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This is a review of researches on the calculation of the electronic characteristics of a free or perturbed

metal surface; these include the electron density, the potential, the spectrum of surface states, the work

function, the surface energy, response of the surface to an electric field, the chemisorption of atoms, and

the adhesion of two metals. Preference is given to papers that employ the theory of the ground state of

an inhomogeneous electron gas, the "density-functional method." The various approximations to the

density-functional used in the calculations, and the various models of the lattice ("jelly",

pseudopotential), are analyzed as to their applicability. Various sorts of experimental data are discussed

on the basis of the theoretical results.
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I. INTRODUCTION

During the last thirty years research on surfaces of
solids has advanced rapidly. The main features of the
"surface boom" have been repeatedly pointed out in the
literature and can be summarized as follows: 1) crea-
tion and development of experimental methods for
obtaining various kinds of information about the
properties of a thin (~5 A) surface layer; 2) the de-
velopment of ultrahigh-vacuum techniques, making

possible new methods for producing and for preserving
over long times atomically pure perfect surfaces; 3)
the construction of various theoretical models and
methods for quantitative interpretation of the experi-
mental data; 4) the remarkable spread and realization
of technological applications of surface research
(catalysis, solid state microelectronics using thin-
film techniques, and many others). Owing to the
combined effects of these developments, the physics of
surfaces is being transformed before our eyes from
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"an art into a quantitative science," and the gap be-
tween it and the traditional "bulk" branches of physics
is being narrowed. At least two specific causes for the
prolonged existence of this gas in the electron theory
of metals can be indicated. First, the sharp nonuni-
formity of the surface layer. In the interior, the dis-
crete nature of the lattice leads to a rather smooth
modulation of the density of conduction electrons,
whereas near the surface the density falls from the bulk
value to zero in distances of the order of atomic di-
mensions. Second, in surface calculations self-con-
sistence with respect to the electrostatic potential is
much more important. Without it we cannot correctly
determine the nature of the drop in the electron den-
sity, and thus of the parameters of the double layer of
charge; it is necessary for the determination of the
equilibrium geometry of the surface and in the analysis
of the interaction of the metal with the surrounding
medium. Any disturbing agent (atom, molecule, or
other entity) "adapts itself" to the metal and deforms
the electron density near the surface (changes its
"environment"). Therefore the use of model (fixed)
potentials often leads to error.

It can be understood from these remarks that the
state of the theory of a metal surface depends to a
large extent on the level of development of the theory
of strongly inhomogeneous electronic systems. Re-
markable progress in this direction has been achieved
rather recently through the creation, in papers by
Hohenberg, Kohn, and Sham,2·3 of a self-consistent
theory of the ground state of an inhomogeneous elec-
tron gas, the "density-functional method" (DFM). The
purpose of the present review is to acquaint the reader
with the applications of the DFM to research on metal
surfaces, where they have been extremely fruitful.
By providing a unified approach to the quantitative
analysis of various processes and phenomena (see
Sections III, IV) this method has essentially determined
both the present state of the theory of metal surfaces
and the most promising directions for its future devel-
opment. Section II gives a brief introduction to the
theory of the method. A more complete exposition
can be found in an earlier review.4 Various aspects
of related questions are considered in other reviews.5"9

Where no statement is made to the contrary, we shall
use an atomic system of units: e = me =fi = I.1 ' The unit
of length is the Bohr radius aM =0.529 A, and the unit
of energy is 27.2 eV.

II. SELF-CONSISTENT THEORY OF AN
INHOMOGENEOUS ELECTRON GAS (IEG)
(DENSITY-FUNCTIONAL METHOD)

1. Description of the ground state of an inhomogeneous
electron gas in terms of the electron density (general
formalism)

a) The Hohenberg-Kohn theorem

Hohenberg and Kohn (H-K)2 considered an electron
gas in a nonuniform electric field with the potential

v(r). The Hamiltonian of the system is of the form

Η = τ + ν + υ, (1.1)

where T, V, and U are respectively the kinetic energy
of the electrons, their Coulomb interaction with each
other, and their interaction with the external field.
Let | Φ) be the ground state vector of the system of
particles in the given field, and let w(r) be the corre-
sponding electron density, which satisfies the
condition

= Λ\ (1.2)

e is the charge of the electron; me is its mass.

For simplicity it is assumed that the ground state is
nondegenerate. Obviously n(r) is uniquely determined
by the choice of the external potential ν (τ). H-K
showed that the converse is also true; v(r) is a single-
valued functional of the density (up to an additive con-
stant). This result is the starting point for the con-
struction of the density-functional method (DFM). It
follows that | φ ) is also a single-valued functional of
w(r) since by the Schrodinger equation | φ) is uniquely
determined by the choice of v(r). Therefore averages
calculated with the function |Φ), for example the
kinetic energy and the interaction energy, are single-
valued functionals of the density.

