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Thermodynamic models are discussed for various methods of introducing order in a system (for carrying

out a control process). The concept of entropic efficiency is introduced as a measure of the degree of

irreversibility of various processes (the process approaches reversibility as this efficiency approaches unity

from below). Although the efficiency of the Maxwell demon is much less than unity, it is comparable to

the efficiency of the Carnot cycle. The efficiency of a model for a modern version of the Maxwell demon

is estimated. This modern version is the information approach for producing a population inversion in a

two-level maser. A thermodynamic model for the general case of control processes confirms the

conclusion that the information acquisition and control processes are intrinsically irreversible.
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1. INTRODUCTION

Recent developments in the physics of black holes
have revealed profound anologies with thermodynamics.
If the surface area of a black hole is assumed to be
proportional to entropy, while the surface gravitation
is taken to be proportional to temperature (these as -
sumptions are confirmed in gedanken experiments on
the interaction of a black hole with an incident object),
then it is possible to formulate physical laws for black
holes which are equivalent to the corresponding laws
of thermodynamics.1

In this paper we will not take up the many interesting
questions raised by this analogy (in particular, the rea-
sons why the third law does not hold in all the formula-
tions used in thermodynamics,2 and the analysis of a
new mechanism for obtaining statistical laws from dy-
namics). Instead, we will be concerned only with that
conclusion which can be drawn from this analogy which
is important for the present topic: that, as in thermo-
dynamics, entropy is related to the absence of detailed
information on the internal structure of a system (a
black hole).

It is this fact which has revived the interest of many
physicists in the correspondence between information
and entropy in classical statistical thermodynamics,
and which has served as an impetus for me to return
to a discussion of this question, which is a development
ofRef. 3.

A natural starting point is an analysis of the activity
of the Maxwell demon, which is the simplest thermo-

dynamic model of a control process, and apparently
the first to appear in the literature.

After describing the Maxwell model itself we will
briefly discuss the basic work which has been carried
out to "exorcise" this demon. Then we examine the
model in more detail, finding quantitative relationships
between information and entropy, in accordance with
the purpose of this paper. The useful effect of a con-
trol process is described by a measure of the order in
the system—the decrease in its statistical entropy.
This characteristic is a natural one for a thermody-
namic treatment. Everywhere below we will use the
term "negentropy" (negative entropy); the useful order-
ing effect in the system is called the "negentropic ef-
fect."1'

In Section 4 we will discuss a particular modern ver-
sion of the Maxwell demon: the ordering of molecules
in a two-level maser.

Finally, we will analyze a thermodynamic model for
the control process in a general case, leaning heavily

1 (To avoid confusion, we note that the same effect is called the
"entropy defect" in Ref. 3. This has turned out not to be a
good term, however, because It was used previously In Ref.
15 with a different meaning. It Is the meaning of Ref. 15
which is used in Ref. 16. Incidentally, we note that in using
the concept of "negentropy," introduced by Brillouln,8 we are
nowhere using the "negentropic Information principle," also
formulated by Brillouln. Both the useful effect and the ex-
penditure associated with the entropy Increase are calculated
directly for all the models.
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on the results of Ref. 3.

For all the models considered for the control process
we find that the negentropic effect is much weaker than
the entropy increase caused by energy dissipation dur-
ing the acquisition of information and the control step
proper.

We thus confirm the conclusion reached in Ref. 3:
that information processes are intrinsically irreversi-
ble.

2. MAXWELL DEMON AND ITS EXORCISM

In the penultimate section of his book Theory of Heat
(in the chapter on the molecular theory of the structure
of matter), Maxwell examined limitations of the second
law of thermodynamics. It was in this section that he
outlined a model which was to provoke a stream of pa-
pers which were still appearing a century later. After
formulating the second law as the impossibility of cre-
ating a temperature or pressure difference without per-
forming work, Maxwell gave a description of a model,
which we will reproduce in its entirety here.4

"But if we conceive a being whose facilities are so
sharpened that he can follow every molecule in its
course, such a being, whose attributes are still as es-
sentially finite as our own, would be able to do what is
at present impossible to us. For we have seen that
the molecules in a vessel full of air at uniform tem-
perature are moving with velocities by no means uni-
form though the mean velocity of any great number of
them, arbitrarily selected, is almost exactly uniform.
Now let us suppose that such a vessel is divided into
two portions A and B, by a division in which there is a
small hole, and that a being, who can see the individual
molecules, opens and closes this hole, so as to allow
only the swifter molecules to pass from A to B, and
only the slower ones to pass from Β to A. He will
thus, without expenditure of work, raise the tempera-
ture of Β and lower that of A, in contradiction of the
second law of thermodynamics.*

Maxwell went on to point out that this was only one of
the examples which show that the conclusions we draw
from experiments on objects consisting of huge num-
bers of molecules may prove inapplicable to more sub-
tle observations and experiments, carried out under
conditions such that it would be possible to distinguish
and control the individual molecules with which we
usually deal only in large numbers.

We wish to draw attention to two aspects of this mod-
el. On the one hand, we emphasize that fluctuations (in
the velocities) are being used, and the objects of the
ordering are the individual molecules; a macroscopic
effect is built up as the result of a large number of mi-
croscopic control operations.

