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Low-temperature plasmas are frequently not in thermodynamic equilibrium. External fields, the emission of
radiation, gradients of various physical properties, and the finite rates of various processes can all prevent the
attainment of equilibrium. In nonequilibrium conditions the ionization state, the distribution of atomic
excited states, and the electron energy distribution all become complicated functions of the factors responsible
for the deviation from equilibrium. Since the components of the plasma—the electrons, atoms, and ions—are
strongly coupled, a departure from equilibrium in one component causes departure in the others. The criteria
for a deviation from local thermodyamic equilibrium are given. A study is made of plasmas far from
equilibrium, in which the electron density is not described by the Saha equation, the atoms do not have a
Boltzmann energy-level distribution, and the electrons do not have a Maxwellian energy distribution. A
steady-state nonequilibrium plasma and time-dependent relaxation phenomena are studied. The theory is
compared with the extensive experimental data available.
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1. INTRODUCTION perature plasma, is characterized by both an electron
temperature and a heavy-particle temperature. The

The state of an equilibrium plasma can be character- degree of ionization, the distribution of atoms with re -
ized completely by the thermodynamic variables, e.g., spect to energy levels, and the electron velocity distri-
the pressure and the temperature. The plasma compo- bution are all determined in this case by the electron
sition, the particle velocities, and the populations of temperature. The deviation from equilibrium, how-
excited levels all follow from simple thermodynamic ever, frequently leads to more complicated distribu-
relations: the Saha equation and the Maxwell and Boltz- tions and to a more complicated equations for the de-
mann distributions. In practice, however, a complete gree of ionization, such that the system could not be
thermodynamic equilibrium is exceedingly rare. Among described correctly by any single temperature. A de-
the factors which can prevent equilibrium are external viation from ionizational equilibrium affects chiefly
fields, radiation losses, gradients in various physical certain macroscopic properties of the plasma, and such
properties, and the finite rates of various physical and plasmas are accordingly referred to as "plasmas with
chemical processes. Collisional processes, on the nonequilibrium ionization."
other hand, which redistribute the energy and momen-
tum of the particles, tend to move the system toward A review of the literature shows that much effort has
equilibrium. The net result is a compromise of some been devoted to establishing simple criteria for deter-
sort: a system which is nonequilibrium overall but mining whether a plasma is in equilibrium.1·2 In re -
possibly at equilibrium with respect to certain degrees cent years, in contrast, much progress has been made
of freedom. States of this sort cannot be described by in the study of very nonequilibrium plasmas. There
a single temperature. The simplest nonequilibrium are two motivations for this work: Plasmas with non-
state of a plasma, for example, the so-called two-tem- equilibrium ionization are produced in many plasma
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devices of various types, and effects of general physi-
cal interest occur in nonequilibrium plasmas.

Let us consider, for example, the situations which
arise when an external electric field is applied to a
plasma originally in equilibrium. The field rapidly
heats the electron gas, and the degree of ionization
usually lags behind the values which would correspond
to the rising electron temperature. The Boltzmann
distribution and possibly the Maxwell distribution may
not hold. Various states may be reached, depending on
radiation and charged particles losses. If both are
slight, a two-temperature plasma is produced, but if
either emission or charged-particle losses are intense
the result is a steady-state "under ionized" plasma, in
which all three distributions (Sana, Boltzmann, and
Maxwell) may be modified.

As the electric field decays, a different group of non-
equilibrium states arises. The degree of ionization
falls more slowly than the rapidly dropping tempera-
ture, and a recombining plasma appears. As it cools,
this plasma gradually converts into an unionized gas.

We emphasize that these deviations from equilibrium
in the various degrees of freedom are generally inter-
related. Thus a factor which can cause a deviation from
equilibrium for one degree of freedom can indirectly
cause a deviation for some other degree of freedom.
For example, the line emission from a plasma may
cause not only a nonequilibrium distribution in excited
states but also a nonequilibrium degree of ionization
and a disruption of the Maxwell distribution.

To find a systematic description of nonequilibrium
plasmas we must use the methods of physical kinetics,
and the problem is quite complicated in general. To a
large extent, these difficulties stem from the fact that
the atoms have many energy levels. In a nonequilibri-
um plasma there are actually dozens of neutral compo-
nents which are converting back and forth into each
other and which differ in ionization energy, the cross
sections for various processes, and other physical
characteristics. There are complications of the same
sort for the ions, but not as extreme. In these circum-
stances it is advantageous to study the most typical de-
viations from nonequilibrium, to identify states which
are partially at equilibrium, etc. This approach dra-
matically simplifies the description of the plasma,
making it far easier to understand and interpret the
various events.

The present review is devoted primarily to atomic
low-temperature plasmas with nonequilibrium ioniza-
tion, although molecular components will be taken into
account in certain places. The review covers plasmas
of very different compositions, charge densities from
1010 to 1017 cnT3, temperatures from 103 to 105oK, and
typical dimensions from a fraction of a centimeter to
several meters. These are the pertinent parameters
for the development of devices which use low-temper-
ature plasmas.

This review cannot of course cover all the important
and interesting questions which arise in the study of
low-temperature nonequilibrium plasmas. For a dis-

cussion of these other topics the reader is referred to
other reviews and monographs.3'7

2. CONDITIONS FOR NONEQUILIBRIUM IONIZATION

A study of any plasma generally begins with the fol-
lowing questions: Is the electron temperature the same
as the heavy-particle temperature? What is the dis-
tribution of atoms with respect to excited states? What
is the degree of ionization? Do the electrons have a
Maxwell distribution? The answers to these questions
give us definite information about the state of the plas-
ma and also point out appropriate ways for pursuing the
study of the plasma properties. The literature accord-
ingly reflects a considerable effort to find inequalities
characterizing various types of deviations from equi-
librium. Spatially nonuniform plasmas are extremely
common, for these local criteria determine the condi-
tions under which a distribution is in equilibrium with
respect to local values of the thermodynamic proper-
ties. Obviously, these local equilibrium criteria may
be satisfied in one part of the plasma but not in another.
The most familiar criteria in the literature are those
which determine whether the atoms satisfy a Boltz-
mann distribution with respect to excited levels, de-
pending on the local value of the electron temperature.
Other criteria are less familiar but frequently crucial.
Let us examine the various criteria for a local thermo-
dynamic equilibrium.

A. Condition for a hot-electron plasma

The electron gas reaches a temperature higher than
that of the other particles in an external electric field
because the energy exchange between the electrons and
the heavy particles is inefficient. The fraction of the
energy transferred is small, equal to twice the mass
ratio, δ= 2m/Μ, so the electron temperature Te be-
comes higher than the heavy-particle temperature.

The experimental data8 in Fig. 1 demonstrate how the
electron temperature Te exceeds the gas temperature
Τ in the plasma of an atmospheric-pressure arc. In
certain other situations, the heavy particles may reach
a higher temperature: T> Te. This is the case, for ex-
ample, behind a strong shock front, where the gas is
heated as the front passes, but there is a delay in the
ionization and thus in the heating of the resulting elec-
trons, which occurs at the same time as the ionization.

In an atomic gas in an external electric field, be-
cause of the small value of 6, the electron temperature
Te becomes higher than the gas temperature at a com-

FIG. 1. Variation of the temperatures Te and Τ with the cur-
rent i (or the electron density ne) in the plasma of an argon arc
with a 5%H2 admixture.8
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paratively low field %. Let us use electron energy bal-
ance to estimate the field # required. In the simplest
case, Joule heating σ # 2 (σ is the electrical conductivity
of the plasma) is offset by the energy lost through elas-
tic collisions:

σ%ζ — δην(Τ Τ) '*"' · (2.1)

where ν is the frequency of elastic collisions. In a
weakly ionized plasma we would have ν=ηασβαν, where
na is the atomic number density, am is the elastic elec-
tron-atom cross section, and υ is the average electron
velocity. Then

Tf—T _ / % t γ • (2.2)

In cold hydrogen (T= 300°K), a small temperature dif-
ference (Te - T)/Ta 0.1 arises even in a field $/na

= 3· 10"19F· cm2. As the degree of ionization increases,
electron-ion collisions must also be taken into ac-
count. The corresponding cross section is

where λ is the Coulomb logarithm. This cross section
is quite large (at T= 3000 °K, for example, aei = 3· 10 u

cm2), so that electron-ion collisions are important in
the electron energy balance even at comparatively low
ionization levels, ~10"4-10"3.

Inelastic collisions can be taken into account by esti-
mating the energy radiated by the plasma and the ener-
gy carried off by charged particles which diffuse to the
plasma boundaries.

The radiative energy loss is governed by radiative

transitions between various states:

(2.3)

cal density for the center of the line; the absorption
coefficient k0 depends on the nature of the line broaden-
ing; and R is the linear dimension of the plasma.

Let us estimate the radiative energy loss of an inert-
gas plasma with a small admixture of a readily ionized
alkali metal. The inert gas is responsible for the elas-
tic loss Se(= δηβι/(Γβ - Τ) and broadens the lines of the
metal atoms, thereby determining θ 4 π > The alkali met-
al vapor furnishes the electrons and radiates primarily
in its own doublet Then we can restrict the calcula-
tion of SR in (2.3) to a single term, equal to n%A%i{E1

-E2), where E2 is the binding energy of the first ex-
cited level, and k = 2. Then the behavior of ΔΛ = SR/Sel

as a function of Τ is basically described by

n%(Te-T)

Since we have 2 £ 2 - £ 1 > 0 for alkali metals, the radia-
tive energy loss is never important at high Te. Nu-
merical calculations show that for an argon pressure
p= 1 atm, a temperature T= 2000 °K, and a relative po-
tassium concentration of 10"3 the characteristic value
of Te corresponding to Δκ = 1 is ~3000 °K for R= 10 cm
(Ref. 12).

If the situation is far from equilibrium, it is a more
complicated matter to calculate the energy loss due to
inelastic processes (this would include the radiative
energy loss SK). This loss causes a close relationship
between the nonequilibrium values of Te and the atomic
distributions with respect to excited levels, which will
be discussed in Section 3 below.

To find a rough estimate of the energy loss from dif-
fusion of charged plasma particles to the boundaries,
we introduce a diffusion scale time. Then

where nk is the population of level k, A*n is the effective
probability for the radiative transition k — n, and Ek-En

is the energy of the emitted photon. For an upper esti-
mate of SR, we can replace nk by n°h, the Boltzmann
population at Te.

Just what do we mean by "effective probability for
the radiative transition?" If we replace A*n by Ahn,
where Abn is the probability for a spontaneous transi-
tion, we would be taking into account only the radiative
transitions k — n (this is the thin-slab approximation).
Under real conditions, radiative transitions n — k can
also occur, because of the absorption of the radiation
emitted from adjacent regions. This effect can par-
tially or even completely offset spontaneous emission.
The theory for radiative transport of excitation takes
this effect into account through the introduction of the
quantity Qkn, the probability for the escape of a photon
from the plasma.9"11 As a result we have A*n=AknQk^.
For Qin we have the following simple but quite accu-
rate equations:

for a Doppler-broadened line or

for a dispersion-broadened line. Here kgR is the opti-

where E1 is the ionization energy, TD = R2/gD, D is the

ambipolar diffusion coefficient, and g is a numerical

factor which depends on the plasma configuration.

Experiments on the inelastic energy loss due to ra-
diation and ambipolar diffusion are reported in Refs.
13 and 14. The results show that there is a certain pa-
rameter range in which this loss is negligible, but this
range is limited.

