ik,lm) = Gitlm is the Riemann-
Christoffel tensor. Thus, on the basis of arguments
deduced from the requirement of covariance and the
correspondence principle, one would then have expected
Einstein and Grossmann to write down the equations

Gtm = -*Tim, (7)
Gim = 0, (8)

(the latter for matter-free space-time), which, as is
well known, are the corresponding field equations char-
acteristic of the general theory of relativity. Equations
(7) differ from the correct equations by the absence of
the term +(""-/2)gimT on the right-hand side (or the term
-{l/2)gimG on the left-hand side). In empty space, both
scalars (T and G) vanish. Therefore, Eqs. (8) are cor-
rect. The term containing one of these scalars could
be found on the basis of arguments associated with the
energy-momentum conservation law (as was done by
Einstein in November 1915).

2. Abandonment of general covariance of the field
equations

However, the authors of the "Outline" did not adopt
the generally covariant equations (7)-(8) as the equa-
tions of the gravitational field. Why did they reject such
a natural choice? The prime reason for this fatal re-
jection was the circumstance that, as Grossmann noted,
"in the special case of an infinitely weak static gravita-
tional field, this tensor does not reduce to Δφ".*Ί In
other words, the generally covariant field equations
could not be reconciled (as they thought) with the cor-
respondence principle.

The reason for this can be seen by substituting in the
expression for the Ricci tensor G f t the value for the
metric tensor gik corresponding to a weak field:

gik = 6lk + thik, (9)

where δ(Λ is the metric tensor of flat space-time, hik is
an arbitrary symmetric tensor of second rank, and ε
is an infinitesimally small parameter such that terms
containing ε2 can be ignored. The result of this sub-
stitution is
r e Γ ^ιρ, cji e ι ah,, ι dhu \ a ι dhk, ι aktJ \ ι

lk 2 I dxjazi dih \ ax, 2 dzt I tej ^ axt 2 dxk I ]'

(10)

The first term in square brackets has the form of the
Laplacian, but it is not easy to understand the signifi-
cance of the remaining terms. It appeared to Einstein
and Grossmann that precisely these terms prevent Gik

reducing in the Newtonian limit to Δφ, since they could
not give for them a reasonable physical interpretation.22'

In the proof corrections to the "Physical Part" of the
"Outline", Einstein gave a second (also erroneous)

21)The Ricci tensor is now denoted by Λμμ, and G,,,, is used to
denote the expression Β^^, — ^g^Jli however, we shall not
change Einstein's notation.

22'As will be seen from what follows, Einstein at that time did
not understand the part played by coordinate conditions. We
now know (as V. A. Fock has shown) that, for example, in a
"harmonic" coordinate system the last two "obstreperous"
brackets vanish.
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argument against generally covariant field equations;
this is associated with a different methodological prin-
ciple of physics—the principle of causality. He de-
scribes a procedure that shows that generally covari-
ant equations of gravitation would apparently lead to a
violation of the principle of causality or, more pre-
cisely, to an ambiguous correspondence between the
distribution of the energy—momentum of matter and
the gravitational potential. He considers a region L of
space-time in which the energy-momentum tensor of
matter vanishes, Γμ1,= Ο, Then the gravitational poten-
tials, both within L and outside it must be determined
by the tensor Τμΐ) outside L. If it is assumed that the
field equations for the gravitational potential gw are
generally covariant, then one can, in particular, make
a coordinate transformation of the form

Χμ = % outside L,

χ'μ Φ ζ μ within L

(at least at one point of L and at least for one index μ).
As a result of this transformation, g'^ will differ from
guv at least at one point of L:

ΙΤμν Φ £μν·

But T'w= r w everywhere, both outside L, where #„=#„,
and within L, where Tav= 0= Τ'μν. It would therefore ap-
pear that the same distribution of the energy-momentum
of matter, expressed by the tensor T№V, could generate
at least two different systems of gravitational poten-
tials g^v and g'^. "Therefore," concluded Einstein,
"if . . . we adhere to the requirement that βμΐ) [i.e., Τβν]
be completely determined by the value of yuv [i.e.,
£V»]> w e a r e forced to restrict the choice of the coor-
dinate system".48 In other words, the classical under-
standing of causality associated with the requirement
of a unique correspondence between the distribution of
the matter energy-momentum Τμ μ and the gravitational
field g^ seemed to Einstein to be in conflict with the
principle of general covariance for the field equations.
The authors of the "Outline" considered that this argu-
ment explained the unsuccessful attempt to use the
Ricci tensor G№ to construct the field equations. The
failure of the generally covariant equations (7) and (8)
to satisfy the correspondence principle had received an
original theoretical justification.

It is now even hard to understand the origin of this
nonrigorous argument. Why a change in the components
of the tensor g^ resulting from a change of the coordi-
nates (within L) should be a flaw in the theory remains
incomprehensible. For this property simply reflects
the freedom in the choice of the coordinates in the gen-
eral theory of relativity. In fact, this argument was
thought up by Einstein post factum to justify a sentence
already passed on the equation. "Sentence first—verdict
afterwards"—this was the logic in the trial of Alice.23)

2 3 )In his remarkable encyclopedia article on the theory of rel-
ativity, Pauli, emphasizing that the general solution of the
generally covariant field equations must contain four arbi-
trary functions and that there must be four identities among
the ten field equations, continues: "The contradiction with
the principle of causality is merely apparent, since all pos-
sible solutions of the field equations differ from one another
only formally, all being physically equally valid".49

In the comments on the "Physical Part", Einstein
actually gave a third argument associated with the prin-
ciple of energy—momentum conservation. This argu-
ment also appeared to be directed against the require-
ment of general covariance and actually seemed to in-
dicate a quite definite covariance group for the field
equations, namely the group of linear transformations.
If, following Einstein, one introduces the concept of
the energy-momentum tensor ίμμ of the gravitational
field, then the law of conservation of energy-momentum
of matter and of the gravitational field can be written
in the form

Σ ό 11/ /τ ι * \1 η Ηΐ\

~g£~lV — S S w ( l μ ν + * μ ν ) Ι = Ο . \>·*·Ι
μν

However, Einstein then noted that these conservation
equations for the energy-momentum tensor with allow-
ance for gravitation are "covariant only under linear
transformations, so that in the theory developed above
only linear transformations can be regarded as admis-
sible".48 As we know, this argument too was spurious.