On the other hand, and we think this is a more im-
portant point, we have seen here a description of a
process in which the measured values of one parameter
(the velocity) are used to control another physical quan-
tity (the position of the trap door which opens and closes
the aperture), so that there is an ordering in the sys-

tem—a negentropic effect. As mentioned above, in this
sense this model is the simplest particular example of
a model for a control process.

Initially, only the first of these circumstances was
pointed out in the literature. Various modifications of
the perpetual motion machine of the second kind de-
scribed by Maxwell were proposed, and these schemes
made important use of fluctuation effects, [it was
this time that Lord Kelvin (William Thomson) intro-
duced the term "Maxwell demon"; Maxwell himself had
talked in terms of a "being".]

A bibliography of this work was given by Smoluchow-
ski,5 as part of a detailed and clear analysis of fluctua-
tion phenomena carried out in an effort to prove the
validity of kinetic theory. Here it was pointed out for
the first time that the Brownian motion of the trap door
itself would greatly hinder the demon's work and the
operation of similar automatic devices. In particular,
a ratchet drive mechanism with a toothed wheel and a
pawl was discussed,8 and it was concluded from plausi-
ble arguments that it would be impossible to devise a
machine which would operate for a long time through
the use and ordering of fluctuations, specifically be-
cause of the Brownian motion of the control element
itself. Smoluchowski stated5 that a rigorous proof
could be carried out only by statistical mechanics (and
this has been done, in particular, in Ref. 6).

This work by Smoluchowski5 is of considerable inter-
est because it was apparently the first to point out so
clearly the limiting role of fluctuations (the thermal
motion of the molecules or noise) for both the measure-
ments and the control step proper. The implication
here is that energy must be expended on both steps,
which are necessarily part of the control system.2'

In most of the work on this model, the effort has been
concentrated on the first step of the control process:
the acquisition of information. Szilard7 was the first
to point out the relationship between entropy and in-
formation (and essentially used a quantitative measure
of it, which corresponds to that introduced by Shannon).
Analyzing in detail a simplified model which was an ex-
tension of that described by Maxwell, Szilard showed
that for any ordering of the molecules information
should be obtained on the coordinates (or velocities) of
the molecules. In other words, measurements should
be made. This acquisition of information involves an .
increase in entropy in the system, and this increase is
at least no smaller than the entropy decrease resulting
from the ordering of the molecules.

All the subsequent work (by Demers, Jacobson,
Gabor, Brillouin, et ah), which is discussed in detail
by Brillouin,8 has been devoted to estimating the ener-
gy expended on the measurement step in various modi-
fications of the Maxwell demon model (including one

8>In a later book (1914), cited by Szilard (Ref. 7, p. 841),
Smoluchowski mentions the need for an energy expenditure
during control even more definitely, even mentioning the un-
avoidable energy dissipation in the operation of the sensor
and motor regions in the cerebral cortex.
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with a "pressure" demon rather than a "temperature"
demon) and to comparing this energy expenditure with
the useful effect.

If we define the entropic efficiency η of the process
as the ratio of the negentropic effect AN= -AS ' " ' (the
lowering of the entropy of the system as a measure of
its order) to the entropic expenditure AS ( t ) (the entropy
increase due to the energy dissipation in the acquisition
of information and the control), it follows from all this
work that

η = A A , [ t ) < 1 . (1)

The energy expended on the control step proper is, as
a rule, ignored. This result means precisely that the
demon has been exorcised,8 since it shows that the
second law holds.3'

3. ENTROPIC EFFICIENCY OF THE MAXWELL
DEMON

The estimate of the efficiency η in (1) can be improved
by finding more accurate estimates of the energy ex-
pended and by taking into account the energy expended
in all the steps of the process, i.e., in the direct con-
trol of the trap door as well as in the measurements.

Everywhere below we will express the temperature
Τ in energy units, while the entropy S will be in rela-
tive units4' (as, for example, in Ref. 9). Let us first
calculate the negentropic effect AN=-AS('\

We denote by Τ the original gas temperature in the
vessel, while n is the total number of molecules (there
are w/2 molecules in each half, A and B). We assume
that as the demon is working Δη/2 "hot" molecules
pass from A to B, while Δ w/2 "cold" molecules pass
from Β to A. Then temperatures TB and TA are es-
tablished in the respective parts of the vessel, and
these temperatures satisfy

TB--T, \T (2)

To relate θ and An/n, we assume that ε,,,, and ε c o l i ,
the average energies of the "hot" and "cold" molecules,
differ from the initial average energy ε 0 = cvT (cv is the
specific heat at constant volume per molecule) by +Δ ε,
and -Δ 2 , respectively.

After one molecule with energy εο + Δε, has moved
from A to B, while a different molecule, with an ener-
gy ε0 - Δε2, has moved from Β to A (the first step of
the process), a temperature is established in Β which
corresponds to the average energy εf = zo + (2/n){Ac1

+ Δε2), while the temperature established in A corre-
sponds to (ε{=εο-(2/η)(Δεχ + Δε2).

Now considering the successive steps of the process,
we obtain in the {An/2)-th step,

3)We have already mentioned3 the unconvincing attempts in Ref.
10 to prove that this exorcism is only apparent.

