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Considerable deviations from equilibrium conditions are observed for nonstatic, first-order phase transitions.
In some cases, unstable (labile) phase states may precede the onset of the phase transition. The relaxation of
the system is then accompanied by an enhancement of random inhomogeneities and the appearance of a
modulated intermediate structure. This mechanism of the initial stage of a phase transition is called spinodal
decomposition (SD). Theoretical and experimental studies of SD in two-component systems are reviewed in
this paper. Thermodynamic stability and the possibility of SD in one-component liquid-vapor systems and an
alternative nucleation mechanism are discussed. The phenomenological theory of SD is based on the
Ginzburg-Landau expression for the free energy of an inhomogeneous system. Λ linearized diffusion equation
is derived, for which thermodynamically unstable states have exponentially increasing solutions for the
Fourier components of composition. Subsequent refinements of SD theory take into account thermal
fluctuations and involve the derivation of the kinetic equation for the distribution functional. Diffraction
methods are the most effective in the experimental study of SD in alloys, glasses, and binary liquid mixtures.
So far, the agreement between theory and experiment must be regarded as only qualitative.

PACS numbers: 64.60. - i, 64.70.Fx, 64.80.Eb
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1. INTRODUCTION

The continuing interest in phase transitions has been
due to their great variety and the unifying nature of the
underlying physical principles. The rearrangement of
super-molecular structures is accompanied by various
manifestations of the fundamental properties of large
ensembles of particles, revealing the underlying phy-
sical unity of phase transitions of different origin. For
example, critical-type phase transitions are character-
ized by strong space-time correlation between particles,
and a high level of fluctuations. This type of behavior
signifies that the thermodynamic stability boundary,
i. e., the spinodal, is being approached. The spinodal
bounds the region of unstable (labile) homogeneous
states and touches the phase coexistence curve at the
critical point.

When the phase transition process is fast, one (or
both) of the coexisting phases lies outside the region
of completely stable states. Studies of nonequilibrium
phase transitions and, in particular, of transition kin-
etics, are currently very topical and of considerable
practical imporatnce (in connection with the intensifi-
cation of heat and mass transfer, the production of ul-
trafine grains or supercooled amprohous alloys, and
so on).

Spinodal decomposition (SD) is a special case of the in-
itial stage of a phase transformation in which the sys-
tem is first made to be in a labile state [(8μ/8η)7 ; ί<0].
The relaxation of the system is then accompanied by the
enhancement of random inhomogeneities in the particle
distribution, and the appearance of modulated relaxa-
tion structures is found to be possible.

Metallurgists were the first to draw attention to the
unusual mechanism of phase separation, and introduced
the concept of uphill diffusion (i><0). Phenomena in
certain glasses were then identified as belonging to this
type of transformation. Spinodal decomposition is cur-
rently being studied in stratified solutions of polymers
and in ordinary binary liquid solutions having a region
of limited miscibility.

The first publications on the phenomenological theory
of spinodal decomposition appeared in the early
1960's.1·2 They described a general linearized diffusion
equation for a two-component system and a solution
of this equation that contained an amplification factor
in time that was increasing for unstable states. Prior
to this (in 1940), the physical conditions underlying SD
in one-component systems were examined by Zel'dovich
and Todes.3

There has been considerable progress in experimental
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and theoretical studies of SD in the course of the last
decade. The phenomenon itself is of considerable in-
terest in physics generally, but is still not familiar
enough to a broad circle of physicists. The aim of the
present review is to present the basic ideas and current
research into spinodal decomposition. The connection
between SD and the usual mechanism of phase transi-
tions of the first kind is also discussed, including acti-
vated nucleation and the growth of the coexisting new
phase.

2. TWO TYPES OF PHASE STABILITY. UPHILL
DIFFUSION

For a long time,'studies of phase transitions were
Confined to the quasistatic approximation. The pheno-
menological description of heterogeneous systems dev-
eloped by Gibbs4 and the advent of statistical interpre-
tations of thermodynamics5 provided a satisfactory
theoretical basis for the study of phase equilibria and
the corresponding phase transitions. The next stage in
the development of studies of phase transitions relied to
a considerable extent on Gibbs' results in the field of
surface phenomena and the stability of phase states.
By taking surface free energy (surface tension σ) into
account, it was possible to describe systems containing
a dispersed phase. Gibbs obtained an expression for
the work done W* in producing a critical nucleus in
terms of measurable macroscopic quantities. Volmer
and Weber6 then proposed the following expression for
the time-independent frequency J of spontaneous nucle-
ation per unit volume:

J=NtBe-w-'hBT, (2.1)

where Nx is the number of molecules of the initial phase
per unit volume and £ is a kinetic factor to be deter-
mined. The form of this factor was subsequently es-
tablished7'12 and it was shown that the preexponential
expression NJi was a slowly varying function of tem-
perature and pressure. An increase in J to an apprec-
iable value requires a sharp reduction in W* when the
homogeneous system becomes supersaturated as it goes
into the region of metastable states.

The dimensionless parameter G = W+/kBT character-
izes the relative height of the free-energy barrier dur-
ing nucleation. The chances of overcoming this barrier
as a result of thermal fluctuations increase with de-
creasing G, so that this parameter may be looked upon
as a measure of the stability of the system against dis-
continuous changes of a known kind (appearance of a
new phase). In the case of a plane separation boundary,
the equilibrium phase coexistence curve corresponds
to G - °°. This curve defines the absolute stability
boundary for the competing phases, and regions of
metastable states (with finite G) are adjacent to it. We
may take G =0 as the lower limit of stability of this
type.

A more important property for our ensuing discussion
will be the stability of a phase against continuous chan-
ges of state corresponding to small perturbations of
density (concentration) and energy in macroscopic por-
tions of the system. A state is stable if the correspond-
ing phase has a restoring reaction, so that the pertur-

bation is resorbed by the system. In the case of un-
stable states, small perturbations grow as a result of
the response of the system. Metastable states are as-
sumed to be stable against continuous changes and are
adjacent to the region of absolute instability during high
supersaturation.

In the case of fast processes, it is important to take
into account not only metastable but also labile states of
a homogeneous system.

Nonstatic processes are characterized by the ratios
of several characteristic times. For example, to es-
timate the depth of penetration of the metastable region,
we must know the characteristic time 9~ of the experi-
ment, the mean expectation time (τ) of a nucleus in a
volume element AV, and the phase decomposition time
τρ for this element in the presence of the nucleus. The
quantities (τ) and τρ depend on the degree of supersatur-
ation, and the inquality ^"/«τ)+τρ)« 1 signifies the ab-
sence of any significant indication of a phase transition
in a system kept in the metastable state for a time of
the order of r. Maximum supersaturation corresponds
to

Systems are often found to contain the seeds of a
phase transition, i. e., so-called active centers. The
volume density Ω of the number of such centers in-
creases with increasing degree of supersaturation. It
is convenient to take Δν = ΩΓ1, so that (2.2) is an impli-
cit function of Ω. Unfortunately, very little is known
about Ω. It depends on the method of preparation of the
system, the properties of the walls, and the properties
of impurity solid particles. The case of a "pure" sys-
tem (Ω = 0) is better defined physically. The mean time
(τ) can then be estimated from the Volmer-Doring-
Zel'dovich-Frenkel' (FDZF) theory; see Chap. 7. In
most cases, the phase separation time τρ is estimated
from the corresponding thermal or diffusion problem.
We note that phase transitions initiated by fluctuation^
nuclei can also appear in the presence of active centers
if the metastable state is penetrated rapidly enough.1'
This situation can occur, for example, in bubble cham-
bers.

The time rp increases rapidly near the critical point
of two-phase equilibrium. The region of metastable
states is then found to contract to a point. These two
facts provide a favorable foundation for reaching un-
stable states with the aid of a near-critical transition
through the binodal and the spinodal.

Figure 1 shows the diagram of state for a one-com-
ponent liquid-vapor system (ν = 1/β is the specific vol-
ume, Τ is the temperature, and Κ is the critical point).
The binodal (1) corresponds to the situation where the
chemical potentials of the liquid and vapor are equal
temperatures and pressures of the coexisting phases:

μ' (ρ, Τ) = μ" (ρ, Τ).

The spinodal (2) separates the regions of positive and

1'There are no kinetic difficulties, as In the case of vitrified
liquids.
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ing approximate expression was obtained for water:3

2-10-· (sec)

FIG. 1. Binodal (1) and spinodal (2) curves for a one-compo-
nent llquld-vapor system (K Is the critical point).

negative values of these drivatives (dp/dp)T, (dT/dS)p.
These derivatives vanish on the spinodal. This means
that the thermodynamic response functions, namely, the
isothermal compressibility βτ and the isobaric specific
heat Cp will diverge. In addition, the condition {ap/9p)T

=0 also means that (9μ/8ρ)Γ = 0 or (9μ/9η)Γ=0 because,
in the case of the one-component system, we have

V dp IT
 μ \ dp IT'

where p = mn and m is the mass of a molecule.

The adiabatic derivative (dp/dp)s evidently remains
positive as we cross the spinodal.

In the labile state [(dp/dp)T<0], a medium will rapidly
lose spatial homogeneity and will relax by assuming a
cellular-grainy structure without phase boundaries.
The usual heterogeneity in which one of the coexisting
phases is dispersed in the presence of a stable surface
layer sets in at a later stage. Spinodal decomposition
is understood to mean the development of continuously
inhomogeneous structure as a result of thermodynamic
instability.

The kinetics of this kind of process in a one-compon-
ent system was first examined by Zel'dovich and Todes.3

So long as the medium is stable against adiabatic per-
turbations, the rate of spinodal decomposition is limited
by heat transfer between contracting and expanding
volume elements. The coefficient of temperature dif-
fusivity α =\/pCp and the specific heat at constant pres-
sure Cp become negative as we cross the spinodal. This
is equivalent to time reversal in the thermal conductiv-
ity equation

The time of "preparation" of the unstable state neces-
sary for the observation of SD must be less than rc.

Two-component (multicomponent) systems are also
found to have a region of unstable homogeneous states.
This may take the form of stratification of liquid or
solid solutions with a critical temperature of equilibri-
um coexistence of condensed phases, or systems with a
liquid-vapor critical point. Deviation from stability
sets in as a result of local deviations from equilibrium
composition. If a random inhomogeneity in composition
is not resorbed into the system but, instead, is ampli-
fied by the response of the system, the situation cor-
responds to a negative diffusion coefficient D (uphill
diffusion). For two-component systems, the onset of
diffusion instability precedes mechanical instability.13

Figure 2 shows the phase diagram at atmospheric pres-
sure for the binary system consisting of isobutyric acid
and water14 with an upper critical temperature of solu-
tion. When T<TC, the liquid phases that coexist in
equilibrium have relative concentrations lying on the
binodal AKB on which the chemical potentials μ of each
of the phase components are equal.

The condition for diffusion stability is (T,p= const)

i5r> 0 ' ^ 2 · 3 '
where xi is the molar fraction of the first component.

