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The basic results of the theory of nonlinear acoustic phenomena in metals and semiconductors are
reviewed. Short-wavelength sound is assumed: the ultrasonic wavelength is taken to be far shorter than
the mean free path of the conduction electrons. The case in which the interaction of the electrons with
the sound wave can be described by classical mechanics is studied. The basic purpose of the review is to
discuss the theory for nonlinear absorption of sound, which gives the absorption coefficient as a function
of the sound intensity. The nonlinearity results from an effect of the field of the sound wave on the
motion of "resonant" electrons, i.e., particles which are moving in phase with the sound and which
determine its absorption. This effect leads to a substantial distortion of the (quasi-) momentum
distribution of this relatively small group of particles. For this reason, this nonlinearity is called the
"momentum" nonlinearity. The particular parameters which are the measure of this nonlinearity in
different situations are identified. The particular features of the momentum nonlinearity in the presence
of a magnetic field are discussed. An extremely unusual variation of the absorption coefficient with the
magnetic field which occurs in very weak fields (of the order of a fraction of an oersted) is described.
Weak fields at this level do not affect the linear absorption. This unusual variation is due to a
suppression of the nonlinearity by the magnetic field, which provides an additional mechanism for
removal of particles from the resonant group.
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1. INTRODUCTION

In this review we are concerned with the theory of the
non-linear acoustic effects which occur in metals and
semiconductors as short-wavelength sound propagates
through them. For our purposes the wavelength X<s>

is " s h o r t " if it i s much smal ler than the mean free path
of the conduction electrons, I:

λ<*>« I. (1.1)

The particular frequency range over which this condi-
tion holds var ies with the type of conductor, of course,
and it also var ies with the impurity concentration, the
concentration of lattice defects, and the temperature .
In practice, this condition can be satisfied only at low
temperatures (liquid-nitrogen temperature and below)
and in relatively pure mater ia l s .

We a re interested in only those nonlinear phenomena
which are of electronic origin. At low temperatures,
the conduction electrons play a governing role in ac-
oustic effects (or at any rate , the effect of these elec-
trons can be reliably identified). Fur thermore, the
nonlinearities due to the interaction of the sound wave
with the electrons are generally manifested at acoustic
intensities well below those required for observation
of an elastic nonlinearity.

Nonlinear acoustic effects in the case X ( s ) » I have
been studied thoroughly, both theoretically and exper-
imentally, and are covered in the reviews in Refs.
1-3, among others . In this part icular case the inter-
action of the condition electrons with the sound can
usually be described in macroscopic t e r m s . In the
short-wavelength case, (1.1), on the other hand, in
which the kinetic propert ies of the electron system
have their greatest consequences, research is in an
ear l ie r stage: there has been intense theoretical work
in recent years, and the first experiments have been
reported. It seems worthwhile at this point to outline
what has been learned, to identify the most important
theoretical problems awaiting solution, and to point
out the most promising directions for future experi-
ments . These are the goals of the present review.

As a sound wave propagates through a medium, the
flux density of mechanical energy S transported by the
wave is attenuated and dissipated as heat. If the sound
wave is excited at a boundary of a crystal, the atten-
uation of the wave as it penetrates into the crystal i s
described by

^-=-TS, (1.2)

where the sound is propagating along the χ axis. The
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quantity Γ is the absorption coefficient for the sound.

Κ S is sufficiently small, the absorption coefficient
is independent of S, and the linear theory applies.
This theory yields

S (x) = 5 (0) e-r*. (1.3)

As S increases, Γ begins to vary with S, and we have
a nonlinear absorption of the sound; the variation of S
with χ is more complicated than that described by a
simple exponential law.

Another nonlinear effect is the acoustoelectric effect,
which is the appearance of a direct current (or a static
field, if the circuit is open) because of the entrainment
of conduction electrons by the traveling sound wave.
The acoustoelectric effect was predicted theoretically
by Parmenter4 and subsequently studied theoretically
and experimentally by Weinreich et al.5 in «-type Ge.
At low sound intensities, the acoustoelectric current is
proportional to the intensity, while at higher intensities
this current becomes a more complicated function of
the intensity.

These nonlinear effects are due to the capture of con-
duction electrons by the periodic field of the sound
wave. In principle, there are two possibilities here:
a classical situation (in which there are many Revels in
the acoustic potential wells) and a quantum situation
(the number of levels is of the order of unity). To save
space here, we must restrict this review to one of
these situations, and we choose the first. To analyze
this situation we will use the apparatus of the classical
kinetic equation.

In studying the nonlinear effects in the magnetic field,
we will correspondingly assume that the field is a non-
quantizing field, i .e . , is a weak field. We are thus
excluding from this review a wide range of effects,
which involve, for example, the nonlinear theory of
giant quantum oscillations in sound absorption,6 non-
linear sound absorption under conditions of magnetic
breakdown,7 etc.

Again to save space, we will restrict the discussion
to nonlinear acoustic effects in normal conductors.
Many of the results found for normal conductors can
be extended immediately to superconductors, but the
nonlinear acoustoelectric effects which occur in super-
conductors are extremely unusual, reflecting the un
ique features of superconductivity, and a special re-
view would be required for a detailed analysis of this
case.

Now that we have listed the topics which are not in-
cluded in this review, we can briefly formulate the
topics which are included. Our subject is the classi-
cal theory of nonlinear acoustic effects in semicon-
ductors and normal metals, which may be in external
fields (electric and magnetic).

Before we begin the review proper, we would like to
point out that the basic ideas and methods used to
analyze nonlinear sound absorption in conductors can
be used in other problems. For example, Vugal'ter
and Demikhovskii* have shown that an essentially an-

alogous situation arises in the nonlinear absorption
of electromagnetic waves in metals. Kagan9 has
shown that the same methods can be used to analyze
nonlinear sound absorption in dielectrics.

This review is primarily a review of theoretical
results. Since only a few experimental papers have
been published at the time of this writing, we decided
not to devote a separate section of the review to them.
At the end of the fourth and fifth sections there are
brief descriptions of experimental observations of non-
linear acoustic effects for the conditions assumed here
for semiconductors and metals, respectively.

2. INTERACTION OF ELECTRONS WITH SOUND
IN CONDUCTORS

Although the physical mechanism for the classical
nonlinearity discussed below is in general features the
same for metals and semiconductors, there are some
differences in the nature of the interaction of the elec-
trons with the sound. For definiteness we will consider
metals first, and then we will point out the differences
which arise in the case of semiconductors.

Let us consider the motion of an electron in the self-
consistent periodic field of the crystal lattice and of the
other electrons, distorted by the sound wave. We
describe the electrons of the metal before deformation
by the dispersion law εο(ρ), where ρ is the electron
quasimomentum.

To describe the change in the electron spectrum upon
the deformation, we must specify the coordinate system
in which the change is given. This question will be
discussed in detail here, since a somewhat hazy un-
derstanding of this point has led to confusion in several
places.

Let us consider some point in the deformed contin-
uous medium. Before the deformation, the coordinate
of this point was r; after the deformation, the coor-
dinate is r ' = r +u, where u is the displacement vector.
Each point in the continuous medium can be described
by either the Lagrange coordinates r, t or the Euler
coordinates r',t. The Lagrange coordinate system
accompanies the deformed lattice; the interaction of the
conduction electrons with the strain can be described
most simply in this coordinate system. Correspond-
ingly, we will write the kinetic equation for the elec-
trons in the varying strain field and also the elastic-
theory equations in this coordinate system. This is,
of course, a noninertial and curvilinear coordinate
system; both circumstances can be taken into account
by appropriate correction terms in the equation for the
electron energy.

We will describe these additional terms by the meth-
od of a generalized effective mass. According to this
method, the motion of an electron in the self-consis-
tent periodic field, with respect to pertubrations which
vary slowly in time and space, can be thought of as
the motion of a quasiparticle with an energy operator
εο(-ίΚδ/δτ). The perturbation caused by the elastic
deformation of the crystal as the sound wave propa-
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gates through it is always of this type. Furthermore,
for those problems (classical in nature) which we will
be discussing here, the motion of an electron under
the influence of an acoustic perturbation can be thought
of as motion in an external field of a classical particle
with a Hamiltonian ε(ρ, r) (p and r are canonically con-
jugate variables).