4>In transforming to the usual temperature units (degrees), we
should divide Τ by the Boltzmann constant k and multiply S
by the same factor.

The efficiency of this process increases with in-
creasing β, as defined in (3), but it is clear from the
relationship between the average energy and its disper-
sion that we have β s 1.

It is obvious from the very meaning of the model that
we have * « a, where a is the fraction of molecules
which meets the energy requirements. For maximum
efficiency we should choose a = <*mai= 1/2. In this
case the "hot" molecules should be chosen as all those
whose velocities exceed the rms value -Γϋ\ correspond-
ing to the initial temperature Τ (with an analogous
choice of "cold" molecules). Then using (3) we can
write

*=^<w<i, p-i. e«. (4)

Strictly speaking, a decreases in each step of the
process in accordance with (a(i + 1)= a(i)[l - (4/w)])
[see the derivation of Eq. (3)] because of the tempera-
ture change, i.e., the shift of the average energy.
Furthermore, there are many other factors which would
lead to a stronger inequality.

κ < ί . θ « ! . (4')

However, since these other factors are of a technical,
rather than fundamental, nature (as will be seen from
the description of the scheme for selecting molecules),
we will not use condition (4') below.

For an ideal gas with n molecules, the entropy is*

S=n(cvlnT+ const).

Adopting the notation S,o = 2S(n/2, T) and S ( u = S(n/2,
TB) + S(n/2,TA), we can write Sln - S f l B = -AS (-'= AN
= _(w/2)cKln[l+ (ΔΓ/2Γ)][1 - (ΔΓ/2Γ)].

Using (3) and (4), we find the final equation for the

negentropic effect:

To determine the efficiency η in (1), we will estimate
the entropy increase ASU)= AS/*' + AS2'*' due to the
energy dissipation during the acquisition of information
(ASl *') and during the step in which the trap door is
actually moved

For this purpose we consider a specific scheme for
selecting molecules. We restrict the measurement of
the molecule's velocity to an observation of this vel-
ocity in a specified volume element. The velocity is
determined from the Doppler shift of the frequency ν
of the signal used to prove the volume element.

In order to select all velocities » ϊ -/if (i.e., with
a =* 1/2) and to separate accurately the "hot" molecules
from the "cold" ones, we can use two measurement
systems. In the first we use several detector (m » 5),
each of which detects molecules in a comparatively
narrow velocity interval 5v (or a narrow energy inter-
val δ ε < Δε !, Δε,). In the second measurement sys-
tem we use a wide-band detector with a sharp band
edge.

In the first measurement system, the probability for
each detector that a "hot" (or "cold") molecule will be-
long to the appropriate velocity interval is q = a/m
« 0.1. In the second system, this probability is q— a
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«0.5.

In both cases, however, the a priori probabilities for
the detection of the appropriate molecule ("hot or
"cold") are a »0.5. Then in each measurement it is,
generally speaking, necessary to acquire an amount of
information 1λ equal to In2. Because of the nonzero
probability w for false operations of the detector,
caused by thermal noise, the amount of information
acquired in the observation is /x <ln2, and this amount
of information becomes smaller as w approaches 0.5
(attt> = 0.5, 1^=0). The decrease in w, however, re-
quires an increase in the energy from the probing sig-
nal, E.

Let us carry out a calculation for the first measure-
ment system (that consisting of several narrow-band
detectors). Our motivations for choosing this system
are that, first, only in this case can we correctly take
into account the delay between the observation time and
the time in which the trap door is opened and, second,
the noise level is higher in a wide -band detector (in
the second measurement system).

We choose the characteristics of the gas and the di-
mensions of the trap door such that τ, the average
time between collisions of molecules with the trap door,
is equal to r, the duration of the probing signal. This
latter quantity is in turn equal to the time constant of
the matched detector (and the time required to open the
trap door). We note that if τ < τ then "harmful" mole-
cules will be incident at the time the door is opened and
will degrade the efficiency. If τ> τ, on the other hand,
the efficiency would not be affected, but the time re-
quired for the entire apparatus to work would be in-
creased. Although a false operation in this case would
allow the passage of a "harmful" molecule only with a
probability τ/τ, the number of such events would in-
crease by a factor of τ/τ.

For efficient operation of the device, the probability
w for a false detection in each time interval τ must be
low. Let us find this probability.

A matched detector which is tuned to the frequency ν
(which corresponds to e h o t or ε ΜιΛ) and which has a
time constant τ= 1/Δ ν, where Δ.ν is the passband, is
a system with one oscillatory degree of freedom. For
low frequencies (Ru« T) this system is similar to a
classical oscillator, for which the probability of ex-
ceeding the energy level Et is known to be w = exp(-£,/
T). At the entrance to the detector, the signal energy
Es must thus exceed the threshold Et = T ln(l/w). We
can write an equation for the amount of information,
h(w):

I1-\a2-w\n!±—(1—») In —-^-.

The values of w and thus E, are found by maximizing
the efficiency

ΐ,τ
- J — -*max.