A similar inequality is satisfied for the second com-
ponent. The Gibbs-Duhem relation

άμι μ2 ~ 0, Τ, ρ = const

and the condition xi + x2 = \ lead to the following relation
between the derivatives of the chemical potential:

Φ2 _ z\ Φι In A\

dx, ~ x, to, • Κ·ίΛ>

For unstable states under the dome aKb, we have
(8μ1/9^1)<0. The spinodal corresponds to the limit of
diffusion stability and is defined by

Oil. /rt | - \

•^- = 0 . (2.0)

It is occasionally more convenient to use not the chem-

In the simplest case, this results in solutions with ex-
ponentially growing local temperature differences ap-
pearing against a background of an increase in the spa-
tial inhomogeneity in the density of the medium. Tem-
perature equalization occurs when the volume elements
leave the region of labile states. The characteristic
SD time is given by the following order-of-magnitude
expression:

The lower limit of the characteristic linear size I has
been estimated3 as being of the order of the effective
thickness of the equilibrium surface (interphase) layer
at a given temperature. The corresponding analysis
was performed near the critical point where τβ is ex-
pected to be not too small because of the asymptotic
divergence of Cp and I (C, - <*>, α - 0, / - °°). The follow-
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Ζ5Λ
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Η
a V
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0.08 010 0.1Z o.n are
Molar fraction of isobutyric acid

FIG. 2. Phase diagram for the system consisting of isobutyric
acid and water:14 AKB is the binodal curve and aKb the spino-
dal curve. The latter is drawn through the experimental points
obtained by extrapolating light scattering data (1) and Rayleigh
linewidths (2).
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FIG. 3. Molar thermodynamlc Gibbs potential as a function of
concentration in a two-component stratified solution at tem-
peratures below and above the critical point.

ical potentials but the molar Gibbs potential

It is readily shown that

=μι-μ·. JLiut
χ, dx.

When * x , x2 * 0, the derivative

(2.6)

(2.7)

/θ*! in (2.3) and (2.5)
can be replaced with the derivative 92<p/8xJ.

Figure 3 shows a schematic plot of the molar poten-
tial ψ as a function of concentration for two tempera-
tures, one below and one above the critical point. This
plot was constructed on the assumption that <p(x) was
continuous and analytic. The lower curve (T> Tc) is
always convex to the composition axis. This ensures
diffusion stability of the solution throughout the range
of concentrations, 82<p/8xf >0, and, at the same time,
ensures that the system cannot separate into coexisting
phases.2' The upper curve has both convex and concave
segments. The turning points a,b belong to the bound-
ary of stability of homogeneous states and ΐ?φ/?>χ\ =0.
The points A,Β on the common tangent to the convex
segments of the curve correspond to coexisting conden-
sed phases in equilibrium.

We now turn to the equation for isothermal diffusion
in a two-component condensed system. In the approxi-
mation of linear thermodynamics of irreversible proc-
esses, the diffusion motive force is the gradient of the
chemical potential. If we consider the molecular cur-
rents ii and j 2 of the components relative to the surface
on which j x + j 2 =0 the equation for the current assumes
the form

h = - L (ν μ ι - νμ2); (2.8)

where L is the Onsager coefficient ( £ u =L22 =-L12=L
>0), which characterizes the mobility of the molecules.
If we write the chemical potential gradient in terms of
the concentration gradient and use (2.4), we obtain

(2.9)

where
TJ _^ J-^ 1 5μι L tl2cp (2.10)

and η =η1 + η 2 is the number of molecules per unit vol-
ume.

It is clear from the foregoing expressions that there

2)We are ignoring the vapor phase.
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is a connection between mass transport and the para-
meter of thermodynamic stability 8μ1/8χ1 or Φφ/9χ\.
The mutual diffusion coefficient is proportional to this
parameter. As the stability boundary is approached,
D - 0 . A considerable slowing down of the diffusion >
transport is, in fact, observed near the critical-point
of two-component liquid systems.15 For unstable states,
we have D<0, i. e., uphill diffusion in the direction of
the concentration gradient.

The behavior of the mobility L near the stability
boundary is not clear from the phenomenological analy-
sis. This is still a matter of dispute in the literature.
The expressions given by (2.9) and (2.10) are hardly
suitable for a quantitative description of transport
phenomena near the spinodal. A modified linearized
diffusion equation which takes into account the fluctua-
tion inhomogeneity of the system will be considered be-
low.

When phase transitions in solutions and their stability
are discussed, one can use either the thermodynamic
Gibbs potential Φ,φ, or the free energy F,f. Since,
for a two-component system consisting oiN1+N2 mol-
ecules we have

F = Φ - pV = μ , - pV,

= φ — pv = μ Λ + μ2ΐ, — pv.
ΛΓ,+ΛΓ,

the replacement of φ by / in expressions containing only
increments and derivatives of these quantities is legit-
imate provided the increment on the last term (pv) is
small. For condensed systems, this approximation can
be used in (2.7) and (2.10) with acp/dx^d^/dx2 replaced
by 8//9x1,3

2//9xf. Finally, we note one further point
in relation to molar and volume (per unit volume) val-
ues of μ, φ, and /. Transformation to volume quantities
leads to the appearance of factors containing molecular
masses of the components and the concentrations in
formulas such as (2.9). We shall use the same notation
for both molar and volume quantities, and will not write
out the transformation factors.

When the state of a system undergoes a rapid change,
the thermodynamic degrees of freedom do not succeed
in reaching the state of complete equilibrium. It is
reasonable to suppose that the relaxation time tx of de-
grees of freedom corresponding to lengths lt > le (lc is
the correlation length) is much greater than the relaxa-
tion time t2 of degrees of freedom corresponding to
scales 12« lx. This assumption is justified by the fact
that the instability of the system is connected with long-
wave fluctuations, whilst short-wave fluctuations re-
main stable (see Chap. 3). It follows that, in a time t2

« tx, local equilibrium is established in small regions
h <K h > so that we can introduce local thermodynamic
variables. The theory of spinodal decomposition des-
cribes the relaxation of these variables over times f> fcj.
We note that the validity of this assumption improves
near the spinodal, where the scales lx and tt are large.
In most cases, however, one uses the additional as-
sumption that the relaxation time of one hydrodynamic
mode (for example, concentration) is much greater than
the relaxation time of all the other parameters of the
system.
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FIG. 4. Electron-microscope photographs of two-phase glas-
ses: a—structure obtained from metastable state through
nucleation and growth; b—structure ascribed to spinodal de-
composition.

Let us now briefly consider the experimental material
that has led to the development of current ideas on spin-
odal decomposition. Of major importance has been the
discovery of a periodic distribution of separating phases
(modulated structure) during the decomposition of a
solid solution into two phases whidh differ only in con-
centration and lattice parameters. This modulated
structure was first observed by Daniel and Lipson16·17

in the Cu-Ni-Fe alloy. They found that the principal x-
ray reflections corresponding to the single-phase struc-
ture were accompanied by satellites. These satellites
can be explained by assuming that the lattic parameter
and the Cu concentration vary periodically in the direc-
tion of the crystallographic axes. The period of this
modulated structure is of the order of 100 A. The mod-
ulated structures have now been observed directly with
the electron microscope (see, for example, Refs. 18-
20). A detailed analysis of such structures in different
solid solutions has been reported by Khachaturyan.21

Phase separation (liquation) in glasses is also accom-
panied by the appearance of a composition-inhomogen-
eous structure, and the phase separation exhibits a kind
of periodicity. This type of liquation structure is illu-
strated in Fig. 4. A large number of examples of ob-
served liquation structures and glasses can be found in
the literature.2 3·2 4

The appearance of uphill diffusion was first discussed
in connection with experimental data on the ageing of
Cu-Al alloys,25 and was then examined theoretically26·27.
The development of ideas on spinodal decomposition is
reviewed by Cahn28 and Chuistov.29

3. PHENOMENOLOGICAL THEORY OF SPINODAL
DECOMPOSITION

We shall now review the phenomenological theory of
spinodal decomposition developed by Cahn and Hilliard,30

Hillert,1 and Cahn. 2 · 3 1 ' 3 3 The free energy of a two-com-
ponent isotropic solution can be written in the form

where/(x) is the free-energy density3' of the homogen-
eous solution of composition χ and K(Vx)2 is the first
nonvanishing term of the expansion of f[x(r)] in a Taylor
series in r . It describes the contribution of space-
correlated effects to free energy. Cutting off the ex-
pansion at the second-order term is equivalent to the
assumption that the range of the intermolecular poten-
tials is much smaller than the characteristic lengths
over which there is an appreciable change in the con-
centration. It is also assumed that the molar volume
is independent of composition. K>0 if the homogeneous
state is stable above the spinodal. In general, Κ can
depend on concentration.

If the concentration at each point in the solution is not
very different from the mean concentration x0, the ex-
pansion of f(x) in terms of x-x0 need not be continued
beyond the quadratic term. If, in addition, we recall
that

j (x - xt) dV = 0

we find that the free-energy difference between the so-
lution with concentration fluctuations and the completely
uniform solution of concentration x0 is

AF = F - f (z0) V = (* - *o)2 + Κ (Vz)2] dV.

The Fourier representation is convenient for the anal-
ysis of the stability of a solution against infinitesimal
changes in composition. If we expand χ - x0 in Fourier
series

we obtain

The solution is stable against infinitesimal changes in
concentration if d2f/dx2 + 2Kk2 > 0 for all k. Since K> 0,
this condition is always satisfied for states with Θ2//3ΛΓ2

> 0 (the temperature exceeds the spinodal temperature).
In the interior of the spinodal, i.e., in the region where
32//3x2<0, the quantity d2f/dx2

0 + 2Kk2 is negative if
k<kr, where

kc = V —2K (3.2)

The solution is, therefore, unstable in the interior of
the spinodal against infinitesimal fluctuations in con-
centration with wavelengths \>\c=2rr/kc.

The kinetics of spinodal decomposition can be obtained
by solving the diffusion equation given by (2.8). The
difference between the chemical potentials is expressed
in terms of the functional derivative 5F{x(r)}/6x(r):

1 6F

and 6F/dx1 i s calculated from (3.1). We have

η ^ gj-iV^]. (3.3)
Neglecting the dependence of Κ on concentration, taking

= j 1/ (*) + Κ (Vx)2) dV, (3.1)

3 )It is assumed that fix) can also be defined in the region where
the two-phase state is stable; in this case, we must look
upon fix) as the analytic continuation of the free-energy den-
sity of the homogeneous system into the two-phase region.
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the divergence of both sides of (3.3), and using the equa-
tion of continuity, we obtain

-|ί. = Λν 2 (- |— 2KV*z). (3.4)

During the early stages of decomposition, the concen-

tration fluctuations are small and only terms that are

linear in χ need be retained on the right-hand side of

(3.4). This yields the linearized diffusion equation

We now write the solution of this equation as a Fourier
series

where

A (k, t) = A (k, 0) ««<*>',

Λ «=-,«• (-££ + 2**»).

(3.6)

(3.7)

(3.8)

The function R(k) is called the amplification factor. Its
dependence on wave number is shown schematically in
Fig. 5. It is negative for all k in the metastable region
(d2d/dxl>0) and positive for k<ke in the region of un-
stable states (a2f/dxl<0). The critical wave number kc

is given by (3.2). Consequently, in the labile range of
concentrations, waves with k<ke will grow exponen-
tially, whereas those with k> ke will decay exponen-
tially. Waves with wave number km=ke//2 will grow
most rapidly. Since R(k) is present in the argument of
the exponential in (3.7), and the dependence of the am-
plification factor on wave number has a relatively sharp
maximum at k = km, we assume that all the concentration
waves other than those corresponding to km can be neg-
lected after a certain interval of time. As a result, the
system develops a characteristic length scale \m = 2v/km

and the composition of the isotropic solution in this ap-
proximation can be described as a superposition of sin-
usoidal waves of fixed wavelength \m and random orien-
tations, phases, and amplitudes.