The same argument against a systematic generally
covariant approach to the field equations is contained
in the well-known Christmas letter of Einstein to Mach
written on the eve of 1913: "Initially, events are re-
ferred to four absolutely arbitrary space-time vari-
ables. If the conservation laws for momentum and en-
ergy are to be satisfied, these must then be specialized
in such a manner that only (and all) linear transforma-
tions lead from one allowed frame of reference to
another".50

3. "Groping in the dark" (attempts at noncovariant
solution of the problem of the field equations)

Thus arose a working hypothesis. The equations of
the gravitational field cannot be generally covariant de-
spite the generally covariant idea underlying the new
theory. Arguments associated with the law of conserva-
tion of energy and momentum suggested that the field
equations should still be linearly covariant. There-
fore, the authors of the "Outline", using this require-
ment, and also the correspondence principle, the con-
servation of energy-momentum, and the principal idea
of the new theory—the geometrical form of gravita-
tion—constructed linearly covariant equations of the
second order for the tensor potential gw (or τ-μΙ/, i.e.,

A natural linearly covariant generalization of the La-
placian is the operator

V d / d \ (12)

Therefore, the required tensor Tuv was sought in such
a form that it contained the expression (12), this re-
ducing in the weak-field limit to the wave operator:

-(- - + dx\ + (13)

In the static case, y „ reduces to the single component

is Einstein's expression referring to the period pre-
ceding the discovery of the general theory of relativity.18
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y44, and the expression (13) to the left-hand side of
Poisson's equation. But the tensor Γμι/ can also include
linearly covariant tensor expressions that vanish in the
weak-field limit. They can be found on the basis of
arguments derived from the energy-momentum conser-
vation law. This led to the establishment of the follow-
ing linearly covariant differential equations:

Δμν = χ (θμν + #μν), (14)

where 6UV is the contravariant energy-momentum ten-
sor of the matter, θμ ι / is a tensor expression that de-
pends on gw and its first derivatives and is interpreted
as the energy-momentum tensor of the gravitational
field, and 4 p is a tensor expression that depends on
gw and its first and second derivatives. The energy-
momentum conservation law for the system as a whole
is then written in the divergence form

μ. ν

The gravitational field equations (14) can also be writ-
ten down in the simple and perspicuous form

α. Ρ, μ

where

/'^Σν^^σμθμν, to» = Σ / ^
μ μ

are the mixed energy-momentum tensors. Einstein
saw a great advantage of these equations in the circum-
stance that "besides the components of the energy-
stress tensor Τσν of matter, the components of the ten-
sor of the gravitational field (namely tav) occur with
equal right as field sources; this is obviously a nec-
essary requirement, since the gravitational influence
of a system cannot depend on the physical nature of the
energy serving as a source of the field".51 Even more
important was the fact that these equations satisfied the
correspondence principle. For sufficiently small devia-
tions of the gw from the pseudo-Euclidean values,

£μν = δ μ ν + gjv ,

Eqs. (16) reduce to the "wave" form

Dgiv = x7'|lv. (17)

Poisson's equations are obtained from them under the
following additional conditions: "1) among the field
sources, only uncoupled masses are taken into account;
2).. .the field is assumed to be static; 3) . . .the veloci-
ties and accelerations (of a material point) are re-
garded as small quantities and only quantities of the
lowest order are retained".5 2 The component g44 is
identified with the Newtonian potential.

For all that, the authors of the "Outline" felt from
the start the imperfection of their theory; the linearly
covariant nature of the field equations runs counter to
the generally covariant scheme of the geometrical the-
ory: " . . .Initially, the most natural thing is to require
covariance of the system of equations under arbitrary
transformations. However, this requirement is con-
tradicted by the fact the equations of the gravitational
field we have constructed do not have this property.
We have been able to show that the equations of the
gravitational field are covariant only under arbitrary
linear transformations, but we do not know whether

there exists a general group of transformations under
which these equations are covariant. The question of
the existence of such a group of transformations for
the system of equations... is of great importance for
the problem considered here. Whatever the case, at
the present state of the theory we cannot require co-
variance of the equations under arbitrary transforma-
tions".5 3

At the beginning of 1914, there was a definite shift in
the development of the problem of the field equations.
Einstein made an attempt to show that the previously
obtained equations (15) of the gravitational field admit
not only linear transformations but also a larger class
of nonlinear transformations, these including accel-
erated motions and rotation. The requirement of only
linear covariance essentially deprived the theory of its
physical basis—the interpretation of the equivalence
principle in the spirit of equal validity of uniformly ac-
celerated frames of reference. Critics of the Einstein
approach, above all Abraham and Mie, regarded this
achievement of the Einstein-Grossmann theory as its
main weakness. And indeed, the authors of the "Out-
line" themselves, as we have seen, were not satisfied
by the linearly covariant solution of the problem of the
equations of the gravitational field.

Under these conditions, Einstein's attention was
again drawn to a Lorentz covariant scalar field theory
(second theory of Nordstrom). Together with the young
Dutch theoretician Fokker he wrote in February 1914 a
paper, submitted on February 18, in which NordstrSm's
theory was formulated in a simple and natural manner
by means of a new mathematical formalism, "the ab-
solute differential calculus".54 Einstein and Fokker
under-pinned their formalism with a generalized rela-
tivistic foundation: "Since in nature there do not exist
frames of reference to which one can refer objects, we
shall initially refer the four-dimensional manifold to
completely arbitrary coordinates... and we shall re-
strict the choice of the frames of reference only when
the problem we consider suggests such a restriction".5 4

In this way there was established a certain correspon-
dence between the NordstrSm theory formulated in this
manner and the geometrical Einstein-Grossmann theo-
ry: the condition that the potential be a scalar and the
condition of Lorentz covariance imposed on the generally
covariant tensor scheme yielded Nordstri5m's theory.
A fundamental part in the derivation of the field equa-
tions was played here by the Riemann-Christoffel ten-
sor and its contraction with respect to all four indices.
As a result, the field equations were initially written
in the generally covariant form

R = KT,

and only then g11" (or γμν) were chosen in such a way as
to satisfy the principle of the constancy of the velocity
of light, this yielding the equations of NordstrOm's the-
ory:

φ π Φ = ν.Τ.