We find

"-"opt '" 0 · 0 4 ·
£,>£,-= Γ In-i-, E,-*CT, C> 5. (6)

The energy of the signal reaching the detector is dis-

sipated, and it increases the entropy of the heat reser-
voir. If the total number of detection events is Δη
= xw, the entropy increase is

A5p> = Cx«, C>5. (7)

The amount of information obtained is Iarl <xn In2. It
can thus be seen from (7) that the entropy cost of a unit
of information during the detection step is higher than
Τ (for the general case of measurements, the extent to
which this cost exceeds Τ is much greater; see Ref. 3
and Section 5 of the present paper).

To determine η in (1) we must also take into account
the energy expended on the control step proper: the
opening of the trap door. Repeating all the arguments
which we made regarding the detection, we can easily
show that the energy which should be expended on con-
trolling the trap door (to avoid false operations due to
the fluctuations in the trap door itself) should be the
same as the energy expended during the detection. In
other words, the total entropy increase in the system is

Δ5'+> = 2&S['' = 2Cxn > ΙΟκπ. (8 )

In this particular control model, the second step (the
control step proper) increases the expenditure by a fac-
tor of only two (in comparison with the first step, i.e.,
the measurement step). In general, on the other hand,
this increase can be much greater, so that we cannot
ignore the second step in calculating the entropic ef-
ficiency of the control process (Section 5).

From (5), (8), (4), and (1) we finally obtain

η < -jf- θ ΕΞ αθ, α < 0.06 (9)

for all real values of cr and j3.

We emphasize that the efficiency of direct heating
(and cooling) is much higher, even if the process is
definitely irreversible. If we use heat reservoirs with
temperatures TB and TA, respectively, we find

Using this equation along with (5) we find (regardless of
Θ)

η = 0.5. (11)

In contrast, the efficiency of the Maxwell demon de-
pends on θ and does not exceed 0.06 [see (9)] even at
the maximum possible values in (4) (these maximum
possible values are essentially unattainable). We thus
see that the efficiency of the Maxwell demon is in fact
low [(9), (4), (4')], but comparable in order of magni-
tude (if θ « 1) to the thermodynamic efficiency of the
Carnot cycle for heat engines:

(12)

It is worthwhile to compare η with TJC, despite the
very different physical meanings of these quantities:
the former is a measure of the irreversibility of the
control process (the creation of order in the system),
while the latter is a measure of the efficiency of the
reversible conversion of heat into work. In order to
extract work from the system, however, we need both
the first and second steps. A comparison of η with η 0

shows that if the first step is implemented by an infor-
mation method its efficiency will be the same (in order
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of magnitude) as η ο the maximum efficiency of the sub-
sequent use of the negentropic effect.5'

To conclude this analysis of Maxwell's paradox, we
note that equations analogous to (5) and (8)—(11) are
found in the Case of a "pressure demon,*8 in which case
the role of Δ Γ / Γ is played by AP/P=An/n, and the
heat reservoirs are replaced by barostats [for a cal-
culation analogous to (10)].

In summary, the example of the Maxwell demon shows
that the entropic efficiency of the control process is
low [(9)]. Before we analyze a general thermodynamic
model for the control process, we will briefly discuss
an example of the use of an information method to sep-
arate molecules in a maser, which is pertinent to our
topic.

4. THE AMMONIA-BEAM MASER: A TWENTIETH-
CENTURY MAXWELL DEMON

Certain methods used to create a population inversion
for lasers operating at a high frequency v(hu» T) may
be called "high-power" methods.1 1 For example, there
can be direct pumping from the lower level to a higher
level, which is the third energy level (the auxiliary
pump frequency is va > v). This method makes use of a
difference in the time constants of the thermal relaxa-
tion processes.

There is another method for creating a population in-
version which is interesting from the thermodynamic
standpoint: the direct conversion of thermal energy
into coherent emission. Without going into the details
of this (thermal) excitation method (see Ref. 12), we
note that in this case an equilibrium distribution is in-
itially established for all. three levels. This distribu-
tion corresponds to the heater temperature. Then, at
the temperature of the refrigerator, a population in-
version is achieved between the lower and intermediate
levels because the time for relaxation between the up-
per and intermediate levels (at the frequency of the id-
ler transition) is much shorter than the times corre-
sponding to the other two frequencies (the signal and
auxiliary frequencies). Konyukhov and Prokhorov12

have shown that the quantum efficiency here is less than
the efficiency of a Carnot cycle: η, « r\c.

For two-level lasers with a low signal frequency
(hv« T), the number of excited molecules is compara-
ble to the number of unexcited molecules. Therefore,

s*The step of the subsequent useful exploitation of the negen-
tropic effect lies outside the control process under discus-
sion here (and the object of the work lies outside the thermo-
dynamic system under consideration here). Analogously, the
source of the initial negentropy (deviation from equilibrium),
whose presence is mandatory not only in the direct-heating
method but also in the Maxwell demon model, lies outside
the system under consideration. This source may be, in
particular, some device which generates signals, whose en-
ergy (per degree of freedom) must exceed Τ [see the deriva-
tion of (7)J. Alternatively, it could be a radiation source with
a temperature TR>T (since the frequency ν must satisfy the
condition hv>T; Ref. 8). Furthermore, an energy source is
of course required to actually move the trap door.

in such devices the most efficient way to create a pop-
ulation inversion is to separate the excited and unex-
cited molecules physically. This method is naturally
called an "information" method. This was the operat-
ing principle of one of the first masers: the ammonia-
beam maser. 1 1 ' 2 1 ' 2 2

Here the function of the Maxwell demon—separating
the excited molecules from the unexcited molecules—is
performed by an inhomogeneous electric field, which
deflects the unexcited molecules toward a strong field,
while the unexcited molecules are deflected toward a
weak field.1 1·2 1·2 2

If a sufficient number of excited molecules enter a
high-<? resonator per unit time, self-excitation condi-
tions will be satisfied, and the maser will operate con-
tinuously.