The theory of spinodal decomposition based on the lin-
earized diffusion equation given by (3.5) is valid only
during the initial stages of decomposition when the dev-
iations of composition from the mean are small. It pre-
dicts an unbounded growth in concentration fluctuations.
If the deviations of concentration from the mean cease
to be small, the diffusion equation can no longer be con-
fined to terms that are linear in x. Inclusion of the
higher-order terms in χ leads to a distortion of the
shape of the sinusoidal concentration waves and to a
restriction of their growth.34 Khachaturyan21 has pointed
out that a situation is possible where the nonlinear
terms become important even prior to the emergence

FIG. 5. Amplification
factor as a function of
wave number.

of the characteristic size \m in the system. This is ex-

pected near the spinodal.

We have assumed so far that the molar volume is in-
dependent of concentration. When this is not so, con-
centration fluctuations in a solid can be accompanied by
elastic stresses contributing to the total free energy of
the system. This energy can then be written in the form

F - J [/ <*) + Κ (Vx)« + rfY (x - *„)'] dV,

where η is the relative change in the lattice parameter
a accompanying the change in composition:

and Υ is a parameter that can be defined in terms of the
elastic constants (Y> 0). The elastic energy stabilizes
the solid solution against small fluctuations in concen-
tration, and the condition for loss of stability now be-
comes:

H+21^=0; (3.9)

where/(x) is the free-energy density in the absence of
stresses. This condition defines (within the framework
of the linear approximation to the theory of spinodal
decomposition) the so-called "coherent" spinodal which
is shifted toward lower temperatures from the "chemi-
cal" spinodal defined by d*d/&xl = 0. For some alloys,
this shift amounts to some hundreds of degrees.

In the case of elastically anisotropic solid solutions,
Υ depends on the crystallographic direction in the ma-
terial. Loss of stability occurs first for concentration
waves with orientations corresponding to minimum Y.
The modulated structure that appears as a result of the
decomposition process is thus found to be "attached" to
definite crystallographic axes.

When elastic energy is taken into account in the lin-
earized diffusion equation (3.5) and in the expressions
given by (3.2) and (3.8), the second derivative 32//9x2

must be replaced with 82//8#£ + 2η2Ι\ The term associa-
ted with elastic energy will be omitted from now on.

The theory of spinodal composition given by Cahn has
been generalized to the case of ternary systems35 and to
decomposition during continuous cooling.38

The experimentally observed quantity is usuall the
scattered x-ray intensity /(s,<), where s is the scattered
wave vector, | s | =4irsin(0/2)/A, Λ is the wavelength of
the radiation, and θ is the angle between the incident
and scattered rays. In the Born approximation,

/ (s, t) ~ \A (k, i) |» for k = s. (3.10)

The intensity /(s, t) can thus yield direct information on
the spectrum of composition fluctuations in the system.
The expression (3.10) was first used by Rundman and
Hilliard37 in the analysis of small-angle x-ray scatter-
ing data, obtained for a decomposing Al-Zn alloy.

Since the time evolution of -A(k, t) is determined by
(3.7) within the framework of the linearized theory of
spinodal decomposition, we may write

/ (k, 0 = / (k, 0) e2H<k>(. (3.11)

Consequently, Calm's theory predicts an exponential
increase in / for k< kc and an exponential decay for k
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>ke in the labile region. For k = kc, the scattered inten-
sity should be time-independent; this is the point of in-
tersection of the /(k) curves corresponding to different
t. The expression given by (3.11) can be used as a basis
for the experimental verification of the spinodal decom-
position theory. The amplification factor can be found
from the best correspondence between experimental data
and (3.11). Additional verification of the theory involves
checking the dependence of R on wave number. Accord-
ing to (3.8), the graph of R(k)/k2 vs fe2 should be a
straight line.

4. DEVELOPMENT OF THE THEORY

A serious defect of the theory of spinodal decomposi-
tion put forward by Cahn was that it did not take into
account thermal fluctuations in composition. The theory
does not, therefore, contain mechanisms responsible
for transitions from unstable to stable configurations,
and leads to incorrect equilibrium behavior of the scat-
tered intensity /(k,i). In fact, for stable states R(k)<0,
and, according to (3.11), any initial distribution 7(k,0)
should fall to zero. On the other hand, it is well known
that experiment shows that /(k,°°) is not zero and is as-
sociated with fluctuation inhomogeneities. Cook38 has
extended diffusion equation (2.8) by adding a term re-
sponsible for the fluctuation thermal contribution to the
current j . The equation for /(k, i) thus becomes

brium configuration, one would expect /(k,°°) to follow
the well-known Ornstein-Zernike formula

a/(k, t) = 2 f l(k)/(k, t) + 2LkBTk*.

Its solution is

/ (k, t) = [7 (k, 0) - / (k, oo)l e2«<k"

where

7 (k. oo),

7(k, oc)=?

k.T kBT

2K (* a — Ac») ·

(4.1)

(4.2)

(4.3)

Appreciable deviations from the behavior predicted by
Cahn's theory are observed when the condition /(k, 0)
»/(k,«) is not satisfied. It follows from (4.2) that the
growth of the Fourier components of concentration oc-
curs not only for R(k)> 0 but also for R{k) < 0 if /(k, 0)
</(k, °°). Cook's theory is thus seen to predict a shift
of the observed critical wave vector from the value kc

given by (3.2). According to (4.1), the observed critical
wave vector k'c at t = 0 is determined by the condition

(|̂ -4-2«/£»)/(k, 0)-kBT = 0,

i. e., k'e>kc. Cook's theory provides a qualitative ex-
planation of the deviation from Cahn's theory that has
been demonstrated by many experiments (Chap. 5),
namely, the deviation from the exponential variation of
7(k,i) especially for k>ke, the curvature of the graph
of [al/dt)/Ik2 as a function of fe2, and the fact that the
critical wave number is much greater than J2km, where
km is the wave number corresponding to maximum
growth.

However, Cook's theory again predicts an unbounded
growth of Fourier components of composition for k<kc

in the region of unstable states. As noted by Langer,40·41

it does not yield the correct expression for the equili-
brium scattered intensity at temperatures below the
stratification temperature. In fact, at the end of phase
separation, when the system has assumed the equili-

7 (k, <x>)~ 2
(4.4)

where y is the reciprocal correlation length. Compari-
son of (4.4) with (4.3) will show that, in (4.3), y is an
imaginary quantity. This contradiction arises because
the derivative tff/dx2 is evaluated at x=x0 in (4.3) and
is always negative at temperatures below the stratifica-
tion temperature. On the other hand, the correct ap-
proach at the end of the phase separation stage is to ex-
pand/around the equilibrium phase compositions. The
second derivative B^/dx2 is then positive for each phase.

Langer39"42 has developed a more rigorous theory of
spinodal decomposition based on the statistical approach
to the problem. He began by constructing the equation
of motion not for the function x(r, t) but for the statisti-
cal distribution p(,{x], t) over configurations x(r). The
transport equation then has the form of a functional
continuity equation39

iPM^L=_j£i£ld r, (4.5)

where

'«•^(^Ρ+ντ^-). ( 4 · 6 )

The average of any functional V{x] is then defined in the
usual way

t)V{x), (4.7)

where the sum goes over all long-wave variations in
composition consistent with the mean composition x0.
Equations (4.5), (4.6), and (4.7) then lead Langer to the
following equation of motion:

Expanding df/dx in series in the neighborhood of x0 and
retaining only first-order terms, we obtain the linear-
ized diffusion equation (3.5). This, however, does not
mean that (4.8) is equivalent to the generalized nonlin-
ear diffusion equation of Cahn, given by (3.4), because
(df/dx) is not identical with df((x))/d(x) provided only ρ
does not have a very sharp maximum near some config-
uration x(r). The assumption that the distribution of ρ
has zero width is equivalent to neglecting fluctuations
in the nonlinear diffusion equation of Cahn. In the Lan-
ger approach, fluctuations are taken into account auto-
matically through the finite width of the distribution p.

The structure factor S(k, t), which is proportional to
the scattered intensity 7(k,i), is particularly interesting.
This factor is related to the correlation function for
concentration fluctuations G(r,t) through the Fourier .
transformation

S (k, t) = \ G (r, t) e""-dr,

where

(4.9)

(4.10)G (r, i) = G (| r |, t) = <« (r0 -f r, t) u (r0, ()>.

u (r, i) = χ (r, t) - x0.

If we use (4.9), (4.10) together with the transport equa-
tion (4.5), we can write the equation of motion for
S(k, t) in the form42

395 Sov. Phys. Usp. 22(6), June 1979 V. P. Skripov and A. V. Skripov 395



J(k, t)

(4.11)

where Sn(k, 0 are the Fourier transforms of the correl-
ation functions Gn(r, t) of order n:

Gn (r, t) = (it""1 (r, + r, t) it (r0, ()> (4.12)

(we shall omit the subscript η =2 on S and G). The ser-
ies in (4.11) appears as a result of the expansion of
(df/dx) in Taylor series. If we retain only the term that
is linear in AT in this expression, we obtain

&, (4.13)

which is identical with Cook's result, given by (4.1).
The next approximation could be referred to as the
mean-field approximation. It is obtained from (4.11) by
assuming that p{x] is always a Gaussian distribution
over the functions u(r), centered on u = 0. This approx-
imation is satisfactory so long as the most probable
value w(r) is zero and the fluctuations are relatively
small. When this is so, Gn=0 for all odd η and

S4(k, t) « 3<ua (i)> S (k, t),

where, according to (4.9) and (4.10),

(ll'(i)) = 1 i j r J 5 ( k 1 i ) * . (4.14)

If in the expansion for (df/dx) we retain only terms up to
third order in x, we obtain

, t)S(k,

where

J?(k, ί)=_№(|^+4-

(4.15)

(4.16)

Since (κ2(ί)> is a positive function that increases with
time in the case of spinodal decomposition, R will de-
crease in the case of positive 34//8%£, and this will lead
to a restriction of the growth of the unstable Fourier
components of concentration. On the other hand, the
critical wave number will decrease with time, which
gives a qualitatively correct description of the increase
in the characteristic scale (coarseness) in the system.
However, the mean-field approximation suffers from
serious defects that prevent its use in the description of
subsequent stages of spinodal decomposition. Thus,
firstly, fluctuation in w(r) should not be expected to be
small and centered on u =0 during the decomposition
process. It is clear that, during the later stages, the
distribution ρ will have maxima near values of u for
which xo + u is an equilibrium concentration. Secondly,
the mean-field approximation does not take into account
the asymmetry of fluctuations (the term proportional
to 93//8#jj is neglected), which may be important near
the spinodal. Thirdly, numerical analyses42 have shown
that the quantity [{92f/ax*)+l/2(B*f/axtt)<t?{t))]/2K, which
here plays the role of y2 in (4.4), does not change sign
in the course of time and remains negative. The mean-
field approximation does not, therefore, provide the
correct expression for the equilibrium intensity below
the stratification temperature.

Langer developed two methods to overcome the limi-
tations of the mean-field approximation. The first40 is

based on the expansion of «(r) over the complete set of
orthonormal basis functions Φ, (r), introduced by Wil-
son,43

Im

where Ψ ,„(*") is the basis function localized near a def-
inite site Rm, the Fourier components of which lie in-
side the l-th spherical shell in k-space:

(femax is the radius of the Wigner-Seitz sphere). The ex-
istence of this set of basis functions is merely a hypoth-
esis, and the explicit form of these functions is not
known. However, important results can be obtained
without knowing the explicit form of $fm. By introducing
certain further assumptions, we can rewrite the trans-
port equation and obtain an equation of motion for func-
tions of u(t) in the language of the new variables alm.
The functions in which we are interested, for example,
S(k,i), are estimated only for a discrete set of values
of the wave number, which is a consequence of the sub-
division of reciprocal space into spherical layers and
the fact that we do not know the explicit form of ψ,,,. We
shall not reproduce here the rather unwieldy equations
of motion for /(fe,, t) and turn immediately to the results
of their numerical solution.41 The input parameters
for the numerical solution were taken from the papers
of de Fontaine44 and Rundman and Hilliard.37 The re-
sults are shown in Fig. 6 together with the correspond-
ing results based on Cook's theory38 and the mean-field
approximation [Eqs. (4.15), (4.16), and (4.14)]. It is
clear from Fig. 6 that graphs of ln/(&,, t) as a function
of I have no appreciable linear segments. In contrast
to previous theories of spinodal decomposition, Lan-
ger's method yields a qualitatively correct solution in
the limit of long times. It is also clear from Fig. 6
that a characteristic size emerges in the system: the
Ζ =4 mode has a much greater amplitude than all the
other modes. Moreover, in this approach, the quantity
[92//34)+l/2(34//9^)(u2(i))]/2A· changes sign in the
course of time, and approaches a positive equilibrium
value, thus ensuring the correct form (4.4) for /(k,00).