A striking feature of this theory was its lack of paral-
lelism with the line of argument adopted by Einstein
and Grossmann; this had led to the equations (14) or
(15) of the gravitational field, which do not use the
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Riemann-Christoffel tensor although the approach was
persistently linked to a generally covariant scheme of
argument and proved so effective in the derivation of
the equations of NordstrSin's theory. It is not surpris-
ing that, returning to the tensor geometrical theory,
Einstein (with Fokker) acutely felt this flaw in the the-
ory. And again he thought of using the Ricci tensor to
obtain the field equations: "Finally, the part played in
the present investigation by the differential Riemann-
Christoffel tensor suggests that one could find a way of
deriving the Einstein-Grossmann gravitational equations
that is independent of physical assumptions".55 As fol-
lows from the foregoing, this last expression is obvi-
ously a reference to the geometrical argumentation
based on general covariance. Here, there is also a
very interesting comment which indicates that the pen-
dulum of Einstein's doubts was again swinging in the di-
rection of the generally covariant approach to the prob-
lem of the field equations. "The proof of the existence
or absence of a connection of such kind [i.e., a connec-
tion of the Ricci tensor and the field equations]," Ein-
stein and Fokker conclude their paper, "would amount
to important theoretical progress". There then follows
the comment: "The argument against such a connection
given in §4 of the "Outline" disappears after a more
careful analysis".55 Nevertheless, in a paper from
January 24, 1914, answering a criticism of Mie, Ein-
stein continues to argue for the validity of the choice of
a special coordinate system (i.e., limited covariance of
the equations), again invoking the principle of causal-
ity—the ambiguous determination of the potentials gilt

from given distribution of the matter energy-momentum
tensor and fulfillment of the energy-momentum conser-
vation laws as expressed in the usual form, i.e., van-
ishing of the divergence of the corresponding tensor.

In February 1914, as we have seen, Einstein was in-
clined to return to the generally covariant approach and,
in particular, the use of the curvature tensor to con-
struct the equations of the gravitational field. But in
March of the same year there was a new turn; Ein-
stein again left the correct path. In a letter to Besso,
dated March 1914, he speaks of finding a larger class
of transformations admitted by the field equations,
these including not only linear but also nonlinear trans-
formations corresponding to accelerated frames of
reference: "With regard to the theory of gravitation,
the following is new. From the gravitational equation
we have

(18)

These are four equations of third order for the gw (re-
spectively, ?„„), which can be regarded as conditions
for a special choice of the frame of reference. For
brevity, let us call them

I have succeeded in proving by a simple calculation
that the gravitational equations are valid for any frame
of reference satisfying these conditions. And it follows

and from the conservation law

> _ I w g Yagffm, ^—^— 1 := U.

from this that there hold acceleration transformations
of very different forms that carry the equations into
themselves (for example, rotations as well), so that the
hypothesis of equivalence is confirmed, and moreover
to an unexpectedly large extent... I am now completely
satisfied and no longer doubt the correctness of the
complete system irrespective of whether or not the
solar eclipse observation succeeds. The common sense
of this matter is obvious.. .at present, I have no burn-
ing desire to work, since I have driven myself terribly
hard until finding the solution described above. The
general theory of invariance was essentially only a
hindrance. The direct path proved to be the only one
feasible. What I cannot understand is how I could grope
in the dark for so long before finding what was so
close".56

It now seemed that it had been possible to overcome
the difficulty in the original theory with linearly covar-
iant field equations: the allowed frames of reference,
which were subsequently called "adapted" ("adapted to
the gravitational field"), included accelerated frames
of reference. True, the geometrical (or kinematic)
meaning of the condition of being "adapted" remained
obscure. The conclusion that "acceleration transfor-
mations" are allowed—it was subsequently seen to be
erroneous—not only accorded naturally with the equiv-
alence principle but also meant that the solution of the
problem of gravitation entailed an extension of the the-
ory described mathematically by the conditions of being
"adapted". It only remained to describe the corre-
sponding class of frames of reference. The "absolute
differential calculus" with its basically generally co-
variant mathematical formalism was unexpectedly re-
duced to only ancillary significance. As Einstein wrote:
"The general theory of invariance was essentially only
a hindrance".

The concept of "being adapted" was published initially
in a small joint paper by Einstein and Grossmann, ap-
parently written in the spring of 1914 (Ref. 57), and
then in a comprehensive summary by Einstein com-
pleted in November 1914 (Ref. 58). Although the devel-
opment of this concept was a move away from the re-
quirement of general covariance, it did contain a germ
of success. These papers brought recognition of the
need for extending the group of linear transformations
since the "acceleration transformations" required by
the principle of equivalence were nonlinear: "This hy-
pothesis [i.e., the principle of equivalence] becomes
particularly convincing if it turns out that the "ficti-
tious" gravitational field existing in an accelerated co-
ordinate system can be regarded as a "true" gravita-
tional field, i.e., if the theory admits acceleration
transformations (in other words, nonlinear transfor-
mations)".59 The equations of gravitation remained the
same as in the "Outline" (i.e., of the form (15)), but it
was now shown that the transformation of the energy-
momentum conservation equation with allowance for the
field equations (15) gives the conditions (18), which al-
ready occurred in the March letter to Besso, and de-
fines the class of "allowed" transformations, this being
in Einstein's opinion sufficiently large to include accel-
eration transformations, which, however, was not
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proved.

It is true that this paper has an important comment
indicating that the objection to the generally covariant
approach associated with the energy-momentum con-
servation law in the form in which it had appeared ear-
lier had lost its force: " . . . the assertion about the re-
striction on the choice of the coordinate system is in-
correct; it follows from the relation (ΠΙ) [i.e., the di-
vergence equation of energy-momentum conservation]
only if one allows only linear transformations for which
the quantities tuv/f^g are ascribed a tensor character,
for which, as has been found, there is no justifica-
tion".6 0 In other words, in order to go beyond the lin-
early covariant approach, Einstein gave up the require-
ment that the energy-momentum components of the
gravitational field should be ascribed a tensor nature.
And although the restriction of the class of allowed
transformations to "permitted" or "adapted" transfor-
mations was based essentially on the divergence for-
mulation of the energy-momentum conservation law of
the system, the conclusion that a nontensor nature of
the energy-momentum complex of gravitation could be
allowed ultimately helped to overcome the objections to
the generally covariant approach to the solution of the
problem of the field equations. This was the last joint
paper of Einstein and Grossmann and it was completed
not later than April 1914, when Einstein transferred to
Berlin.

In the long paper58 completed at the end of November
1914, Einstein continued to develop the concept of
"adapted" coordinate systems. Against the general co-
variance of the field equations there is here adduced a
single argument associated with the breakdown of the
causality principle. In this paper, the concept of
adapted coordinate systems is formulated more clear-
ly; these are specially constructed in such a way that
the coordinate transformations used in the argument
leading to violation of the causality principle are elim-
inated. The conditions distinguishing such systems
proved to be rather complicated (in general, they dif-
fer from the conditions (18)):

- Σ • = o,

and their geometrical meaning remained obscure. In
any case, Einstein assumed that the class of "adapted"
coordinate systems was sufficiently large to include ac-
celerated frames of reference. The corresponding
equations of the gravitational field actually had the
same structure as established already in the "Outline":

As Einstein noted, these equations "despite their com-
plexity, admit a simple physical interpretation". Under
the condition that the three-index quantities
( l / 2 ) S T i r " 8£<,τ/θ*β a r e interpreted as gravitational
field intensities (as became clear subsequently, this
interpretation was unfortunate), the left-hand side is
the divergence of the field intensity, which is deter-
mined by the total energy-momentum tensor (the right-
hand side). Einstein saw an important confirmation of
the validity of Eqs. (19) in the fact that the "energy ten-

sor of the gravitational field, like the energy tensor of
matter, itself generates the field". In addition, Eqs.
(19) were derived from a variational principle with a
Lagrangian proportional to the square of the gravita-
tional field intensity (TT

m=(l/2)Bllg"i9glu,/axa):

£=-2ii"T№., (20)

and was analogous to the Lagrangian of the electromag-
netic field quadratic in the intensities.