Then according to the well-known variational prin-
ciple for the energy of the ground state (cf., e.g.,
Sec. 20 in Ref. 10) we have the following theorem (the
H-K theorem): There exists a universal functional of
the density, G[«(r)], such that the density correspond-
ing to any external potential ν(r) must minimize the
energy functional

£,.[«)=- f v(r) η (r) (dr) + -1 j j* •?• ̂ ^ ' (dr) (dr') + G[n] (1.3)

subject to the subsidiary condition (1.2). The functional
G[n] is defined by the relation

6[ίί] = (ψ|Γ + 7|Ψ>—|- ( [ ""·'"['·') <dr)(dr'). (1.4)
I J J | r —r |

Introducing a Lagrange multiplier μ, we can write the
condition for the extremum which follows from the
H-K theorem in the form

δ[ΕΌ[η] — μ j n(r)(dr)] = 0. (1.5)

From this we have

μ =^ί. (1.6)

For Ν» Ι, μ is identical with the chemical potential
of the system. Let ψ(τ) be the total electrostatic po-
tential energy of an electron (in atomic units it differs
from the potential only in sign)

here n t(r') is the density of positive charge which pro-
duces the potential ^(r). Then by means of Eq. (1.3)
we can write Eq. (1.5) in the form

„(,.)-.. «μϋ = μ. (1.8)
on '

We note that Eq. (1.7) follows from the Poisson equation

ν2φ (r) = -4π In (r) - n+ (r)], (1.9)

which assures that the Coulomb potential is self-
consistent.
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b) The linear-response approximation (L.R.A.)

In some cases it is convenient to represent an exter-
nal perturbation in the form v(r) = vo(r) + vi(r), where
ν0(r) is the "unperturbed potential" and ν (r) is a small
perturbation. Then, expanding both terms in Eq. (1.8)
in powers of the perturbation, we get in the zeroth
and linear approximations

(1.10)

' 6η (Γ) 6/ι (Γ') | η _ η ο * (1.11)

Equations (1.9), (1.10), and (1.11) are the basis of
the linear-response approximation (LRA). This finds
frequent use in the theory of metal surfaces (cf.
Section IV).

2. Approximate expressions for the energy as a
density-functional

Equations (1.8) and (1.9) form a self-consistent sys-
tem, which determines the electron density distribu-
tion in the ground state if the explicit form of the func-
tional G[n] is known. The H-K theorem is essentially
an existence theorem. Unfortunately, it is still not
clear how to obtain the exact forms of the functionals
whose existence is assured by this theorem.2) There-
fore in carrying out actual calculations it is necessary
to approximate G[w]with some "lucky" expression.
Hohenberg and Kohn considered two approximations:

1) The first approximation treats the deviations
from an average value η as small: | n(r)| = | n(r) —n\
« n . Then G | n\ can be expanded in powers of ή:

G Μ = G Μ + j Κ (| r - r'|) η (r) η (r') (dr) (&') + Ο (η·). (2.1)

The first term describes a homogeneous electron gas.
The linear term drops out because of translational
invariance and the normalization condition fn(r)(dr)
= 0. H-K showed that the Fourier transform of the
kernal K(q) in the second-order term can be expressed
exactly in terms of the static dielectric permittivity
e(q) of a homogeneous electron gas of density n: K(q)
= (2jr/q2)[e(q) - I ] " 1 . An important property of K(q) is
that it has a singularity of the form (q - 2k,) ln(q - 2k,)
for q- 2k, because of the existence of a sharp boundary
of the electron distribution in k-space at k=k, (k, is
the Fermi momentum). The presence of the singularity
leads to Friedel oscillations of the charge density which
screens the perturbation acting on the electrons. The
general theory of such oscillations in an inhomogeneous
electron gas is constructed in Ref. 3. They appear, for
example, near a charged impurity in a metal12 and
near the surface of a metal (see subsection 5).

2)An interesting extension of the H-K theorem by Epstein and
Rosental11 applies to the "ground state" of an /-rowed Hermi-
tian matrix. With the examples 1=2 and 1=3 they showed that
in some cases one can also get from the general theorem a
recipe for constructing the functionals. However, for practi-
cally interesting systems there has so far been no progress
in this direction.

2) The other approximation considered by H-K is the
case of smoothly varying density: n(r) =<p(v/r0), r0— °°;
they carried out a formal expansion of G[n] in the
parameter r·"1, or, equivalently, in powers of the
operator V acting on n(r). By using the symmetry of
the functional gt[n] with G[n] = fgt(n)(dr) and the
ambiguity in its definition3' we can write the series
in the form

The coefficients gj[«(r)] are ordinary density functions
(not functionals). go[n], which is the density of non-
electrostatic energy in the homogeneous electron gas,
is often represented in the form

g0 (n) = it (η) + εχ (η) + ec («)]„, (2.3)

where t and tx are respectively the average kinetic
energy and the exchange (Hartree-Fock approximation)
energy per particle:

(») = 0 . 3 ( 3 A ) ! ' s = i j | ,

l
(2.4)

(2-5)

here rs(n) = [(4/3)πη]"ι/3. For the correlation energy
ec, in the region of metal densities the Wigner ap-
proximation (cf. Ref. 13),

nM

(2.6)

is often used, and in the high-density approximation
( r s « l ) the results of Gell-Mann and Brueckner14 are
applied.