An elastic deformation always satisfies the condition

Using (2.1), we can write the Hamiltonian as 1 0 1 1

ε (ρ, r) = ε0 (ρ) + \th (ρ) utk (r) — movu; (2.2)

where XjJk(p) is the strain energy tensor, which depends
on the quasimomentum1' p,

is the strain tensor, m0 is the mass of the free elec-
tron, and v= 8εο/8ρ is the electron velocity. The sec-
ond term in (2.2) describes the interaction of the elec-
trons with the strain field. It can be seen that the
strain energy is a classical field acting on the elec-
trons. The third term in (2.2) reflects the circum-
stance that the Lagrange coordinate system is noniner-
tial, and an additional force, proportional to the ac-
celeration, arises in this system and acts on the con-
duction electrons. This force is due to the Tolman-
Stewart effect. Specifically, Eq. (2.2) corresponds to
the Hamiltonian of an electron which is moving in an
electric field with the vector potential

As=-i-m,i, (2.3)

where c is the speed of light and e is the electron
charge. Then in the comoving coordinate system the
electron behaves as if it were moving in an external
Tolman-Stewart electric field

gST_ I 8A _ m, ·̂ (2.4)

form2»

To calculate the absorption we need the nonequili-
brium electron distribution function F(p,r). This func-
tion satisfies the kinetic equation

T+TT-T¥+f«-1 ( 2 ' 5 )

This equation, which corresponds to the classical
picture of the interaction of electrons with sound, is
applicable if the sound frequency ω is not too high, so
that the following condition holds:

a? « p . (2.6)

Here ψ is some characteristic value of the quasimo-
mentum of the electron which is interacting with the
wave. This value is governed by the particular fea-
tures of the problem, so that the specific forms of the
criterion corresponding to condition (2.6) are different
for the linear and nonlinear theories. We will give
the corresponding estimates below.

The collisional term / in Eq. (2.5) has the standard

-F(Vl, Γ)]δ[ε(ρ, r)-e( P l , (2.7)

i.e., vanishes when the Fermi equilibrium function
Fofcip, r)] is used. Here VPPi is a quantity which is
proportional to the amplitude for electron scattering
by impurities.

Below we will also need an equation for the electric
current density caused by the sound wave. In the co-
moving coordinates system, this equation is3 ) (Ref.
10)

r), (2.8)

We note that we can transform from the classical
canonically conjugate variables p, r, in terms of which
Eq. (2.5) is written, to the variables p', r', which cor-
respond to the laboratory coordinate system, by using
a canonical transformation4' with the generating func-
tion

Φ (r. Ρ'. 0 = Ρ' (Ϊ + η).

This transformation is

(2.9)

(2.10)

' (ρ ' , r<) = 8 ( p > r ) + - ^ =

(2.11)
For free electrons,wwe have \ik= -/>{υ4', so that the
second and third terms in (2.11) vanish, as they should.
In the laboratory coordinate system, the kinetic equa-
tion for the function F'(p', r') = -F"(p,r) takes on a form
similar to (2.5). Significantly, the argument of the δ-
function in the collisional term of this equation contains
the energy ε(ρ, r), expressed in terms of the variables
p ' and r ' i.e., the combination

e' (P'I '') — (2.12)

The reason is that the impurity atoms are "frozen" in
the deformed lattice and move along with it. The col-
lision operator should thus vanish when a function which
is the equilibrium function in the comoving coordinate
system is used.

The kinetic equation in the laboratory coordinate sys-
tem was derived by Kontorovich.11

Let us see how the basic equations of the problem are
altered if there are macroscopic fields (electric and
magnetic) in the conductor.

To incorporate these fields we need to add to the Ham-
iltonian ε'(ρ', r') (in the laboratory system) a term
e<p(r'), where φ is the scalar potential, and we need

1)The strain energy was introduced in its simplest from by
Titeica12; a more general form was introduced by Akhiezer.13

2'We are assuming that the primary mechanism for electron
scattering Is scattering by impurities. This is usually the
case at low temperatures.

3'This is the usual expression for (he current density of Bloch
electrons: in the comoving coordinate system, the electron
wave functions are Bloch functions.

4'The idea of this transformation is to be credited to L. D.
Landau.
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to make the replacement

(2.13)

where P is the canonical momentum, and A is the vec-
tor potential (H= rotA, E= Vcp - c'1 A). In the comoving
system, this replacement corresponds to the replace-
ment10

p-*p- —A(r) + —[uH]. (2.14)

The third term on the right in (2.14) can be thought of
as the increment ΔΑ in the vector potential in the new
coordinate system. This increment describes the in-
duced field which appears in the corresponding system:

E(i' = — L ^ L = ±.{M}. (2.15)

In the presence of external fields, the left side of the
kinetic equation thus acquires an additional term which
contains the Lorentz force, and the kinetic equation be-
comes

) + J . [ v H ] — | i ) - ^ + /(f) = 0. (2.16)

Here we are retaining the notation ρ for the kinematic
momentum of the electron; this kinematic momentum
is the same as the quasimomentum but is not the same
as the canonical momentum Ρ in the presence of fields.

The complete system of equations of the problem
should include the Maxwell equations. Furthermore,
for both dynamic deformation (e.g., that caused by a
sound wave) and static deformation, the requirement
of electrical neutrality serves as yet another equation.
For the static deformation, neutrality gives us the fol-
lowing conditions, which must be satisfied identically
with respect to the elements of the strain energy ten-

sor

\ < (2.17)

In the case of a dynamic deformation, a weak long-
tudinal electric field arises. Analysis shows10 that the
contribution of this field to the absorption is small,
involving at least a factor

^ C 1 (2-18)

(w is the sound velocity and vF is the Fermi velocity),
so that we will ignore this longitudinal field. Choosing
a gauge in which divA = 0, we can thus get rid of the
term with scalar potential φ.

To take into account the effect of the electrons on
sound propagation, we should add to the right side of
the elastic-theory equations

9ut „ dulm in 1 Q \

a force /, which is exerted on the lattice by the elec-
trons (here ρ is the crystal density and Ciktm is the
elastic modulus tensor). An equation for this force can
be found by varying the energy of the system of elec-
trons with respect to a lattice displacement. Using
condition (2.1), kinetic equation (2.5), the Maxwell
equations, and the equation for the current density
(2.8), we can write the following equation for the force
acting on the lattice:

*-/V (2.20)

Here the first term is due to the interaction of the
electrons with the strain field, the second is a force
of electromagnetic origin, and the third is due to the
Tolman-Stewart effect.

The power absorbed per unit volume can be written

/> = < jrftpe (p, r)F(p, r)>, (2.21)

where the angle brackets denote averaging over time
(over the period of the sound wave) or over space (over
the wavelength). The sound absorption coefficient is
thus5' [see (1.2)]

Γ = Τ = τ ( ί < / τ ^ / ' ) · (2.22)
The general scheme for analyzing sound propagation

in a metal thus reduces to an analysis of the equations
of elastic theory, the electrodynamic equations for the
electromagnetic fields which arise, and the kinetic
equation for the electrons in the field of the sound wave
and in the electromagnetic field.

3. ABSORPTION OF LONGITUDINAL SOUND IN
METALS IN THE ABSENCE OF EXTERNAL MAGNETIC
FIELDS

(a) Linear theory14'15

We begin with the simplest case, that of longitudinal
sound. Since the electron energy is an even function of
the electron quasimomentum, the part of the strain
energy which is odd in vx must also be odd in vjy±

= (vy,vx)]. The strain correction to the electron energy
can thus be written

where λ«(ν) and Z>(v) are even functions of their argu-
ment, λ* is of the order of the atomic energy, and the
dimensionless quantity D is of the order of unity (as
before, we are assuming that the OX axis is parallel
to the sound propagation direction).

In the case of longitudinal sound (ullq), only the
first term in (3.1) is nonzero:

ff-V»(v)u№(r). (3.2)

It can be shown directly15 that no macroscopic electric
currents arise in this case.

Linearizing the kinetic equation (2.5), we set

F (p, r) = F, (ε (ρ, r)) + / (ρ, r), (3.3)

where / is a small increment in the equilibrium elec-
tron distribution which depends on the total energy8'
e(p,r)=co(p)+ U.

We assume that the displacement in the sound wave
varies in space and time in accordance with

u = u0 exp [i (qx — at)}. (3.4)

5 'This equation can be derived in a different way—from the dis-
persion relation for a sound wave which follows from the
equations of the theory of elasticity (2.19), to which the force
in (2.20) has been added.

6 'It can be seen that the Tolman-Stewart fields do not affect the
absorption of short-wavelength longitudinal sound if small
terms w/vF are ignored.10
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Then the linearized kinetic equation can be written

[i(qvx-a)+±.~]f=(-2i)U. (3.5)

Here we are using the relaxation-time approximation
for the collision operator /, and this approximation will
be justified below.

Substituting (3.3) and (3.5) into the equation for the
absorbed power (2.21), and averaging, we find

P = .£f * , ( _ « ! ) · i L , (3.6)

where Uo is the amplitude of U.