But in this last variant of the concept of "being
adapted" the Einstein-Grossmann theory retained its
main defects: the incomplete covariance of the theory,
the absence of a clear physical (or geometrical) mean-
ing of the "adapted" coordinate systems, the insuffi-
cient physical justification for the choice of the Lagran-
gian of the theory in the form (20), and the absence of
a rigorous proof that acceleration transformations are
included among the permitted ("adapted") transforma-
tions. Einstein's persistent opponent Abraham, in a
long review of the "newest theories of gravitation" writ-
ten in December 1914, made a number of deep critical
comments about the "adapted" variant of the Einstein-
Grossmann theory. In particular, he comments com-
pletely correctly: "It would be interesting and impor-
tant to establish what transformations besides the linear
transformations are contained in this class of transfor-
mations [i.e., class of "adapted" transformations]?
And what physical meaning (uniformly accelerated mo-
tion, rotation, etc.) can be ascribed to them? Only
then could one speak of a certain "generalized" theory
of relativity if the equal validity of the frames of ref-
erence postulated by the relativity principle of 1905 for
uniformly and rectilinearly moving systems were now
extended to such systems that are in a state of accel-
erated motion or rotation relative to one another. For
the moment, this extension of relativity has not suc-
ceeded".61 He also drew attention to the insufficiently
justified choice of the Lagrangian (20) of the theory:
"In the recently published general presentation of the
"general theory of relativity" [i.e., in the paper Ref.
58], Einstein derives the differential equations of his
theory from a certain variational principle on the basis
of certain restrictions whose physical meaning is not
explained".62

Noting the vulnerability of the Machian interpretation
of inertia—Einstein regarded the possibility of such an
interpretation in his theory as a great advantage com-
pared with scalar theories—and also the greater com-
plexity of the tensor-geometrical theory, Abraham ex-
pressed his preference for the scalar approach.25'

(19) 4. "Breakthrough to clarity"26»

In November 1915, Einstein finally returned to the
requirement of general covariance of the field equa-

2 S )"If one bears in mind the extreme complexity resulting from
increasing the number of gravitational potentials to ten and
from the curvature of the four-dimensional world, then from
the point of view of Maeh's "economy of thought" one should
surely give preference to scalar theories until experimental
confirmation has been found that there are ten potentials of
gravitation rather than one".63

26)This is Einstein's expression from Ref. 18.
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tions, which led him almost immediately to the correct
equations of the gravitational field. This was ". . .one
of the most exciting and tense periods of my life",
wrote Einstein in a letter to Sommerfeld on November
28, 1915 (Ref. 13) three days after the publication of
these equations.

For almost a complete year Einstein had published
nothing on the theory of gravitation. Despite Abraham's
criticism, Einstein had evidently for a certain time r e -
garded the creation of the fundamentals of the theory as
completed. Under these conditions, questions relating
to the physical interpretation of the theory, in particu-
lar its experimental confirmation, became more im-
portant. Interest in experiments brought realization
that NordstrBm's second theory was a competitor. In
addition, Freundlich's expedition, which should have
decided the question relating to the deflection of light
rays in the field of the Sun and, thus, decide in favor
of one of these two theories, was abandoned because of
the outbreak of the First World War in August 1914.
Finally, Einstein's recent papers had been excessively
burdened with complex mathematical calculations and
he was, perhaps by contrast, now particularly at-
tracted by questions involving a simpler physical in-
terpretation and especially experiment. In particular,
this found reflection in the experiments he made in the
period January-May 1915 with the Dutch physicist de
Haas.64 On February 12, 1915, he wrote to Besso, r e -
ferring to the experiments on the Einstein-de Haas ef-
fect: "The experiments will soon be completed a

wonderful experiment, and a pity that you cannot see it.
But how crafty is nature when you wish to approach her
in an experiment! In my old age I begin to sicken for
experiments".65 In the same letter he writes about
gravitation. He mentions only one thing—verification of
the "red shift" effect by studying the spectra of binary
stars. On the basis of Freundlich's investigation, who
had used the spectral measurements of binaries by
Campbell and Ludendorf, Einstein concluded that there
had been obtained an "approximate quantitative verifi-
cation of the theory giving satisfactory agreement". It
should however be noted that Freundlich's paper had
been justifiably criticized by Seeliger, and, ultimately,
hopes of confirming the "red shift" effect through the
observations of the spectra of binary stars were not
justified.66 Interest in the experimental side of the the-
ory of gravitation was thus stimulated by the contact
with Freundlich, who at this time intensively studied
the problem of the anomalous precession of Mercury's
perihelion, in particular Seeliger's hypothesis that the
zodiacal light could have a perturbing effect; this hy-
pothesis had already been advanced at the end of the
19th century to explain the anomaly. It so happened that
in February 1915 Freundlich completed his critical
analysis of this hypothesis and concluded that none of
the hypotheses (based on Newtonian theory) assuming
hidden masses in the solar system could explain the
Mercury anomaly. Subsequently, when Einstein again
spoke after a long interrruption about the anomalous
precession of Mercury's perihelion, he referred to
Freundlich: "Freundlich has recently written about the
impossibility of finding a satisfactory explanation for

the anomaly in Mercury's motion on the basis of New-
ton's theory".67 But these words date from November
1915, after his return to the requirement of general
covariance of the equations of the gravitational field.

It can be assumed that work on the theory of gravita-
tion recommenced in the summer of 1915, when Ein-
stein was in GSttingen and Zurich. Well known is his
letter to Sommerfeld on July 15, which gives an indi-
rect indication of this. First, in answer to Sommer-
feld's suggestion that a new edition of the collection of
classic papers "The Principle of Relativity" should
contain an exposition of the general theory of relativity,
Einstein noted that "the volume should appear without
changes and the inclusion of the general theory of rela-
tivity because none of the existing expositions of the
latter is complete."13 This important admission meant
that the long review on the theory of gravitation pub-
lished at the end of 1914 (Ref. 58) was no longer re-
garded by Einstein as sufficiently complete or fully
correct Second, he writes about his visit in GSttingen,
where he had discussions with Hubert, which could, as
we believe (see below) have had a significant influence
on Einstein's thinking.