The inelastic loss can be extremely high in a plasma
containing a molecular component, because the thresh-
olds for the excitation of rotational and vibrational lev-
els are low. If the vibrational and rotational tempera-
tures (Tv and Tr) are approximately equal to the gas
temperature (T), this type of loss can be incorporated
in the criterion for a hot-electron plasma by introduc-
ing a quantity 5e f f. The values of δ θ ( { can be much
larger than 6= 2m/M. Let us examine some simple
equations, which also hold when Tv, ΤΤΦ Τ.

In a plasma with homonuclear molecules, e.g., ni-
trogen, there is a substantial loss due to vibrational
excitation,15 Sv:

where #ω is the vibrational quantum, and P 0 1 is the ex-
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citation rate. Ordinarily, we would have P01= 10*10

-10"9 cmVsec. The electrons can be in equilibrium
with the molecular vibrations. We can write a cri-
terion for a temperature Te higher than the tempera-
ture of the other particles, analogous to criterion (2.2):

yk-i
"kwk.k+1

(2.7)

\ na aeaTv I (2.4)

Even if na»nm, Ue., even if the molecules constitute
only a small fraction of the total number of particles,
the values of &/na required for a relatively high Te in-
creases substantially.

In a medium of polar molecules the predominant loss
is that due to rotational excitation,

S =h(i> η η ^ (-£^Λ2 | / m u, I ^e \ IT τ ι , ( 2 5)

here %<J)T is the rotational quantum, and d is the dipole
moment of the molecule. For a significant difference
between the electron temperature and the rotational
temperature, say Te= 2Tr in water vapor we would need
an extremely high field, $/na= 3· 10"16V cm2.

B. Condition for an equilibrium distribution with respect
to excited states and for equilibrium ionization

The generation of charged particles by ionizing irra-
diation or the escape of these particles from the plasma
directly affects the degree of ionization and indirectly
affects the distribution with respect to excited states.
The line emission affects the excited state populations
and indirectly affect s the degree of ionization. The
reason for the mutual relationship is that excited atoms
represent the primary source of electrons over a broad
range of conditions (the ionization energy falls off to-
ward the boundary of the discrete spectrum, while the
cross section, in contrast, increases). Correspond-
ingly, recombination occurs primarily to excited states.

Equilibrium conditions are easily derived by using a
simplified kinetic model which incorporates only tran-
sitions between adjacent levels (the "single-quantum
approximation"). It should be noted that when charged
particles are produced in the plasma by external irra-
diation or when these particles escape from the plasma,
the ionization and recombination do not cancel out. A
flux thus arises in the energy space of the atom. For
example, if charges diffuse to the plasma boundaries
and are neutralized there, ionization will be faster than
recombination in the plasma volume. The energy-space
flux, j , is directed from the ground state toward the

' continuum.

In the single-quantum approximation, we can write
the following equation for the steady state:

j = nhwh, k+l—nk+i (wk+u h + A*+i, k), (2.6)

where wk ktl and win>fc are the probabilities for the col-
lisional transitions & = fe + l, and nk and nktl are the lev-
el populations. To study the deviation from equilibrium
it is convenient to introduce the relative population yh

= η,/nl, where w» is the equilibrium population of level
k. Then using the relation between wKktl and wktlik

which follows from the principle of detailed balance,
we find

Let us assume that the emission of radiation is the
sole reason for a deviation from equilibrium. Then if
we ignore external sources of excited atoms, e.g., the
diffusion of excited atoms toward the plasma bounda-
ries,1' the flux between any pair of levels vanishes (j
= 0). Then from (2.7) we easily find the condition for
the relative equilibrium of two adjacent levels (y»

(2.8)

The probabilities for radiative transitions fall off
rapidly toward the boundary of the discrete spectrum,
while the probabilities for collisional processes in-
crease (the oscillator strength decreases ~k~3, while
w increases -ft4). Then even at low electron densities
there is always a group of upper levels which are at
relative equilibrium with each other and simultaneously
with the continuum. As ne increases, this equilibrium-
distribution region shifts downward, toward the ground
state. If there is a level near the ground level for the
given atom, the populations of these levels may, be at
equilibrium at relatively low values of ne. Then condi-
tion (2.8) must be written for only a few levels, sepa-
rated by the largest energy intervals.

Griem1 has studied how the emission of radiation af-
fects the distribution with respect to excited states in a
hydrogen plasma. He assumed that the plasma volume
was optically thin and that the electrons have a Maxwell
distribution, and he used the Bethe-Born approxima-
tion for the cross sections for collisional transitions.
He found the same condition as in (2.8), but in the form
of an inequality, whose satisfaction guarantees an equi-
librium between state k and the higher-lying states with-
within an error of

(2.9)

Figure 2 shows the results calculated for ne from Eq.
(2.9) as a function of Te. Also shown here are the cor-
responding results reported by Drawin,2 who used
slightly different cross sections.

Condition (2.8) and its modification in (2.9) were de-
rived in the single-quantum approximation. To be rig-
orous, we would have to take all possible transitions
into account. This approach would lead to a system of
equations relating the populations of all the atomic en-
ergy levels. For given values of the electron density,
the numerical solution of this system of equations leads
to the excited state populations, so that it is possible
to single out the levels which are at relative equilibri-
um. Figure 2 shows the values found for ne in this
manner; within 10%, these values lead to the relative
equilibrium of the group of levels above the given lev-

. 4 . 1 0 · · ^ Vh- (cm"3)·

11 This effect is usually negligible occurring only in the immed-
iate vicinity of the boundaries. The corresponding condition
is easily derived by comparing the scale times for diffusion
and electron-impact decay. These questions are taken up in
Subsection 2a.
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FIG. 4. Radial profiles of the electron temperature Te (solid
curve) and the temperature of the population of the potassium
resonant level,20 Tu. The hatched regions show the scatter in
the experimental values of Tu.

to equilibrium with the ground state, becomes less
stringent with decreasing ΘΆ, which can be extremely
small. The value of this factor, however, varies with
the coordinates. Near the boundary, Θ may differ little
from unity. In the central part of a sufficiently large
volume, Θ can be much smaller than unity. In this
case, the central part of the plasma is near equilibrium
even if collisional processes are relatively inefficient.

The range over which the Boltzmann distribution
holds was studied experimentally in Refs. 17 and 18.
In the plasma of an inert gas with an admixture of
readily ionized cesium, a local equilibrium obtains for
electron densities ne £ 1014 cm"3.

Radiative decay usually reduces the density of ex-
cited atoms, but a qualitatively different picture can
arise if there are large temperature gradients in the
plasma.

The radiation emitted from the hot parts of an arc
and absorbed in the peripheral regions increases the
density of excited atoms. Under certain conditions,
the local density of excited atoms can be higher than the
equilibrium value. This question was studied by
Lagar'kov.19 He introduced a factor Θ which has the
same meaning as above for the hot regions but can be-
come negative for cold regions. Negative values re-
sult when the density is above the local equilibrium

If we use the effective transition probabilities in (2.8), value. Condition (2.8) becomes ΑΆ | θ 2 1 \/w21«1. Par-

ticular equations for these generalized quantities Θ are
given in Ref. 19.

FIG. 2. The electron density which leads to equilibrium with-
in a 10% error, plotted as a function of Te for various states k.
1) According to Griem1; 2) according to Drawin2; 3) according
to the criterion of the present paper; 4) numerical calculation.

el. The results differ noticeably from those of Griem
and Drawin.

Condition (2.8) can be refined by using a modified dif-
fusion approximation.16 In this approximation, the mo-
tion of a bound electron among excited states is treated
as a diffusion process in a discrete energy space. It
is assumed that among the various whn the probabilities
for single-quantum transitions, Μ;Λ>Λ+1, are predomi-
nant. Then effective transition probabilities zktkil are
introduced; these effective probabilities reflect the
probabilities tvk k±1 exactly and the probabilities wh b±2,
w*,n±3> e t c ·» approximately. As a result, the following
equations are found for zitktl:

(2.10)
(Eh — Ekti) (E*-i — £(,+i) V mTe \ ' e

In the particular case k= 1,

zi2 — ne - * pvp I——i-=—— ι _ ( 2 . 1 1 )

The At reflect the particular structure features of the
various atoms. They can be described by the universal
curve in Fig. 3. The effective probabilities for the di-
rect and inverse processes are related by

and if we determine the critical values of ne, we can
improve the agreement with the results of the numeri-
cal solution of the balance equations (Fig. 2).

The curves in Fig. 2 hold for an optically thin plasma,
A%n=Akn. Reabsorption moves the plasma toward equi-
librium. The most stringent criterion, corresponding

FIG. 3. Variation ofA,
with Te/AEk{AEk=Ek

Figure 4 shows the radial profiles of the temperature
Te and the temperature of the population of the reso-
nant level,2' Tu, for the experimental conditions of Ref.
20, where an arc was studied in argon with a potassium
admixture at atmospheric pressure. For the central
region we have the usual situation: Radiation losses
reduce the density of excited atoms (in accordance with
the value of Θ). We thus have Tu<Te, so the level
population is below the Boltzmann value. At the pe-

10° ID' Te/ii

2) The temperature of the population of level k is determined
from the formal equation nk/nt=gk/gl exp (—Ei — Ek)/Tu. At
equilibrium, we would have Tu= Te.
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riphery, the situation is different; here there is a
tendency toward Tu> Te.

How does the emission of radiation affect the degree
of ionization? It was mentioned above that there are
essentially always levels near the continuum which are
at relative equilibrium with free electrons. The elec-
trons in equilibrium with the upper excited levels may
(along with these levels) not be at equilibrium with the
ground state. We can find a quantitative measure of the
deviation from equilibrium ionization by writing (2.7)
for all the levels. Assuming j= 0 as before, we find a
chain of equations, from which we easily find

versions

where

(2.12)

The last factor in (2.12) contains the ratio of the prob-
abilities for radiative and three-body recombination,
which takes into account the effect of radiation emitted
in the continuum. This factor usually becomes equal
to unity before the corresponding factors for transitions
between levels near the continuum. For equilibrium
(̂ «31 )̂ we must obviously have Tlt~ 1 or

Π, - l < l. (2.13)

In other words, we must have A\\/w21«l,A%2/w32«1,
etc., in agreement with (2.8). In the modified diffusion
approximation, wk.ltk should be replaced by zktltk. In
calculating U1 it is usually sufficient to take into ac-
count only a few factors, since ·Α£ΙΛ/Μ>Λ+1Λ falls off
rapidly with increasing k, as mentioned above. We can
determine the boundary between the group of upper
levels which are in relative equilibrium and the other
levels, which are moved away from equilibrium by the
emission of radiation. The energy of the boundary lev-
el is found from

(2.14)

which will be derived in Subsection 3a below. In (2.14),
Er and Te are in electron volts.

Let us now assume that free charges are being pro-
duced by irradiation or by the escape of charged parti-
cles from the interior of the plasma; then the flux is
j*0. In the steady state, writing the charged-particle
balance, we find

where β and a are the coefficients for collisional-ra-
diative ionization and for recombination. These coef-
ficients are studied in detail in Ref. 16; at this point
we simply note that each reflects the conditions for the
emission of radiation. These coefficients are related
by

βΠ! = aKu (2.16)

where K1 is the ionizational-equilibrium constant,
written for the ground state, Kx = (w°)Vn?. From (2.15)
and (2.16) we find an estimate of the degree of ioniza-
tion and a condition for proximity to ionizational equi-
librium. The result is conveniently written in the two

Ϊ? ~ l-(//»i»«P) "

(2.17)

(2.18)

The flux j is easily estimated. If it is caused by irra-
diation, then it is determined by the radiation inten-
sity. If, on the other hand, the diffusion of charges is
the governing factor, then we have jane/rD, where rD

is the diffusion scale time, which can be expressed in
terms of the ambipolar diffusion coefficient. Then
j/n3

ea= ΐ/τοη1α is the raio of the recombination and
diffusion scale times.