Below we will be interested in the case ql»l. Re-
stricting the discussion to the lowest order in the para-
meter {ql)'1, we should let τ approach infinity. As a
result, the factor (r'1[(qvx - ω)2 + τ"2]"1 becomes n6(qvx

— ω). Making this replacement, and dividing by the
acoustic energy flux density, we find the following
equation for the absorption coefficient:

-p JIG) Γ J / ^^*o \ Λ / W 1 + / M 2 ί *i *7\

Let us analyze this result, which was first derived in
this form by Akhiezer et al.15 As we will see below,
the factor (-dF0/dc) is also present in the equation for
the absorption given by the nonlinear theory, and it
means that only those electrons contribute to sound ab-
sorption which are in the region in which the Fermi
distribution is smeared out, i.e. within an energy inter-
val of width of the order of Τ near the Fermi level.
This conclusion is not peculiar to the acoustic case; it
is a characteristic result for all kinetic phenomena in
metals, except high-frequency phenomena. Then in Eq.
(3.7) we can transform from an integration over a vol-
ume in ρ space to an integration over the Fermi sur-
face. Denoting the area element of this surface by dsF,
we write

Γ 2<Pp / BF, \ 2 f dsF

J (2πΛ)3 V de I (211/i)' J ν ·
(3.8)

The factor 6(vx—w) is more interesting. This factor
means that among the electrons in the region in which
the Fermi distribution is smeared out the only ones
which participate in the absorption are those for which
the χ component of the velocity is equal to the sound
velocity w. Since the absolute value of the electron vel-
ocity is the Fermi velocity, it is clear that the absorp-
tion of sound is due to those electrons whose velocities
are nearly perpendicular to the propagation direction of
the sound: a "belt" on the Fermi surface.

The physical reason for this selectivity in terms of
electron velocity is as follows: those electrons for
which vx is quite different from w "perceive" the rapidly
oscillating field of the sound wave as they move; on the
average over many periods, this rapidly oscillating
field has very little effect on them. As a result, the only
electrons which interest strongly with the wave are those
velocities satisfy the resonance condition vx= to. Anal-
yzing (3.6), in which we have not yet taken the limit

T _ «5, w e see that the velocity integral contributing to
absorption is finite, given in order of magnitude by

Δ,,-JL. (3.9)

As τ increases, this resonant velocity interval becomes

narrower, and the resonance itself becomes sharper;
ultimately, Eq. (3.7) becomes independent of τ. For
this reason, the sound absorption in this situation is
called "collisionless." This absorption is analogous to
the collisionless damping of plasma waves studied by
Landau.18 This analogy will be discussed in detail be-
low, but at this point we are interested in some order-
of-magnitude estimates of the linear collisionless damp-
ing Γ ο . Assuming \*~cF for typical metals, we have

where n0 is the electron density.7' The quantity pw2,
with the dimensions of an energy density, is of the order
of tpn0) while for the dimensionless ratio Tg/q we ob-
tain

(3.11)

This number is of the order of a few thousandths. In
other words, the absorption length T'1, over which the
sound intensity is reduced by a factor of e, is of the
order of hundreds of acoustic wavelengths.

We also note that the smallness parameter in the
estimate (3.11) is none other than -Jm/Μ , where m is the
electron mass, and Μ is the mass of the ions making
up the crystal lattice. The appearance of this para-
meter is not accidental. In the adiabatic approxima-
tion, the electrons "track" the ions, and there is no
sound absorption. This parameter is also a measure
of the deviation from adiabatic behavior, which deter-
mines the absorption.

In typical current experiments absorption lengths of
the order of a fraction of a centimeter are being mea-
sured. This value is governed by the characteristic
lengths of the samples used in the experiments. The
mean free path 1= t^xand the absorption length Γ"1 are
thus usually related by

4->I. (3.12)

This condition will be extremely important in the der-
ivation of the nonlinear theory below.

Is the relaxation-time approximation legitimate for
calculating the absorption? It is not difficult to see8 '
from Eqs. (3.5) and (3.6) that the increment/in the
equilibrium distibution function is confined to a narrow
resonant interval of velocities, with a width -l/qr.
Accordingly, it can be seen from the equation for the
collision integral (2.7) that in the resonant region in
which we are interested the effect of the "incoming"
term on / corresponds to processes by which electrons
enter a state with a given velocity ν from a velocity
region occupying a small volume in phase space. On the
other hand, the "outgoing" term has an effect on/which
incorporates the transition from the state with velocity
ν to all other states. The incoming term in (3.5) can
thus be ignored on the basis of the parameter vF/qr
= l/ql.

"This equation can also be written In the form [ r ~ <dT 3p~V 2(λ*)2],
from which it is clear that the absorption does not depend on
the electron density (at densities for which vF»w). __

"These arguments are analogous to those used in Ref. 17.
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(b) Nonlinear theory1 8-1 9

Let us take a qualitative look at the events which oc-

cur in a semiconductor as an intense sound wave prop-

agates through it. The sound wave is accompanied by a

longitudinal wave that acts on the electrons with an

effective field characterized by the potential U. As

mentioned above, for the case of short-wave-length

sound (ql>> 1) this wave has a significant effect on only

those electrons which are from the "resonant" region,

which occupies a small volume in phase space. Let us

determine the structure and characteristic dimension

of this region.

The resonant electrons are divided in turn into

"trapped" and "untrapped" electrons. The trapped elec-

trons oscillate in the periodically situated potential

wells formed by the sound wave. In the coordinate sys-

tem moving with the traveling wave, their motion is

finite. The depth of each potential well is of the order

of the potential amplitude i/0; the typical oscillation

velocity is

(3.13)

and the typical oscillation frequency is

(3.14)

Each scattering event significantly changes the direc-
tion of the electron velocity and thereby removes this
electron from the resonant group. Accordingly, if we
wish to assert, for example, that the trapped electrons
are executing oscillations in the potential wells of the
wave, we must satisfy the inequality

ωοτ> 1. (3.15)

This is the condition for the formation of a group of
trapped electrons. At the same time, the distribution
function of the untrapped electrons is greatly distorted
in the resonant velocity region near the velocity w, with
a width on the order of v. As a result of all these fac-
tors, there are nonlinear effects in the sound absorp-
tion.

If WOT« 1, then no group of trapped electrons forms,
and the width of the resonant region is governed by
collisons; it is given in order of magnitude by 1/qr, as
mentioned above. In this case the linear theory for
sound attenuation is valid.

In summary, the quantity WOT is a parameter which

determines the role played by nonlinear effects at large

values of ql. Since

(3.16)

there is a broad range of sound intensities in which the
ratio U0/zF is low, while nonlinear effects are already
pronounced. A group of trapped electrons does form in
this case, but it has only relatively few electrons. The
nonlinear effects in the absorption, on the other hand,
are already large, since the distribution function is
greatly distorted just in this resonant region, and it is
this resonant region which causes the absorption.

The nonlinearity parameter of the problem can also

be estimated in a different way, from the balance

equation for the (quasi-) momentum of the resonant

electrons. As the sound is attenuated, these electrons

acquire a momentum of the order of

·£· (3-17)
If the nonlinear effects are to be weak, the momentum
transfer by the sound wave should not significantly
change the average * momentum of the resonant elec-
trons, which is of the order of bnmw, where δη is the
characteristic density of resonant electrons. We thus
find the following condition for a slight nonlinearity:

rst <^ bnww. (3.18)

We have seen that in the linear theory the width of the

resonant region is of the order of (ql)~l with respect to

the thickness Uo of the layer at the Fermi surface. We

thus have {dn-noiUo/cfKql)'1. Substituting this estimate

into (3.18), we again find the inequality w o r « l as the

condition for the applicability of the linear theory, as

expected.

Using similar arguments, we can estimate the asymp-
totic behavior of F(S) for the case of a prounounced
nonlinearity, in which case condition (3.15) holds. This
condition means that the characteristic width of the in-
teraction region in velocity space is on the order of v,
so that the relative width is of the order of v/vF. Thus
(δη~no{v/vf)Uo/ce). If we also require that the rate at
which momentum is transferred to the resonant parti-
cles be equal to the rate at which it is dissipated, we
find

^ ~ ^ ~ * - " 4 · (3-19)

To get a better understanding of the nature of this non-
linearity, let us compare it with the well-understood
case of nonlinear absorption of plasma waves in a col-
lisionless plasma. (As we have already pointed out, the
linear collisionless attenuation of sound is analogous to
the Landau damping of plasma waves.)