Finally, he mentions a paper of Freundlich, in all
probability the one devoted to Mercury's anomalous
precession, calling it "undoubtedly fundamental". This
suggests that at that time Einstein already thought of
explaining the anomaly of Mercury in the framework of
the geometrical theory.

November 1915 became the month of the final and
headlong assault. In the four November communica-
tions68"70·67 presented at the sessions of the Prussian
Academy of Sciences on 4, 11, 18, and 25 November,
respectively, Einstein solved the problem of the equa-
tions of the gravitational field and as a result achieved
general covariance of the theory and also, on the basis
of these equations, explained the anomalous precession
of Mercury's perihelion and for the first time gave the
correct value for the deflection of light by the Sun.

In the first communication68 the decisive step is
taken: Einstein returned " . . .to the requirement of a
more general covariance of the field equations, which
he had abandoned with heavy heart when working with . .
. . .Grossman".68 However, he still imposed a certain
restriction on the arbitrary continuous transformations
—the determinant of these transformations must be
equal to unity, i.e., he imposed the condition of uni-
modularity, which significantly simplifies the calcula-
tions and makes the basic formulas more perspicu-
ous.27'

The logic for deriving the field equations that had al-
ready been used in the "Outline" led directly to the

2?)"Just as the special theory of relativity," wrote Einstein,
"is based on the postulate that its relations must be covarl-
ant under linear orthogonal transformations, the theory pre-
sented here is based on the postulate of covariance of all
systems of equations under transformations with determinant
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field equations

Λ μ , χΤμΊ, (21)

where Λμι, is the Ricci tensor subject to the unimodu-
larity condition. We may mention that Einstein did not
regard this condition as a serious restriction on the ad-
missible transformations. At the end of the paper, he
specially returns to this question and shows that rota-
tion and a motion of one frame of reference with re-
spect to another in which the coordinate origin of the
new system moves arbitrarily with respect to the old
system are included among the allowed transforma-
tions.

He also notes that, normalizing the coordinate sys-
tem in some natural manner, for example, by means
of the condition

one can readily obtain the Newtonian approximation
from Eqs. (21).28) This suggests that Einstein at that
time already clearly understood the error in his argu-
ment demonstrating the conflict between general covar-
iance of the field equations and the causality principle
(based on uniqueness).

However, the equations in the form (21) were inter-
nally inconsistent, as was shown by their comparison
with the energy-momentum conservation law. First,
it was found that the unimodularity condition was satis-
fied everywhere only if the trace of the energy-momen-
tum tensor of the "matter" vanishes. Second, on the
introduction of tw, the energy-momentum pseudotensor
of the gravitational field, the following formula (which,
it is true, was not written down by Einstein) was ob-
tained for the traces Τ and t of the energy-momentum
tensors):

- + K(T-t) = O, (22)

in which Γ and t enter with opposite signs. This asym-
metry between the contributions to the energy from
matter and from the gravitational field did not have a
physical justification. Initially, Einstein was actually
disturbed by only the first inconsistency.

Its elimination was the subject of the second com-
munication,69 in which there is actually advanced the
assumption of an "electromagnetic-like" structure of
"matter", this being expressed by the vanishing of the
trace of the "matter" energy-momentum tensor: Γ=0.

Because of the covariance of this condition, Einstein
assumed it to be possible to postulate completely gen-
erally covariant field equations in the form

Gth=-*Tih (23)

and it was only to facilitate the calculations that he
proposed using the unimodularity condition, which now,
i.e., in the case when the hypothesis 7=0 is adopted,

28>In the absence of the term with the scalar curvature, which
appeared only in the last November communication,70 the
Newtonian approximation was guaranteed only if the unimod-
ularity condition is adopted.

does not lead to an inconsistency.

The third communication67 of November 18 contained
an explanation of the anomalous precession of Mer-
cury's perihelion on the basis of the field equations (23)
for empty space:

Gtk = 0 (24)

and the equations of motion of a material point in the
field:

~dsr' ~ Z) ' <" ~~2T ~dT ·
στ

i.e., the geodesic equation. His result—an advance of
Mercury's perihelion by 43" per century—agreed well
with the data of the astronomers (45" ±5") and, as
another important result, Einstein obtained a value for
light deflection in the field of the Sun equal to 1.7" (in-
stead of 0.85"), which obviously did not depend on the
adoption of the hypothesis T=0. This communication
is also remarkable in that it seems to anticipate the
correct generally covariant field equations, since Ein-
stein says that the hypothesis T=0 is unnecessary,
which would be possible only if the equations are aug-
mented by the term with the scalar Γ or G: "In a pa-
per to be published shortly, it will be shown that this
hypothesis too [i.e., the assumption Γ=0] is super-
fluous".67 Evidently, he regarded publication of the
calculation demonstrating the remarkable empirical
confirmation of the geometrical theory and the gen-
erally covariant field equations as a more important
matter than the derivation of the general form of the
field equations and their justification and publication.

These equations were the content of the last Novem-
ber publication (November 25).70 Adding to the right-
hand side of the equations the term with the scalar T,
Einstein finally obtained completely generally covariant
equations of the gravitational field that do not require
an additional assumption about the structure of the en-
ergy-momentum tensor Tik of "matter":

/-t / rp (25)

"Thus, finally," wrote Einstein at the end of the paper,
"the construction of the general theory of relativity as
a logical scheme has been completed".71

How did he justify the equations that to this day con-
stitute the core of the general theory of relativity?

Einstein showed that multiplication of both sides of
Eq. (25) by gim and subsequent contraction over the in-
dices i and m yields the equation

(26)

which is analogous to Eq. (22) but includes the traces
of the energy-momentum tensors of "matter" and of the
gravitational field "in the same manner", i.e., with the
same sign. This becomes clear if we replace the ten-
sor Tik in Eq. (21) by Tik-{l/2)gihT. Then in Eq. (22)
it is necessary to replace Τ by -T, and both the scalars
Τ and t occur in the equation with the same signs. A
different argument, which is used in the majority of
textbooks and monographs written subsequently, takes
the form that the absence of the term -(l/2)^ imT on the
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left-hand side or, equivalently, of the term -(l/2)gimG
on the right-hand side leads to nonvanishing of the co-
variant divergence of the energy-momentum tensor of
"matter", as follows directly from the contracted Bi-
anchi identities. However, Einstein did not use the
well-known properties of the curvature tensor, and
this considerably complicated his path to the correct
field equations.

As we shall see, Hubert proceeded from a variational
principle and immediately obtained on the left-hand
side, not G j t, but the necessary combination Glk

-(i/2)g№G.