To determine the other coefficients in Eq. (2.2) H-K
considered the case in which the density is smooth and
also its variations are small. Then the g{ can be ex-
pressed in terms of response functions of various
orders. For example, g2=2v(-c2+c\), where the c(

are the coefficients of the expansion of the linear re-
sponse function in powers of q. There are no odd
powers of q in the expansion because the unperturbed
system is isotropic. In the random phase approxima-
tion the result is

g, («) = (72»)-', (2.7)

which is identical with the coefficient of the first quan-
tum correction to the kinetic energy of an inhomogen-
eous gas, which was first calculated by Kompaneets
and Pavlovskii15 (see also Ref. 16). The exchange con-
tribution gl to g2 was calculated in the high-density
limit by Sham,17 and the correlation contribution was
calculated by Ma and Brueckner.18 Application of these
results to calculations for atoms showed that they are
essentially insufficient (for example, the exchange
contribution found in Ref. 17 turned out to be too small
by a factor three). An explanation of this difference
was, for example, sought19 in the neglect of the higher
terms in the gradient. However, a later analysis20'21

showed that strictly speaking no independent contribu-

3)The functional grln] is the density of noneleetrostatic inter-
action energy of the inhomogeneous gas, defined up to the
divergence of an arbitrary vector functional.
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tion of exchange to the gradient expansion exists.4'
Geldart and Rasolt23 derived an expression for g"
in terms of the one-particle Green's function which is
exact to all orders in e2. They developed an approx-
imate method by whichg\c can be calculated in the
"intermediate" range of densities (1 S r s s 6 ) , which is
essential for applications of the theory to metals. The
coefficient ^ " ( Ό is P11* in the form

gf (n) = c (r.) «-«/>. (2.8)

The function c(rs) decreases almost linearly with in-
creasing rs from c(l) =< 2.5 · 10"3 to c(6)=> 1.6 · 10'3.
Calculations of surface energies with the nonlocal
exchange-correlation correction show better agree-
ment with experiment than those made with other
approximations. Papers 2 4 ' 2 5 in whichg\ and g™ have
been estimated from empirical considerations may also
be mentioned here.

3. Two realizations of the density-functional method

In calculations of surface properties of metals and in
other applications of the DFM two calculational
schemes are commonly used. One of them involves
perfecting the "statistical description" based on the
Thomas-Fermi method (TFM) and extending the limits
of its applicability.

The second way to realize the DFM involves the
formulation of one-particle Schrodinger equations
whose self-consistent solution is equivalent to the
solution of the variational problem of Eqs. (18), (19).

a) The Thomas-Fermi method and its perfected form

The present state of the statistical theory of mat-
ter based on the TFM and its successive modifica-
tions, and also the application of the corresponding
models to various electron-nuclear systems, have
been examined recently in detail.26 We shall con-
cern ourselves here only with the connection of the
TFM with the DFM. Our exposition is based on the
treatment by Lang.4 Substituting Eq. (2.3) in Eq.
(1.8), we get

<T (r) -r g', (" (r)) = μ, (3.1)

where go[n(r)] sdg0(
n)/dn\^nU)· I f in £ο(η)™β k e e P o n l y

the kinetic energy (2.4) and substitute (3.1) in Eq.
(1.9), we obtain the well-known Thomas-Fermi
equation5'

ν 2 φ(Γ)= - ~ [ μ - φ ( Γ ) ] 3 ' 2 + 4 π η + ( Γ ) . (3.2)

*' The nonexistence of a gradient expansion for the exchange
interaction is due to the long-range nature of Coulomb forces.
When we go from the Yukawa potential· v{q)= (q̂  + X2)"1 to the
unscreened Coulomb interaction by taking the limit λ - 0, in
second order in the interaction parameter e2 a singularity of
the type 1η2λ appears in g\ (Sham erroneously considered only
the linear term). Since the dynamical correlation leads to the
appearance of effective screening (i.e., λ = λβΓΙ * 0), it can be
seen that there is nevertheless a gradient expansion for the
sum g*i=g\+ g%. (We note, however, that a static screening
of the Coulomb potential does not give a complete description
of the effect of correlation; cf., e.g., Ref. 22.)

5>For relevant discussion and bibliography see Ref. 27.

Inclusion of the exchange term (2.5) mgo(n) leads to
the Thomas-Fermi-Dirac equation, and a further con-
sideration of correlation gives an equation derived by
Gombas.5'

Inclusion of the gradient terms after substitution of
Eq. (2.2) in Eq. (1.16) gives

l Vn (r)|2-2 = μ.

(3.3)
Along with Eq. (1.9), Eq. (3.3) provides an extension
of the Thomas-Fermi equation to the case in which
exchange-correlation and quantum effects in an in-
homogeneous electron gas are taken into account.

b) The perfected Hartree method

Following H-K, we consider a system of JVnoninteracting
fermions, with mass equal to the electron mass, in a static
field vs(r). We denote the wave function of the ground
state of the corresponding Hamiltonian Τ +VS by * s ( r ) ,
and the density of particles by n(r)."' From the H-K \
theorem we can easily derive an equation analogous
to Eq. (1.8):

^ = M.i (3-4)

here Ts[n] is the kinetic energy of the system
(Ts[n] =<* s | T\ * s » . The chemical potential μ, is
given as before by the condition (1.2). Knowing the
general form of the functional T s [«] , we can de-
termine w(r) from Eq. (3.4). But we can also obtain
n(r) in a more traditional way, by solving a system of
Ν one-particle Schrodinger equations with the potential
vs(r) and determining φ,(τ) as the Slater determinant
formed from one-particle functions. Thus Eq. (3.4) is
equivalent to a system of quantum-mechanical equa-
tions. Using this fact, and also the fact that Eqs. (1.8)
and (3.4) are formally identical when in the latter f s(r)
is replaced by the effective potential

"OH [», rj = φ (Γ) -

where

bn
C [n] (3.5)

τ.[η] (3.6)

is the exchange-correlation energy (Ts[«] refers to
free fermions with the same density as the interacting
ones), H-K came to the conclusion that the solution of
Eqs. (1.8) and (1.9) is equivalent to the self-consistent
solution of the system of Ν equations

- 4" V2 + "et( (n, r)) Ψ, (r) = ε,ψ, (r),

where

(3.7)

(3.8)

The realization of the DFM based on Eqs. (3.7), (3.8)
and (1.9) is essentially the perfected Hartree method
(PHM).