In both cases the wave effectively interacts with only
a small group of resonant particles, which occupies a
small volume in phase space.9' There is an important
distinction, however: In a collisionless plasma, the
mean free path of the particles is much larger than all
the other characteristic dimensions of the problem,
in particular, the linear damping length [cf. (3.12)].
Thus there actually is no coupling of the resonant part-
icles with the other particles (or with the heat reser-
voir), and in solving the problem of plasma-wave prop-
agation it is sufficient to consider only the energy bal-
ance in the system consisting of the wave and the res-
onant particles, and this is a conservative system.

If the original wave amplitude is low, a wave which
has been completely damped, i .e., which has trans-
ferred all its energy to resonant particles, does not
significantly distort their motion. This situation cor-

9lQuantltatively, the groups of resonant particles are selected
differently for sound and plasma waves, because of tiie dif-
ferent ratios of the wave phase velocity and the characteristic
velocity of the particles.
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responds to linear Landau damping.16

If, on the other hand, the plasma wave has a suf-
ficiently high amplitude, the limited capacity of the res-
onant-particle "reservoir" will make itself apparent,
and the wave will significantly distort the distribution of
these particles. An equilibrium will ultimately be
established in the system consisting of the wave and the
resonant particles: the wave amplitude will reach a
certain steady-state value, and a plateau will form on
the distribution of the resonant particles. The process
of establishing this equilibrium is accompanied by
oscillations in the wave amplitude.

The problem of nonlinear Landau damping of plasma
waves is thus definitely not a steady-state problem.
The characteristic nonlinearity parameter in this case
is the ratio of the "reservoir-saturation" time (a time
of the order of the oscillation period of the trapped
particles) to the shorter of two times, the linear damp-
ing time and the observation time. The problem of the
nonlinear Landau damping of plasma waves has been
solved quantitatively by O'Neil20 (see also the reviews
of Refs. 21 and 22).

In the case of a sound wave, collisions are important
because of the condition Γ l« 1. As the collisions re-
move an electron from the resonant group, they cause
an exchange of particles between the resonant group
and the rest of the electron system. As a result of this
particle exchange, the energy acquired from the sound
wave by the resonant electrons over a time of the order
of the elastic relaxation time τρ is distributed over the
entire electron system and then transferred through in-
elastic collisions to the heat reservoir. We are thus
dealing with a nonconservative system consisting of the
wave, the resonant electrons, all the electrons, and
the heat reservoir. The presence of elastic and in-
elastic scattering allows us to treat the problem as the
steady-state problem of absorption of the sound wave,
without going into the processes involved in the estab-
lishment of equilibrium, of the type mentioned above.

By virtue of the condition ql» 1, however, the colli-
sions are still rather infrequent; the removal of energy
from the resonant group of electrons is hindered; and
this step acts as a "bottleneck." Accordingly, the dis-
tribution of resonant particles begins to depend on the
wave amplitude when this amplitude is high. This is
the basic distinction between the nonlinear and linear
cases. A quantitative measure of the difference is
the ratio of the saturation time of the resonant group
(which is of the order of wj1, as for plasma waves) to
the time for removal of energy from the resonant group
(the width of the "bottleneck"). As we have seen, this
latter time is on the order of τρ.

Before taking up the quantitative theory for nonlinear
absorption of sound, we wish to draw attention to an
important circumstance.

The nonlinear terms due to the electron response
serve as driving forces in the elastic-theory equations
(2.19) and (2.20). These forces drive higher-order
acoustic harmonics. If the frequency and wave vector
of the driving force are coupled by the dispersion law

for free waves, a wave resonance occurs. If, on the
other hand, there is a deviation from resonance be-
cause of the dispersion of the sound velocity, then the
amplitude of the steady-state oscillation will be pro-
portional to the ratio of the amplitude of the driving
force to the deviation from resonance or, more briefly,
the ratio of the nonlinearity to the dispersion.

In the linear approximation in ulk, the force / exerted
on the lattice by the electrons has the spatial and temp-
oral periodicity of the sound wave, but in general its
phase is not the same as that of the elastic force, which
is governed by the right side of Eq. (2.19). If we re-
solve this force into two components, a reactive com-
ponent which varies in phase with the elastic force, and
an active component, which is π/2 out of phase, then
the reactive part is due to nonresonant electrons. Its
role is one of causing an adiabatic renormalization of
the elastic moduli. The amplitude of the active part is
lower than the amplitude of the reactive part by a factor
of at least w/vF. The active part of the force causes
the absorption of sound. Under nonlinear conditions, a
contribution/Ν which is nonlinear in uik appears in ad-
dition to the part of the force which is linear in uik, fL.
It can be shown19 that the amplitude of this nonlinear
contribution is always much less than the amplitude of
fL. The ratio of these amplitudes is governed by the
parameters U0/zF~ » „ « 1 for nonresonant electrons and
(ωι>τ)'χω/ν¥«\ for renonant electrons (ωοτ»1). Ac-
cordingly, in the case ω ο τ» 1, we have

lf~max(|r·^)· ( 3 · 2 0 )
The contribution of the resonant particles to fN at the
different harmonics are generally comparable in mag-
nitude,10' while the contributions of the nonresonant
particles are proportional to (uik)

n and fall off with in-
creasing harmonic index.

The dispersion mentioned above is characterized by
the difference ω(ηω) — ω(α) [ω(ω) is the velocity of a
free sound wave of frequency ω]. In typical metals un-
der the conditions assumed here, the electron contrib-
ution to the dispersion law for the sound does not lead
to a frequency dependence of the sound velocity w.
Then in the absence of nonelectronic mechanisms which
could lead to a dispersion of w, higher-harmonic waves
appear in the metal at amplitudes which increase in
proportion to the distance from the boundary within a
short distance from the boundary (short in comparison
with Γ"1). The ratio of the amplitude of the n-th har-
monic to the amplitude of the fundamental component
in this case is given in order of magnitude by

qx- (3.21)

where/}/0 is the amplitude of the n-th harmonic of the
nonlinear contribution to the force. This growth con-
tinues to a length of the order of the damping length
I"1, beyond which the harmonic amplitudes fall of along
with that of the fundamental wave. Under typical con-

10)Withln numerical coefficients associated with the expansion
in a Fourier series and falling off with increasing harmonic
index.
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ditions for typical metals we have (i/o/e<(

<<(l/u)oi")w/
vF); in other words, the resonant particles are primar-
ily responsible for the formation of the higher harmon-
ics. Taking this circumstance into account, and also
using (3.20) for the ratio fN/fL and (3.19) for the non-
linear absorption coefficient Γ, we easily see that the
ratio in (3.21) can reach unity. Under nonlinear con-
ditions, the shape of the sound wave in a metal at a
distance from the boundary of the order of the non-
linear damping length can be quite different from sin-
usoidal.11'

It is important to note, however, that the change in
shape occurs over a distance of the order of Γ " 1 » I [we
are assuming condition (3.12)]. Then in treating the
problem of the electron distribution in the wave field,
we can assume that the shape of the wave is known,
even if it is not sinusoidal. Under this assumption, we
can calculate the electron distribution and then use this
distribution to calculate the force. Vugal'ter and
Demikhovskii23 and Gal'perin and Kozub24 have analyzed
the change in the shape of a wave in a metal. We
will not reproduce the results of that analysis here;
instead we will focus on a calculation of the absorption
coefficient and its variation with the sound intensity.

The quantitative analysis of the nonlinear absorption
is based on the classical kinetic equation (2.5): As
mentioned above, the classical description is valid if
the momentum transfer Kq is lower than the typical
value of the electron momentum for the problem, ~p.
For the present problem, this typical momentum is the
larger of m/qT and VwTTjJ . The classical description
is thus valid under one of the following two inequali-
ties:

»'«· (3.22)

(3.23)

These inequalities have an extremely clear physical
meaning. The first says that there are many quantum
levels in the potential wells formed by the sound. The
second says that the uncertainty in the electron energy
due to the collisions is so great that it would be incon-
sistent to take the term K2q2/m into account.

In the opposite limit,

^ » t f o > 4 , (3.24)

there are very few levels in the potential wells pro-
duced by the sound. The possibility of tunneling be-
tween different wells causes these levels to expand into
the "acoustic bands" which were first studied by
Keldysh.25 The nonlinear absorption in the case (3.24)
was analyzed by Zil'berman26 and, for the case in which
acoustic bands form, by Laikhtman and Pogorel'skii.27

The nonlinear part of the problem thus reduces to the
solution of the kinetic equation in a given field U(r, t).

1 1 'In semiconductors, as we shall see, the electron contribu-
tion to the dispersion law for the sound velocity w begins to
depend on ω, and in most cases the distortion of the wave
shape is slight as long as t/0« ε, where ε is the character-
istic electron energy.