Let us now return to the analysis of the reasons and
circumstances that led Einstein to abandon the nonco-
variant attempts at solution of the problem of the equa-
tions of the gravitational field and revert to the path of
general covariance, which led him to his triumphant
finale. In the first November communication, he wrote:
" . . .a renewed analysis has shown that, following the
proposed path, absolutely nothing can be proved; what
had nevertheless appeared to be achieved was based on
confusion. The postulate of relativity in the extent that
I required is always satisfied when Hamilton's princi-
ple is taken as basis, but actually it does not give one
the possibility of determining the Hamilton function Η
of the gravitational field. In fact, the relation (77) in
Ref. 58 restricting the choice of Η simply reflects the
fact that Η must be invariant under linear transforma-
tions, and such a requirement has nothing in common
with the relativity of acceleration . . . . For these rea-
sons, I completely lost faith in the field equations I had
obtained and began to seek a path that would limit the
possibilities in a natural manner. I thus returned to the
requirement of general covariance of the field equa-
tions, which I had abandoned with a heavy heart when
I was working with my friend Grossmann. At that time,
we actually approached very close to the solution of the
problem proposed here". 6 8

Three days after the famous communication to the
Prussian Academy of Sciences at Berlin on November
25, 1915, in which he presented the correct field equa-
tions (25), Einstein wrote a letter to Sommerfeld (on
November 28), in which he gives one further important
reason for rejecting the concept of "adapted transfor-
mations": "Namely, I recognized that my previous
equations of gravitation were entirely without meaning.
This is indicated by the following considerations:

1) I showed that the gravitational field in a uniformly
rotating system does not satisfy the field equations.

2) For the motion of Mercury's perihelion one obtains
18" per century instead of 45".

3) During the last several years I had not succeeded
in obtaining the Hamilton Η function by the covariant
treatment. After a suitable generalization, it is an ar-
bitrary function. It follows that covariance with respect
to "adapted" coordinate systems was devoid of con-
tent".7 2

Einstein rejected his own ideas just as vigorously as
he had defended them when he was persuaded of their

correctness. The first and third arguments actually
repeat what was said in the first November communica-
tion (though in a somewhat different form it is true).
However, the second argument associated with the im-
possibility of explaining Mercury's anomaly in the
framework of the "adapted theory" is mentioned here
for the first time. It can be assumed that Einstein's
interest in the anomalous displacement of Mercury's
perihelion was again awakened by Freundlich's paper
devoted to this problem and completed already in Feb-
ruary 1915; this was probably the paper that Einstein
in the July letter to Sommerfeld called "undoubtedly
fundamental".73

The definite lack of satisfaction with the "double co-
variance" of the 1913-1914 theory (general covariance
of the equations of motion of "matter" and the equations
describing the interaction of "matter" with gravitation,
but only linear or "adapted" covariance for the equa-
tions of the gravitational field itself), which Einstein
had frequently felt earlier, grew through the summer
and fall of 1915 into the conviction that such a theory
was wrong. Moreover, two of the three main arguments
against it given in the letter to Sommerfeld have a clear
physical origin and are directly related to experiments
(disagreement with the equivalence principle and in-
correct value for the perihelion advance).

It is here appropriate to mention one further circum-
stance with a deep physical meaning that helped Ein-
stein return to general covariance of the field equations.
It is mentioned in both the first November paper and the
letter to Sommerfeld on November 28 and is concerned
with the question of what quantities in the geometrical
theory should be identified with the gravitational field
intensities. Writing the equation for the energy-mo-
mentum conservation law for "matter" in the form

Einstein noted in his first paper: "This conservation
equation has persuaded me to regard the quantities
l/zTjllg"l&gliV/dxa as the natural expression for the
components of the gravitational field, although, bearing
in mind the formulas of the absolute differential calcu-
lus, it would have been better to introduce the Chris-
toffel symbols {"?} instead of these quantities. This was
a fatal prejudice".74

In the letter to Sommerfeld, he emphasizes that the
correct identification of the field intensities with the
Christoffel symbols played a decisive part in the es-
tablishment of the connection between the generally co-
variant equations (25) and their Newtonian approxima-
tion. Writing the correct equations in a coordinate
system in which -f^g= 1:

ψ { Τ } { ) ( )
t αβ

Einstein writes: "Already three years ago I discussed
with Grossmann these equations (without the second
term on the right-hand side), but we then decided that
they do not contain the Newtonian approximation, which
was erroneous. The key to this solution was given by

508 Sov. Phys. Usp. 22(7), July 1979 V. P. Vizgin and Ya. A. Smorodinskii 508



recognition of the fact that it is notZjag'"9gai/dxm that
is the natural expression for the "components" of the
gravitational field but rather the related Christoffel
symbol {*f}. If this is understood, the equation given
above can be readily represented, since there does not
arise a temptation, for the sake of a more general in-
terpretation, to transform them by calculation of the
symbols".72

The use of the Christoffel symbols as field compo-
nents was one of the last main steps to the final aim.
When they were used, all the relations took on a sim-
pler form amenable to a comparatively clear physical
interpretation.

As we have seen, in the period 1913-1915 Einstein
frequently returned to the idea of general covariance of
the field equations, and two of the three arguments
against adopting equations of this kind had in fact al-
ready been rejected by him. In all probability, the
argument based on the correspondence principle lost
its force not later than January-February 1914. Soon
after this, probably in the spring of 1914, Einstein
recognized the falsity of the argument against general
covariance of the field equations based on the require-
ment that the energy-momentum components have a
tensor nature. The only objection that apparently re -
mained was that based on the false causality paradox.
In the first two November communications, this ques-
tion is not elucidated. But in the third communication,
devoted to the calculation of the motion of Mercury's
perihelion, there is a remark which indicates that in
this question too Einstein had now achieved clarity.
Noting the covariance of the equations of the gravita-
tional field under arbitrary continuous transformations,
he continues: "Nevertheless, it would appear correct
to assume that such transformations carry all solutions
into each other, and, therefore (for given boundary
conditions) they differ from each other only formally,
and not physically".75 This argument would imply that
the ambiguity in the solution of the generally covariant
field equations that had previously appeared to Einstein
as a serious objection to their adoption was in fact only
formal and not physical in nature and therefore not a
paradox.29' To this it is now worthwhile to add that the
solution in matter-free space is nevertheless not com-
pletely determined by the energy-momentum tensor of
matter. The existence of gravitational waves renders
the problem of the uniqueness of solutions more com-
plicated. The derivation of Einstein's equations is a
clear example of how general physical principles made
it possible to write down equations containing a great
deal more than was known at the time of their deriva-
tion. At the end of November 1915, the general equa-
tions were finally written down. What had appeared an
insuperable difficulty for several years became a sim-
ple matter in one month. Old prejudices were laid
aside, and the palm was yielded to the general princi-
ples that should have been followed without hesitation.