Gridneva and Kasabov17 have studied an arc in argon
with a cesium admixture (argon pressure p~ 0.1 atm,
Te«3100°K, « C s «1.6 ·^ 3 cm"3, and T* 1000°K). The
cesium ionization coefficient under these conditions is
βα 2· 10"10 cm"3· sec"1. The ratio of the diffusion scale
time T'D1- 6D/R2 (Da« 300 cmVsec, R= 0.8 cm) to the
ionization time, l/nCmPnD=0.9 indicates that diffusion
is important and that this mixture deviates from ioniza-
tional equilibrium.

The conditions for proximity to an ionizational equi-
librium have been used to determine the plasma char-
acteristics suitable for the working medium of closed -
cycle MHD generators (an argon plasma with a potas-
sium admixture). Figure 5, from Ref. 12, shows lines
above which the Sana equation holds within 10%. Below
the lines, the Sana equation and the two-temperature
approximation break down. The deviation from ioniza-
tional equilibrium is affected by both radiation and the
escape of particles to the wall. Diffusion is the pri-
mary reason for the deviation from equilibrium at low
pressures, in small plasma volumes, and at low tem-
peratures, Te<2400°K. At higher temperatures, ra-
diation losses become more important.

External factors affecting the electron density indi-
rectly affect the excited state distribution. It follows
from (2.7) that with j * 0 we have yfe*yit.i, even if no
radiation is emitted (A*tltk*Q). This is a completely
plausible result, since for a flux j to exist in the en-

»t.cm

'?.eV

FIG. 5. a: Curves on the ne, Te plane which lead to satisfac-
tion (within 10%) of the Saha equation.12 Solid curves) Ar—Κ
plasma; dashed) He—Cs plasma; 1) p=0.1 atm, R=l cm; 2)
p = l, H = 10; 3) £=10, Λ=10. b: Region in which an equilib-
rium occurs in a hydrogen plasma. 1, l\ 1") Constant values
of Α2ί@/ζΆ = 1. 1) ®=1; 1') ®=0.1; l") ®=0.01; 2, 2', 2*)
constant values of n\ aTC = 1; 2 ) T D = 1 0 - 4 ; 2') τΒ = ΐ0" 3 sec;2")
Ta= 10"2 sec; 3) c= 1. The hatched region corresponds to an
equilibrium plasma with ©= 0.1 and TD= 1O'3 sec.
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ergy space of the atom the state distribution must de-
viate from equilibrium. The quantity nlwkfktl in the de-
nominator on the right side of (2.7) is very sensitive to
the position of level k. As k increases, n°k decreases
in accordance with a Boltzmann distribution; wt t , in-
creases, at first slowly and then extremely rapidly.
As a result, nj,wkihti has a minimum. Small values of
nlwk,k*i correspond to the largest values of the differ-
ence yk -yktl, i.e., to the greatest deviations from
equilibrium in the level distribution. This region forms
a "bottleneck" impeding the flux j in the energy space
of the atom.31

As shown below, the position of this bottleneck is
related to the electron temperature and is approxi-
mately equal to 3Te/2. As Te decreases, the bottle-
neck shifts toward highly excited states. At high val-
ues of Te, it may be in the energy range between the
ground and first excited states. Then the populations
of all the excited states will correspond approximately
to a relative equilibrium with a state in the continuum.
In other words, the density of excited atoms will be
given by the Saha equation with Te. There is, however,
no equilibrium between the ground and excited states.
In this case we would say that the excited states form a
"block."

C. Conditiion for nonMaxwellian distribution

Deviations from an equilibrium energy-level distribu-
tion of atoms correlate with deviations from an equi-
librium electron energy distribution. Electrons lose
energy in the course of excitation and ionization. If
there is a Boltzmann distribution with respect to ex-
cited states, fast electron losses are offset by inverse
processes, by detailed balance. If the system is not at
equilibrium, there may be a nonequilibrium distribu-
tion. Deviations from a Maxwell distribution arise
primarily in the tail of the electron energy distribution
/(ε) and peak at3 ε » Εγ - E2.

The frequency of the inelastic collisions experienced
by an electron with an energy ε = Ev - E2 is
(ni/ne)z12(c = EX- E2) = 4ire4A in i/-/2^"(E t - E2)

3'2 (see
Subsection 2b for more details). The corresponding
frequency of elastic collisions, which tend to restore
the Maxwell distribution, is vee(t = E^ —E2)
= 2πβ4ληβ/ν2»κ(£1 - E2) Te. For a Maxwell distribution
to be maintained, the ratio of these frequencies must
be small:

(2.19)

Under typical conditions, with Te= 1 eV, the Coulomb
logarithms for elastic and inelastic collisions are λ= 10
and Λ^Ο.01 -0.05. Inequality (2.19) implies a Max-
well distribution when the degree of ionization is such
that

Cool and Zukoski,32 for example, have studied the ion-
ization of potassium for an original electron density ne

= 5-10"12 cm"3, W l =1.4-10 i e cm- 3 , and Te~ 3000 °K.
Under these conditions, c~3. As ne increases, c de-
creases significantly.

If c » 1, the frequency of 1 - 2 collisions is given di-
rectly by the frequency of elastic collisions which move
electrons from the subthreshold energy range ε < Εί

- E2 to the region of the threshold, ε = Ει- Ε2. We thus
have a modification of condition (2.8), which shows how
the emission of radiation affects the plasma state.
Specifically, this condition becomes more stringent,

ff«l· (2.20)

In this condition, it is the square, rather than the first
power, of the electron density which appears in the de-
nominator.

At lower degrees of ionization, with Te*T, a non-
equilibrium distribution/(ε) is caused by elastic colli-
sions of electrons with atoms. We thus have the in-
equality

ΊϊΓ»-£--^Γ· (2.21)

where σβα/σββ is the ratio of the cross sections for
electron-atom and electron-electron collisions when
the electron energy is equal to ε. Inequality (2.21) usu-
ally holds for njn^ 10"7 -10" 8 .

The influence of strong external fields on /(ε) has
been studied, in Refs. 3 and 33, for example.

We have thus examined the basic conditions for a de-
viation from thermodynamic equilibrium in a plasma.
In order to determine the roles played by the various
factors responsible for a deviation from equilibrium,
we show in Fig. 5, in a plot of ne vs Te, curves of con-
stant values of ΑΆ Θ 21/221= * f ° r a hydrogen plasma in
equilibrium (as regards Te). Curve 1 corresponds to
Θ = 1, while curves 1' and 1" correspond to Θ = 0.1 and
0.01. The region above these lines evidently corre-
sponds to a plasma in the two-temperature regime if
there are no other factors to cause a deviation from it.
Below the line Α21Θ21/Ζ21= 1, the equilibrium is dis-
rupted by the emission of radiation. Also shown in
this figure are lines of constant η\ατΒ= 1 (curves 2, 2',
and 2"), which reflect the role of diffusion. For values
of ne and Te below these curves, the equilibrium is dis-
rupted by the diffusion of charged particles to the walls.
Curves 2, 2', and 2" are plotted for rD= 10"4,10"3,10-2

sec, respectively. Finally, curve 3 determines where
deviations from a Maxwell electron distribution, c= 1,
can occur. To the left of curve 3 we have c> 1.

Then for TD= 10"3 sec and Θ = 0.1, for example, the
hatched region in Fig. 5b corresponds to a two-tem-
perature plasma. If ne is reduced, for example, along
arrow I, the deviation from equilibrium is caused by
the emission of radiation. In this case the distribution
of atoms deviates from a Boltzmann distribution, and
there is also a deviation from a Maxwell electron en-
ergy distribution. If we move along arrow II, i.e., at
a higher value of Te, the factor primarily responsible
for the deviation from equilibrium is the same, but the
electron energy distribution remains at equilibrium
(for Te). If we move along arrow III, the deviation
from equilibrium is caused by the diffusion of charged
particles to the plasma boundaries.
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3. PLASMA IN A NONEQUILIBRIUM STATE
OF IONIZATION

The criteria given in the preceding section do no
more than state that there is a deviation from equilib-
rium. We turn now to the problem of finding a de-
scription of the nonequilibrium state.

A. Populations of the excited states

To analyze the distribution of atoms with respect to
excited states it is convenient to examine how ln(nk/^k)
varies with the binding energy, using curves drawn
through the points which correspond to the real atomic
levels. At equilibrium this curve would be a straight
line with a slope depending on the temperature Te (Fig.
6). This line can be continued into the region of con-
tinuum states by constructing 1η[η(ε)/#(ε)], where «(ε)
is the density of electrons at energy ε, and g(t) is their
statistical weight. Let us assume that for some reason
the electron density in the plasma falls below the equi-
librium value (at this point we will simply assume that
the free electrons continue to be described by a Max-
well distribution). Then the part of the line in Fig. 6
corresponding to free electrons shifts downward. The
distribution of atoms with respect to excited states be-
comes distorted, and it can no longer be described by
a single temperature. We thus have an ionizational de-
viation from equilibrium, ye<yt.

When there is an electron excess, ye> ylt the devia-
tion from equilibrium is associated with recombination,
and the distribution of atoms with respect to excited
states becomes deformed as shown in Fig. 6. We see
from Fig. 6 that there is a certain group of states (II)
which is far from equilibrium and within which there
may be a quasi-Boltzmann distribution [ln(nk/gk) for
these states conforms approximately to a straight line]
with some temperature Tp. This temperature is not
equal to the electron temperature; for recombination
we would have Tp> Te, while for ionization we would
have Tp<Te.

Figure 7 shows experimental values of the density of
excited cesium atoms, found in Ref. 20 for various
electron densities. Table I shows the basic character-
istics of the cesium plasma under these conditions. In
Ref. 22 the electron temperature was determined from
the intensity of the recombination continuum.

FIG. 7. Variation of the populations of the cesium F levels
with the binding energy for various values of ne (Ref. 22). 1)
ne = 2.3.101 3cm-3; 2)η,= 4·10 1 2; 3) η,= 1.2·1θ". Crosses)
Experimental data; solid lines) equilibrium according to the
Sana equation wim Te; dot-dashed lines) distribution with Tp.

The solid lines are the equilibrium distributions as-
sociated with Te; the dot-dashed lines are drawn
through the experimental points and correspond to Tp.
It can be seen from Fig. 7 that with ηβ= 2.3· 1013 cm"3

the excited states with n = 7 -19 are in equilibrium with
the continuum. As ne decreases, Te only charges
slightly, according to Table L Here Tp begins to be
quite different from Te, however, and the excited state
populations do not conform to the straight line which
corresponds to Te. Here we are dealing with a level
distribution of atoms which is characteristic of an ion-
izational deviation from equilibrium, with Te> Tp

(curve 2 in Fig. 6).

The populations of excited states have been mea-
sured by many investigators; see Refs. 8, 17, and
22-30, for example.