Since the attenuation length Γ ' 1 is much longer than both
the acoustic wavelength and the electron mean free
path [by virtue of inequality (.3.12)], it can be assumed
that the potential U and the solution which we are seek-
ing for the kinetic equation depend only on the differ-
ence x— wt. We can thus find a local electron distribu-
tion and a local sound attenuation coefficient Γ as func-
tions of the sound intensity S. The intensity distribu-
tion along the coordinate χ can then be found by solv-
ing Eq. (1.2), withS(0) specified as a boundary con-
dition.

As in the linear theory, we write the distribution
function in the form

f ο [«Ό (P) + V]+ f ( ρ , χ - wt). (3.25)

For the function fi.x) we find the following kinetic equa-
tion:

au au aF, (3.26)

As in the linear theory, we will use the relaxation-
time approximation in calculating the absorption, set-
ting /fi = (l/T)/i. This approximation is justified in
detail for the nonlinear case in Ref. 19. We take into
account the fact that electrons with low longitudinal
velocities vx interact with the sound effectively. It can
thus be assumed that the quantity τ"1 depends only on
the transverse components of the electron velocity. In
contrast, the distribution function / is a strong function
of v% in the resonant region. It can thus be assumed
that

at (3.27)

in other words, we can ignore the derivatives Bf/9vy

and 8f/8vt in comparison with 9f/&vx (it can be seen that
the relative error introduced by this simplification is
of the order of v/vF~/U0/cF«l). Accordingly, Eq.
(3.26) is one-dimensional. It can be solved by the
method of characteristics. The system of equations
for these characteristics is

dvx

mxxau/dx
df

( ι /%)— (3.28)

The characteristics in (3.28) for Eq. (3.26) describe
the particle trajectories. The first integral of system
(3.28) is an energy integral in the coordinate system
moving with the wave:

(3.29)

The general solution of Eq. (3.26) is

where

xx (E — U (x)).

(3.30)

(3.31)

The classification of electrons as either trapped or
untrapped, discussed above, arises here in a graphic
manner: for the untrapped particles, we have E>Umtx,
while for the trapped particles we have Umin<E<UmiI.
The equation for the distribution function in (3.30)
should be supplemented with boundary conditions which
determine the constant C. These conditions are differ-
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ent for the trapped and untrapped electrons. For the
untrapped electrons we have periodic boundary condi-
tions,

f± (* + λ) (3.32a)

(here the subscripts ± correspond to the sign of the
difference vx - w).

The trajectories of the trapped electrons have two
turning points, which correspond to the roots of the
equation U(x)=E. We denote the left-hand and right-
hand turning points nearest the point χ by *j and x2.
Since the electrons are reflected at these points from
the walls of the potential well created by the wave, we
require the following conditions for the trapped parti-
cles:

U to, f± (*,) = /* (*,). (3.32b)

Equation (3.30), with the boundary conditions in
(3.32a) and (3.32b), constitutes the complete solution of
the problem. It can be seen from (3.30) and (3.31) that
the nonlinearity is characterized, as expected, by the
parameter

where v=ym"xxU0. The characteristic values of χ are
of the order of q'1, while those of the difference vx~w
are of the order of ^m'^U^ In the argument of the ex-
ponential function in Eq. (3.30) we thus have a quantity
of the order of (α^τ)"1. It can be seen that in the case
ωοτ « 1 Eqs. (3.30) and (3.32a) yield the results of the
linear theory and the corrections of order ωοτ to the
linear theory which were derived in Ref. 18. In the
opposite case, that of a pronounced nonlinearity, ωοτ
» 1 , the solution can be expanded in powers of (ω,,τ)"1,
with only the first term being retained. This procedure
leads to19

i (3.33)

where the angle brackets denote the average over the
"belt" of the Fermi surface vx = w, and at is a number
(of the order of unity) which depends only on the shape
of the potential. This latter dependence is weak, and
in analyzing the propagation of sound we can treat a 1

as a constant. For a wave of sinusoidal shape its value
i s i e a l = l . l .

This quantitative calculation thus confirms the order-
of-magnitude estimate above which lead to (3.19). We
see that in the nonlinear case there is an "acoustic
brightening" of the conductor: the nonlinear absorption
coefficient Γ is smaller than the linear coefficient Γ ο by
a factor ωοτ » 1 . Here r ~ S " 1 / 4 ; for a given intensity,
the nonlinear absorption coefficient is independent of
the sound frequency.

Nonlinear effects of this nature were first observed
experimentally by Ivanov et al.2* in a piezoelectric n-
type InSb semiconductor. We will discuss the experi-
mental work of Refs. 28 and 29 in the next section,
which deals with the particular features of nonlinear
effects in semiconductors.

Since the mechanism for the nonlinearity with which

we are concerned here involves a distortion of the mo-
mentum distribution of the resonant electrons, this
mechanism has been called the "momentum nonlinear-
ity."29 The momentum nonlinearity has also been ob-
served by Fil' et al30 in ultrapure Ga, with and without
a magnetic field.

It can be seen from (3.33) that the ratio r(S)/ro de-
pends on the "outgoing" relaxation time τρ, which can,
in general, be different from the transport time rtr,
which appears, for example, in the equation for the
electrical conductivity. Analyzing the asymptotic be-
havior of the ratio Γ(δ)/Γ0, we can thus obtain interest-
ing information on the mechanisms for the scattering of
the current carriers in a conductor, since the ratio
Tp/T

tr can take on quite different values for different
scattering mechanisms.

The important point for this analysis of nonlinear ab-
sorption of longitudinal sound was the fact that the ef-
fective field acting on the electrons is a potential field,
and not the particular nature of the polarization of the
sound. Since the field is a potential field, it is possible
to work simply from the condition of electrical neutral-
ity, avoiding the use of Maxwell equations.

In the case of sound with other than longitudinal po-
larization, the first term in (3.1), which does not cause
the appearance of eddy currents, corresponds to longi-
tudinal fields, so that its contribution to the absorption
is described by the theory above, regardless of the
polarization.

The second term in (3.1), however, which appears
when the sound has other than the longitudinal polariza-
tion, causes eddy currents and, by virtue of Maxwell
equations, vortical electromagnetic fields. For sound
of this type the question arises of the role played by
these currents and fields in nonlinear absorption.12'

From the linear theory31·32·11 we know that for trans-
verse sound with a wavelength greater than the skin
depth in the case of the anomalous skin effect the elec-
tromagnetic absorption (due to the Joule loss during
the flow of these eddy currents) can, in general, be of
the same order of magnitude as the purely deforma-
tional absorption [due to the first term in (3.1)], so that
this electromagnetic absorption can be important.

How does electromagnetic absorption change the
physical picture of the nonlinearity presented above?

We first note that again in the case of electromagnetic
absorption there is a distinct resonant group of elec-
trons, which make the major contribution. We have al-
ready seen that in the case of longitudinal sound the ef-
fect of the effective longitudinal field on the motion of
these electrons leads to nonlinear absorption. The
transverse electromagnetic fields, however, also af-
fect the electron motion, by virtue of the Lorentz force.
Since the resonant electrons are moving nearly perpen-

12)This question is pertinent only for typical metals. In semi-
conductors, the carriers occupy a small volume iap space,
so It turns out that the ratio of the second term In (3.1) to the
first is always small.
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dicular to the sound wave vector q, the Lorentz force
acting on these electrons is essentially parallel to q.
The sign of this force depends on both the direction of
the electron velocity and the wave phase. In summary,
the effect of the wave on the motion of the resonant
electrons corresponds to the one-dimensional picture.
The force exerted on a particle by the vortical field be-
haves in this sense in the same way as the force due to
the potential field in the case of longitudinal sound. We
can thus expect that the physical picture of the nonlin-
earity (and, in particular, the value of the nonlinearity
parameter) presented above also holds in this situation.
The only change we have to make is to replace the po-
tential force —qU by the Lorentz force in the equation
for ω0.

The equation for the absorption coefficient, however,
is quite different from the corresponding equation in the
case of the purely deformational absorption. The elec-
tromagnetic absorption is a quadratic function of the
components of the vortical electric field, whose coeffi-
cients are the elements of the conductivity tensor. The
distribution of resonant frequencies directly affects the
effective conductivity. Furthermore, this distribution
affects the magnitude of the vortical electric fields,
which determine the Joule loss. These fields are in
turn governed by the degree of shielding of the, "seed"
eddy currents, and this shielding itself depends on the
effective conductivity.13* On the one hand, the nonlinear
decrease in the effective conductivity (by a factor of
ωοτρ in the case ω,,τ^» 1) for a given field level leads to
a decrease in the absorption. On the other hand, a de-
crease in this quantity also weakens the shielding and
causes a corresponding increase in the magnitude of
the vortical field. The behavior of T(S) is thus more
complicated than in the case of deformational absorp-
tion; in particular, it can be nonmonotonic.