The main difficulties of this approach are associated
with the choice of EIC[n]. In most papers the local-

6 )In the general case vs(jc) differs from the external potential
vix) which results in the same density n(r) when interaction
is present.
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density approximation (LDA) Δφ (r) = φ (oo) — φ (4.3)

has been used, where

(3.9)

(3.10)

(3.11)

is the exchange-correlation part of the chemical po-
tential of a uniform electron gas of density n. This
approximation leads to exact results in two limiting
cases, mainly when the density changes very slowly,
or when the density is very large, rs « 1 (in the latter
case the exchange energy and correlation energy are
much smaller than the kinetic energy, and the error in
treating them inaccurately is small). The exchange
part of vef{ can be calculated from Eq. (2.5):

"eff χ (n) — μι ( n ) = — I — ) η 1 ' · . \ά.1ύ)

This formula for the exchange potential was first
derived by Dirac.2 8 Slater proposed the use of a po-
tential obtained by averaging the nonlocal Hartree-
Fock exchange potential over the Fermi distribution71

and obtained29

ΐ$,=-§-μ.(η). (3.13)

Kohn and Sham3 showed that in the case of smoothly
varying density the potential (3.12) is more suitable
for calculating n(r); the error in n(r) is O(| V«|4) when
Eq. (3.12) is used, and O(| Vw|2) with Eq. (3.13).

For more exact calculations one can take into account
a nonlocal correction of the form glc(n)\ Vn|2, for ex-
ample that given by Eq. (2.8). With this approximation
for the functional EIC[n] the energy of the ground state
can be calculated from Eq. (3.7) with

*(r)(dr), (3.14)

where the density n(r) must be found from the solution
of the self-consistent problem (3.9), (3.10).

III. ELECTRONIC PROPERTIES OF AN
UNPERTURBED METAL SURFACE

4. Fundamental theoretical relations

a) Work function and surface energy (definitions)

1) By definition, the work function Φ is the minimum
energy that must be expended to remove an electron
from the metal at 0°K. It can be put (see Ref. 30) in the
form

(4.1)— μ,

where

(4.2)

is the chemical potential per unit volume, measured
from the level of the mean electrostatic potential
φ a (cp(r)) (( . . . ) denotes averaging over the volume of
the metal), and

7)That is, over all occupied states in the band in question.
Equation (3.12) corresponds to the occupied state of highest en-
ergy.

is the potential difference between the inside and the
outside of the metal (the Coulomb barrier). The elec-
trostatic barrier is localized in a microscopic (2-3 A)
neighborhood of the boundary of the metal, so that Eq.
(4.1) essentially gives the work function as the sum of
a volume component - μ and a surface component Δφ.
This separation was first discussed by Wigner and
Bardeen.31

2) The surface energy is the work required to sepa-
rate a crystal into two parts along some plane, cal-
culated per unit area of newly formed surface. If the
original crystal is macroscopic and the fragments
formed are equivalent, then

σ = (2Λ)-»{2 (G In] + Ee, In}) — (G In'] + Ees In'])}; (4.4)

here A is the area of the cleavage boundary, « and n'
are the respective electron densities in the frag-
ments and in the original crystal, and Eea is the total
classical Coulomb energy of the positive and negative
charges. Consequently, G[n] + Ees[n], unlike the
Ev[n] of Eq. (1.3), includes the energies of the ion
cores themselves. It is easily verified that

Ee,l«] = (8π)"' f |V<p(r)|2(dr). (4.5)

For what follows it is convenient to separate σ into
three parts,

σ = σ + σ« + aes, (4.6)

where ffs and σΙ0 correspond to using in Eq. (4.4)
the G[n] of Eq. (3.6), and aes is the electrostatic
component.

b) Characteristics of a surface in the uniform-background
model ("jelly"model)

Most self-consistent calculations of n(r) near a metal
surface are based on a simplified model in which the
lattice is replaced by a uniform positive background
(uniform-background model or "jelly" model).8)

1) For a crystal occupying the half-space x<0 the
density of positive charge in this model is of the form

η+(χ) = ηθ ( — χ);

ί 1, z > 0 ,
9 W = | Q x<rO ~ Heaviside function.

Because »,(x) is one-dimensional, the electron

(4.7)

8)The "jelly" model describes particularly well "simple" met-
als , in which the conduction band consists of 5 and ρ states,
with d states playing no significant part. The question of the
applicability of this model is discussed in more detail in Ref s.
4 and IS. Herewementionjustonefeatureofthemodel: On
the assumption that the self-energy of the background is
purely electrostatic, the total energy of a macroscopic
"jelly" metal has a minimum at rs= rs

<0) * 4 a.u. (cf. Ref. 32).
To make a uniform background with density corresponding to
rt + r^ stable, we must introduce additional nonCoulomb
forces ("glue"). The specific form of these forces is highly
arbitrary. However, they do not affect the electron distribu-
tion.
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density also depends only on x. Besides this, it must
satisfy the conditions

lim n(x)=n+(x) (4.8)

and, for a neutral crystal,

\ (4.9)