In the theory, the level populations are determined
from the system of balance kinetic equations written
for each of the excited states; all possible elementary
processes which populate or depopulate the given level
are taken into account. Depending on the particular
formulation of the problem, this system of equations
may be supplemented with a kinetic equation for the
electron distribution, a balance equation for the number
of electrons, or energy-conservation equations.

Bates et al.3*'37 solved the system of kinetic equa-
tions for the population numerically assuming a given
electron density, a given electron temperature, and a
Maxwell energy distribution. Since their work, numer-
ical methods have been widely adopted for solving the
balance equations.38"41

The calculations of the excited-state populations car-
ried out by various workers span an extremely broad
range of electron temperatures and densities. These
calculations are particularly valuable when accurate
values are required for particular level populations.
On the other hand, numerical methods have certain

FIG. 6. Diagram showing the characteristic distributions of
atoms with respect to excited states. 1) Equilibrium case (the
slope of the line corresponds to Te; 2) ionization; 3) recom-
bination. The dashed curves reflect the influence of radiative
processes. I) Group of excited states at relative equilibrium
with the continuum; Π) group of nonequilibrium states.

TABLE

nC s, cm"·

o
o

o

I.

ne10",cm-3

2.3
4.0
1.2

2320
2270
2380

Tp.'K

2350
1320

730
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limitations. For example, the results are in the form
of tables. A more realistic formulation of the problem
(which would, say, incorporate the relationships among
the level distribution, the degree of ionization, and the
electron energy distribution) would convert the balance
equations into a nonlinear system. The shortcomings
of the numerical methods become painfully clear when
the plasma is simply one element of a composite sys-
tem, and the description of the plasma state is only
part of a more general problem. As a result, approxi-
mate analytic methods have been adopted widely on the
basis of a variety of models which simplify the original
system of equations (see the review in Ref. 16). The
results found by the numerical methods can furnish a
reliable test for various approximations.

The most successful approach has exploited the anal-
ogy between the motion of an electron among energy
levels and the random walk of a Brownian particle.
This "diffusion" approach has been pursued intensely
beginning with papers by Belyaev, Budker, Pitaevskii,
Burevich, Smirnov, et αί. 4 2 " 4 9 The analogy with diffu-
sion becomes more obvious when we note that the tran-
sition probability of a bound electron in collisions with
a free electron is proportional to (Eh-El)"i, where Ek

and En are the energies of the initial and final states,
respectively. This implies that, averaged over sev-
eral collisions, the energy of the electron changes by
a comparatively small amount, and the system of bal-
ance kinetic equations can be replaced by a Fokker-
Planck diffusion equation, whose solution gives the de-
sired population distribution. Thus the energy spec-
trum is assumed to be continuous. This approach is
evidently justified for highly excited states, for which
the energy spectrum has closely spaced states. For
the low-lying excited states, on the other hand, where
the energy separations are large, this approach can
hardly be used.

A theory combining the discreteness of real atomic
energy levels and the basic principles of the diffusion
approximation—the modified diffusion approximation—
requires writing the diffusion equation in finite differ-
ences.1 6 This approach has substantially extended the
applicability of the diffusion method, making it useful
for real plasmas of various compositions. This modi-
fied diffusion approximation can also incorporate radia-
tive processes, and it ultimately yields analytic ex-
pressions for the ionization and recombination coeffi-
cients and the level populations.16

Results formally similar to those found through the
modified diffusion approximation can be found by using
the single-quantum approximation, discussed in Sub-
section 2b. We solve a chain of equations like (2.7),
assuming that the boundary values ylt ye, and y* are
known and that the flux j is constant. The result is con-
veniently written

_ (yi/ni)-y,y* _ (y8/na)—y,y* _

i? l
«he (3.1)

(3.2)

(3.3)

solution found in the modified diffusion approximation
has the same form as (3.1)-(3.3), but wh ΗΛ should be
replaced by zkikti, and in the equation for Π4 in (2.12)
we should replace A^1>k by o * ^

= Σ Π , * . 1 Σ , < ^ * (Ref. 16).

The solution of system (2.7) written in the form in
(3.1)-(3.3) can be interpreted by analogy with the cur-
rent flow along a chain of series-connected resistances
ϋ*,**ι between junctions k and k+ 1 (Fig. 8). The poten-
tial of each junction corresponds to y^/uk. The resis-
tance between each pair of junctions η and m is Rm

=Σ/£Γη1·βί,**ι· The current in each circuit is equal to
the potential difference between the extreme points,
yj/lli -yey*, divided by the total resistance Ru = Rl2

+ R23+... , as written in (3.1). Equation (3.2) deter-
mines the potential for an arbitrary junction k in terms
of the potentials at the ends of the chain. The case j= 0
corresponds to equal potentials at all junctions:

y, _

Πι -
. . . = - ^ = . . . = i / ^ . (3.4)

If k < m, then nk > nm . The flux is thus zero when the
relative populations yh fall off with increasing k. The
overall distribution is not in equilibrium. Equilibrium
obtains if all the factors Π,, are equal to unity, i.e., if
radiative processes are suppressed by collisional pro-
cesses. If n t » l , excitation and ionization result from
collisional processes, while the decay of excited states
and recombination result primarily from radiative pro-
cesses. A steady nonequilibrium state of this type is
called a "coronal equilibrium."50

If, for some reason, j>ey* falls below the value deter-
mined by (3.4), a flux j> 0 appears; this corresponds
to ionization conditions. Recombination conditions (j
< 0) arise if yey* exceeds the value determined by (3.4),
since the condition yey*>yi/n1 is sufficient for recom-
bination. At a sufficiently high value of 11^ recombina-
tion can occur provided 3?ey*<y1, i.e., in a plasma
which is underionized with respect to the equilibrium
with Te.

Equations (3.1)-(3.3) can be used to calculate the ex-
cited state population during collisional and radiative
processes for an energy spectrum with a discrete
multilevel structure. Where necessary, several addi-
tional processes can be incorporated in the flux equa-
tion in (3.1): radiative recombination16 and heavy-par-
ticle collisions. Some particular examples of this lat-
ter case are discussed in Section 5.

It can be seen from the structure of (3.1)-(3.3) that
finding the populations reduces to a calculation of the
resistance R and the factors Π. The resistance is the
sum of the resistances of the various parts. The dis-
creteness of the system is most important for transi-
tions between low-lying atomic states, where the rela-
tive energy separations are comparatively large. For

The factors Π* are defined by analogy with (2.12). The FIG. 8. Equivalent circuit.
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highly excited states, there is more justification in
transforming to an approximately continuous variation
of the electron energy.

This transformation can be made by writing a differ-
ential analog of the finite-difference equation in (2.7).
It can be shown that the solution of the resulting differ-
ential equation, with the boundary conditions y(E) \E,Bl

= yx and y(E) |B_o

=y«y*, c a n a^° b e written in the form
of Eqs. (3.1)-(3.3), but with the factors Π calculated
from

Π,, = Π (£) = exp (3.5)

and with the resistance R calculated from

dE Em < Eh. (3.6)

In (3.5) and (3.6), n°(E) is the equilibrium density of
atoms per unit energy, n°(E) = n°kdk/dE; and

γΒ(Ε)-. (3.7)

is the diffusion coefficient in energy space for a bound
electron.43 This coefficient is related to the effective
probabilities zkiktl by « n , » , ^ » - ^ , ! ) 2 - ! ^ » ) in the
limit £ t - £ t t l , and £**(£)= a%(dE/dk) is the probability
for a change in the energy of the bound electron due to
emission. Equations (3.5) and (3.6) can be used to de-
rive simple equations for Π and R, which can in turn
be used to establish important relations.

The role played by emission is reflected by the fac-
tors Π(£). How do these factors vary with the energy?
Calculations of (**(£) for various elements show that
this quantity can be approximated by the simple equa-
tion α*(Ε) = (6 - 8)· ΚΡ-ΕΥΛν3. Substituting this ex-
pression into (3.5), and using (3.7) for B(E), we find

where the characteristic value Er is determined by
(2.14). If E>ET, t h e n n ( £ ) » l , while if E<E then

()

When a flux is present, the population distribution
depends on the resistance R. The contribution to the
resistance from the energy interval dE is proportional
to the integrand in (3.6). This function is not monotonic.
Its maximum, determined from

2~ Te Er
(3.9)

corresponds to a bottleneck: the energy interval which
presents the greatest resistance to the current. If Er

> 3Te/2, the second term on the right of (3.9) can be
ignored, and the location of the bottleneck is deter-
mined from E= 3Te/2 (Subsection 2b). When Tt<Er, on
the other hand, the bottleneck is at E~ Er.

For the part of the spectrum E<Er radiation is un-
important, and we have n(£) = 1. Then R(0, E)
*X(O;E/Te), where

is a function tabulated in Ref. 51. If χ» 1 we have
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FIG. 9. Population distribution of the highly excited states of
cesium atoms. The experimental points are from Ref. 29. 1)
ηβ=4.0·101 3 cm;3, ηα=1.1·101 5 cm"3, Γ(,= 22501>Κ; 2) ne

= 6.5·1012, ^ = 1.2·1014 cm"3, T,= 3850 "K; dashed Hues) dis-
tributions with Te; solid curve) calculation according to the
modified diffusion approximation for conditions 2.

χ(*) = 1 -4β"ν3\/ΊΡ / 2, while if x«l we havex«lx(*)
» 8/l5VF*5/2. Let us now assume that radiative pro-
cesses have an important effect on the level popula-
tions when a flux is present. Clearly, these processes
would usually couple the populations of different levels,
retard ionization, and accelerate recombination. The
dashed curve in Fig. 6 shows the possible behavior of
the populations when radiative processes are taken into
account. The position of the level Er in (2.14) is im-
portant when we analyze the role played by radiation.
If Er is below the bottleneck, radiation does not affect
its position, but in the opposite case the bottleneck
actually moves upward and is determined by Er. In
these cases, the radiation significantly depopulates the
highly excited states also. It can be seen from the
structure of Eq. (3.6) that the factor U(E) exponentially
"cuts out" the contribution of a state with E> Er, so
that we have R(0, Ε) * R(0, Er) for E> Er. The resis-
tances themselves in the region E> ET are exponentially
small, and this region presents only a low resistance
to the current, so that there is a negligible "potential
drop" y/π. The analysis here becomes similar to that
for the case y/π = const.

The level distributions of the atoms predicted by the
theory have been compared with experimental data for
plasmas of various compositions over a broad range
of conditions: «„« 1011 -10 1 7 cm' 3 , Te== 1000
-100 000 °K. The results obtained before 1975 are
summarized in Ref. 53. Figure 9 illustrates the sit-
uation with a comparison of the calculated distribu-
tions and the results of recent cesium discharge ex-
periments.29

The experimental points of group 1 in Fig. 9 were
obtained for n,= 1.2· 1014 cm"3 and correspond to an
equilibrium plasma. In this case the quantity 1 η ( /
conforms to a straight line with a slope determined
by3' Tt= 3850°K. At lower values of «„ there are devia-
tions from equilibrium. For n,= 6.5· 1012 cm"3 and T,
= 3850 °K, for example, the population distribution has
the form typical of ionization: The highest levels are
in equilibrium with the continuum, and the distribution
has an inflection point near the bottleneck. Figure 9
shows the calculated curve.4' These calculations were

3)The deviation of ]n<m,/gk) from a straight line for the highest
levels is due to the experimental errors in the measurement
of the intensities of the greatly broadened lines.54

4)This calculation was carried out by G. V. Naldis.