To estimate the entropic efficiency and the quantum
efficiency12 of this maser, we will calculate the sep-
aration negentropy AJV= -AS'~) for two types of nonin-
teracting molecules, differeing only in energy. The
separation entropy AS(') obviously differs from the
mixing entropy6' of the gases (-AS('}) only in its sign.

We first note that the partial densities nU)/n and «'"'
/n of the two molecular species are completely gov-
erned by hv, the difference between the energies of the
two levels, and that these partial densities vary mono-
tonically as the parameter *^hv/T is varied. Here n
is the total number of molecules, and »'*' and «'"' are
the numbers of excited and unexcited molecules, r e -
spectively.

For an ammonia-beam maser at room temperature,
we have

η \ — χ η η Ι ηhv .

= — «ι ,

In the opposite limiting case, we have

r » l , H'+) = -

(13)

(14)

Like the partial densities, the separation negentropy
AN is a monotonic function of the parameter x.

In the present case AN can be calculated easily if we

6>A huge literature has grown up on the mixing paradoxes
(Gibbs et al.). Here we will consider only some recent pa-
pers. Bazarov13 points out that there is a discontinuity in the
partial density of a gas at the transition from a mixing of
this gas with some other gas, with an arbitrarily small dif-
ference in properties, to mixing with an identical gas.
Gel'fer et al.u correctly point out that this explanation (or
any similar explanation) fails to resolve the paradox, whose
essence is the discontinuity (here the discontinuity is not
eliminated, but simply shifted from one concept to another)
(Gel'fer et al.li also give an extensive bibliography on the
question). In accordance with the general interference prin-
ciples of quantum mechanics, a continuous parameter of the
proximity of the two particles is introduced14: the scalar
product of the Φ functions corresponding to the internal
states of the gases being mixed. The mixing entropy turns
out to be a continuous function of the degree of nonorthogo-
nality of the internal states of gases, and there is a continu-
ous transition from the complete identity (Φ = 1) to complete
dissimilarity (Φ = 0).

375 Sov. Phys. Usp. 22(5), May 1979 R. P. Poplavsfcii 375



use the familiar expression for the entropy in terms of
the free energy9 and write this free energy in terms of
the partition function Z, singling out in this function the
one term in which we are interested (per molecule):

i JV=— AS<-) = ln i

Then for arbitrary hv/T = x we find

(15)

In the two limiting cases we have

ΔΛ" ™ A/ = 8

xe~x-\-e~x ss xe~x, x ̂ > 1,

(16)

where Δ/ is the average amount of information ob-
tained in the separation of a single molecule.

To calculate the entropy expended here we should es-
timate Q, the energy dissipated (in the heat reservoir)
during the separation. During separation in an in-
homogeneous field, each molecule experiences a de -
crease in potential energy by some amount Γ/. This
energy is then dissipated; i.e., Q=U. The value of U
is easily related to the reliability of the separation.
For reliable separation, we must obviously have

f=£eoi. (17)
since there is always a probability w for a Brownian
transition of an unexcited molecule into the region in-
tended for the excited molecule (and vice versa). Using
w>0, we see that the negentropic effect in (16) de-
creases by an amount

= ιι>1η — + (1 — w) In
1 — w

(18)

which is equal to the loss of information due to the
thermal motion.

For the second limiting case (x» 1) we can easily
find an estimate for C in (17), since the condition
(w = e-u'T^e-x = nuy/n) must hole [see (14) and (16)].
From (16) and (17) we find

Δίι*) > χ > 1, η^β-«<1; (19)

in other words, the entropic efficiency is extremely low
in this case. The case in which we are primarily in-
terested is the first case [ « « 1 in (16)], which corre-
sponds to the ammonia-beam maser for which (13)
holds.

Using U=Q=Tln(l/w) [see (6)], and taking the actual
negentropic effect from (16) and (18), AN*=AN - ΑΙ*,
we can easily find the range of w corresponding to the
maximum efficiency:

0.04,
(20)

However, in the ammonia-beam maser, the separa-
tion negentropy is by no means completely exploited:
all that we can count toward the "useful effect" is the
energy stored in the excited molecules at the frequency
v. Using (13), {11), and AS{t) from (20), we find the
quantum efficiency to be

*<1, C«5. (21)

tion), the subsequent use of the negentropic effect is
related to the low efficiency, η, « η in (20).

In the other limiting case (x »1) we have η, = η in
(19), but here the entropic efficiency of the separation
is itself extremely low. This circumstance may be one
reason why this limiting case is not achieved in prac-
tice.