The other approach, resulting in an approximate solu-
tion of (4.11), is based on the assumption of some rea-

ISO isec

FIG. 6. Numerical solution of the equations of motion:41 ki
= 6.22x10' cm"1, fe2 = 3.11xl0T cm"1, * 3 = 1.56xl0T cm"1, fe4

= 0.778x10'cm"1, ks = 0.389xlOT cm"1, * e = 0.194xl0T cm"1.
The dot-dash curve Is predicted by Cook for 1=4; the dashed
curves are calculated In the mean field approximation for 1=3,
4, and 5.
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sonable form42 for the distribution p. It follows from
(4.12) that, to determine the right-hand side of (4.11),
it is sufficient to know the two-point distribution function
Ρ2[Μ(ΓΟ+ Γ),Κ(Γ 0 )] . This is obtained by integrating the
complete distribution p[u\ over the space of functions u,
the values of which are fixed at the two points r o+ r and
r 0 . It is assumed that the relation between p2 and the

isone-point functions

pj (u (r0 + r),u (r0)] r)] p j u (ro)]{l +y (r) u (r0 + r) u (ro)>.

This assumption is equivalent to keeping the first two
terms in the expansion of p2 in terms of the functions
w(ro+r) and w(r0). In this approximation,

G (r) = (u 2 ) 2 γ (r)

and

Equation (4.11) assumes the form

dS^' i] = -2Lk?[2Kk*+C(t)\S(k, /) + 2LkBT&, (4.17)

where

r _ y ι
Λ ( B _l

-a/(i,+u) \

Since C is a one-point function, it is determined if we
know p1. The sum of two shifted Gaussian functions is a
physically reasonable form for pl:

α,

i b e x p

Γ (u — i ) , ) 2 T . a , Γ ( u - f δ , ) * "1

L - ^-2^- j + y t 7 e x p L - S s ^ ] ·
This function enables us to describe both the early
stages of spinodal decomposition when pl is centered on
w = 0 (&i,&2

<<: σ)> a n d the subsequent stages when p1 has
two maxima (61 + 62> σ), in the language of variations in
ax, Oj, &!, b2, σ. Because of the normalization conditions

and

f P! (u) u du = 0

only three of these five parameters are independent.
The independent parameters are found from the equa-
tions of motion for (κ2), (Μ3), and (Μ4), which are de-
rived from the transport equation for p x. The transport
equation for plt in turn, can be obtained from the trans-
port equation (4.5) for the complete distribution p{u}.i2

Numerical calculation based on this scheme42 yields a
qualitatively correct description of the decomposition
process: the growth of the maximum of S(k, t) and its
shift in the course of time toward smaller k, the ap-
pearance of two maxima in the distribution function
PL(U), and the growth of the separation between these
maxima. The time dependence of S(k, t) is not always
exponential, as predicted by Cahn's linearized theory,
and the graph of [dS(k,t)/at]/S(k,t)k? as a function of fe2

is appreciably nonlinear for all t.

An approach based on the transport equation for the
distribution ρ was also used in4 5. In contrast to the
other treatment,42 the representation in the form of a
sum of shifted Gaussian functions was used not for the
one-point distribution function for p1 but for the com-
plete functional p[{A(k)}, f], in reciprocal space. The

theory given in Ref. 45 (like the Langer theory) takes
fluctuations into account in a natural way and can be
used to describe both the early and the late stages of
spinodal decomposition.

The theory of the early stages of spinodal decomposi-
tion in a liquid near the critical point was recently dev-
eloped independently by Kawasaki.46"48 The transport
equation (3.5) was modified by adding a nonlocal term
describing the hydrodynamic interaction between fluctu-
ations in the order parameter. The inclusion of hydro-
dynamic effects enabled Kawasaki to improve the agree-
ment between theory and experiment in binary liquid
mixtures.47 However, the Kawasaki formulation con-
tains a number of assumptions that are difficult to con-
trol.

Patashinskii and Yakub49 have put forward a simple
phenomenological approach demonstrating the similar-
ity properties of the relaxation of systems with con-
served order parameter in the region of unstable states.
They have also examined decomposition during cooling
at a finite rate, and a theory of the initial stage of
spinodal decomposition in a one-component liquid-vapor
system.50 Simultaneous solution of the Navier-Stokes
equation, the continuity equation, and the equation of
state leads to a growth in the long-wave fluctuations in
density and temperature in the labile region.

We note that all the above approaches are based on
the use of (3.1) for the free energy of the inhomogeneous
solution. It is clear, however, that this equation is not
rigorous. Free energy can be expressed51·52 in terms
of the two-body interaction potentials, the radial par-
ticle distribution functions, and the local concentration
x(r) in the form of double space integrals. If we expand
x(r) in a Taylor series in the integrand, and retain only
the first nonvanishing term, we obtain (3.1), where

(4.18)

) = £ A ( Φ Λ Β — <PAA) - r £ B (<PAB — <

g{ are the radial distribution functions for atoms of type
i, and <pu is the two-body interaction potential between
atoms of types i and j . If the interaction potential has a
large enough range, higher order terms must be in-
cluded in the expansion for x(r). However, Hopper and
Uhlmann52 have shown that, for typical potentials, the
coefficients of V2nx diverge, beginning with η =2. To
avoid a nonphysical result, x(r) can be expanded into a
Fourier rather than a Taylor series.5 2 This leads to an
exact expression for F. The diffusion equation is sub-
sequently introduced in the same way as in Cahn's the-
ory. In particular, the Fourier components of the con-
centration are found to vary exponentially during the
early stage of the decomposition process. The amplifi-
cation factor, however, is different from (3.8):

Β (k) = 2π f (1 — -^r sin AT) rKl (r) dr.

If the integral in (4.18) converges (short-range interac-
tion), the function B(k) tends to Kf? in the limit of small
k. B(k) is appreciably different from Kk? for large val-
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ues of k, and the graph of R'(k)/t? as a function of fc2 is
not linear. For potentials that decrease with distance
more slowly than r'5, the function Β (k) is not quadratic
in k even for small k.S3 The Hopper-Uhlmann theory
is thus capable of quantitative estimation of the ampli-
fication factor if the interaction potentials are known.
However, as in Calm's theory, it is, in fact, assumed
in the derivation of the expression for F that there is
no short-range order in the system.52 For systems with
developed fluctuations, neither (3.1) not the Hopper-
Uhlmann results for F appear to be exact.

Abraham54·55 has constructed a thermodynamic des-
cription of an inhomogeneous one-component liquid sys-
tem, based on a generalization of perturbation theory
to liquids.56·57 His results for the free energy and the
amplification factor are equivalent to the corresponding
results given by Hopper and Uhlmann. The determina-
tions of φ and g, reported in Refs. 56 and 57, were
employed. Abraham's theory can also be generalized
to the case of two-component liquid mixtures.58 The
Hopper-Uhlmann and Abraham approaches derive the
decomposition kinetics from the microscopic theory,
but they still suffer from all the defects that attend the
neglect of fluctuations.

A new formulation of the theory of spinodal decompo-
sition in the language of the I sing model with conserved
order parameter has recently been put forward by
Binder.59 Each lattice site is assigned a "spin" value
Xt =+1 if it is occupied by an atom of type A, and X{ = -1
if it is occupied by an atom of type Β. In this model,
relaxation occurs through the exchange of neighboring
atoms. The Hamiltonian for the system has the well-
known form

where </(J, #,, and Jf0 can be expressed in terms of the
two-body interaction potentials φΑΑ, φΒΒ, and φ^. The
transport equation60 for the probability P(Xlt... ,XK, t)
of realization of the "spin" configuration (Xlt...,XN) at
time t is then written down and used to obtain an equa-
tion of motion for the mean of any function (Xif... ,XN),
in particular for S(k, t), the Fourier transform of the
spatial two-body correlation function <Xft)Xft))- <Xft))
x(Xj(t)). In this approach, the equation of motion for
S(k, t) is exact but not closed, since it contains higher-
order correlation functions. Additional simplifying as-
sumptions are necessary to close it. Under certain as-
sumptions,59 the exact equation yields approximate
equations of motion for S(k, t) that are equivalent to the
corresponding equations in the Cahn, Cook (4.13), and
Langer (4.17) theories. The earlier results can thus be
derived from the Ising model, i. e., through an ap-
proach that is radically different from the original ap-
proach. To proceed further, Binder59 proposed an ab-
breviated description in the language of cluster distrib-
ution. The transport equation for the cluster concentra-
tion rift) is derived from the transport equation for
P{Xlf... ,XN, t), where I is the number of atoms per
cluster and the bar represents averaging over the co-
ordinates of the "centers of gravity" of all the clusters.
The cluster model is convenient for the description of
late stages of decomposition, examined qualitatively in

Ref. 61, Numerical calculations based on the cluster
model62 yield the following law for the growth of the
mean linear size of a grain during late stages of phase
decomposition, examined qualitatively in Ref. 61. Nu-
merical calculations based on the cluster model62 yield
the following law for the growth of the mean linear size
of a grain during late stages of phase decomposition:
R~t", where the exponent is less than 1/3 (the value
predicted by Lifshitz and Slezov63). Calculations62 have
also shown that the cluster size distribution is very
broad. The Binder approach suffers from a number of
defects. The most important is that lattice distortions
accompanying phase separation and the associated elas-
tic stresses cannot be taken into account.

5. EXPERIMENT

A. Alloys

Historically, the first class of systems in which spin-
odal decomposition was investigated experimentally was
that involving two- and three-component alloys. There
is now a large number of publications on phase separa-
tion in alloys in the immiscible region. However, it is
by no means always possible to obtain an unambiguous
identification of the mechanism responsible for phase
separation. The final morphology of alloys undergoing
spinodal decomposition cannot always be distinguished
from that corresponding to nucleation and growth. In
particular, modulated structure may appear as a result
of nucleation and growth,18 so that structure periodicity
is not a reliable criterion for spinodal decomposition.
Neither this method nor electron microscopy are very
useful for the identification of the phase separation
mechanism, although analysis of the isothermal se-
quence of microstructures does often lead to quite re-
liable conclusions .β4"6β

The usual thermal treatment of alloys in experiments
concerned with phase-separation kinetics is as follows.
The specimen is homogenized by annealing at high tem-
perature (in the single-phase region) and is then rapid-
ly quenched down to room temperature. It is assumed
that no appreciable phase separation occurs during the
quenching process. The alloy is then held at the temp-
perature at which decomposition is observed (in the im-
miscible region) for a time t, and is again quenched. As
a rule, measurements are performed at room temper-
ature. By varying t, one can obtain information on the
phase-separation kinetics.