Of course n(x) does not break off sharply at the
boundary of the background, but extends outside, lead-
ing to a lower kinetic energy of the electrons. The
smearing out of the electron density is limited by the
accompanying increase of the potential energy. The
result is that near the boundary a double layer of
charge is formed, of atomic dimensions. We find the
corresponding electrostatic barrier from Eq. (1.9):

) — φ ( — οο) — χ \η(χ) — n+ (x)\ dx. (4.10)

This definition of Δ<ρ agrees with Eq. (4.3), since in
the "jelly" model φ=ψ(—<χ>). The Coulomb barrier is
not the only obstacle to an electron leaving the metal.
Inside the metal each electron lowers its energy through the
formation of an exchange-correlation"hole." Therefore
the total effective potential inside the metal approaches a
value i>eff[n,-°°] = <P(-°°) + MIC(M), where μ«(>ζ)<0 is
the amount by which the energy of an electron on the
Fermi surface is lowered owing to exchange and cor-
relations [see Eqs. (3.10) and (3.11)]. From this,
using Eqs. (2.4), (4.1)-(4.3) and the fact that nix) is
constant inside the "jelly" metal, we can obtain the
following expression for the work function Φ:

Φ = {υ,,,(η, «>)-(,·,„(«. -oo))--Lkh (4.11)

where kF = (3ir2w)lA is the Fermi momentum. Equation
(4.11) allows us to interpret the work function as the
additional kinetic energy that must be given to a Fermi
electron in order for it to surmount the total barrier
that keeps it in the metal (Fig. 1).

2) We now discuss in the framework of the "jelly"
model the various contributions to the surface energy
in Eq. (4.6). For this purpose we consider a homoge-
neous unbounded crystal of density ft. Let us mentally
divide it along a plane and pull the halves apart to a
macroscopic distance. The electron density in each
half extends beyond the boundary of the background,
distributing itself so as to minimize the total (and thus
the surface) energy. Moreover, the total kinetic energy
of the electrons in the two parts becomes smaller than
in the original crystal so that os<0. The electrostatic
energy itself increases: cres>0. There is also an in-

FIG. 1. Schematic representation of the potential near the
surface of a "jelly" metal. The volume chemical potential, p ,
is shown here positive, but can have either sign.

crease of the exchange-correlation energy (oxc>0),
since in the neighborhood of the boundary the electrons
are further from their neighbors, on the average, than
well inside the metal, and the exchange-correlation
hole is a less effective mechanism for lowering the
energy than it is in the original crystal. In the "jelly"
model the electrostatic component of the surface
energy can be represented, by using Eqs. (4.4)-(4.6),
in the form

σ " = ΊΓ \ <f(x)\n(x) — n+(x)\dx.

No analogous simple expressions for us and axc can
be derived, since the exact expressions for Ts[n] and
£xc[n] are not known. In the "jelly" model there is
an additional contribution to σ owing to the work done
against the aforesaid non-Coulomb forces (the "glue").
These forces are arbitrary in our treatment. In
subsection 6, Point a) we shall carry out a calculation
without taking them into account, since such a calcula-
tion is a good basis for the subsequent analysis [sub-
section 6, Point b)], in which allowance is made for the
discreteness of the lattice.

5. Density, potential, and work function (calculated
results)

a) "Jelly"model

The first calculation of the electron distribution at a
metal-vacuum boundary in the framework of the TFM was
made by Frenkel.33 The Thomas-Fermi equation has the
property of self-similarity and can be put in a universal
form whichdoes not contain the characteristics of any par-
ticular metal. To do this we must change to dimensionless _
variables: χ = χ/\,ψ=ψ/'μ,ή = η/η. Here λ
= (3v/BkF)

1'2, jL=[t^)/n]'=kF/2 [cf. Eqs. (4.2) and
(2.4)]. Then, when we also use Eq. (4.7), Eq. (3.2)
takes the form

ϊ). (5.1)

The electron density is connected with the potential
by the relation

(5.2)

The solution of Eq. (5.1) must satisfy the boundary
conditions

<p(oo) = ( — oo) = l, φ'(±οο) (5.3)

Equation (5.1) can be solved analytically for x^ 0.
For χ < 0 numerical calculations are necessary. They
were first done by Frenkel33 and improved by
Samoilovich34 (see also Ref. 35). As has already been
pointed out, the TFM is a special case of the DFM,
corresponding to neglect of many-particle and quantum-
mechanical effects (quasiuniformity principle). From
dimensional considerations it could be expected2 that
the quasiuniformity approximation is correct if the
conditions

I Vn (r) |

are satisfied, since in this case the gradient terms in
the expansion (2.2) are small in comparison with the
locally homogeneous term. It is easy to show that for

(5.4)
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an actual electron distribution, which falls off ex-
ponentially outside the metal, the condition (5.4) i s
violated at even a small distance from the surface.
Bes ides this, outside the metal it i s not correct to
neglect the exchange-correlation contribution to
go(n) in comparison with the kinetic part; this i s
justified inside metals with high electron densities.