A nonlinear theory for electromagnetic absorption
was derived in Ref. 33. Here we will give the result
for only the most interesting case, that in which the
wavelength is much larger than the skin depth in the
case of the anomalous skin effect, δ(^δ» l). In this
case, in the linear region, the electromagnetic contri-
bution to the absorption is generally of the same order
of magnitude as the deformational contribution. In the
nonlinear region, on the other hand, the electromag-
netic contribution becomes definitely predominant, and
it determines the total absorption. The behavior of
T(S) is nonmonotonic: at S « So we have Γ ~ w3S1 / 2

(i.e., Γ increases with increasing intensity S), while at
S »S0 we have Γ ~ w3S"1/4. Here So is a characteristic
value of the sound intensity, given by

So = (3.34)

In the first region, the leading role is played by the
nonlinear decrease in the shielding of the vortical
fields, while in the second region the leading role is
played by the nonlinear behavior of the effective con-

13'We recall that in the case of longitudinal sovmd the shielding
is governed by the response of the entire electron system,
against whose background the contribution of the resonant
electrons is small.

ductivity, which appears directly in the equation for the
Joule loss.

For q =2 °104 cm'1, I =10"x cm, and typical metallic
properties, So is 0.2 W/cm2. The nonmonotonic varia-
tion of F(S) can thus be observed with the experimental
apparatus presently available.

4. PARTICULAR FEATURES OF NONLINEAR
ABSORPTION AND AMPLIFICATION OF SOUND
IN SEMICONDUCTORS

The current carriers in semiconductors, in contrast
with metals, occupy regions of small volume in/) space
near the extrema of the energy bands. Corresponding-
ly, the strain energy tensor in semiconductors with a
simple band can be assumed to be independent of p.
On the other hand, since the number of carriers in a
semiconductor is small in comparison with that in a
metal, electrical neutrality generally does not hold, and
there can be a local redistribution of space charge in
the field of the sound wave. For this reason, the inter-
action of the electrons with the sound wave, \ku(k,
which is independent of the quasimomentum p, is not
completely shielded, as it would be in metals. In semi-
conductors the shielding is only partial. The actual de-
gree of shielding is governed by the value of the param-
eter qRD, where RD is the Debye-Hiickel radius in the
case of a nondegenerate semiconductor or the Thomas-
Fermi radius in the case of a degenerate semiconduc-
tor. The problem of sound absorption in a semiconduc-
tor thus differs from that in a metal in that the Poisson
equation instead of the electrical neutrality condition
must be analyzed to determine the effective potential
acting on the carriers.1 4*

The most important point is that the interaction
through the strain potential is not the only interaction
or even the most important interaction in many semi-
conductors. Semiconducting properties are exhibited by
many piezoelectric crystals, in which electric fields
proportional to the strain arise when the crystals are
deformed. The piezoelectric interaction is very aniso-
tropic; i.e., it is very sensitive to the polarization and
propagation direction of the sound. In the piezoelec-
trically active directions, the piezoelectric interaction
can be much stronger than the deformation interaction.
In these directions the electron absorption of the sound
in piezoelectric semiconductors can be many times
greater than the lattice absorption.

Semiconductors may exhibit a new type of acoustic
effect, which is not possible in metals. In contrast with
a metal, it is possible to apply a strong electric field
Ε which causes a carrier drift at the drift velocity

ν = μΕ,

where μ is the carrier mobility (in the general case, a
tensor). In strong electric fields the drift velocity υ

14'This assertion is not correct for so-called multivalley semi-
conductors such as κ-type Ge and Si. To save space here, we
will not examine the nonlinear effects which are peculiar to
these materials and which lead, for example, to the forma-
tion of acoustic shock waves.34
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can exceed a certain critical value, of the order of the
sound velocity, at which the absorption coefficient for
the sound will change sign; i.e., absorption will give
way to amplification.15' This amplification of sound by
current-carrier drift is most interesting in piezoelec-
tric semiconductors, because of the strong interaction
of the electrons with the sound.

The amplification can raise the sound intensity by
several orders of magnitude. The question of nonlinear
acoustic effects thus originally arose in connection with
the amplification of sound. It was necessary to exam-
ine these effects in order to answer an important ques-
tion: up to what limit can the sound be amplified?

In the case of the piezoelectric interaction, the piezo-
electric force

fP ft d'V (Λ 1\

where | 3 { | k | is the piezoelectric-constant tensor, ap-
pears in the equations of the theory of elasticity. Fur-
thermore, there is a piezoelectric increment in the
electric displacement D,

Dt = eikEK + 4npi, »,«»„ (4.2)

which leads to a corresponding change in the Poisson
equation. As a result, in first order in the wave ampli-
tude we find the following equation for the increment in
the electron energy:

where #* = 4τ0χ »*«» for the piezoelectric interaction,
and ί/^λ^κ,η, for the deformation interaction. This re-
sult is derived by ignoring terms of the order of w/v
(where ν is the characteristic electron velocity), which
result from the time variation of the wave. In metals,
ν is the Fermi velocity; in semiconductors, depending
on the carrier statistics, it is either the Fermi veloc-
ity or the average thermal velocity, VT/m. In either
case, the ratio w/v is small, and we will adopt it as
the small parameter of the theory.

At a low sound intensity, i.e., in the linear region,
we find for the absorption coefficient a result which we
already have, Eq. (3.8), except that λ^κ^ must be re-
placed by U*. As a result, for the piezoelectric inter-
action we have Γ ο ~ ω3 for q « R~£ and Γ0~ω~ι for q
»R'D (Ref. 39b); in the case of the deformation inter-
action, the corresponding expressions are 1 6 ' ω5 and ω.

For the analysis of the momentum nonlinearity in
semiconductors, we assume

•£-<!, (4.4)

where ε is the characteristic electron energy. In met-
als, e = Cjr is of the order of an electron volt, and con-

dition (4.4) is always satisfied. In semiconductors,
condition (4.4) becomes a limit on the sound intensity.17'

Under condition (4.4), the change in the electron
density in the wave field which is nonlinear in ulk is
small in comparison with the linear change. Then the
density change can be assumed to be linear in utk in the
Poisson equation. As a result, Eq. (4.3) for the effec-
tive potential retains its form.

On the other hand, the shielding of the interaction at
q S-R j 1 has the consequence that the force exerted on
the lattice by the electrons is not proportional to the
frequency ω, as it is in metals. The result is a dis-
persion of the sound velocity, which suppresses the
higher harmonics when the inequality (4.4) holds. The
entire analysis is thus precisely the same as in Section
3, except for the one simplification that the wave can
be assumed to be sinusoidal here. As in the case of
metals, Eq. (3.33) holds for the ratio Γ(δ)/Γ0. This
equation is applicable even when Γ ο is negative, i.e.,
even when the sound is amplified rather than absorbed.

It should be kept in mind that the amplitude of the
electron potential energy Uo is now governed by (4.3)
and, in particular, may depend on the frequency, in
contrast with the result for metals.

The mechanism for the momentum nonlinearity is the
same in general features for semiconductors and met-
als. In semiconductors, however, in contrast with
metals, there can be another nonlinearity mechanism,
which can, generally speaking, compete with the one
described above. This other mechanism is the heating
of the electrons by the field of the sound wave. The
characteristic electron energy ε" in a semiconductor is
small in comparison with that in a metal, where it is of
the order of several electron volts. Furthermore, in
semiconductors with a high mobility the energy relaxa-
tion time τε can be long. In «-type InSb, for example,
the ratio τε /τ can reach ΙΟ2—104 (depending on the tem-
perature and purity of the sample), so even at low
sound intensities there could presumably be large devi-
ations of the electron energy distribution from the
equilibrium distribution, i.e., a heating of electrons.
This heating in turn makes the absorption dependent on
the sound intensity.18'

At what sound intensities should this heating be im-
portant? To answer this question, we compare the en-
ergy acquired by the resonant electrons with the energy
transferred to the lattice through inelastic scattering.
In the absorption of sound, the power absorbed per unit
volume is IS, so that the power absorbed per electron
is rs/n o (in this estimate we are dividing by the total
electron density, since over the time τε the absorbed
energy is redistributed between the resonant electrons

15'Sound amplification by current-carrier drift for the case
gl« 1 has been studied in Eefs. 35-37, etc. The case gl»1,
which is the case of interest here, has been studied in Refs.
38, 39, etc.

l e )1he function Γ (ω) for q »Η^1 and for the deformation inter-
action is the same as in metals. Ihis is a natural result,
since the shielding is inconsequential *

17 teagan40 has derived a nonlinear theory for the absorption of
sound under the conditions gl»1 and £/0/ε » 1 for the case of
electron scattering by phonons. Kagan reached the conclusion
that Hie function Γ (S) in this case is the same as in the case
gl« 1 (Refs. 41 and 42).