Biberman et a/. 420



carried out using Eq. (3.2) and incorporate strong re-
absorption of the resonant radiation. The calculated
curve conforms well to the experimental curve.

With simple expressions for the resistances it is
possible to derive an approximate equation for the
distribution of excited atoms. For high electron densi-
ties, for example, all the factors Π are equal to unity,
and the excitation kinetics is governed by collisions
with electrons. Then substituting Eq. (3.6) for R into
(3.2), using (3.10), and setting x{Ex/Te)~ 1, we find52

v>=ya{%)+y<y+[i-x{%)]. (3.11)

It follows from (3.11) that a plot of yk against Eh has an
inflection point at the bottleneck E= 3T/2; states with
E<3Te/2 tend toward equilibrium with the continuum,
while states with E> 3Γβ/2 tend toward equilibrium with
the ground state.

The level distribution of atoms is an important char-
acteristic of a nonequilibrium state; ignorance of this
distribution rules out answers to several questions.
The most important of these is the determination of the
coefficients for stepwise ionization and recombination
(see Subsection 3c below). The excited-atom distribu-
tions themselves determine the plasma emission in the
spectral lines. This emission may be of interest for
diagnostic purposes, and it can also be of independent
interest. The plasma diagnostic methods which have
been developed for equilibrium conditions cannot be ap-
plied directly to a nonequilibrium plasma. In certain
parts of the spectrum, ln(w»/̂ ») may be approximately
linear in energy even under nonequilibrium conditions,
but the corresponding distribution temperature Tp may
be very different from the electron temperature (see
Table I).

Vorob'ev52 has proposed a method for determining
the electron temperature and density in a nonequilibri-
um plasma by measuring the populations of three ex-
cited states. His method is based on Eq. (3.11), which
can be used to relate the populations of the three lev-
els and to derive an equation from which Te can be
found numerically.

Vorob'ev's method52 has been used in several exper-
iments.55"57 Figure 10 shows two excited-state dis-
tributions found in rf discharges in helium.56 It turns
out that Eq. (3.11) passes through the open circles at
Te« 19000 °K and through the filled circles at Te

= 11000°K. These temperatures are in reasonable
agreement with the values of Te found by other meth-

ods. The lines corresponding to the slope Te are
drawn into the continuum in Fig. 10 by continuing the
function 1η(η,/§^). We see that the atomic level dis-
tribution is not in equilibrium. The distribution tem-
perature here is Tp< Te.

The emission from a nonequilibrium plasma is of in-
dependent interest in many applications. For example,
the intense emission from the ionizational-relaxation
zone behind a strong shock in air can affect the gas
ahead of the shock front and can affect the heating of
the object whose motion causes the wave. In this emis-
sion the lines of the nitrogen atom are important.58

There is much interest in plasma lasers which operate
by means of a population inversion of excited atoms in
a decaying plasma.6 Vorob'ev,53 for example, has
studied the possibility of producing a population inver-
sion by sending Ar and Xe plasmas through a Laval
nozzle. To analyze the inversion problem we will use
Eq. (3.2).

Under recombination conditions, we can ignore the
first term on the right side of (3.2); then

- = η,τΓ . eEn/Tt . (3.12)

In equilibrium, njgn increases with the binding energy
£„; under recombination conditions, with ni/g1 much
lower than the equilibrium value, the function njgn

may become nonmonotonic. Then for states with En

above the maximum of this function the quantity njgn

falls off with increasing binding energy; i.e., there is
a population inversion.

Let us estimate the maximum of n/gn. We assume
conditions such that emission can be ignored (Π= 1),
and we use Eq. (3.10) for R. In this case we can show
that the maximum of njgn is determined by the condi-
tion

0. (3.13)

Figure 11 shows the results of a numerical solution of
(3.13) as a plot of that fraction of levels which have a
population inversion (£x -Ej/Ey against E1/Te, where
Em is the energy which satisfies (3.13). We see from
this figure that at El/Tt»1 we have Em~E1; i.e., an
inversion is possible only with respect to the ground
state. The cases E1/Te= 2 - 4 are more favorable,
with (£ t - Ej/E^ 0.35. These conditions can be met
for elements with low ionization potentials or at high
values of Te. The conditions discussed in Ref. 60 for
developing a recombination laser using a helium-hy-
drogen mixture {Te~ 0.2 eV, £ x = 24.6 eV, ne

a 2· 1015

Π 22 23 24 25 f.eV

FIG. 10. Distribution of atoms with respect to excited states
in helium according to the measurements of Ref. 56. Dot-
dashed lines) Calculation from (3.11); solid lines) equilibrium
according to the Saha equation with Te.

iizim.

w

a 2 4 s e,/rR

FIG. 11. Relative number of levels having population inversion
(Ej - Em)/Et as a function of E^/Te during recombination.
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cm'3) do not lead to an absolute population inversion
between the helium states with n= 2 and n= 3, as is
pointed out by the authors themselves. This conclu-
sion also follows from Fig. 11.

B. Electron energy distribution

In a nonequilibrium-ionization plasma, collisions of
the second kind and recombination events do not offset
excitation and ionization, so that inelastic electron-
atom collisions can affect the electron energy distribu-
tion /(ε). In turn, the deviation from equilibrium af-
fects the rate of inelastic collisions. The problem
arises of determining self-consistent nonequilibrium
distributions of atoms with respect to levels and elec-
tron energy distributions. This problem was solved
approximately in Ref. 61. Similar results were ob-
tained somewhat later in Refs. 62 and 63, and numeri-
cal solutions were found in5) Refs. 64-66. Without at-
tempting to cover all the questions which arise here,
we would like to discuss how a nonequilibrium distri-
bution/(ε) affects the rates of inelastic processes,
and we would like to determine the relationship between
the nonequilibrium distributions nk and /(ε).

We write the Boltzmann equation in the simple form3

)]-Slti. (3.14)

The electron-electron collision integral on the left side
is written in the standard linearized form, vee

= 2πβ4λ«β(ν2»ίε ε)"1, where λ is the Coulomb logarithm.
Chi the right side we have Sln, the inelastic-collision
integral; the inelastic collisions cause a deviation of
/(ε) from a Maxwell distribution. The normalization
condition is

Transitions between excited states, 2*3,3 = 4, etc.,
have little effect on the inelastic-collision integral, be-
cause of the comparatively low populations of the upper
levels. Let us consider the simplest and most impor-
tant case, in which transitions between the ground and
first excited levels dominate Sin. In this case Sin can
be written

Sin = »A. (ε) / (ε) - n,za (e - (ε - (3.15)

The first term corresponds to excitation events ζ12(ε)
= 4ττβ4ΛιΜβΧ(2»ιε)-1/2Δ£-1, where Δ£χ = £x -E2. If
this difference is large, the inelastic collisions affect
/(ε). In turn, there is an effect on the resultant fre-
quency of excitation events, z12, given by

*i2= j zlz(e)f(e)Ylde.

We recall that for a Maxwell distribution, i.e., with
/(ε)=/°(ε), z12 is given by Eq. (2.11). We will add a
superscript "0" (e°2) to emphasize that this frequency
is calculated from/°(e). The second term in (3.15)

5)Much work has been carried out under the assumption that
collisions of me second kind can be ignored.67 This assump-
tion greatly simplifies the problem, since the ionization rate
becomes Independent of the level distribution of the atoms.

corresponds to collisions of the second kind, which in-
volve slow electrons. We thus have z2l = zl1.

We first consider the important limiting case in
which collisions of the second kind can be ignored (y2

«yj) and in which the excitation can be described in
terms of an infinitely strong electron sink at the
threshold energy68·β9 ε = A£t = E1~ E2. By this we mean
that those electrons which diffuse under the influence
of elastic collisions out of the low-energy region to-
ward the threshold energy AEX rapidly disappear there
as the result of excitation events. There is an ex-
tremely pronounced depletion of the tail of /(ε): The
quantity /(A£L) is approximately zero. Then by inte-
grating Eq. (3.14) from ε = Δ£ ι to infinity, we find an
equation convenient for calculating zl2 when there is a
very strong deviation from equilibrium:

We can easily find the form of the distribution /(ε) for
ε « ΔΕι directly by integrating (3.14) and using the
boundary condition /(A£t) = 0; the result is

Substituting /(ε) into the preceding equation, we find an
equation for zX2:

The excitation rate is thus determined by the frequency
of elastic collisions at the threshold and by the distri-
bution function/„, which was calculated without taking
excitation into account. In this case /„ is a Maxwell
distribution. Equation (3.16) is quite general in nature.
For example, it holds for a plasma in strong external
fields which affect the distribution/(ε). Τηβη/°(ε) is
a distribution of the Druyvesteyn type.

The atomic excitation cross section appears only in
the applicability condition for (3.16), derived in Refs.
16 and 70:

«fl
n fide Ie-ΔΕ,L (3.17)

The second of these inequalities states that only the
tail of the distribution /(ε) is perturbed. The first in-
equality is essentially a condition on the degree of ion-
ization. To put it in a more specific form, we assume
that/0 is the Maxwell distribution. Then we find

which is the limit opposite that in (2.19).

The infinite sink approximation thus corresponds to
a larger value of the parameter c, introduced earlier.
We can write an approximate equation for the excita-
tion frequency, which holds over the entire range of c:

i,,«z;,(l+<:)-'. (3.18)

This equation is a satisfactory approximation of the
more complicated equations which have been derived
in a series of papers (Refs. 71, 72, etc.). Wojaczek71

has demonstrated that the results are relatively insen-
sitive to the behavior of the excitation cross section
near the threshold.

If collisions of the second kind cannot be ignored,
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we cannot use the infinite sink approximation, and a
more complicated procedure must be used to solve the
Boltzmann equation. We proceed immediately to the
result, in which we can easily see both limiting cases:

« 3 Ί
l 2 — z°2; in the opposite case, with y2

we have a transition to (3.18).

Using this result, we can find the interrelated solu-
tions /(ε) and nk. For this purpose, we should write
«1*12 -«2Z21 i n t n e f irst equation of the system of balance
equations in (2.6) as «^^(l-i- cJ'Myi -y 2 ) . Incidentally,
it is easy to see that we can use solution (3.1)-(3.3),
found previously, if we replace z\2 by z^U + c)" 1. The
solid curve in Fig. 12 shows the nonequilibrium popula-
tions of excited atoms and the electron energy distribu-
tion calculated for the experimental conditions of Ref.
73. Under the conditions of Ref. 73, in the positive col-
umn of an argon discharge, the electron density is ne

= 0.77· 1013 cm"3, the electron temperature is Te

= 1.3· K^TC, the gas pressure is 5 torr, and the current
is 0.4 A. The dashed curve in Fig. 12 shows how the
populations of the excited states would behave if the
deviation from a Maxwell distribution were ignored in
the calculation (for the same values of ne, n, and Te).
The points in Fig. 12 are the measurements from Ref.
73.