5. THE GENERAL CASE: THERMODYNAMIC MODEL
FOR A TRANSDUCER, THE SIMPLEST UNIT OF A
CONTROL SYSTEM

Any controlsystem necessarily includes a transducer,
a very simple unit whose operation can be described as
follows: when a certain value of a continuous scalar
physical quantity I is established at the input of the
transducer, the transducer produces at its output a
value of some other physical quantity r which is in a
one-to-one correspondence with the value at the input.
Let us assume that I and r are internal parameters
characterizing the states of two respective systems:
the system being studied and the system being con-
trolled. We assume that both systems are in a con-
stant-temperature chamber with a temperature 7 and
that the systems do not interact before the conversion
process. In this conversion process the system being
studied and the system being controlled are put in an
interaction state such that energy is exchanged between
these systems, with the result that the particular value
of r in one-to-one correspondence with the particular
value of I is established with the necessary accuracy.
Since the function r(l) is single-valued, it is obvious3

that the manifold of states of the system being studied
must be no smaller than the manifold of states of the
system being controlled: σ, « ar. Here the relative
errors are

y ΔΡ σΓ<σ< (22)

where &r2 and ΔΓ are the mean square thermal fluc-
tuations of the corresponding parameters;

— ' u r n — 'mini

= i m a x — /min» (23)

In other words, and as usual (see the preceding sec-

and σ is the given relative error of the transformation.
The relative accuracy l/σ, is a measure of the effec-
tive number (manifold) of different values of the con-
trolled parameter.7'

The thermodynamic model for the transformation
describes the elementary control event (in the simplest
case, this is a single event, if there is only a single
transducer in the control system). On the other hand,
this model allows us to determine all the basic aspects
of the control process (from the thermodynamic stand-
point) and to determine the principal characteristics of
this process: AN, AS(*\ and η. For brevity we will
thus call this model the "thermodynamic model of the
control process."8'

"The controlled parameter r is simultaneously the controlling
parameter for some object (or process) lying outside this
model [see also footnote 5].

"Generally speaking, there are multichannel systems of dis-

376 Sov. Phys. Usp. 22(5), May 1979 R. P. Poplavskii 376



If the function r(l) is linear, this model for the con-
trol process corresponds precisely to the measure-
ment-process model studied in detail in Refs. 3 and 17.
the only distinction is that here the control element
corresponds to the detecting element of the measuring
instrument, while the controlled parameter r corre -
sponds to the detection element φ.

Following Ref. 3, we assume that the a priori dis-
tributions of I and r are uniform on the intervals 5/ and
5r in (23). This is a natural assumption for a study of
the extreme values of the entropic efficiency η, since
this assumption maximizes the negentropic control ef-
fect (in comparison with the effect corresponding to
other possible distributions over the intervals).

It follows from Refs. 3 and 17 that in order to achieve
the specified control accuracy, (22), the interaction en-
ergy U (the energy transferred from the system being
studied to the system being controlled or vice versa)
must increase in proportion to l/σ 2. The energy dis-
sipated in the control process is Q= U if the control is
carried out promptly (within a limited time), or

Q>Qmm=2VUT"^§-, -£r>*s<«>\si*in=l·. (24)

where Qmln and A S ^ correspond to the optimum re-
tardation of the switching process (by a factor 1/σ).

If the function r{l) (r is the parameter being con-
trolled, and I is the one being measured) is monotonic
but not linear, then this functional transformation is
on the average energetically equivalent to a linear
transformation. If, on the other hand, r(l) oscillates
over the entire range of values, then the maximum en-
ergy expenditure increases in proportion to m, the
number of regions within which the function is mono-
tonic,3 since al = or/m.

The negentropic effect is estimated in Ref. 3; for this
particular model, this effect is a measure of the result
of the interaction between the two systems (in this case,
the system being studied and that being controlled):

— ASl-> = AN=la—xAI. (25)

The entropic efficiency of the control process is thus

AN (26)

We note that, while the control process necessarily
involves a negentropic effect, a negentropic effect ap-
pears in the measurement process only if the result of
the measurement is put in the form of a scalar physical
quantity φ (for example, the angular deflection of a
spring-loaded needle). Then this quantity can be used
for the control, either directly (if the control element
is on a common axis with the needle, (p = r) or after a

crete (relay) control, rather than continuous control, in
which the control accuracy is governed by the number of
channels, and the transducer which we are talking about here
is not present. The thermodynamic model for such a system
is less natural and more complicated to analyze. Without
going into the details of the discrete-control model, we can
point out that the entropic efficiency of such systems is no
better than the extreme value of 77 achieved in continuous
systems.

transformation r(<p) (if there is a potentiometric pickup
at this axis). The efficiency is of the same order of
magnitude in these two cases [but a coefficient of 1/2
appears in (26) during the transformation]. Β is this
model of the measurements (which are naturally called
"active") which is the basis for the analysis of the mea-
surement process in Ref. 3. It is pointed out in Ref. 3
that frequently only the first step of the process de-
scribed in Ref. 3 is said to be a measurement (e.g., a
detection), when the result of the measurement must be
transformed by some device into a scalar physical
quantity in order to be used for control purposes.