18)The heating of electrons by sound in the case gl«1 was
studied in Refs. 43, 44, etc.

362 Sov. Phvs. Usp. 22(5), May 1979 Gal'perin ef a/. 362



and all the other electrons with the same energy).
Clearly, if the electron energy distribution is to de-
viate only slightly from the equilibrium distribution,
the energy absorbed over the time τε must be much
smaller than the characteristic energy ε. We accord-
ingly find the following condition for slight heating:

-!^<ι. (4.5)

If we use the estimate in (3.19) for Γ and express S in
terms of Uo in accordance with (4.3), we can rewrite
(4.5) as

As a rule, the product (TC/T)(W/V)Z does not greatly
exceed unity in order of magnitude, so that condition
(4.6) is more or less equivalent to (4.4). Under this
condition, the heating is unimportant.19' The nonlin-
earity of the absorption or amplification, on the other
hand, can be marked: Since

ωοτ — qly —£- ·,

the condition for a pronounced nonlinearity, ω ο τ» 1,
can be satisfied at the same time as condition (4.4),
because of the large value of the parameter ql.

Let us discuss some particular features of spund
propagation under amplification conditions. As we have
seen, the nonlinear amplification coefficient Γ falls off
with increasing sound intensity. Then when the intens-
ity reaches a certain So in the course of the amplifica-
tion, the amplification coefficient can become compar-
able to the absorption coefficient corresponding to lat-
tice absorption, Γ, (although | Γ ο |> Γ,). Beginning at
this point, a wave with a stationary amplitude So can
propagate in the crystal, and if the condition Uo « ε
holds then the wave is essentially sinusoidal (as men-
tioned above). This is a major distinction from the
case ql « 1, in which the nonlinear stationary wave is
definitely nonsinusoidal.41'42

To conclude this section we turn to the experimental
results of Refs. 28 and 29, where a momentum nonlin-
earity was first observed in the amplification of sound
at frequencies of 1-2 GHz in η-type InSb. In this fre-
quency range the parameter ql is 5-10. The charac-
teristics of the sample were chosen such that conditions
(3.22) and (3.23) do not hold at low "input" sound intens-
ities. Under this condition, the classical approach
adopted above cannot be used, and quantum theory must
be used to analyze the nonlinear absorption. As men-
tioned earlier, this problem is treated in Refs. 26 and
27. According to those papers, in the case UOT/H » 1
we have

Γ (5)
Γο

(4.7)

As the sound intensity increases, however, condition
(3.23) eventually begins to hold, and there should be a
transition from the behavior T~S'1/2 (quantum theory)

FIG. 1.

a"
Sm,VJ/cm2

to the behavior r(S)-S" 1 / 4, predicted by the classical
theory, according to the arguments above. Figure 1
shows the electron amplification over the length of the
crystal as a function of the intensity of the sound which
enters the crystal, taken from Ref. 28. At low intens-
ities, the experimental points are described better by
the quantum theory, while at high intensities they are
described better by the classical theory. A more de-
tailed comparison of these experiments and the theory
has been made by Kozub.46 We note that a transition to
a steady-state sinusoidal wave, as mentioned above,
was observed in Ref. 29.

5. NONLINEAR EFFECTS IN THE PROPAGATION
OF SOUND IN A METAL IN AN EXTERNAL
MAGNETIC FIELD4 7-4 8 4 5

The momentum nonlinearity takes an unusual form in
the presence of an external magnetic field. Since the
absorption of low intensity sound in magnetic fields has
been studied in detail both theoretically and experi-
mentally (see, for example, Ref. 49), we will simply
outline the corresponding physical picture here.

We assume that a wave is propagating in a conductor
in a nonquantizing magnetic field (KSi « T, where Ω is
the characteristic frequency of the periodic motion in
the magnetic field), and we assume that we can speak
in terms of a classical trajectory of the electron in the
magnetic field. If the field is classically strong (Ωτ
»1), the electron manages to traverse many periods
of the trajectory during the time between collisions.
The trajectory can take different shapes, depending on
the shape of the Fermi surface and on the experimental
geometry. As an example, we show the projections of
the trajectories onto a plane passing through the sound
wave vector (Fig. 2).

Let us assume that the characteristic dimension of
the trajectory, R~v/Sl, is much larger than the sound
wavelength. Clearly, the electron interacts effectively
with the wave only on those parts of the trajectory
where the projection of the electron velocity onto the
sound wave vector is small (in the present case, these
regions are the classical turning points along x). In
these regions, the electron "senses" a certain wave
phase for a long time interval. The contribution of the
electron to the absorption is thus governed by the sum
of the contribution of these regions over the part of the

1 9 )1his is the case only in the absence of an external magnetic
field. In a magnetic field, (he heating can be more important,
generally speaking, than the momentum nonlinearity.45

FIG. 2.

363 Sov. Phys. Usp. 22(5), May 1979 Gal'perinera/. 363



trajectory traversed during the time between collisions.
The correlation of the wave phases corresponding to
different regions of effective interaction is of course
extremely important. This correlation, which is gov-
erned by the geometry of the trajectory and the strength
of the magnetic field, leads to a nonmonotonic, oscilla-
tory variation of the absorption with the field. The par-
ticular type of variation depends on the experimental
situation: geometric oscillations,50·31 magnetoacoustic
resonance,51 the tilt effect,58 etc.

In weak fields (Ωτ « 1 or I « R), the electron man-
ages to cover only a small part of the trajectory (a dis-
tance much shorter than a period) during the time be-
tween collisions. Each scattering event changes the
direction of the particle's velocity, so the particle
switches to another trajectory. The only contribution
to the effective interaction is made by the motion of the
electron on the parts of the trajectory near the classic-
al turning points. Because of the random nature of the
jumps during the scattering, there is no correlation
between the different regions of this type. According
to the linear theory, the sound absorption here is inde-
pendent of the magnetic field, equal to its value at H = 0
[if small corrections ~(Ωτ)2 are ignored].

If the sound intensity is increased, the effect of the
sound wave on the electron motion in the regions of
effective interaction becomes important, leading to a
distortion of the trajectory near the turning points.
The magnitude of this distortion can be seen by com-
paring the force exerted on the electron by the magnet-
ic field, ~(e/c)vFH, with the force due to the effective
field of the sound wave,20' ~qU. This comparison shows
that the distortion is governed by the dimensionless
parameter

ir' = i£-,fl. (5.1)

These arguments can be illustrated by assuming that
the electron velocity is nearly perpendicular to the
sound wave vector in the regions of effective interac-
tion, so that the force exerted by the magnetic field
acts along the wave vector. Then on these parts of the
trajectory the magnetic field behaves as some effective
electric field which accelerates the electron along the χ
axis. As a result, the electron motion near the turning
point x0 can be described as the motion in some effec-
tive electric field ~UrH/c. Correspondingly, we can
introduce the energy of the one-dimensional motion a-
long the χ axis, F(x):

F{X)=^L + U(X)=^L(Z-XO)+U(XO) (5.2)

(Fig. 3). The slope of the lines in Fig. 3 is governed by
the parameter 6. Η 6 s 1, the wave greatly distorts the
trajectory; in particular, the group of trapped particles
is singled out, and the untrapped particles can have
turning points only at the crests of the wave profile.
This distortion of the trajectory of course leads to
changes in the contributions of the electrons to the ab-
sorption and thus to the nonlinearity.

2 0 ) For simplicity we are ignoring the electromagnetic contribu-
tion to the absorption; this contribution can be important for
transverse sound.

FIG. 3.

We should point out that the parameter 6 itself de-
pends on the magnetic field: as the field is strength-
ened, the nonlinearity is weakened, and it is sup-
pressed completely at b% 1. Correspondingly, there
should be an additional variation of the absorption with
the magnetic field. Since these discussions have re-
ferred to only a small part of the trajectory, they are
valid in both strong and weak (I « R) magnetic fields,
so that the suppression of the nonlinearity should occur
in weak magnetic fields also. What is the physics of
this effect?