Owing to these shortcomings the TFM gives an
electron density which falls off too smoothly outside
the metal; instead of an exponential decrease, it falls
off a s (distance)"8 (in analogy with the case of the
Thomas-Fermi atom2 7). This in turn leads to too
large a value of the dipole barrier, which according
to Eq. (5.3) is Δ<ρ = ^k%. (We have here gone back to
dimensional variables.) Also, neglect of exchange
and correlation decidedly underestimates the value of
the volume component of the work function: μ = %kjr.
From this, recalling that in the TFM ν#{ = φ , we get
from Eq. (4.12)

<DTF = 0. (5.5)

The zero value of the work function, and also the
negative value of the surface energy, which i s obtained
in the TFM for all ra (subsection 6), show that it i s
not suitable for calculations of energy characteristics
of the surface. It follows from Eq. (5.5) that the TFM
is incapable of giving a correct picture of the interac-
tion of a positive charge with a metal; electrons, being
unhindered from leaving the metal (Φ Τ Ρ = 0 ! ) leave it
when acted on by the field and neutralize the charge.
For similar reasons both a negative ion and a charged
capacitor are unstable in this model.36 It can be
shown that inclusion of exchange and correlation leads
to a work function which i s not zero, but i s the same
for all metals. 9 )

To avoid these shortcomings of the TFM, Smith37

used the more realistic approximation

G [nl = j (Λ) [ i o [n (r)] + g2 [n (r)] | V» (r)|z], (5.6)

where go[n] was defined in accordance with Eq. (2.2)—
(2.6) and g2(n) was chosen in the form (2.7). Substitu-
tion of Eq. (5.6) in (3.3) leads to a nonlinear differential
equation, whose solution requires complicated nu-
merical computations. Smith37 simplified the problem
by putting n{x) in the "trial" form

η(ί) = Β[ΐ-^-βχρ(βϊ )]θ(- 3 : ) + 4ήβχρ(-β Ι )θ(χ). (5.7)

This function satisfies the asymptotic requirement
(4.8) and the condition (4.9); β i s an adjustable param-
eter. From Equations (1.5) and (5.7) we have
άΕν(β)/άβ = 0, or equivalently

*>(P> ο (5.8)

where σ=Εν[η]- Εν[ηθ(-χ)] i s the surface energy of the
semi-infinite metal in question. This last formulation
of the condition for a minimum is more convenient,

"All the calculations are analogous to those made in Ref. 27
for atoms. When exchange and correlation are taken into ac-
count the electron density goes discontinuously to zero at
some point χ > 0, which is determined by the condition that
the total energy should be a minimum. Quantum corrections
smooth out the discontinuity.
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FIG. 2. Work functions of metals, 1—experiment, 2—theory
(PTFM, "jelly""), 3—theory (PHM, "jelly"30), 4—theory
(PHM, pseudopotential30).

since σ does not contain the divergences that appear
in Ev[n] in the limit V - <*> (V is the volume of the
specimen). After calculating σ(β) with the approxima-
tion (5.6) for G[n], Smith found from Eq. (5.8) the
function £(w). The results calculated for the work
function with these values of 0(w) are shown in Fig. 2
for a number of metals. In spite of the simplicity of
the model, there is reasonable agreement with ex-
periment for most simple metals.

The most accurate description of the electron dis-
tribution near the surface is obtained by using the
PHM, since the functional Ts[n] is fully taken into
account in this method. In particular, in the density
n(x) calculated (see Ref. 38) on the basis of a one-
dimensional version of Eqs. (3.7), (3.8) (Fig. 3), there
is a Friedel oscillation with the characteristic asymp-
totic form A cos(2*, + α)χ'2 +Ο(χ'3), α = -2y(kr),
where y(k) is the phase shift of the asymptotic
(*— -°°) wave function, * A t S <kf(r)

= siti[kx -y(*)] exp[i(k, y +ktz)]. It is not hard to verify
this by substituting Ψ*,^,^ in Eq. (3.8) and integrating
by parts. It can be seen from Fig. 3 that when the
background density is low (rs = 5) the oscillations are
large, while for a high density (ra = 2) they are not
conspicuous and the density is roughly monotonic and
close to the Thomas-Fermi form. This is easily under-
stood; the conditions (5.4) for applying the TFM are
better satisfied for larger n. For the exchange-corre-
lation component Mxc[n] the local-density approxima-
tion, (LDA) was used in Ref. 38, as in most sub-
sequent work.

The local approximation gives good results for those
characteristics of the surface that depend on integrals
over x, namely Φ and σ (see later discussion). Non-
integral properties do not behave as well; veft (x), for
example, does not have the necessary behavior under

"09
1.0

ΐ

1
Positive

,K6ackground

-1.0 -0.S ΰ Ο.ί №
Distance in units λ = 2n/kf

FIG. 3. Normalized electron density at the surface of a 'jelly"
metal (self-consistent calculation)38. The Friedel oscillations
can be seen. They are more pronounced for metals with low
electron densities (larger values of rs).
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FIG. 4. The work function
of a metal and its compo-
nents.

30

reflection outside the metal, and falls off exponentially.
The reason is that the LDA does not take into account
nonlocal polarization, which is responsible for the
appearance of "virtual charge" which leads to the
"mirror image" forces.10'

Figure 2 shows the work function calculated by Lang
and Kohn30 on the basis of the PHM (dashed curve),
and Fig. 4 shows its volume and surface components,
-fl(r5) and A(p(rs). Whereas ~j± and Αφ vary by 5.3 and
6.8 eV, respectively, over the range of metallic den-
sities, the total work function varies only from 2.4 to
3.9 eV. It can be seen from Fig. 2 that the results of
Lang and Kohn and those of Smith differ by not more
than 0.3 eV, although the latter do not take oscillations
into account. The reason for the agreement is that in
the range of densities where the oscillations are large
the surface contribution Αφ is itself small in compar-
ison with | μ| (Fig. 4). In the comparison of Φ with ex-
periment (see Fig. 2) preference was given to data
obtained with the photoelectric method and the contact
potential method, which are effective at low tempera-
tures (the references to the original papers are given in
Ref. 39). We note that there is a considerable spread
of the values of Φ obtained by different methods.40 Be-
sides comparison with experiment, there are also
"internal" tests of the accuracy of the calculations,
based on exact results ("sum rules").