Since the theory of spinodal decomposition is formu-
lated in reciprocal space, diffraction methods (primar-
ily, x-ray diffraction) provide the most direct verifica-
tion of this theory. The original studies of phase-de-
composition kinetics were performed by a method based
on the observation of satellite of principal Bragg reflec-
tions.16 The position of the satellites was used to deter-
mine the wavelength \m of the modulated structure and
its variation during decomposition. It is clear that this
method can, at best, reveal only a qualitative agreement
with the concept of spinodal decomposition, namely, the
fact the \m remains constant during the early stages and
increases during the coarsening stage. This behavior
has been observed, for example, in an Au-Pt alloy.67
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Rundman and Hilliard37 used small-angle x-ray scat-
tering to investigate the phase separation kinetics in
Al-22 at .% Zn. Their analysis of experimental data was
based on (3.10). It follows from

4 π . θ , , . . . 2 π
_ s l n T = | s | = | k | = —

that, when composition fluctuations with wavelength λ
= 40A are observed for Λ = 4Α, the necessary scattering
angles are θ ~ 1.5°. The scattered x-ray intensity is
directly related to the spectrum of concentration fluctu-
ations in the system, which enabled Rundman and Hil-
liard to perform a quantitative comparison between ex-
periment and the theory of spinodal decomposition.
They found good agreement with Cahn's theory when the
temperature was held at 65 CC and, in particular, they
found that /(k, t) varied exponentially with time over a
period of several minutes [in agreement with (3.11)] and
that the graph of R(k)/I? against fe2 was nearly linear
[as in (3.8)]. However, Gerold and Merz68 used meas-
urements of the integrated scattered x-ray intensity for
the same system to conclude that Rundman and Hil-
liard37 observed a coarsening of the structure, and that
spinodal decomposition was already nearly complete
during the quenching stage. The integrated scattered
intensity69

.7 = J" / (k) k2dk ~ | (x - xaf dV

can be used to characterize the degree of completion of
phase separation. It is expected that £ will initially
increase rapidly and then remain constant when the
equilibrium compositions are reached. Gerold and
Merz68 observed the following behavior of J for the
Al-22 at .% Zn alloy: at the very beginning of the iso-
thermal process, when the specimen was held at 65 °C,
the integrated intensity f was found to increase sharp-
ly, and this could be explained by a change in the equil-
ibrium phase composition at this temperature as com-
pared with room temperature; thereafter, J remained
constant. The conclusion68 that decomposition is al-
most complete during the quenching of the Al-22 at .%
Zn system has also been confirmed elsewhere.70·71 The
agreement with Cahn's theory reported in Ref. 37 would
therefore appear to have been fortuitous.

Agarwal and Herman72 quenched their specimens from
the melt as a means of observing the early stages of
decomposition in the Al-22 at .% Zn alloy. Figure 7
shows their data on small-angle x-ray scattering for
different types of heat treatment at 65 °C. For the spec-
imen that was not subjected to the heat treatment (i = 0),
the intensity / was practically independent of k, indica-
ting that the quenching was sufficiently rapid. When the
specimen was held under isothermal conditions, the
I(k) curve had a peak whose amplitude increased with
time and whose position shifted slowly toward smaller
k. The observation of a common point of intersection of
the I(k) curves suggests that kc was constant. The inten-
sity /(fe, t) varied roughly exponentially for all the k that
were investigated up to ~50 min. The dependence of
R(k)/& on fe2 was, however, highly nonlinear. Unfor-
tunately, Agarwal and Herman72 do not report any data
on the integrated scattered intensity that might have
yielded some information on the degree of completion
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FIG. 7. Small-angle x-ray scattering intensity for Al-22%
Zn.22 Heat treatment time at 65 °C (sec): 0 (1), 45 (2), 90 (3),
180 (4), 300 (5), and 1200 (6).

of the decomposition process at different times.

Spinodal decomposition has been established quite re-
liably73·74 in Al-Zn alloys with a lower concentration of
zinc (in particular, Al-6.8 at .% Zn). Small-angle scat-
tered x-ray intensities were used73 to determine the in-
terval during which decomposition was effective for dif-
ferent heat treatment temperatures (Fig. 8). The inten-
sity /(fe, t) was a nearly exponential function of t during
this interval.

If the alloy consists of atoms in neighboring positions
in the periodic table, x-ray and electron diffraction
turn out to be ineffective as a means of investigating
phase separation. This is so because the scattering
factors are then too close together, and neutron scat-
tering must be employed. Small-angle neutron scatter-
ing has been used, for example, to investigate spinodal
decomposition in Fe-Cr, Cu-Ni, and Al-Zn (Refs. 75,
76, and 77, 78, respectively).

In addition to diffraction methods, phase separation
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FIG. 8. Integrated x-ray scattering intensity as a function of
time of heat treatment at 40, 80, and 100 °C for Al-6.8 at .%
Zn.73 Arrows mark the time interval of effective decomposi-
tion.
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kinetics in the immiscible region has also been investi-
gated by measuring resistivity79 and magnetic suscep-
tibility,80 and by studying nuclear magnetic reson-
ance8 1·8 2 and the MSssbauer effect.83·84 In particular,
the Mb'ssbauer effect can be used very successfully to
distinguish between nucleation and growth mechanisms,
on the one hand, and spinodal decomposition, on the
other hand, in the Fe-Cr system.8 3·8 4 This is so be-
cause one of the equilibrium phases (chromium-en-
riched) is paramagnetic at the working temperature,
whereas the other and the mean composition of the alloy
are ferromagnetic at this temperature. The paramag-
netic peak should, therefore, appear in the nuclear
gamma-resonance method right from the beginning of
the thermal-treatment process if there is nucleation.
On the other hand, during spinodal decomposition, one
should observe only a broadening of the line correspond-
ing to the quenched alloy, and the paramagnetic peak
should appear only at the end of the decomposition proc-
ess. Both phase separation mechanisms were observed,
depending on the composition and the temperature of
heat treatment.

Both ordering and decomposition are possible in some
alloys. A detailed study of the Fe-Al system with these
properties has been carried out by Allen and Cahn.85

The Fe-Al phase diagram has a tricritical point at
which the continuous-ordering line intersects the bino-
dal curve bounding the immiscible region. Depending
on composition and heat treatment conditions, different
sequences of different types of phase transformation and
a large number of final morphologies are observed in
this alloy. Allen and Cahn85 used a thermodynamic an-
alysis to formulate general rules for establishing the
order in which different types of phase transition follow
one another. In particular, they showed that metastable
continuations of continuous-ordering lines into the im-
miscible region were effectively the spinodal curves
in the sense that they bounded the region in which phase
separation of composition components was possible
but only if preliminary ordering had taken place. Elec-
tron microscopy data85 are in qualitative agreement
with these predictions on the sequence of phase trans-
formation mechanisms. Ordering and decomposition
are also observed inCu-Be (Ref. 86), Cu-Ti (Ref. 65),
and Ni-Ti (Refs. 66,87). In Cu-Be, ordering precedes
spinodal decomposition whereas, in Cu-Ti and Ni-Ti,
spinodal decomposition precedes ordering. According
to Allen and Cahn,85 one cannot exclude the possibility
of a change in the sequence of mechanisms in these
systems as the alloy concentration and heat treatment
conditions are varied.

It is important to note that, despite the large number
of publications in which the idea of spinodal decomposi-
tion is used to interpret experimental results, there is
a lack of papers devoted to the quantitative verification
of the spinodal decomposition theory. Measurements of
mutual diffusion coefficients in Au-Ag (Ref. 88) and
Cu-Pd (Ref. 89) are very valuable from this point of
view. The diffusion coefficients have been determined
from the rate of relaxation of composition modulation
produced artificially by layered deposition of compon-
ents from the vapor phase. These measurements have

been interpreted8 8·8 9 as demonstrating the validity of the
modified Cahn diffusion equation (34) in the description
of homogenization kinetics in these alloys.

B. Glasses

Glasses have turned out to be relatively convenient
systems for verifying the idea of spinodal decomposi-
tion. The high viscosity of glasses, and their low dif-
fusion coefficients in the immiscible region, impede
phase separation, so that early stages of the process
can be observed. Moreover, elastic stresses or aniso-
tropy, which usually complicate the decomposition pic-
ture, are commonly absent.

The identification of the phase separation mechanism
is usually the basic problem that arises in the experi-
mental study of phase-separation kinetics. First at-
tempts to detect spinodal decomposition of glasses in-
volved observations of the morphology of liquating
glasses. Cahn33 showed that the two-phase structure
that appeared during spinodal decomposition should be
characterized by a high degree of phase coherence.
This type of structure can be seen during the phase sep-
aration occurring in many glasses (Fig. 4b) and was for
some time regarded as a criterion for spinodal decom-
position.90 However, it was subsequently demonstrated91

that this highly cohesive structure could also appear as
a result of nucleation and growth. This conclusion was
confirmed by Seward et al.,92 who used electron micro-
scopy to investigate phase separation in the BaO-SiO2

system. During the early stages, they observed iso-
lated and almost spherical particles that are charac-
teristic of nucleation, and this was followed by forma-
tion of a highly cohesive two-phase structure. Conse-
quently, as in the case of metal alloys, the morphology
of liquating glasses could not be used as a criterion for
the onset of spinodal decomposition.

More profound information on phase-separation kinet-
ics can be obtained by diffraction methods, namely,
small-angle x-ray scattering and light scattering. Ex-
perimental results have usually been compared with the
linearized Cahn theory, i.e., a check was made on
(3.11) for the dependence of (dI/Bt)/Ik2 on k2. Most of
the measurements were concerned with NajO-SiO2

93'95

and BajOa-PbO-ALjOj.96"98 The specimens were rapidly
quenched from the single-phase region and then held at
constant temperature in the range 350-600 °C. The
scattered intensity was measured as a function of the
angle of scattering and the time of heat treatment. The
overall character of the family of curves representing
I(k,t) is the same as for metal alloys (Fig. 7). Most
publications report that the dependence of / on time was
nearly exponential. However, there were several
cases98"99 in which deviations were noted from the ex-
ponential form during the very early stages of the de-
composition process. Craievich98 has reported that
these deviations may have been due to structural relax-
ation in rapidly quenched glasses.

The most important discrepancies as compared with
Cahn's theory have been found in the case of the ampli-
fication factor Λ as a function of wave number. Accord-
ing to Cahn's theory, R/k2 should be a linear function of
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FIG. 9. R/k1 plotted against ft2 for S1O2-12.5% Na2O glass at
530 "C according to light scattering (a) and small-angle x-ray
scattering (b) data.'5

k2, whereas all experimental evidence shows that there
are considerable deviations from the linear relation,
especially for small k. As an example, Fig. 9 shows
the results of Andreev et al.,35 showing the highly non-
linear behavior of R/k2 as a function of k2 over a broad
range of values of k. Moreover, in most publications,
a common point of intersection of Hk) curves corre-
sponding to different t was not observed in the early
stages. Still more surprising is the fact that a common
point of intersection occasionally appears during the
late stages of decomposition when the linear Cahn theo-
ry is no longer valid." This result was explained by
Srinivasan et al.97 If terms beyond the quadratic term
in the expansion oif(x) are neglected, a rapid transfer
of the system to the region under the spinodal curve
corresponds tol(k, 0)<I(k,t) for a l l* . According to
Cook,38 this means that concentration fluctuations with
all values of k will grow initially, and there will be no
common point of intersection of the curves. When high-
er-order terms are included in the expansion of fix),
the above inequality will cease to be valid for large k
and a common point of intersection may appear.97 The
results reported by Neilson,93 who observed a common
point of intersection in the case of scattering curves
recorded for slowly quenched specimens of SiO2—12.6
mol. % NajO, appear to refer to the nonlinear stages of
decomposition. Moreover, Srinivasan et al ,9 7 detected
local peaks on the I(k) curves during the nonlinear de-
composition stages, which corresponded to higher har-
monics of the fundamental spinodal wavelength.