It can be seen from Fig. 3 that a strengthening of the
field tends to remove particles from the resonant re-
gion. On the other hand, we saw earlier (Section 3)
that the nonlinearity is governed by a competition be-
tween the supply of energy to the group of resonant
electrons and processes tending to transfer this energy
to the entire system of electrons. The nonlinearity is
pronounced if the latter processes are relatively inef-
fective and become a "bottleneck." In the absence of a
magnetic field, particles are removed from the reso-
nant group as the result of infrequent collisions. When
the magnetic field is applied, removal by the magnetic
field becomes important: the "bottleneck" expands,
and the nonlinearity is suppressed.21'

At what magnetic fields does the suppression of the
nonlinearity become important? As a measure of the
effectiveness of the removal of particles by the mag-
netic field we can estimate the time over which the
force exerted by the magnetic field produces an χ com-
ponent of the velocity which is of the order of the char-
acteristic velocity of the trapped particles, ~V U/m:
T1~o)</Slqv. If TX<T, the field-induced removal is more
important than the removal by collisions. Since the
parameter b introduced above is equal to ΐ/ωοτ1( as is
easily shown, we conclude that, again in the case of a
magnetic field, the role of the nonlinear effects is gov-
erned by the relationship between the energy supplied
to the resonant particles and the width of the "bottle-
neck" through which this energy escapes.

As before, the quantitative analysis is based on a so-
lution of the kinetic equation incorporating an external
magnetic field.22' This solution is expressed in terms

2 1 'In semiconductors, electrons can be removed from the res-
onant group by applying an external electric field, as shown
by Zil"berman and Mishin.53

2 2 >It can be shown45 that in an external magnetic field the con-
ditions under which the classical description is legitimate are
(K2qZ/m « maxiKaJqR, Uo, Κ/τ).
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of an integral along the electron trajectory:

(5.3)

Equation (5.3) is similar to (3.30), but the particle tra-
jectory is much more complicated than in the case dealt
with in Section 3, since now we must take into account
the magnetic field as well as the field of the sound
wave. There is a simplifying circumstance here: as
mentioned above, the motion of the electron in the re-
gions of the effective interaction (where the field of the
sound wave is important) can be assumed to be one-di-
mensional.

In weak fields, l« R, because of the rapidly decreas-
ing factor, the integral in (5.3) can be affected by only
one effective-interaction region, and it can be shown
that if τχ « τ the exponential function can be ignored in
this region. Using (5.2), we can write

f dt'V - f i z w δυιύχ (5.4)
J J ± / (2/m) [U (x0) - U (x) + (evH/c) (x - *„)] *

This equation is the transformation from an integral
over time to an integral over the coordinate; the de-
nominator in (5.4) is the electron velocity. We thus
find the following estimate of the absorption coefficient
for the easel «R45:

τ I V (5.5)
<i)omin(ti, τ)

Since Τ1~ωο/ί1ςν, Γ is proportional to H in the case
τι

<τ. We thus reach an important conclusion: in the
nonlinear case, the absorption becomes sensitive to the
magnetic field at weak fields, for which there is no
such sensitivity in the linear case. Estimates show
that in pure samples the suppression of the nonlinear -
ity may begin in a field of the order of an oersted or
even lower.

For classically strong fields (R « I), the electron
manages to traverse many periods of the trajectory
during the time between collisions. The contribution of
the several turning points is thus important in (5.3); the
correlation of the wave phases corresponding to these
points leads to oscillatory effects in the absorption in
the linear situation. In the nonlinear situation, a fur-
ther analysis is required, to determine how a sound
wave of finite amplitude affects the distribution of turn-
ing points, i.e., the shape of the entire trajectory (this
additional analysis significantly complicates the calcu-
lations) .

To see what happens in the nonlinear situation, we
return to Fig. 3. Here the trapped electrons are repre-
sented by line 3, which can be assumed straight by vir-
tue of the condition qR » 1 . It can be seen from Fig. 3
that in the case 6 « 1 (i.e., in the case r1« τ) the mag-
netic field has only a slight effect on the motion of the
trapped particles. Their contribution thus remains the
same as in the absence of a magnetic field, and if τ1

« τ this contribution can be ignored in comparison with
that of the other (untrapped) particles. It can be seen
from (5.2) that the field of the sound wave allows the
untrapped particles to have turning points only near the
crests of the potential profile; the wave "synchronizes"
the distribution of turning points, tying them to the

crests. The result is an important change in the varia-
tion of the absorption with the field.

The resulting picture is complicated and extremely
sensitive to the experimental geometry (and to the ge-
ometry of the Fermi surface); accordingly, we will re-
strict the present discussion to the basic features of
this picture.

In the nonlinear situation, generally speaking, there
is a nonlinear contribution to the absorption which var-
ies monotonically with the field. This contribution re-
duces the depth of the modulation of the oscillations in
comparison with the depth in the linear situation. The
variation of the amplitude of the resonant magneto-
acoustic oscillations with the magnetic field is sharper
than in the linear situation. The reason for this result
is that the trajectory distortion caused by the sound
wave makes the turning points more sharply defined.
Furthermore, a distortion of the trajectories compli-
cates the oscillation picture: as shown in Ref. 48, ad-
ditional peaks appear on the curve of T(H)t along with
the peaks which are predicted by the linear theory of
Kaner et al.51

The nonlinear absorption coefficient can be written in
the form45

Γ = + C2 (Ωτ) b + C, (Ωτ) b'y (H)] Γο; (5.6)

here y is a function normalized to unity which describes
the oscillations, and C^3 are numerical coefficients of
the order of unity. The coefficient C2 may vanish be-
cause of symmetry considerations. In particular, it
does vanish if the Fermi surface is isotropic, and it
also vanishes if the sound is propagating along a high-
symmetry axis.

To conclude this section, we would like to discuss the
experiments of Fil' et al.,30 who observed nonlinear
acoustic effects in ultrapure Ga with an electron mean
free pathZ~2 cm. In the experiments, the absorption
coefficient for a weak signal at a frequency of 59 MHz
was studied as a function of the amplitude of a strong
"pump" signal at 154 MHz. The results are shown in
Fig. 4. At the same time, the change in the sound
velocity was measured. We see that there is a pro-
nounced change in the absorption, while the change in
the sound velocity is negligible. This result agrees
with the physical picture drawn above for the momen-
tum nonlinearity: the corrections to the sound velocity
are governed by nonresonant electrons, whose distri-
bution is essentially undistorted by the sound wave.
The r(S) curve shown in Fig. 4 can be found only by
placing the sample inside a superconducting shield: the
geomagnetic field suppresses the nonlinearity. Figure

FIG. 4.
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FIG. 5.

5 shows the variation of the absorption coefficient with
the magnetic field for weak fields and for various input
sound intensities, S =90, 6, and 1 W/cm2 (curves 1,
2, and 3, respectively). We see that the nonlinearity is
suppressed by the magnetic field. The typical field re-
quired for suppression of course varies with the sound
intensity. This value is in order-of-magnitude agree-
ment with the condition ω ^ - Ι , which follows from the
theory described above.

Unfortunately, it is not possible to make a quantita-
tive comparison with the theory, for several reasons,
of which the most important are as follows: the theory
is derived for a single signal, rather than for two; the
theory ignores the particular features resulting from
the complicated Fermi surface of Ga; and the sound in-
tensity used in the experiments is not high enough to
satisfy the inequality ωοτ » 1 with a wide margin.

6. CONCLUSION

In conclusion we would like to suggest some worth-
while directions for further experimental and theoreti-
cal work in the near future.

Actually, there has been no direct experiment to
measure ultrasonic absorption in metals under condi-
tions corresponding to a momentum nonlinearity in a
single-wave situation. In the experiments of Ref. 30,
mentioned above, the absorption of a weak signal was
studied in the field of a strong acoustic pump. No the-
ory is available for this case. The special case in
which the frequency of one wave is a multiple of the
frequency of the other, however, was studied by
Vugal'ter and Demikhovskii.23

It would be very interesting to observe the momentum
nonlinearity in metals by making use of the acousto-
electric effect.23* We know that at a low sound intensity
the acoustoelectric current density j(x) is related to the
absorption coefficient Γ by the Weinreich equation,54

This order-of-magnitude equation follows from energy
and quasimomentum conservation in the interaction of a
sound wave with conduction electrons.

The theory of Ref. 19 shows that this equation should
also hold under conditions corresponding to the momen-
tum nonlinearity. The theory also gives the numerical
coefficient: in a metal, this coefficient is one, while
in a semiconductor it depends on the scattering mecha-

23'This has been done for semiconductors (for indium antimon-
ide) in Ref. 28.

nism. A study of the acoustoelectric effect can thus
furnish several additional types of information about the
momentum nonlinearity.

We have thus examined several specific nonlinear ef-
fects which occur as high-frequency sound propagates
through pure conductors. It can be hoped that this field
of solid state physics will develop rapidly for at least
the next few years. Then, in addition to the problems
discussed here, some new problems should arise. At
this point it would be impossible to predict the appear-
ance of these problems, but their formulation and solu-
tion will constitute a major thrust in this field in the
near future.

We wish to thank A. M. D'yakonov for reading the
manuscript and for several useful comments.
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