Budd and Vannimenus40 derived an exact relation
connecting the difference of the potentials at the
boundary of the background and in the interior of the
"jelly"-metal with the bulk characteristics:

δφ = φ (0) - φ (— oo) = η (hS^L )';
(5.9)

here go(n) is the volume energy density of the ho-
mogeneous electron gas, Eq. (2.3). Accordingly, we
can calculate δφ without making any assumptions about
the form of the inhomogeneous part of the functional
G\n], Therefore Eq. (5.9) enables us to estimate the
accuracy of numerical calculations based on approx-
imate ways of taking the inhomogeneity into account
and carried out on the basis of various versions of
the DFM. For example, using exactly the same ap-
proximation for #0(n) as did Smith37 and Lang and Kohn39

This difficulty does not arise when we consider a localized
external charge situated outside the metal. In this case the
potential of the charge is included as part of the external po-
tential, and virtual charge appears even when exchange and
correlation effects between electrons are neglected, (i.e., in
the ordinary Hartree self-consistent approach). The corre-
sponding calculations are discussed in subsection 8, a).

TABLE I. Comparison of exact values of δφ
for a metal in the '^elly" model [Eq. (5.10)]
with the results of numerical calculations.
The values in the second and third columns
are taken from Ref. 41 (Table I). The first
column gives values of δφ calculated on the
basis of the Smith model.37

2
3
4
5
6

Smith

0.2651
0.1796
0.1263
0.0935
0.076

βφ (r s)
Lang and Kohn

0.2292
0.1346
0.0273

—0.083
—0.212

ίφ (<·,)
Equation (5.10)

0.2276
0.1329
0.0318

—0.0752
—0.1822

we get (in units of k2

F/2)
0.0796rf

= 0.4-0.0829r,— (5.10)

For rs— 0 Eq. (5.10) gives δφ =0.4, corresponding to
the TFM. This confirms that the TFM is suitable for
use in the limit n — °°. Table I shows values of δφ
calculated from Eq. (5.10) and also as calculated in
Refs. 37 and 39.

In spite of the local approximation for Exc[n], the
results of Lang and Kohn39 agree well with the exact
results. The negative values of δφ at low densities
(r s 2 5) are due to the first oscillation peak of the elec-
tron density. The calculations of Smith,37 based on the
PTFM, do not take the oscillations into account, and
their accuracy in describing the potential decreases
with increasing rs.

We note that comparison with Eq. (5.9) gives a more
reliable indication of the accuracy of calculations of
electron densities and potentials than does comparison
of calculated values of the integral characteristics (Φ
and σ) with their experimental values.

b) Discrete lattice

Within the framework of the "jelly" model it is im-
possible to explain the important experimental fact,
that the work functions of single crystals are anisotro-
pic; when the lattice is replaced by a background the
nonequivalence of different planes in the lattice dis-
appears. In subsection 6 we shall show that neglect of
the discreteness of the lattice also makes it impossible
even to predict satisfactorily the numerical values of
surface energies, to say nothing of their anisotropy.

1) "Corrugated background" model. The first
semiquantitative explanation of the anisotropy of the
work function was given by Smoluchowski.42 He con-
sidered a model in which the positive charge of the
lattice was spread uniformly over the Wigner-Seitz
cells. Then the distribution inside the metal is the
same as in the uniform-background model, but a
"relief" appears on the surface, which is different for
different faces of a single crystal because of the anis-
otropy of a Wigner-Seitz cell. With a variation pro-
cedure it was shown that the electronic relief (the
shape of the surfaces on which the electron density
is constant) is smoother than the lattice relief. Com-
plete screening of the background would be accompanied
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by nonuniformly distributed amounts of kinetic energy
expended (its inhomogeneous part). The smoothing-
out effect is especially important for closely packed
planes. Owing to the fact that the "peaks" of the de-
formed background project beyond the "clouds" of the
electron density, there is an electrostatic barrier of
negative sign, which is larger in absolute value when
the closeness of packing on the face in question is
smaller. The volume component of the work function
of course remains the same as in the "jelly" model.
Consequently, it follows from the improved approxi-
mate model that a crystal face with closer packing has
a larger work function. This rule is verified experi-
mentally. For example, for W^ibcc) we have
Φ(11Ο) = 5.25 eV, Φ(100) = 4.63 eV, Φ(111)=4.47 eV.
Data for Cu (fee) are given in Ref. 44.

This model is now mainly of historical interest.
Among its few relatively recent applications we may
mention the work of Smith,45 who applied the cor-
rugated-background model to calculate the work func-
tion of the (110) face of W. Here, relying on
Smoluchowski's conclusion that the electron relief is
smooth for closely packed planes, Smith used in the
calculation an electron distribution corresponding to a
plane model with a uniform background.