C. Nonequilibrium degree of ionization

An example of a plasma with a nonequilibrium degree
of ionization is a steady-state discharge in an argon-
cesium mixture, as studied in Ref. 18. Figure 13
shows the electron temperature Te, the "ionization
temperature" T (, and the electron density nt, all as
functions of the cesium vapor pressure. Here Te is
understood as that temperature which relates the den-
sities of atoms and electrons in the plasma through the
ionizational equilibrium condition:

where Kl is the ionizational-equilibrium constant, giv-
en by the Sana equation; and K^T)
= 2S j(^1fe3)- l(27rmT i)

3 / 2exp(-£1/r j), whereΣ, is a
sum over the states of the residual ion, and gt is the
statistical weight of the atomic ground state. In the ex-
periments of Ref. 18, the plasma was underionized (Tt

f,eVU S 0 S IS S,eV

FIG. 12. Reduced populations of the excited states of the ar-
gon atoms and electron energy distributions. Plotted along the
ordinate in the left part of the figure (as a function of the bind-
ing energy E) are the values of ν( = η(/η°(. Shown at the right
(as a function of the electron energy) are the values ^/
/°fc). The points are the measurements of Ref. 73.

FIG. 13. Values of Te, Tt, and ne as functions of the cesium
vapor pressure.1 8 The argon pressure is 240 torr; 7=0.5 A.

< Te), because charged particles diffuse out of the plas-
ma to the walls the emission of radiation caused the
excited levels to deviate from an equilibrium popula-
tion. An ionizational equilibrium was reached as ne

was increased, at nez 1014 cm' 3 .

The nonequilibrium electron density can be deter-
mined from the balance equation in (2.15) if we know
how the ionization and recombination coefficients β and
a and the flux j vary with the plasma properties.

This flux j may result from ionization caused by an
external agent, e.g., a beam of fast electrons. Then
the flux is negative, j<0, and is given by j= -nxFq,
where F is the flux density of beam electrons, and q is
the cross section for ionization of the atom from its
ground state. The flux j may also be caused by the loss
of charged particles by diffusion; in this case it would
be positive, equal to j~ne/rD, where TD is the diffusion
time.

Let us take a closer look at the coefficients a and β,
which must be found as functions of several character-
istics of the plasma through the ionization-recombina-
tion kinetics and that of the populations jointly excited
state. Expressions for a and β follow immediately from
Eq. (3.1) for the flux ; (the first equation):

Let us first examine the extreme cases of high and low
temperatures under conditions such that emission does
not affect the kinetics, and the two coefficients are re-
lated by the ionizational-equilibrium constant, β = Κ1α.

At high temperatures, the ionization energy of the
first excited state is comparable to the electron kinetic
energy, so it can be assumed that each excited atom
which appears is ionized instantaneously (the "immedi-
ate-ionization" approximation). In this case, we have
Rle = Rlz in Eq. (3.19), and the ionization rate equals the

excitation rate, Then

(3.20)

= * I 2 1 " 4 =1.73-10; cm3/sec.

At low temperatures, only the highest-lying excited
states are ionized immediately. Then the diffusion
approximation can be used to calculate a and j8. For
the recombination coefficient in this case we have the
familiar expression a2- T'e

9'2, while for β we have

i±l Ι ψ. e-s./τ., Λ = 0.2. (3.21)

423 Sov. Phys. Usp. 22(6), June 1979 Biberman et al. 423



We can write an interpolation equation which is valid
for any temperature and which leads to Eqs. (3.20) and
(3.21) in the low- and high-temperature limits:

p-'-P + Pxi-g·). (3.22)
This equation follows from (3.19) if, after the first
term (Λ12) is singled out in Rle, we go over to a diffu-
sion description of the bound electron motion in the ion-
ization process over the rest of the energy range.
Equation (3.22) gives values in satisfactory agreement
with experiment and numerical calculations.16

If the emission of radiation strongly affects the kin-
etics, then a and β become complicated functions of ne

and other plasma properties. The equation analogous
to (3.22) is 1 6

p-'-P+K"*^!!,. βτ-*ι«Π?· (3.23)

Equation (2.15) can be solved in each particular case
by using the appropriate approximations for α, β, and
j . Let us consider some limiting cases.

If the flux j gives rise to particle escape by diffusion,
while the kinetics is purely collisional, then Eq. (2.15)
is a quadratic in «e:

n\ + Kine - K,n [1 - (βτ̂ η)-'] = 0, (3.24)

where η = n1 + ne is the total density of heavy particles.
Conditions under which (3.24) holds were met in the
experiments of Ref. 8, discussed in Subsection 2a and
Ref. 12.

In the other limit, diffusion is unimportant, and the
emission of radiation is so important that condition
(2.8) does not hold for the first two excited states. We
can thus use the equation for n,. in (2.12). In this sim-
ple case, however, we can work directly from the bal-
ance equations for the populations of the lower atomic
levels:

0, 0.

Noting that the third level is in relative equilibrium
with the continuum under these conditions, n3/n°
= (ne/n°)2, we find a quadratic equation for ne:

liL+Ap.)-{ntKt-±&i)=O. (3.25)
ν Τ 9 1 1 1 9 t 1 \ *

Here z'21 and z'32 are the values per electron (i.e., 2 a

= nez'a). If condition (2.8) does not hold for the third
level also, the equation for the nonequilibrium ioniza-
tion becomes cubic. It has two positive roots, one of
which is unstable, so that the uniformity of the system
is disrupted and a contraction can occur in the plasma
under these conditions.74

Let us consider an example of a plasma state which
is strongly affected by the nonequilibrium factors taken
into account by both Eqs. (3.24) and (3.25). Under these
conditions, Eq. (2.15) becomes

= 0. (3.26)

Sayer et al.22 have studied a discharge in cesium va-
por, finding the variation of ne with Te shown in Fig.
14 for n C s = 1015 cm' 3 . The electron density was deter-
mined from the recombination continuum intensity and
by probe methods. Figure 14 shows three calculated

2000 2500 3000 MOO HBO

FIG. 14. Variation of the electron density with the temperature
at the center of the discharge tube.22 1) Equilibrium values;
2) with emission of radiation; 3) with emission and ambtpolar
diffusion; 4) values of ne determines from the measured re-
combination continuum; 5) values of ne measured by the probe
method; 6) scatter of the calculated curve corresponding to a
twofold variation of the diffusion coefficient.

curves: (1) the Saha equation; (2) a curve incorporat-
ing the emission radiation (with 0= 10"3 for the reso-
nant line): (3) the same, but with ambipolar diffusion
also. We see that this last curve agrees best with the
experimental data. It is not sufficient to merely take
emission into account. The deviations from the Saha
equation are extremely large.

Let us consider the conditions under which the im-
mediate-ionization approximation, β=β^, is valid, and
volume recombination can be ignored, since recombi-
nation occurs at the walls:

If c « l , i.e., if a high degree of ionization is present,
and there is a Maxwell distribution, then the balance
equation in (3.27) does not tell us the magnitude6' of ne.
In such a case, ne is determined by other factors. In
the positive column of a glow discharge, for example,
ne is governed by the external circuit parameters. If
c » l , on the other hand, we find the following solution
for Eq. (3.27), using Eq. (3.20):

n.= „ ' / ' g 5 ? °E>-Et)IT°- (3.28)

Equation (3.28) does not contain the inelastic cross
sections (in accordance with the discussion in the pre-
ceding section). Under the experimental conditions of
Ref. 73, in the plasma of the positive column of an
intermediate-pressure argon discharge, the density
was na 1017 cm' 3 , the electron temperature was Te

a 1
eV, and the tube radius was Ra 1 cm. The expression
found for ne yields njna 10"5, in accordance with the
measurements.

4. NONEQUILIBRIUM DECAYING PLASMA

-Excitation, ionization, and recombination do not al-
ways manage to change the state of a time-varying
plasma fast enough to keep up with changing external
conditions. In this situation the plasma decays without
reaching equilibrium. A decaying plasma arises in
many situations, e.g., when plasma is heated by an ex-
ternal field, when plasma emerges from a nozzle, and

e)Sttuatlons in which (2.15) has several positive roots are anal-
ogous , and the question arises of finding additional informa-
tion In order to identify which solution Is correct.
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as a shock front passes. Despite the wide variety of
problems involved here, which depend on the particular
initial conditions, the solutions have certain common
features. These arise because the various plasma
components decay at different rates, reaching relative
equilibria as time passes. The first and most impor-
tant step is studying the relaxation is to identify the
slowest process.

Let us introduce some characteristic times, which
thus scale the various processes. Specifically, we use
rk, the characteristic time for excited state k to relax
to an approximately steady-state population; τ Γ , the
relaxation time of the temperature Te; and τη the ion-
izational relaxation time. To see the meaning of these
times, we consider Tk. For the atoms to an approxi-
mately steady-state distribution in excited states means
that as the time-dependent process evolves it "adjusts
itself" to other, comparatively slowly varying proper-
ties (n,ne, Te, etc.). Then it can be assumed that nk

does not depend explicitly on the time but only through
the functions n^t), n,U),Te(t), etc.

Under a broad range of conditions the slowest step is
ionization (or recombination), so that

T|,«Tr« τ,. (4.1)

This is not always the case, and this circumstance is
very important in describing plasma decay. Below we
will discuss these times and their relationships and
certain problems of a time-dependent nonequilibrium
plasma.

A. Relaxation time of excited states

The analysis in the preceding subsection of the dis-
tribution of atomic excited states for ionization or re-
combination situations in a plasma was based on the
assumption that the excited levels were approximately
in steady state. The validity of this approximation is
closely related to the inequality

Σ»* «»i.»« (4.2)

which is satisfied over a broad range of conditions.
This inequality stems from the low density of excited
states in comparison with the ground state and the con-
tinuum. Under condition (4.2), the states ηχ and ne are
particle "reservoirs": The particles flow from one
reservoir to another through the "narrow channel" rep-
resented by the excited states. The approximately
steady state of excited levels is discussed in Refs. 36,
38, 75, and 76.

The relaxation time of state k is easily estimated
from the balance equation, assuming that the popula-
tion of the given state k experiences a slight perturba-
tion. It turns out that this perturbation decays with
typical times τΛ given approximately by

As nt decreases, the times rk naturally increase lin-
early, but they become constant at low values of ne.
In this case the times depend only on radiative transi-
tions. Radiative decay strengthens the coupling between
levels and accelerates the relaxation.

Values of rk have been tabulated by several workers
for hydrogen plasmas. Table II and Fig. 13 show re-
sults calculated for a plasma which is optically dense
for the Lyman series but otherwise transparent.76 The
table lists the values of τ 2 , i.e., the decay time for the
second level. The electron density here is assumed to
be 10 l e cm"3. Figure 15 shows rk as a function of ne

for a given temperature Te = 104 °K and for the same
assumptions.

For certain problems, the approximation of a nearly
steady state may break down. This is the case, for ex-
ample, when population inversion can take place for
some pair of levels in the course of a rapid plasma de-
cay. In this case it is necessary to solve the time-de-
pendent system of balance equations; calculations of
this type can be found in Ref. 77.

As an example of a situation in which excited levels
are not approximately in steady state we can cite the
terms of the electronic ground configuration of the oxy-
gen and nitrogen atoms. With excitation energies on
the order of 1 eV, these terms are important in the
partition function at high Te; their contribution is com-
parable to that of the ground state [this violates in-
equality (4.1)]. This situation arises behind strong
shocks in nitrogen and air, where the temperature is
of order 1 eV. The state of the ground configuration
relaxes over a time comparable to the ionizational re-
laxation time, and it is important in the kinetics.78

B. Relaxation of the electron temperature and ionization

The ionization and recombination times are intro-
duced with the help of the ionization and recombination
coefficients:

Correspondingly, the temperature relaxation time is
the characteristic time for heating or cooling of the
electrons. In the problem of heating by an external
electric field, for example, we would have

_Tene (4.5)

These quantities are characteristic times, and their
ratio determines the course of the relaxation. Intro-
ducing these times does not mean, however, that (for
example) ne increases exponentially with a typical time
Tj. The nature of the growth (or decay) of ne is largely
determined by how β and α themselves vary with nt.
For this reason, the first step in the growth of ioniza-
tion is frequently nonexponential. It is extremely im-

^ (4-3)

Equations (4.3) give us an estimate of τ* and allow us
to follow the qualitative variations in these times. The
times rk are usually in the range 10" 8 -10 ' 1 2 sec, i.e.,
short. The first excited states have the longest times.