The theory was completed with the long classical pa-
per "The foundations of the general theory of relativity"

2>)See also Pauli's comment in the earlier footnote 23.

submitted to the Annalen der Physik on March 20, 1916
(Ref. 76). This paper reveals no trace of the laborious
work that had preceded it.

III. GENERALLY COVARIANT EQUATIONS OF
GRAVITATION. HILBERT'SPATH

On November 20, 1915 the eminent German mathe-
matician Hubert gave a lecture entitled "The founda-
tions of physics" to the GSttingen Mathematical So-
ciety.77 In it, he derived generally covariant equations
of the gravitational field equivalent to Einstein's equa-
tions (25). In the third November publication, Einstein
pointed out that the hypothesis T= 0 is now superflu-
ous, and this could be regarded as a kind of anticipa-
tion of the generally covariant field equations. He pre-
sented the correct equations a week later, on November
25. The coincidence is of course remarkable. Analysis
of the corresponding publications of Einstein and Hu-
bert and the evidence of F. Klein, M. Born, H. Weyl,
and W. Pauli, who knew both men very well, justify the
conclusion that the problem of the general covariance
of the equations of gravitation was solved independently
in Berlin and Gottingen [but see the end of this section].

Before we turn to an analysis of Hubert's lecture,
let us briefly consider the route he took to his principle
achievement in the field of physics.

1. Hilbert's sixth problem

One of the best known pupils of Hubert, H. Weyl, dis-
tinguished six main periods in the work of his teacher.
The basic theme of the fifth period, which lasted from
1910 to 1922, was physics. But before this too Hubert
had been interested in fundamental problems of physics.

Among the 23 famous mathematical problems put for-
ward by Hubert at the Third International Congress of
Mathematicians in Paris (August, 1900) there was one,
the sixth, which referred directly to physics. It con-
sisted of the "axiomatic construction in accordance with
the same scheme [i.e., the scheme of axiomatic inves-
tigations in geometry] of the physical disciplines in
which mathematics already plays a leading part". Hu-
bert also associated the axiomatization of physics with
the introduction into it of the powerful method of group
theory: "If we are to treat the physical axioms after
the manner of geometry, we should attempt initially to
describe a class of physical processes which is as gen-
eral as possible by.means of a small number of axioms
and then, adding successively special axioms, arrive
at the more specialized theories—and here it is possi-
ble that a classification principle could be taken over
from Lie's deep theory of infinite transformation
groups."78 Einstein's relativistic ideas could be natu-
rally related to geometrical and group theories. F.
Klein's "Erlangen program" here found fruitful soil.79

In 1905, Hubert and his friend H. Minkowski organ-
ized a seminar on the electrodynamics of moving bod-
ies, at which there was a discussion of the Michelson-
Morley experiments and the papers of Lorentz and
Poincare. Two years later, Minkowski created his fa-
mous four-dimensional invariant-theoretic conception
of the special theory of relativity, which was com-
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pletely in accord with the axiomatic group-theoretic
program of Hilbert and Klein. Investigations into in-
tegral equations opened up for Hilbert the possibility of
participating directly in the development of problems
in physics, first in the kinetic theory of gases and then
in the theory of radiation. It was in these fields of
physical theory that he hoped by means of the formalism
of integral equations to implement his project of the
axiomatization of physics. At this time, Einstein was
already working intensively on the relativistic theory of
gravitation, and Mie had advanced his apparently very
promising unified electromagnetic field theory. Hilbert
became more and more attracted to the problems of the
electron theory of the structure of the atom. In the
summer of 1914, P. Debye, at Hubert's request, or-
ganized a seminar at GSttingen on the structure of mat-
ter. Hubert's interests were shifted toward fundamen-
tal problems of physics associated with the construction
of a unified field theory of matter.

In the middle of the summer of 1915, Einstein trav-
eled to GSttingen and sometime later wrote an enthu-
siastic letter to Sommerfeld about Hilbert and the mu-
tual understanding that had developed between them:
"I had great joy at GSttingen and was understood to the
last detail. Hilbert completely charmed me. An out-
standing man!".13

2. "Foundations of physics" and the equations of
gravitation

Thus, on November 20, Hilbert gave his lecture "The
foundations of physics", in which, in a completely dif-
ferent manner, he obtained generally covariant equa-
tions of gravitation equivalent to the Einstein equations
(25) (Ref. 77).

In this investigation, Hilbert combined his axiomatic
aims with the idea of constructing a unified physical
field theory on the basis of a powerful mathematical
formalism containing Riemannian geometry, tensor
analysis, the theory of Lie groups, and variational
calculus. This time, it was not some particular phys-
ical theory that was to be axiomatized but physics as
a whole, and the creation of the axioms would simul-
taneously amount to the creation of a unified physical
theory. Hilbert was inspired by the work of Mie on
nonlinear electrodynamics and Einstein's idea of gen-
eral covariance. "The grandiose problems posed by
Einstein," write Hilbert "and also the methods ingen-
iously developed for their solution, his far reaching
ideas and the formation of concepts by means of which
Mie constructed his electrodynamics have opened up
new paths for investigations into the foundations of
physics. In what follows, using the axiomatic method
and proceeding essentially on the basis of two axioms,
I wish to derive a new system of basic equations of
physics. These equations, which have perfect elegance,
contain simultaneously the solution to the problems of
Einstein and Mie".77

Mie's theory was forgotten, but the method used by
Hilbert has become part of the arsenal of methods of
modern theoretical physics. Hilbert proceeded from
the variational principle and immediately introduced a

"world function", the Lagrangian, choosing it for the
gravitational field in the form of the scalar curvature
G and for the electromagnetic field in the usual form
(albeit with allowance for the generalization character-
istic of Mie's theory). Further, proceeding in the now
standard manner, Hilbert immediately obtained Ein-
stein's equations, on the left-hand side of which the
Ricci tensor Gin was now replaced by the combination

/

( 2 6 )

y-

(it is this combination that is now denoted by G(k). The
right-hand side of the equation contains the energy-mo-
mentum tensor of matter expressed in terms of the de-
rivatives of the corresponding part of the Lagrangian.30'

Here, success awaited Hilbert. The trace of the en-
ergy-momentum tensor of the electromagnetic field is
zero, and it therefore follows from Hubert's equation
that the scalar curvature G is also zero. But Hubert's
equations (26) have a more general nature and are also
true when a tensor whose trace is nonvanishing occurs
on the right-hand side.