Simmons et al.100 investigated phase separation in the
NajO-BjOj-SiOj system of critical composition by the
viscosity method. They found a substantial reduction in
viscosity during cooling of the glass from a temperature
substantially exceeding Τc down to temperatures just
below Tc. They used these data to conclude that phase
separation in this system occurred via the nucleation
and growth mechanism. They explained this result by
supposing that nucleation was kinetically more favored
than spinodal decomposition even below the spinodal
curve if the temperature was close to Tc. This conclu-
sion was reached by assuming that the size of the fluc-

tuations necessary to produce a critical nucleus was
less than \c. However, since both quantities, i.e., the
minimum size of the nucleus and the critical wavelength
of instability are of the order of the correlation length
near Tc, there is considerable doubt as to the validity
of this interpretation.

Diffraction data suggest that the spinodal mechanism
operates in glasses during phase separation in the re-
gion of unstable states. There are, however, consider-
able discrepancies between the predictions of the lin-
earized Cahn theory and experimental results. The
agreement between theory and experiment can be im-
proved by taking thermal fluctuations in composition in-
to account.38·97 On the other hand, a more detailed com-
parison between experimental data and the theory of the
early stages of spinodal decomposition will require suf-
ficiently homogeneous quenched specimens to begin
with, i.e., the quenching time must not exceed the phase
separation time. It is not always certain whether this
is so, although acceptable initial conditions have been
achieved in many cases. For example, Zarzycki99 used
an analysis of the Ornstein-Zernike graphs (I'1 plotted
against k2) for Τ > Tc and Τ < Tc to conclude that the
spectrum of fluctuations in a rapidly quenched specimen
corresponded to the fluctuation spectrum above Tc, i.e.,
the quenching conditions were satisfactory.

C. Binary liquid mixtures

Studies of spinodal decomposition in binary liquid
mixtures encounter considerable difficulties because
the characteristic decomposition times are short, due
to the high (in comparison with solids) diffusion coeffi-
cients. It would appear that spinodal decomposition
can be observed in nonviscous liquid mixtures only near
the critical point since, firstly, diffusion is markedly
slowed down in the critical region and, secondly, it is
possible to take the system from the stable to the labile
region through the critical point without going through
the metastable region (Fig. 2).

Spinodal decomposition in liquids was first observed
by Huang et al.101 They used monochromatic-light scat-
tering to investigate phase separation in the methanol-
cyclohexane system near the critical point. The depth
of penetration into the labile region was 2 x 10'3 °K with
the system thermostated to better than 0.4 x 10'3 °K over
a period of 15 minutes. The angular distribution of the
scattered light intensity was recorded by photomultipli-
ers and on photographic film. When the system was
taken into the region of unstable states, a ring corre-
sponding to maximum scattered intensity appeared on
the photographic plate mounted at right-angles to the
incident beam. The radius of the ring corresponded to
a scattering angle of 0.05 rad or a scattered wave vec-
tor km

a 7 x 10" cm"1. The appearance of the ring indi-
cated that a characteristic size Xm = 27r/&m had evolved
in the system. The diameter of the ring remained con-
stant over a period of the order of a few minutes. It
then decreased and the ring eventually disappeared.
The time of existence of the ring decreased with in-
creasing depth of penetration into the labile region.
The wave vector km corresponding to maximum scatter-
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ing amplitude was in good agreement with the wave vec-
tor corresponding to maximum growth as estimated
from Cahn's theory. Over a period of about one minute
after the temperature was reduced, the scattered in-
tensity increased exponentially with constant k. The
graph of R/k2 against k2 was nearly linear for small
values of k, but very nonlinear elsewhere. We thus
have clear evidence for spinodal decomposition during
the early stages.101 However, it has been noted104 that
these results must be treated with caution from the
quantitative point of view because the specimen cell
used in the experiments101 was relatively thick (~1 cm),
so that there should have been a considerable contribu-
tion due to multiple scattering and the time necessary
to establish thermal equilibrium was quite long.

An analogous experimental technique has been used to
investigate spinodal-de composition kinetics in the 2, 6-
lutidine-water system with a lower critical point.102'101

Special attention was paid to the nonlinear stages of
spinodal decomposition, which are characterized by a
time dependence of km, and the integrated intensity of
scattered light. The experimental data were not in
agreement105 with Langer's theory in the mean-field
approximation.41 The phase-separation kinetics in the
spinodal region was found to be very dependent on the
superheating Τ - Te. For Τ - Tc< 2 x 1(T3 "K, the depen-
dence of km and l{km) on t was in good agreement with
the Kawasaki theory.47 However, for Τ - Tc 2 2 x 1(T3 °K,
there was no such agreement, and this may have been
connected with the finite rate of variation of tempera-
ture in the experiment. Microphotography103 was used
to investigate the late stages of phase separation (1 min
•& t s 1.5 h). The growth in the mean size of droplets
was approximated by l~t1/3 for all the values of Τ -Tc

under investigation.

Wong and Knobler106 have used an interesting tech-
nique for taking a binary liquid system into the region
of unstable states. This method is based on the fact
that the critical temperature is a function of pressure.
A critical mixture of isobutyric acid and water, for
which dTjdp = -0.055 °K · atm"1 was taken into the labile
region by rapidly varying the applied pressure at con-
stant temperature. The depth of penetration into the
labile region was between 10~3 and 9.2 x 10~3 °K. The
angular and time dependence of the scattered mono-
chromatic radiation was investigated. In contrast to
previous work,101 l(k) did not grow exponentially even in

. the early stages of decomposition. Wong and Knobler106

do not reproduce the experimental curves for I{k,t) and
discuss only the dependence on time and depth of pene-
tration into the labile region for l(km) and km. In ac-
cordance with Langer's theory in the scaling form,42

they found that the dependence of the scaled quantities
I(km) and km on the scaled time t had a universal form
independent of Tc - T. The data of Wong and Knobler
appear to be more reliable from the point of view of
comparison with theory because their experimental
technique106 ensures a very rapid transition of the sys-
tem into the labile region, and avoids difficulties con-
nected with the finite time necessary to establish ther-
mal equilibrium.

Observations of spinodal decomposition in polymer
solutions have also been reported.107"111 Solutions of
high-molecular-weight liquids are distinguished by high
viscosity and low diffusion coefficients as compared
with low molecular solutions. The characteristic de-
composition time of high-molecular solutions is there-
fore greater than that of low-molecular solutions, and
greater penetration into the region of unstable states
becomes possible.

D. Computer simulations

An interesting new direction in the study of spinodal
decomposition kinetics is computer simulation using the
Monte Carlo and molecular dynamics methods. This
simulation is based on an assumed interaction potential
between the atoms and on the rules for the interchange
of atoms in the lattice. The results of such simulation
experiments do not, of course, depend on the phenom-
enological theory. Thus, Bortz112 has discussed a
simple one-dimensional model of a binary alloy consist-
ing of 200 atoms (100 atoms of type .A and 100 of type B)
with periodic boundary conditions. Each site in the lin-
ear chain was assigned X{ =+1 or Xt = - 1 , depending on
whether it was occupied by an atom A or atom B. The
interaction energy was taken in the form

Ε / 2 ^ XtXj. (5.1)

where «Ms a positive constant and η is the interaction
interval. Since a short-range potential does not yield a
phase transition at a finite temperature in a one-dimen-
sional system, the interaction potential is chosen to be
of the long-range type (n = 15). The evolution of the
system from a random initial configuration is specified
as follows. A pair of neighboring sites is chosen ran-
domly. If these sites are occupied by different atoms,
the possibility of permutation is considered. The ener-
gy difference ΔΕ between the existing configuration and
the configuration after a given permutation is computed.
If the exchange probability

p exp(-AE/AB7·)

exceeds some random number Λ* 1, the two atoms are
interchanged. Repeated application of this procedure
simulates diffusion in the binary alloy. The local con-
centration at the site i is defined as the average over
the setjx,}, i -n^j^i+n, i.e., over all the sites with
which site i interacts. This definition of local concen-
tration satisfies the condition that the concentration
must vary slowly between successive lattice sites and,
if the parameters are suitably chosen, it can be com-
pared with the numerical solution of the generalized
diffusion equation given by (3.4).

One of the simulation experiments112 is illustrated in
Fig. 10. As can be seen, there is a clear periodic
structure at the intermediate decomposition stage (Fig.
10b), which becomes coarser during the later stages
(Fig. 10c). The segregation of two spatially separated
phases is observed for all initial configurations. A
comparison was also carried out with the phenomeno-
logical theory. The evolution of the system described
by the generalized diffusion equation during the early
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FIG. 10. Evolution of concentration profiles In a one-dimen-
sional model system in the region of unstable states. The
distance r along the chain is measured in units of the lattice
constant. T/Te=0.615. a) f = 200; b) t = 1.07 XlO6; c) i = 7.32
xlO6 (time in arbitrary units). Dashed lines show equilibrium
phase compositions.

stages of decomposition is in good agreement with sim-
ulations of the diffusion process. However, it has been
shown112 that, for certain initial configurations, the
generalized diffusion equation does not describe the
coarsening of the structure during the later decomposi-
tion stages: the system remains in the metastable state
(represented by Fig. 10b) for an infinite time. The rea-
son for this is that thermal concentration fluctuations
were not taken into account in Cahn's theory. Monte
Carlo simulations are thus seen to confirm the limited
validity of the generalized diffusion equation given by
(3.4), in accordance with Langer's analysis.41

An analogous technique has also been used to simulate
spinodal decomposition in two-dimensional113·114 and
three-dimensional115·116 systems. Only nearest-neigh-
bor interactions were taken into account [« = 1 in (5.1)].
Bortz et aZ.1 1 4·1 1 6 investigated mainly the behavior of the
structure factor S(k,/). The temporal evolution of this
factor, averaged over a spherical layer in reciprocal
space, is shown in Fig. 11. The peak on the S(k, t)
curve is seen to grow and shift toward smaller k. Sim-
ulation results1 1 5 are in qualitative agreement with nu-
merical results deduced from Langer's theory.42 Bertz
et al.11' have also investigated the cluster size distribu-
tion and the cluster growth kinetics during the decom-
position process.

10 -

0 0.5 1.0 1.5 10 k

FIG. 11. Evolution of the structure factor S{k, T) in a three-
dimensional model system at T = 0.59Tc.

l l s The times (in-
creasing upward) are: 0, 16.7, 28.0, 54.1, 129.7, 215.2,
308.2, 405.7, 507.6, 613.0 (S, k, t in arbitrary units).

An interesting computer "experiment" has been car-
ried out by Abraham et al.117 They simulated spinodal
decomposition in a one-component system by the molec-
ular dynamics method. They carried out a numerical
solution of the classical equations of motion for a sys-
tem of 1372 atoms interacting via the Lennard-Jones
potential, using periodic boundary conditions. As al-
ready noted, spinodal decomposition in a one-component
liquid is difficult to observe because the characteristic
decomposition times are very short. Abraham et al.117

estimate that this time is of the order of 5 x 1O'U sec.
Mathematical simulation can be used to perform an in-
stantaneous transformation of the system to the unstable
state, and offers a unique way of observing the early
decomposition stages at the molecular level. In accord-
ance with the predictions of Cahn's theory,33 there was
a continuous growth in density fluctuations and a coher-
ence structure consisting of regions with high and low
densities appeared in the early stages of decomposition.