TABLE

τ,, ·κ

τ 2 , sec

Π.

4000

2.1 10-· 1

6000

.9-10-» 1

8000

.5-10-8

12 000

8.9-ΙΟ" 1 0

16 000

5.8-10-1 0
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FIG. 15. Variation of the
times rk with ne for Τβ=ΐ0ι

S 10 IS 20 25

portant to note that the relaxation of Te and that of n,
are interrelated.

Sometimes it is convenient to depict the ionizational
relaxation on the {η,, Τβ} plane (Fig. 16). The time
varies along the curves in this plane; ne increases in
time. For definiteness, let us examine the evolution of
ionization. There are three possibilities: In case 1,
the ionization rate is so high that an ionizational equi-
librium is established at each instant [ne and Te are re-
lated by the Saha equation, n°(Te)]. In this case, in-
equality (4.1) does not hold, and the relaxation rate is
determined by the electron heating rate. In cases 2 and
3, in contrast, there is no local ionizational equilibri-
um. Over the time τ Γ there is an increase in Te, but
the electron density does not manage to change signifi-
cantly. Case 3 differs from case 2 in that the electrons
temporarily become relatively hot.

Let us examine the relaxation in a simple case. We
assume that at t= 0 a field % stronger than the initial
field S?o is imposed on a steady-state, weakly ionized
plasma. As a result, the electron density and the elec-
tron temperature both increase:

4^ = «,/*„ β _η|α, (4.6)

For simplicity we are incorporating in the electron en-
ergy balance only the inelastic loss, and we are also
assuming £ t » Te. To study the relationship between
ne and Te, we write the derivative

(4.8)3 d In Te

2 d\nn/

working from Eqs. (4.4)-(4.7). Let us first determine
the conditions corresponding to cases 2 and 3 (Fig. 16).

At < = 0, the ratio τ/ττ is very large, since it is in-
versely proportional to j3 and [according to (3.29)] pro-
portional to expfo/r^O)]. Consequently, T, while n,
charges slightly. Over a time of order rT, the tem-
perature reaches values near the approximately
steady-state value. If y* « 1 , the approximately

FIG. 16. Possible paths
for the evolution of ioniza-
tion.

steady-state values of Tt(t) are found from

σ«« - Ειη,η$ = 0. (4.9)

It follows directly from (4.4), (4.5), and (4.9) that we
have ri/rT

aEi/Tt. This value is much smaller than
the original value of τ/τΓ(0) but still quite large:
E^T,» 1. The quantity dlnTe/dlane is the difference
between two large quantities, so in practice it may be
either a small positive quantity or a small negative
quantity. Accordingly, Te varies slowly as ionization
evolves, and the electrons may become relatively hot.

A similar situation arose in the experiments of
Novichkov and Glebov.™ They studied the relaxation
which occurs when a square voltage pulse is imposed
on a steady-state discharge in an argon-cesium mix-
ture. Figure 17 shows the measured variation of dTj
dt with #/#„ when # is applied. The conditions for heat
removal from the electrons were such that the approxi-
mately steady-state value of Tt corresponded to
3000 "K-6000 °K. Then we can estimate rT to be on the
order of a microsecond. Similar values of τ Γ have been
found in several other studies, e.g., in Ref. 80 in the
plasma behind a shock wave and in Ref. 82 during the
imposition of a heating pulse on a decaying plasma.

Figures 18 and 19 show the time evolution ne(t) and
the corresponding variation ne(Te) from Ref. 79 for
voltage pulses of various heights #/#„. The curves
are drawn through the experimental points. The ion-
izational-relaxation time is usually 10-100 μββο in
plasmas in the laboratory. The electron temperature,
temporarily goes much higher than the heavy-particle
temperature. The straight line in Fig. 19 corresponds
to case 1 in Fig. 16, which did not occur in the experi-
ments Of Ref. 79.

As the ionization evolves along path 1 in Fig. 16,
there is an equilibrium n°(Te) at each instant. Under
these conditions, we obviously have T,S JT. Actually,
since we have dlnre/dlnw,= 2Te/E1«1 in this case, it
follows from (4.8) that

Since 1 - y\ is small, this quantity is on the order of
or less than unity. The temperature T, is thus not ap-
proximately steady. On the contrary, the ionizational-
relaxation time depends on the electron heating rate,
rather than the ionization coefficient:

in,
Γ

(ft.* (4.10)

sis.

FIG. 17. Variation of the initial value ot dTe/dt (in units of 108

deg/sec) with the over voltage 8?/ί"0.
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FIG. 18. The time evolution ne(t) for various heights of the
voltage pulse. 1)^=2.0 V/cm; 2) 2.5 7/cm; 3) 3.4 V/cm.

This is the slow heating case, which may occur in low
fields f. This type of ionization occurs behind shock
waves in mercury vapor at velocities corresponding to
Mach numbers78 ML~ 10. As the shock front passes,
the translational temperature of the gas (T) increases
rapidly, while the electrons remain cool. Through
elastic collisions, the atoms and ions heat the elec-
trons (so that the Joule heating, W2, in the equations
above must be replaced by heating due to elastic colli-
sions, S,,), and these electrons ionize the gas. Behind
the shock front in mercury vapor, the conditions are
Τ ^ Ι . δ - Ι Ο 4 ^ and Te= 1.0· 103oK.

C. Spectral-line emission

The emission in the spectral lines of a relaxing plas-
ma is interesting because the intensity of several of
these lines goes through a maximum.

For very short times ί<τ Λ , it would not be possible to
carry out any sort of general analysis; it would be nec-
essary to solve the system of balance equations for the
particles with the specific initial values nk(0). At t
» Tk, on the other hand, the results of Section 3 for the
excited-level distribution of atoms can be used in the
almost-steady state approximation. Here we will take
into account the basic feature of the nk distribution:
For levels lying below the bottleneck, Ei»(3/2)Te,
there is a tendency toward an equilibrium with the
ground state, nk

a n^t) exp[-(Ex -Ek)/Te(t)], according
to Eq. (3.11). In the opposite limit, there is a relative
equilibrium with the continuum:

ηΛ~η!(ί)Λ / 3* ι < ). (4.11)

Frequently, of course, these distributions are greatly
distorted by the emission of radiation, but these equa-
tions are adequate for a qualitative analysis.81

Let us first examine the behavior nt(t) during the
onset of ionization. If this density takes path 2 or 3 in
Fig. 16, the populations of the low-lying excited states

0.5

increase rapidly over short times because of the rapid
increase in Te. These populations pass through a max-
imum if there is a temporary heating of electrons (case
3 in Fig. 16). As for the populations of the highly ex-
cited states, we note that they increase slowly and
smoothly in accordance with (4.11). These basic qual-
itative results were obtained in the early work by Cool
and Zukoski,82 who observed an emission maximum in
the 4P - 4S line of potassium.

In a decaying plasma, the relaxation of Te is initially
similar, but in this case this temperature is falling in-
stead of rising. After this initial relaxation, Te re-
mains approximately constant, while ne falls off slowly.
As a result, the situation with emission in the spectral
lines is the opposite of that discussed above for the
evolution of ionization. The populations of the highly
excited states nk(t) go through a maximum and then de-
cay because of a decrease in ne(t). For the low-lying
levels, nk(t) falls off monotonically. One of the early
studies in which an intensity maximum was observed
in spectral lines was that by Aleskovskii.83* Figure 20
shows the time dependence of the relative populations
η,,(ί) in a cesium plasma.83* There are two groups of
levels, 5Z> and 11F, which behave in accordance with
the discussion above, and there is also a group of lev-
els (8S) in the bottleneck region with a more compli-
cated behavior. The reader is referred to Ref. 53 for
a more detailed review of this question.

5. EFFECT OF HEAVY-PARTICLE COLLISIONS ON
THE DEGREE OF IONIZATION AND THE LEVEL
POPULATIONS

We have been discussing the kinetics when the most
important elementary processes are electron-atom
collisions and radiative processes. Over a wide range

600O

Te°K

FIG. 19. Ionlzational relationship ne(Te) for the cases in Fig.
18.

FIG. 20. Time evolution of the populations of the cesium lev-
els.8311 ρ=ΖΊ0'2 torr. 1) Measurements; 2) calculations from
Ref. 83b.
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of conditions, however, the inelastic collisions of heavy
particles having a translational temperature different
from the electron temperature may be important.
These collisions cause transitions between excited
states as well as ionization. A reaction such as disso-
ciative recombination or associative ionization involv-
ing heavy particles leads to the formation or loss of
particles in excited states. When these collisions are
dominant, the atomic states are described by a Boltz-
mann distribution with a heavy-particle temperature T.
In real situations, heavy-particle collisions compete
with electron collisions, which tend to establish a
Boltzmann distribution with temperature Te, and they
also compete with radiative processes which lead to
the loss of excited particles.

A. Some criteria

It is important to determine when heavy-particle col-
lisions become important. For highly excited states,
we can estimate the efficiency of collisions with heavy
particles by comparing the diffusion coefficients in en-
ergy space. The diffusion coefficient for a bound elec-
tron and for diffusion due to collisions with heavy par-
ticles has been calculated by Pitaevskii44:

128
"AnM

(5.1)

where Μ is the atomic mass, and am is the cross sec-
tion for the scattering of a slow electron by an atom.
Equation (5.1) holds for

where α is a quantity on the order of atomic dimen-
sions.

The diffusion coefficient corresponding to collisions
with electrons is of the same form as (3.7) when Ε
«e2/a. Comparing (5.1) with (3.7), we find that atom-
atom collisions are predominant if

32 m τ Υ1
3π3/ζ17" τ 3Ι'-\

(5.2)

The values of B(E) for those collisions of an atom with
molecules in which the rotational quantum number of
the molecules charger were calculated in Refs. 84-86.

For transitions between low-lying excited states we
can compare the transition frequencies for transitions
caused by electrons, heavy particles, and emission.
Let us compare the frequency at which some level k
is depopulated by atoms and electrons in a transition
to the closest lower level k - 1 . Depopulation by atoms
becomes important if

n"a°k,h-i > "«'•'· "li.fe-1 ' (5·3)

where va and ve are the relative velocities of the atoms
and electrons, and σίιΛ.χ and σ4ΐ/Η1 are the correspond-
ing cross sections for the depopulation of the levels.
Cohen87 recently calculated the cross sections for
those collisions of helium atoms with helium which
cause transitions between excited states. According
to those results, the cross section for the transition
33S - 23P at T= 5000 °K is 6· 10"1β cm2. The cross sec-
tion for depopulation by electrons, σ32, can be esti-

mated from the effective probabilities for single-quan-
tum transitions, (2.10). For example, the cross sec-
tion for a transition between states with principal quan-
tum numbers &= 3 and fe= 2, averaged over states with
various values of I, can be written

nrr. (5-4)

where f=e2/Tt is the Coulomb scattering amplitude,
and Elf E2, and E3 are the energies of the ground state
and the two excited states. With Te= 1 eV we have σ32

~ 10"14 cm2. Substituting these values for the cross
section into (5.3), we find that for the particular case
considered here atom-atom collisions become impor-
tant at njn~ 6· 10"4. If the decay is radiative, the in-
equality in (5.3) should be written

-.-."».*-,> 3*1..