Einstein long searched for a way to change the right-
hand side of the equation, and ultimately replaced Γμν

by Tuv-a/2)guvT.

Hilbert immediately obtained the left-hand side of a
different but equivalent equation, deriving from the
variational principle the correct expression for the
left-hand side without thinking about the properties of
the right-hand side. The two equations are equivalent
to each other by virtue of the obvious equation G= -κΓ,
which follows from either of them. (Already in 1916,
Einstein referred to Hubert's derivation.)80

"The differential equations of gravitation obtained in
this manner—as we read in the published variant of
Hubert's lecture—are, it seems to me, in harmony
with the grandiose general theory of relativity advanced
by Einstein in his recent papers".81

The greater part of Hubert's lecture was devoted to
analyzing the problem of energy-momentum conserva-
tion in this theory, which differed from the general the-
ory of relativity only by the specialization in the "ma-
terial" part of the Lagrangian, which was assumed to
correspond to Mie's electrodynamics. Hilbert showed,
in particular, that the conservation laws for energy and
momentum in generally covariant theories have an
identical nature and thus differ fundamentally from the
conservation laws in theories based on flat space-
time.31' Emmy Noether soon elucidated the origin of
this difference on the basis of her theorems on invari-
ant variational problems.82

Thus, the two great theoreticians proceeded towards
the same goal by different routes.

30)In Hubert's paper, L is the Lagrangian of Mie's nonlinear
electrodynamics.

31)Hilbert's contribution to the investigation of this problem
has been considered in detail in a book of one of the present
authors.83
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Hubert did not set himself the task of constructing a
theory of gravitation. His aim, stated already in 1900,
was to axiomatize physics on the basis of fundamental
mathematical structures. Hilbert regarded his work as
a development and generalization of Einstein's theory
that would be capable subsequently of solving basic
problems of fundamental physics. This is eloquently
attested by the final paragraph of the published lecture:
"As we see, if properly interpreted, a few simple as-
sumptions, expressed in the axioms I and Π, turn out
to be sufficient for the construction of a theory that will
not only radically transform our ideas about space,
time, and motion in the direction indicated by Einstein
but also, as I am convinced, through the equations de-
rived here, explain the secret and hitherto hidden phe-
nomena within the atom, and on their basis it must be
possible generally to reduce all physical constants to
mathematical constants. In this manner we approach
the possibility in principle of transforming physics into
a science like geometry, which is undoubtedly an excel-
lent example of the axiomatic method, using in the giv-
en case the services of powerful instruments of mathe-
matical analysis, namely the variational calculus and
the theory of invariants".84

Let us now compare the approaches of Einstein and
Hilbert to the problem of the equations of gravitation
as evaluated by authorities such as Klein, Weyl, Pauli
and Born, who knew both men extremely well and prob-
ably heard the history at first hand. In 1920, Klein
wrote: "In this matter, there can be no talk of prior-
ity, since the two authors followed completely different
lines of thought (and, moreover, such that initially
compatibility of their results did not seem to be guaran-
teed). Einstein proceeded intuitively and had in mind
arbitrary material systems. Hilbert proceeded deduc-
tively, introducing the aforementioned . . .restriction to
electrodynamics, from a higher variational principle.
He proceeded, in particular, from Mie's theory".85

Pauli's opinion was as follows (1921): "Simultaneously
with Einstein and independently of him, Hilbert estab-
lished the generally covariant field equations. Hu-
bert's exposition however, appealed little to physicists,
since Hilbert, first, introduced the variational princi-
ple axiomatically, and, second, which is more impor-
tant, his equations were derived, not for an arbitrary
material system, but specially on the basis of Mie's
theory of matter".8 6 Thirteen years after the de-
scribed events, Weyl recalled: "In his investigations
into the general theory of relativity, Hilbert combined
Einstein's theory of gravitation with Mie's program of
a unified field theory. The more sober approach of
Einstein, which was unrelated to Mie's very speculative
program, proved to be more helpful. Hubert's paper
can be regarded as a precursor of a unified theory of
gravitation and electromagnetism".87 The approach and
thinking of Hilbert enjoyed popularity: "At that time,
there was a very happy atmosphere in Hubert's circle;
the dream of a universal law that controls both the
cosmos as a whole and all atomic nuclei seemed al-
most to be realized".87 But these hopes were not des-
tined to be fulfilled. Only the deep physical thinking of
Einstein created the theory that was to become the liv-

ing basis of all physics of our time, although Einstein
himself from the beginning of the twenties embarked on
the path to a unified field theory opened up by Hilbert,
but without success.3 2 '

After our paper had been submitted, it was reported
that the Einstein archive in Princeton has letters of
Einstein and HUbert dated November 1915 (Ref. 89).
These letters fill an important gap in our story.

It turns out that in November 1915 the two theoreti-
cians worked in close contact with each other: they ex-
changed letters and the text of their papers and each of
them knew what the other was doing. This correspon-
dence beautifully complements the lectures of Einstein
in Berlin and HUbert in Gottingen.

EPILOGUE

From the vague but essentially brilliant anticipations
of Lobachevskii, Riemann, and Clifford on the connec-
tion between space and matter to the systematic,
mathematicaUy developed theory founded on experiment
the distance was very great. For the prophetic utter-
ances of the great geometers to acquire real physical
content there were needed decades in the development
of physics that led to the field concept and the extension
of the classical relativity principle.

The "germ" of the new theory arose in 1907 in the at-
tempt to understand the influence of the gravitational
field on the propagation of light and to include the grav-
itational field in the general scheme of the special the-
ory of relativity. The idea of the "faUing lift" changed
the direction of the development of the theory from a
comparatively simple question to a fundamental princi-
ple.

If one wishes to find a historical paraUel for Ein-
stein, the image that comes to mind is that of the great
dreamer and natural scientist Keppler. Working fren-
ziedly on the theory of Mars, he pictured his scientific
investigation as a battle in which nature springs am-
bushes. In his works, he described his achievements
as a triumph on the field of battle. He regarded this
war as one of the episodes in the mastering of nature,
in the recognition of what he called the harmony of the
world. The path of a bold dreamer has led to triumph
in physics more than once.

Einstein "conquered" the equations of gravitation in
battles no less heavy. For him too the dream of the
"harmony of the world" was a no less inexhaustible
source of energy. The only difference was that he de-
scribed his battles in the restrained style adopted in
our century.

Einstein's equations formed the basis of a great
science. Only two years later Einstein asserted the all
encompassing nature of the new law of universal gravi-

32'Hllbert's contribution to the general theory of relativity is
also discussed in the interesting Ref. 88.
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tation. In his paper "Cosmological considerations on ,
the general theory of relativity" he boldly described the
entire universe by a single equation. But this is al-
ready another theme.
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