6. APPROXIMATE SPINODAL CURVES

The description of nonequilibrium phase transitions
has encountered considerable difficulties. This is quite
clear in the case of spinodal decomposition. The very
definition of a spinodal curve is introduced on the basis
of an extension of the range of validity of thermodynam-
ics that is not fully justified.

Instability conditions of the form (dp/dp)T <0, (δμ/
&Χι)τ < 0 are acceptable only if they can be used to ex-
hibit regions of actual instability of aggregated and
phase states of a given system. This presupposes the
existence of single-valued continuous and differentiable
functions (free energy, the equation of state) beyond the
limit of absolute phase stability, i.e., in the interior of
the binodal curve of Fig. 1, 2 and the segment AabB in
Fig. 12. Moreover, the subcritical van der Waals iso-
thermals with a minimum and a maximum are neither
the result of a rigorous theory nor verified experiment-
ally. They are predicted by the mean-field theory and
certain other approximate models.

A degree of justification for the van der Waals loop is
provided by the following. The existence of supersatu-
rated (metastable) states has been established experi-
mentally. For example, the liquid and gas branches of
the isothermal cut the phase equilibrium line (AcB in
Fig. 12) in opposite directions and penetrate quite deep-
ly into the region of incomplete stability. The initial
segments of the "loop" can thus be located quite defi-
nitely. They are indicated by AA' and BB' in Fig. 12.

FIG. 12. Subcritical van der Waals isotherm for a liquid-va-
por system. AcB is the equilibrium transformation line.
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The metastable state corresponds to a local minimum
of the thermodynamic potential (for example, the free
energy). The height of the barrier that must be over-
come by the system in the course of spontaneous transi-
tion to an absolutely stable state for given external con-
ditions is determined by the work Wt that must be per-
formed to produce the critical nucleus of the competing
phase. However, the free energy of the system has not
one but a large number of local minima of different
depth if we represent the hypersurface F as a functional
of the spatial distribution of the molecules. To remove
the ambiguity in the description of stable states, we
must use a system in which the relaxation time r { are
much shorter than the mean nucleus expectation time
(τ). The metastable state can then be associated with
definite values of thermodynamic parameters that are
independent of the prehistory of the system. The quasi-
static condition in the metastable region can be written
in the form

A bar

where I is a typical linear dimension of the system, v{

is the rate of approach to equilibrium in the t-th param-
eter, and y is the characteristic time of the experi-
ment.

As can be seen, the thermodynamic description of
metastable states presupposes more complete informa-
tion about the system (knowledge of (τ)) than is required
for a completely stable state. Nonequilibrium states
can be described in thermodynamics with the aid of a
"gedanken experiment."118·1194'

The simplest and most convenient object for investi-
gating metastable states and the limits of stability is
the superheated one-component liquid. Active boiling
centers can easily be avoided by using small glass
ampules. The low viscosity of the superheated liquid
guarantees rapid relaxation of its structure which is not
always the case for supercooled liquids. Surface ten-
sion on the liquid-vapor boundary can be measured di-
rectly at different temperatures. These data are essen-
tial if the spinodal curve of a superheated liquid is to be
approximated by the Furth hole theory120 and the theory
of homogeneous nucleation verified. Mean expectation
times (τ) of the order of minutes or seconds have been
observed at temperatures and pressures that are in
good agreement with theoretical predictions.121 Figure
13 shows the saturation line for argon,122 the theoretical
spontaneous-boiling boundary for nucleation frequency
J»100 cm"3 "sec"1, the experimental points correspond-
ing to this value of J, and the spinodal curve.

Direct measurement of the specific volume,122'125 ul-
trasound velocity,128·127 viscosity,128·129 and thermal con-
ductivity130 of liquids with deep penetration into the re-
gion of superheated states have been carried out. All
these parameters cross the binodal curve without singu-
larity. Experimental data indicate that metastable

ft5 Τ,'Κ

FIG. 13. Equilibrium vapor-pressure curve ps(T) and spon-
taneous boiling boundary for superheated liquid argon.
Points—experimental, dashed curve—calculated from the
theory of homogeneous nucleation, dot-dash curve—spinodal.

states do not segregate during a gradual change of
phase.

Figure 14 shows a series of isothermals for diethyl
ether131 in the form of specific volume plotted against
pressure. Figure 15 shows the measured velocity of
sound in liquid xenon.128 Segments of the isothermals to
the left of the line u3 refer to the superheated liquid.
The example of water was used to show124 that the
change in specific volume during superheating could be
accurately described by the international equation of
state constructed with great care for the stable region.

Existing data thus support the conclusion that the su-
perheated liquid (under controlled experimental condi-
tions) is in an internal state of equilibrium. The equi-
librium is incomplete only in relation to the formation
of a new phase (vapor) with known free-energy barrier
w* = W*(P>T)· T n i s is a necessary prerequisite for an
unambiguous thermodynamic description of superheated
liquids.

The spinodal curve can be determined from the condi-
tion (Bp/9v)T = 0 using the equation of state approximat-
ing experimental data in the stable and metastable re-
gions. In addition to Fig. 13, the spinodal curve for
liquid argon is shown in terms of reduced thermodynam-
ic coordinates in Figs. 16 and 17 together with the re-
sults of calculations based on different models and ap-
proximations.132"134

When plotted on \hep,T plane, the spinodal curve of a
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% e note that ^gedanken" experiments requiring the Introduc-
tion of restrictions that are difficult to implement can be
performed by using, for example, the Monte Carlo method
in a computer simulation.
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FIG. 14. Isotherms for diethyl ether with penetration of the
region of metastable (superheated) states of the liquid: 1—9
corresponds to the temperature interval 71.1—186.7 °C, p,—
saturation line, pv—spontaneous boiling line («7» 10*
cm** · sec"1).
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FIG. 15. Velocity of ultrasound plotted against pressure (1 —Τ
= 202.1 °K, . . . , 9 - Τ = 253.5 °K) in stable and superheated (to
the left of the « s line) liquid xenon.

one-component system is the envelope of a family of
isochores.1 2 1 This property can be used to obtain an
approximation to the spinodal curve. This has been
found useful in the qualitative discussion of stability.
For example, it was found, unexpectedly, that the
v(p, T)= const isochores near the melting line were such
that their continuation into the supercooled region could
not be used to construct an envelope. Analysis of this
situation has led135 to the conclusion that a supercooled
one-component liquid does not have a spinodal curve.5'
Each of the aggregated states has only one essential
long-wave instability boundary (9/>/9p)r = 0 (vapor on the
side of supersaturation, liquid and crystal on the side
of superheating or tension).

For two-component stratifying solutions, the spinodal
is determined from the condition (*μ1/&χ1)τ,ρ=0 by ex-
trapolating experimental data from the stable to the
metastable region. The partial vapor pressure pt above
the solution or the scattered light intensity / can be tak-
en as the initial quantity. For given concentration of
solution and angle and aperture of scattering, we have
I'1- (d^^dxj. [In the approximation of linear thermo-
dynamics of irreversible processes, there is also a
proportionality between I'1 and the diffusion coefficient
D; see (2.10).] The reciprocal of the scattered intensity
is an almost linear function of temperature. Extrapola-
tion of this graph can be used to determine the temper-
ature at points on the spinodal for the corresponding
concentrations.6' Figure 2 shows the spinodal for the
isobutyric acid-water system and Fig. 18 shows the
binodal and spinodal of a further system constructed on
the basis of data reported in Ref. 137.

The spinodal of a solid solution is difficult to approxi-
mate because the influence of internal elastic stresses
is difficult to control. In addition, there may be other
unrelaxed parameters. Figure 19 shows the suggested
shift of the spinodal of the Au-Ni solid solution due to
elastic stresses.1 3 8

The spinodal corresponds to the long-wave instability

S)This phenomenon is In agreement with the well-known pro-
position136 that there is no critical point in the crystal-melt
equilibrium, and reflects the qualitative difference between
regular and irregular (amorphous) structures.

6)The stability boundary obtained in this way is sometimes re-
ferred to as the pseudosplnodal because linear extrapolation
into the region of metastable states is not very reliable.

0.7 Ο.δ 0.3 τ

FIG. 16. Spinodal curve for superheated liquid argon in re-
duced coordinates: temperature T = T/TC, pressure n=p/pc:
1—equation of state,1 2 5 2—Furth theory,120 3—Ref. 132, irs—
equilibrium vapor pressure.

boundary. This justifies the use of macroscopic com-
pressibility, specific heat, or the derivative Βμ1/Βχ1 in
obtaining the approximate spinodal. It would be inter-
esting to establish the connection between the short-
wave and long-wave instabilities. If we take the approx-
imation given by (3.1) for the free energy, the onset of
short-wave instability will always indicate the existence
of long-wave instability as well (fe-0). However, we
cannot be sure about the generality of this result. The
relationship between static (thermodynamic) and dynam-
ic (soft-mode) instability criteria is also important.
The pseudoharmonic approximation has been used by
Zyryanov et al. to investigate the stability of a crystal
lattice. They conclude that thermodynamic stability
criteria are quite general. For the example of a linear
chain, they139 show that the onset of dynamic instability
in the ground state is accompanied by a violation of the
conditions of thermodynamic stability.

The spinodal problem is, in many ways, analogous to
problems concerned with the determination of stability
boundaries in mechanics, e.g., in the theory of oscilla-
tions. The fact that, in a sense, states (motions) in the
instability region are unobservable is no bar to the de-
termination of the boundary of this region. On the sta-
bility boundary, the system is not usually described by
the equations from which this boundary has been deter-
mined. However, the behavior of the system in the
stable region contains sufficient information to enable
us to determine the stability boundary to a good preci-
sion. This situation is characteristic not only for me-
chanical but also for thermodynamic systems.

FIG. 17. Projection of the spinodal curve of argon onto the
temperature-specific volume plane, (p=v/vc: solid line—
equation of state,125 1—hole theory,132 2—hyperchain theory,133

3—Percus-Yevick theory 134
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FIG. 18. Phase diagram for the B2O3-Li2O system:137 1—bl-
nodal, 2—spinodal.

Studies of critical phenomena have led to the concept
of nonanalyticity of the free energy at the critical point.
The question is whether the critical point is the only
singularity on the thermodynamic surface of states or
whether this is a property of the entire spinodal. This
question was put forward and discussed in Refs. 121,
140, 141, and 142. It is important to note that, with
increasing distance from the critical point, the region
in which the singularity has an appreciable influence on
the behavior of the medium should contract if the singu-
larity generally persists on the spinodal. Studies of
metastable states have so far yielded no indication that
the approximation of the spinodal based on the "classi-
cal" thermodynamic potential should be abandoned.

7. NUCLEATION AND SPINODAL DECOMPOSITION

Small fluctuations are resorbed in the metastable re-
gion, but they are amplified by the reaction of the sys-
tem in the unstable region. In both cases, the response
of the system to a perturbation of a homogeneous state
corresponds to a reduction in the thermodynamic poten-
tial under given external conditions. Spinodal decom-
position may be regarded as a nonactivated process.
Conversely, a spontaneous phase transition from the
metastable state requires activation. The appearance
of a persistent nucleus in the system is the result of a
sufficiently large (and generally rare) fluctuation.

This can be seen from the following. According to
the theory of homogeneous nucleation,9"12·121 the sta-
tionary nucleation frequency J= 10 cm"3 · sec"1 in a su-
perheated liquid corresponds to W^= &F (the work done
in producing the critical nucleus) of the order of 10kBT.
Such fluctuations can be observed in the course of a
normal experiment only in a relatively large system.