If this transformation [with ASU) ~1/σ; see (24)] is
assigned to the control step proper, then the energy
cost of the measurement in the detection step (a "pas-
sive" measurement) is much lower. It can be shown
for the general case19 that if σ « 1 then

p = wo = σ ,

C, >2
(27)

(p is the probability for a false detection in one ele-
ment). In this case, however, there is no negentropic
effect in (25), so that it is meaningless to talk of the
entropic efficiency of a "passive" measurement.

To conclude this section, we will briefly discuss some
generalizations of this model for the control process in
two directions: in the case in which the parameter be-
ing controlled depends on several physical quantities
Wtiuht · · ·)] and i n t n e c a s e i n which the object being
controlled is separated from the system being mea-
sured in space or time. In both these cases, the sys-
tem being controlled interacts with some image (model)
of the system being measured, rather than directly
with this system. Then it is necessary to expand the
control model, incorporating in it the following steps
(processes): information processing, information
transfer, and information storage. These processes of
course require a separate detailed analysis.3'18·19

Here we will simply discuss briefly the physical mean-
ing (from the energy standpoint) of the information-
representation methods which are used in the transfer,
storage, and processing of the information.

We first note that these processes are not directly
related to the negentropic effect—only to the transfer
of information from one point to another, a duplication
of this information, and its conversion. In these steps
we can thus save a lot of energy by putting the scalar
case aside and adopting a positional representation of
numbers (only in the last step, the control step proper,
do we have to transform back to the scalar representa-
tion of the controlled parameter r). In the case of a
one-to-one transformation of a scalar quantity into a
vector quantity, each component of the vector need be
specified much less precisely; in the extreme case it
may be sufficient to distinguish between two states:
the presence or absence of a signal. Although an in-
crease in the number of components (in the dimension-
ality of the vector space) is accompanied by a more
stringent requirement on the reliability \/w (i.e., on
the probability w for a switch of the signal in any of the
components into another digitization interval), the en-
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ergy cost of an accurate representation of the entire
number decreases.

We emphasize that all the known methods for reducing
the energy cost of an accurate representation of num-
bers necessarily involve an increase in the time.

This increase in the time, however, reduces the en-
ergy cost only down to certain limits. Although these
limits are different for different information processes,
they are always finite: the energy cost of the informa-
tion cannot be made arbitrarily small, even if an ar-
bitrarily long time (or an arbitrarily wide frequency
band) is available.

In the measurements, the conversion from the be-
havior of ASU) ~1/σ2 to the behavior AS<*> ~1/σ is
associated with the optimum retardation of the switch-
ing process3 (by a factor of 1/σ).

By dropping the scalar representation and adopting
the vector representation, we obtain the following be-
havior: AS~lna(l/a) for a positional coding method, in
which case the time At (or the frequency band) is in-
creased by a factor ~1η(1/σ), or ASu>~ln(l/a), in the
case of single-position coding,"' with At-1/σ (Ref. 19).

The Shannon redundant coding method, which uses a
positional representation with auxiliary (check) posi-
tions, is asymptotically the best method (in terms of
the product ASU)At). In this case a further increase
in the dimensionality of the vector space makes it pos-
sible to detect and correct errors of a certain multi-
plicity, so that the requirements on the probability ρ
for a distortion (and the requirements on the signal-to-
noise ratio) in a single position are relaxed. In this
case we have AS(t) ~1η(1/σ), and the corresponding in-
crease in the time is by a factor of only In (l/σ). Even
with the best coding methods, however, the energy cost
per unit information18 is greater than T, i.e., ASU)

> /, and the entropic efficiency is η « 1 [see (26)] (since
a negentropic effect is given only by those information
processes which involve control of an "active" mea-
surement, i.e., which involve a scalar representation
of numbers).

6. INFORMATION AND ENTROPY

A distinction should be made between two aspects of
the correspondence between information and entropy.

One aspect is related to the statistical interpretation
of entropy (which goes back to Boltzmann and Gibbs),
as a characteristic of the incompleteness (indefinite-
ness) of the information on the internal structure of
the system when its macroscopic parameters are spe-
cified (see, for example, Ref. 2). Here it is pertinent
to go back to the analogy with black holes,1 brought up
in the Introduction. Bekenstein20 has formulated and
studied on certain examples a generalized second law
of thermodynamics for the physics of black holes: the
sum of the entropy of the black holes and of the entropy
of the matter outside them can never decrease. It is

important to note that the increase in the entropy of the
black hole as it captures some external object is di-
rectly characterized by a loss of information about this
object. Working in this manner, and using the exam-
ple of the capture of an elementary particle without any
internal structure (so that the information loss is one
bit), Bekenstein80 defines a dimensionless factor which
relates the entropy of the black hole to its surface area.
Then, as in thermodynamics, the decrease in the in-
formation (-Δ/) about the internal structure naturally
corresponds, by definition, to an increase in the en-
tropy (+AS) of the system. The fundamental distinction
is that in thermodynamics there is the possibility of
again compressing or cooling the gas, i.e., of reducing
its entropy (-AS("' = AN), while the entropy of an ob-
ject in a black hole is at the maximum for the given
mass and cannot be reduced: information on the inter-
nal structure of the black hole is strictly inaccessible
to an external observer. We note that the negentropic
effect in a gas which we mentioned,

-Δ5"-' = ΔΛ' = Δ/ , (28 )

is achieved by a "noninformation" method: upon com-
pression (or cooling), there is a decrease in the uncer-
tainty of the coordinates (or velocities) of all the mole-
cules simultaneously.