There are data in literature on the cross sections for
atom-atom collisions for specific elements and specif-
ic transitions (see, for example, Refs. 88-93).

B. Effect of ion charge exchange

The ions may react with other heavy particles. If
the temperature of the heavy particles is different
from the electron temperature, these reactions will
cause nonequilibrium effects. They affect the nonequi-
librium degree of ionization, the distribution with re-
spect to atomic levels, and so forth. As an example
we consider a mixture of two atomic gases of species
A and B. The following ion reactions can occur:

A + e
"A

B + e

where 6E= E1A -E1B is the difference in ionization en-
ergies, atA and βΑ are the recombination and ionization
coefficients of the atom of species A, and γ1 and y2 are
the charge exchange rates for A* ions with the atoms of
species Β and vice versa.

The charge-exchange reaction is characterized by
the gas temperature. If the charge-exchange rates are
much higher than the rate of impact-radiative recom-
bination,

Yl»lB · 72niA > P B «B · «B "« - PA »1A · °A n\ , (5.5)

then the ratio of reduced ion densities is 9 4 · 9 5

where Γ(Γ) is the equilibrium constant for the reaction
A*+B^A + B\ Since T*Te, the ion density ratio does
not correspond to the equilibrium value at Te, and it
shifts toward the element with the lower ionization po-
tential if T<Te. The result is a change in the net ion-
ization rate, which is determined by

In the steady state, there is thus also a change in the
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nonequilibrium value of ne itself. The quantities y ^
and yeyB affect the level distribution of atoms. A change
in the ratio of A* and B* ions has a direct effect on the
excited states population.94·95

The charge-exchange cross section falls off rapidly
with increasing difference between the ionization poten-
tials of the atoms of species A and B. Whether (5.5) is
satisfied thus becomes problematical, if the emission
of radiation is important, however, charge exchange
strongly affects the ratio of ion densities, even for ele-
ments with approximately equal ionization potentials.
Specifically, if we assume that charge exchange does
not occur we find the following result from the condi-
tions for an ionizational equilibrium incorporating
(2.16):

(5.7)
y\ ΪΙΑ n l B ·

Comparing this expression with (5.6), we see that if the
ionization potentials for atoms A and Β are approxi-
mately equal, so that V(T)/r(Te)~ 1, then the values of
y\/y\ given by (5.7) and (5.6) may be very different
when n 1 A and Π1Β are very different. This case arises,
for example, if one of the gases is a small admixture in
the other. The conditions for radiation turn out to be
different.

An effect of charge exchange on the population of ex-
cited states was observed in the experiments of Ref.
96, where study was made of rf discharges in the mix-
ture Ar+ H2. The charge-exchange reaction Ar+ H*
= Ar'+H led to the formation of substantial numbers of
Ar* ions, which did not correspond to the equilibrium
at Te. Taking this circumstance into account, we see
that the observed distributions of the argon and hydro-
gen populations agree with the calculations.

C. Ion conversion, associative ionization, and
dissociative recombination

Another group of reactions involves the conversion of
atomic into molecular ions, dissociative recombination,
and associative ionization. As a rule, these reactions
involve excited atoms:

(5.8)

(5.9)

The flux of atoms formed in reaction (5.9) is

From the steady-state solution of the system of equa-
tions associated with reactions (5.8), (5.9) we find

Let us examine the conditions under which molecular
ions are consumed primarily through dissociative re-
combination,

!, (5.10)

and are formed through conversion. According to Refs.
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FIG. 21. Equivalent circuit for the case of associative ioniza-
tion from state k.

95 and 97, condition (5.10) holds for those gases where
the dissociation potential of the molecular ion is higher
than the ionization potential of the atom (nitrogen, oxy-
gen, and so forth) with n x<3· 10"19 cm"3 at essentially
all temperatures. This condition may also hold for the
opposite relation between the ionization and dissocia-
tion potentials of the A\ ion if the equilibrium for re-
action (5.9) is shifted toward the formation of molecu-
lar ions. For example, near atmospheric pressure
this is the case at T< 2· 103 °K for hydrogen and at Τ
< 103 °K for argon. In the equation for the flux j " the
first term is retained under these conditions; this
term is independent of the densities of excited atoms.

In Eq. (3.1) for the flux there are "sources" which
furnish atoms in state k through dissociative recombi-
nation. The term n*eneoPk causes only a slight complica-
tion of the solution of (3.2), (3.11).

There is another possible limiting case:

h «1 > 2 <** ne- (5.11)

In this case, molecular ions are formed through asso-
ciative ionization and consumed by conversion to atom-

ic ions. In this case the flux j " = - fifa^ is very sen-
sitive to the distribution of excited atoms. The prob-
lem becomes difficult to solve in its general form, but
situations frequently arise in which the ionization oc-
curs preferentially from some level k (or from group
of levels near k). To solve this problem we can use
the analogy with current flow in an electric circuit,
discussed in Section 3.

We denote by j the flux for the state with E> Ek and
by j ' the flux for the state with E<Ek. The equivalent
circuit is shown in Fig. 21. We can evidently write
Kirchhoff's law for the junction: j=j'+ja, where j a is
the associative-ionization flux j a = nkw

a

k = yk/Rl, and w%
is the probability for the associative ionization of level
k{w\=n^o\va, where a\ is the corresponding cross sec-
tion).

Let us write Ohm's law for these regions:

«ik We
(5.12)

It follows from the solution of system (5.12) that the
effect of associative ionization depends on the ratio of
the conductance of the associative-ionization channel,
(•RJ)"1, and the conductance of the (1 -k) and (k - e)
channels (Λ^1 and RJ^, respectively). An interesting
case is that in which associative ionization is very im-
portant, and we have7KRl)'1»R'^ + RlH- Using (3.10),

7 )In the opposite limit, associative ionization affects the way the
the levels are populated only slightly, and problems involving
the population of levels and their associative ionization can be
solved separately.
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we see that K^ + R^ ~ [x*(l -X»)]"l. The function
[x*(l -X»)]"1 is weak if the argument satisfies (
Te)<4. As the criterion we take the value of this func-
tion at its minimum, [xt(l -X s)]" l = 4. Then the pre-
ceding criterion can be rewritten

(5.13)

As an example, we consider associative ionization in
cesium. According to Ref. 98, the cross section for
the associative ionization of the 6D level in collisions
with ground-state atoms is 4· 10'1 β cm2. Assuming Te

= 0.2 eV and T= 1 eV, we find that inequality (5.13)
holds if «/«„= 3.5· 106, i.e., at very low degrees of
ionization. Such conditions may prevail behind a shock
front in the initial part of the ionizational-relaxation
zone, where T> Te and where the degree of ionization
is very low. The importance of associative-ionization
processes behind shock fronts was pointed out in Ref.
78.

Interestingly, under condition (5.13) the rate of as-
sociative ionization is independent of w\ and is deter-
mined by

(5.14)

(5.15)

The total ionization rate is

V\

Ι^Λ,ι,

This result means that an electron which reaches level
k is instantaneously ionized by an associative process.
The factor (1 - x t)" l describes the increase in the ion-
ization rate due to "contraction" of the ionization chan-
nel. For the example discussed above, we would have
(1 -xk)'1= 1.8. We note that by substituting the flux
equation in (5.15) into (3.1) we would find an equation
for the nonequilibrium electron density in the case of
pronounced associative ionization.

D. Penning ionization

A very fast process in a mixture of gases of species
A and Β is the ionization of atoms of species Β in col-
lisions with excited atoms of species A if the excitation
energy (Ex - E2)A exceeds the ionization energy E1B.
This reaction,

Α· + Β-.-Α + B*+ e, (5.16)

does not have a threshold. It turns out to be most im-
portant if the state A* is metastable (the Penning ef-
fect), and it has a large effective cross section,"
10"1β -10"1 5 cm2. Then even a comparatively small
admixture of the atoms of species Β strongly affects
the rate at which electrons appear in the mixture, as
is well known in the theory of gas discharges.

Penning processes can occur in a pure gas. Reac-
tions of this type are the thresholdless ionization reac-
tions (E1 * 2E2)

(5.17)

The ionization cross sections in the collision of two me-
tastable mercury or helium atoms are of order 10"14

cm2. At low electron densities, the process in (5.17)
can become the primary ionization channel.100 This is
the case, for example, in the positive column of a low-
pressure glow discharge in helium,101 Γ =77 °K. The
23S helium metastable states take part in reaction
(5.17). These states are produced by electrons; elec-
trons are also produced in reaction (5.17), and they
diffuse to the wall. A very nonequilibrium plasma re-
sults with «»10" cm"3, ηβ« 1010 cm"3, and n*« 10"
cm"3.

At such small values of ne we have Πχ»1. Then if
the impact-radiative ionization rate is low we would
have ηιηββ«η*2βπ, provided that the metastable level
population is sufficiently high. This is also the case
at a low value of ne, for which electrons do not manage
to "mix" the radiative and metastable states. This
mixing would lead to a common value of y,, for the me-
tastable and nearest resonant levels. Penning ioniza-
tion thus "shunts" the region of highly excited states.
The populations of these states are in a relative coron-
al equilibrium, yk.1/ni.l = yk/Tlk. They do not have any
significant effect on the state of the plasma.

In this situation, collisions between heavy particles
have an interesting effect on the electron energy dis-
tribution102·103 /(ε). The electrons which appear as the
result of Penning ionization have high energies, ε» 18
eV, so the tail of the distribution /(ε) does not fall off
as rapidly. This circumstance is important for the re-
sultant ionization rate.

6. CONCLUSION

The extensive experimental and theoretical work on
the subject has made it possible to construct a quite
general description of qualitatively different nonequi-
librium states of a low-temperature atomic plasma.
The description takes into account the actual energy
structure of the atoms, the various elementary pro-
cesses, the relationships between the energy distribu-
tions of the different plasma components, and the ef-
fects of various factors which cause deviations from
equilibrium. It is extremely important to note that
there are several criteria which define the regions of
complete or partial equilibrium.

It has now become necessary to analyze more com-
plicated situations, many of which are motivated by
practical applications (in gas lasers, plasma chemis-
try, etc.).

First, there is the selective effect of external agents
on the various components or even on certain transi-
tions (for example, the effects of electron beams and
radiation). We do not have an adequate understanding
of the nonequilibrium states of an atomic-molecular
plasma. To analyze this problem we would have to take
into account a broader range of elementary processes,
including collisions between heavy particles (atoms,
molecules, and ions). The mutual effects of the popu-
lations of the excited states of the atomic and molecular
components of a nonequilibrium plasma are extremely
important. There is definite interest in excited state
formation as the result of chemical reactions. It is
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worthwhile to study how a plasma deviates from equi-
librium when subjected to strong, time-varying elec-
tric fields and to study the deviation from equilibrium
of plasmas in magnetic fields.

The two-temperature approximation has been used in
most of the work on the instabilities of low-temperature
plasmas. It would be worthwhile to study the instabili-
ties over a broader range of conditions, with a greater
departurer from equilibrium.

We believe that the approach outlined above to the
study of nonequilibrium states will also prove useful
for solving these more complicated problems.
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