-200
ID 40 SO SO

.<Vt. % Mi

On the saturation line, we have (W^/kBT) — co. The
barrier height G = W^/kaT decreases with penetration
into the metastable region. For a spherical nucleus in
vapor, we have11·121

w *β"°' ( 7 t )
* 3(ρ8-ρ')Μΐ-(»7"·)Ι' * w # 1 '

where σ is the surface tension on the liquid-vapor
boundary, ps is the pressure on the equilibrium line
(binodal), p' is the pressure in the metastable liquid,
and v', v" are the specific volumes of the liquid and
vapor on the binodal. All the quantities in (7.1) are
taken as the usual macroscopic parameters. This as-
sumption seems inappropriate α priori for the descrip-
tion of a microheterogeneous system in which the dis-
persed phase contains 100-1000 molecules.

However, systematic studies of nucleation kinetics in
superheated liquids under different pressures, using
different techniques1 2 1·1 2 2·1 4 3·1 4 4 have revealed satisfac-
tory agreement between theoretical predictions9"12 [see
(2.1) and (7.1)] and experiment. This agreement pre-
vails over a broad range of nucleation frequencies, as
can be seen from Fig. 20. The surface tension σ can be
estimated from the measured nucleation frequency J and
certain other directly measured parameters by invert-
ing (2.7) and (7.1). As a rule, the values of surface ten-
sion estimated in this way differ from the "macroscop-
ic" values by 1-3%, which is within experimental un-
certainty.

It is appropriate at this point to consider an example
illustrating the variation of G,<7, {τ) with the degree of
superheating of the liquid. Let us take diethyl ether at
atmospheric pressure. The saturation temperature Ts

is 34.5 °C. The values Gx = 100 and G2 = 40 correspond to
liquid temperature Tx= 140°C and T2= 148 °C, respec-
tively. These temperatures refer to highly superheated
states of the liquid. The degree of stability of the meta-
stable phase will be judged by considering the spontane-
ous nucleation frequency per unit volume J or the mean
expectation time per unit volume (τ)= l/J. If we use
this approach, we find an enormous difference in sta-
bility (phase transition kinetics) in these two cases.
According to the Volmer-Doring-Zel'dovich-Frenkel

16

ο
181 185 183 T°C

FIG. 19. Binodal (1), '^chemical" spinodal (2), and "coherent"
spinodal (3) of the Au-Ni system according to the data from138.

FIG. 20. Temperature dependence of nucleation frequency J
(cm*3 -sec"1) in n-hexane at atmospheric pressure: solid line—
theoretical, points—experimental,121 1—experiments with min-
iature bubble chamber; 2—superheated drops; 3—pulsed heat-
ing.
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theory, we have

Λ * ΙΟ"" cm"3 s ec 1 , (τ> * 10" sec « 3.10" yr,
/a » 1015 cm' 3 sec"1, <τ> as 10-" sec.

The theoretically predicted increase in J by 26 orders
of magnitude corresponds to a temperature change of
only 8° when the superheating Τ -Ts exceeds 105°. We
have already noted the good agreement between theory
and experiment. For example, when ρ = 1 bar, the val-
ue J = 100 cm"3 "sec"1 is predicted to occur at 143.6 °C,
whereas experiment121 yields 143.2 °C. The experi-
mental and theoretical values of the quantity (dlnJ/dT)
a -(dG/dT) are also close to one another. The radius
of the critical bubble and the number of molecules con-
tained in it are estimated to be r + ~ 5.3 x 10"7 cm, n+
«250.

This example was intended to indicate the existence
of a quite sharp (in supersaturation) boundary of spon-
taneous phase transition of the first kind and the valid-
ity of the predictions of the kinetic theory of nucleation.

The energy characteristic of a nucleus (7.1) can be
supplemented by estimates of the density (concentration)
gradient in the surface layer. If we denote the layer
thickness by δ and the density (concentration) difference
between the coexisting phases by Δρ(Α*), we obtain

We assume that supersaturation is quite large, for ex-
ample, G s 7 0 . Since, in general, the surface layer
occupies only part of the volume of the nucleus, δ <rA,
we have

-=r-. I ' (7.2)

The production of a nucleus by the fluctuation mecha-
nism is accompanied by the appearance of a radial dens-
ity (concentration) gradient in a region of linear size of
the order of r+, satisfying (7.2). In the metastable
state, only a small fraction of local fluctuations will
satisfy this condition. Most of them will be reversibly
resolved. The nuclei cannot appear in unstable states
until the growth of the fluctuation produces a stable sur-
face layer. Individual small portions of the system are
in the metastable region during this process.

The problem of determining the boundary of essential
instability in terms of nucleation concepts was consid-
ered by Gibbs.4 Violation of the condition (9/>/9p)r>0
prevents the appearance of the stable layer separating
the two phases. (One of the phases is assumed to be
dispersed and it is only then that one can ensure equi-
librium between the metastable and stable phases. This
equilibrium is unstable.) Gibbs noted that the spinodal
should be close to the boundary on which surface ten-
sion vanishes. However, if at any temperature σ- Ο
as the spinodal is approached, the barrier height W^
will tend to zero during the nucleation process, and the
nucleation frequency will tend to the maximum value of
about 1029 cm"3 · sec"1. The separation into heterophase
and homophase fluctuations becomes meaningless when
W^%kBT. The mechanism responsible for the phase
transition is modified near the spinodal so that spinodal
decomposition and nucleation form the beginning and
end of a complex continuous process involved in insta-

bility development. As shown above, the diffusion co-
efficient and the amplification factor change sign on the
spinodal in the long-wave limit.

The parameters r+ and (T). may be looked upon as the
characteristic length and time of instability develop-
ment in the case of nucleation during a spontaneous
phase transition from a metastable state. The radius
of the critical nucleus decreases with increasing degree
of supersaturation. The minimum value of r # is of the
order of the correlation length lc. The parameters r^
and (τ) are analogous to \m,R"£ in the case of spinodal
decomposition. This analogy becomes clearer if we re-
call that the minimum instability wavelength \m is also
of the order of /„. The time (τ) is determined by diffu-
sion in the space of/(w)-n, where/(n) is the size dis-
tribution function of the nuclei of the new phase and R'^
is determined by diffusion in ordinary space.

The basic irreversibility of the phase transition is
connected with nucleation and spinodal decomposition.
The reverse transition of a macroscopic two-phase sys-
tem to the single-phase state in the case of a quasistat-
ic variation in external parameters will occur along the
line of phase equilibrium without entering the region of
metastable states.

8. COMPARISON OF THEORY WITH EXPERIMENT

Cahn's theory rests on the basic ideas of Landau's
theory of the self-consistent field.136 As we approach
the spinodal, we can enter a region of strong interac-
tion between fluctuations, where the representation of
free energy by (3.1) may no longer be valid. It is well
known that the condition for the validity of the self-con-
sistent field theory is that the fluctuations are weak,
and this can be expressed in the form of Ginzburg's
criterion1 4 5

Gi <€ Ι ε |, (8.1)

where ε = (Γ - Tc)/Tc and Gi is constructed from the ex-
pansion coefficients of the free energy. It has been es-
timated146 that, in order of magnitude,

where l0 is the correlation length well away from the
spinodal and r 0 is the range of interaction in the sys-
tem. For binary liquid mixtures and liquid-vapor sys-
tems, Gi = 0.01-0.001. The experiments reported in
Refs. 101-106 were performed for |ε |< 10"4. Cahn's
theory and its modifications based on the idea of the
self-consistent field are therefore hardly valid in this
context. Experiments with alloys and glasses are usual-
ly performed with supercoolings | ε | -0.1-1, so that
condition (8.1) may be approximately satisfied.

Patashinskii and Yakub147 proposed the following cri-
terion for the validity of the linearized theory near Tc:

-3Sr<1· ( 8" 2 )

where ε 0 is the reduced temperature of the initial (sta-
ble) state and D is the dimensionless diffusion coeffi-
cient49 which vanishes on the spinodal. It is assumed
that the system undergoes an instantaneous transition
from the initially stable to the unstable state. Near the
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spinodal, where |Z>|«1, (8.2) is more difficult to satis-
fy than (8.1) and one would expect that relaxation is al-
ways nonlinear in this region. This conclusion refers,
above all, to experiments with binary liquid mixtures
in the neighborhood of the critical point. Manifestations
of nonlinearity during the early stages of spinodal de-
composition in the case of experiments with highly su-
percooled alloys and glasses are probably connected
not with (8.2), but with the finite rate of cooling.

When a linear stage of decomposition is known to
occur, the time of validity of the linear Cahn theory,
t,, can be estimated from147

, In (Gi/e,)
f'~ 2i?(*m) ·

When (3.7) is valid, the amplitudes A(k) in the wave
vector interval

remain of the same order of magnitude over the time t,.
For the systems discussed in this review, | ln(Gi/e0) |
<4 and Ak~km. Consequently, we may expect that a
structure with well-defined linear size \m will not de-
velop by the end of the linear stage and the system will
split into "cells" with size variance Δλ~ λ^.147 This is
supported by the fact that the observed95 maximum of
R(k) is much broader than predicted by Cahn's theory.

The conclusion that the system is unstable under the
spinodal for small k<kc and that it is stable for k >kc

remains valid even beyond the range of validity of
Cahn's theory. The overall spinodal decomposition pic-
ture should remain qualitatively valid even when the
idea of the self-consistent field is abandoned. Since the
correlation length predicted by fluctuation theory is
more temperature-dependent (Zc~ |ε |" 2 / 3 ) than in Lan-
dau's theory (lc~ |ε | " 1 / 2 ) , it may be expected that km

will have a stronger temperature dependence than is
indicated by the expression k'^~lc.

The appearance of structure as a result of instability
is a relatively general physical phenomenon. In the
case of spinodal decomposition, it is due to the growth
of fluctuations, in the number of particles and the dis-
persion of the amplification factor in the absence of di-
rected macroscopic flows of heat, matter, and so on,
in the system. Another type of structure appears when
such currents are present, but local thermodynamic
equilibrium and phase stability are maintained in the
system. An example of this is the onset of convection
cells in a horizontal layer of a liquid heated from below.
Another example is the appearance of spatial periodicity
in certain chemical reactions. Such structures have re-
cently attracted considerable theoretical interest.148·149

The behavior of the system near equilibrium is quite
different from its behavior well away from equilibrium.
The appearance of structure is connected with the insta-
bility of the "thermodynamic" branch adjacent to the re-
gion of global equilibrium states. This branch reflects
the linear relation between the current and the corre-
sponding generalized force. The formation of cells
occurs under conditions of irreversibility and dissipa-
tion. The appearance of order is preceded by the
growth of fluctuations as a result of instability of the

stationary state.

Thus, the onset of structure during spinodal decom-
position is not, therefore, an isolated phenomenon with-
out analogies. On the contrary, there is a large class
of processes in which ordering proceeds through insta-
bility and growth of fluctuations in nonequilibrium
thermodynamic systems. Spinodal decomposition is the
limiting case of this class when instability appears in
the absence of organized flow. Evidently, spinodal de-
composition can occur not only in the molecular sys-
tems that we have considered but also in magnetic sys-
tems. It would be interesting to investigate other cases
of spinodal decomposition.

Our review shows that the theory of spinodal decom-
position cannot be regarded as complete. Descriptions
of the "statics" and dynamics of thermodynamically un-
stable states have encountered considerable difficulty.150

Theoretical descriptions of spinodal decomposition re-
ported in the literature are only in qualitative agree-
ment with experiment and, undoubtedly, the theory re-
quires further improvement. Further progress in the
theory will require new experimental data on relaxation
phase transitions involving thermodynamically unstable
states.

The authors are indebted to A. Z. Patashinskii for
discussions and useful suggestions.
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