Then by comparing two analogous thermodynamic
systems with different entropies (Sx -S 2 = AS'"'), we
are justified in asserting, in accordance with (28), that
this difference is governed precisely by the different
amounts of information about the internal structures of
these systems. Furthermore, if the gas molecules are
acted upon collectively it is possible to approach a re-
versible process arbitrarily closely, i.e., to achieve
η = 1. This statement means that in these cases (and
only in these cases) equal signs apply in Brillouin's
negentropic information principle,8 which in our nota-
tion is:

AS' Μ > ΔΛ'. (29)

" i n this case (as in the case of detection), the number is rep-
resented by a pulse in one of the l/σ possible positions.

A completely different aspect of the correspondence
between information and entropy is the acquisition of
information on the macroscopic states of a thermody-
namic system and generally all ordering (or control)
processes which are brought about by information
methods. It has been shown for the models discussed
above that all the information processes are inherently
irreversible. Making the assumption that, taken to-
gether, these models give a fairly complete picture of
the ordering (or control) methods which are possible,
we will point out their common and distinctive features.

From (29) we see two basic factors which lead to
η < 1. In the first place, regardless of the method used
to acquire the information, there is a strict inequality
AS'*' > Δ/ on the left side of (29). In other words, the
energy cost of a unit of information is definitely higher
than T.

Second, if the transition Δ/— ANis taken into ac-
count accurately, then the negentropic effect is smaller
than the information effect in the case of ordering also;
in other words, a strict inequality also holds on the
right side of (29).
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A distinctive feature of the control model with a Max-
well demon is that the measurement step can be limited
to a detection—without the subsequent conversion of the
result of the measurement into a scalar quantity. This
circumstance arises when the quantity to be measured
is a time—not a time interval but a particular instant;
only in this particular case can the result of the ob-
servation be used directly for control. The energy cost
per microscopic control step is thus governed by (6),
rather than by (24).

In the subsequent steps, however, the inefficiency of
the control of individual molecules becomes apparent:
even the temperature effect is smaller than the infor-
mation effect (for a single step, δΤ/Τ=4/η, and /
= ln2), and the negentropic effect is much smaller yet
[see (4) and (5)]. The reason for the second order of
smallness, AN- Q2, is that the effect is of a difference
nature1 0 ' (Γ and S decrease in only one half of the ves-
sel; they increase in the other half). In this case,
however, the costs are summed [see (7) and (8)]. The
ultimate result is a value η« 1 in (9).

The heat-reservoir method for cooling (and heating)
is much more efficient, as mentioned above, because
of the collective (noninformational) nature of the effect
on all the molecules. Even in an irreversible process
of this type, we would have η = 0.5 [see, in particular,
(11)].

At this point it is appropriate to move on to the next
model and to note a distinction feature of the collective
effect during the separation of two molecular species
which is different for the two species (i.e., an informa-
tional effect).

In these cases the control (separation) occurs simul-
taneously with measurement (of the detection type), and
the negentropic effect is equal to the informational ef-
fect. In this case both the expenditure [see (6) and (27)]
and the loss in the negentropic effect [see (18) and (16)]
are completely governed by the separation reliability
1/w. The requirements on this reliability depend on the
a priori probabilities π1} η2=1-ττ1 for observing (for
the presence of) two molecular species. The best
separation conditions correspond to the ammonia-beam
maser:

χ C 1, πχ » jia = l/2

[see (13)]. Maximization of η leads to comparatively
high values [~0.1-0.2; see (20)]. In general, on the
other hand, we have the requirement

w <; min {π,, jt2},

and in the case χ » 1 [see (14)] this requirement leads
to an extremely low efficiency in (19).

Finally, for the general case of control on the basis
of a macroscopic parameter we have AN= (0.5-1)Δ7,
depending on the expenditure on the transformation in
the switch from measurement to control [see (25) and
(26) and the following paragraph]. The low efficiency
in (26) with a high control accuracy l/σ can be attrib-

1 0 )In the Carnot cycle, the useful effect is again of a difference
nature, so that we have % « © in (12).

uted to the extremely unfavorable expenditure of ener-
gy [which increases exponentially with increasing Δ/;
see (24) and (25)] on the "active" measurement and the
control or the representation of the information in
terms of one physical quantity (in one degree of free-
dom of the system). It is for this reason that always
whenever a scalar representation of the information
(numbers) is not required, various positional (vector)
methods are used to represent the numbers in accor-
dance with the preceding section. These positional
methods correspond to an energy distribution with re-
spect to many degrees of freedom.

The entropy thus supplements [see (28)] only the in-
formation on the microscopic states (on the internal
structure) of the system.

However, all the methods for acquiring information
on the macroscopic states of the system and on its or-
der are strictly irreversible (77 <1).
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