2) Use of perturbation theory to take the discrete
nature of the lattice into account. It has already been
pointed out that the reason it is hard to deal with the
discrete nature of the lattice exactly is that one needs
the solution of an essentially three-dimensional system
of self-consistent equations. The problem can be great-
ly simplified by replacing the actual potentials of the
ions by pseudopotentials and taking their effect on
electrons into account using perturbation theory. Here
we must take as the perturbation 5V{r) the difference
between the total pseudopotential of the ions and the
potential of the uniform background. Lang and Kohn30

have shown that the resulting contribution from dis-
creteness to the work function can be put in the form

6Φ = J6F (x) na (x) dxHria (i) dx,

where

is the perturbing potential averaged over the yz plane,
and no(pc) is the surface density of electrons in the
metal from which one electron has been removed.

It will be shown in Section IV that for small values
of the electric field F the density of charge nr(x)
induced by it depends linearly on the field. This al-
lows us to express «„(#) in terms of a linear response
to the external field. Calculating the density of the
screening charge in the LRA and using the local
pseudopotential proposed by Ashcroft48 to determine
67(r), Lang and Kohn found 5Φ for various faces of
a number of metals. For example, for the bec metals
Na (Cs) the respective calculated values of 5Φ are
0.05 (-0.25) for the (110) face, -0.3 (-0.6) for (100),
and -0.4 (-0.65) for (111) (all in eV). These results
demonstrate the tendency for the work function to in-
crease with the density of packing of the face, which we

discussed earlier. For the alkali metals the average
5Φ turned out to be negative, which led to better agree-
ment with experiment for polycrystalline metals
(Fig. 2).

3) Exact discrete treatment (self-conststent pseudo-
potential model). The first self-consistent calculation
in which the discreteness of the lattice was taken into
account without the use of perturbation theory was made
by Appelbaum and Hamann47 for a (100) face of a semi-
infinite crystal of Na. The potential used was Of the
form vT(r) = Vat (r) + υ·ΚΛ(τ), where vet!(r) is the effective
potential in the "jelly" model, as defined by Eqs. (3.10)
and (1.7), and i>jon(r) describes the nonelectrostatic
electron-ion interaction. Owing to the two-dimen-
sional spatial periodicity, the energy ε and the two-
dimensional wave vector fe,, can serve as the quantum
numbers for the problem.

Appelbaum and Hamann47 divided space into three
parts: 1) the volume part, extending from χ = -°° to
χ = -a, 2) the surface layer, from χ = -a to χ = + b, and
3) the vacuum, from +b to °°. In the first layer the po-
tential is assumed to have its volume value. The cor-
responding wave functions are known, being ordinary
Bloch wave functions. In the vacuum region the po-
tential is independent of the coordinates, and the wave
functions decrease exponentially as χ increases.

The solutions of the SchrBdinger equation in the
surface layer are matched with the volume functions
at χ = — a and with the vacuum functions at x = b. Ash-
croft's model potential was used for v ion. The boundary
at χ = —α between the surface and volume regions was
chosen between the second and third planes of atoms.
Shifting it to a position between the third and fourth
planes made only a trifling change in the results. The
work function of Na came out 0.3 eV lower than in the
"jelly" model, in good agreement with the results of
Lang and Kohn30 and with experiment. The calculation
of the electron distribution showed that the Friedel
oscillations in the surface combine additively with the
volume oscillations caused by the discreteness of the
lattice. This is not surprising, since neither contribu-
tion exceeds 10 percent of the average value of the
density.

The self-consistent potential along some axes normal
to the surface is shown in Fig. 5.

-12

4J 7.2

FIG. 5. Variation of the effective potential along three axes
normal to the surface Na(lOO).47 The lowest axis goes through
the center of a surface atom (distinguished by thickening), and
the top axis, halfway between two adjacent surface atoms.
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An analogous approach has been used in a number of
papers on the electron structure of semiconductor
surfaces. References and discussion can be found in
the review by Appelbaum and Hamann8 and in later

o, erg/cm2

papers. A somewhat different approach to the
analysis of a surface involves the solution of the
three-dimensional self-consistent Schrodinger equa-
tion for a crystal plate containing Ν atomic layers.
The first calculation with this geometry was made by
Alldredge and Kleinman52 for Li, using a plate parallel
to the (100) face containing 13 planes of atoms. The
boundary conditions were given by placing an infinite
step barrier at a distance I of several times the lat-
tice constant from the outermost atomic planes, so
that its effect on the actual surface barrier is neg-
ligible. The wave functions were found as sums of
harmonics falling off along the normal to the value
zero at distance I.

By diagonalizing the matrix of the Hamiltonian one
can obtain a discrete spectrum of allowed values of
ε»Μ for any value of fen. With increasing thickness of
the layer the distance between most of the successive
levels decreases, forming a continuous band in the
limit. The levels which remain isolated from the band
are surface states. They always appear in pairs and
are spatially localized near the surface. In their calcu-
lations Alldredge and Kleinman52 used a nonlocal
pseudopotential.8 Improved calculations for Li and Na
were given by Hardy and Allen.53 Other calculations
of this kind deal with electron states at surfaces of
Al(lll), 5 4 Nb(100),55 Fe(lOO),56 and Cu(100).57

Advantages of the plate geometry are that all of the
states, volume and surface, are discrete, and they
are all treated in the same way. However, the diffi-
culties in the calculation increase very rapidly with the
thickness of the plate. At present there are few papers
in which both exact treatment of the discrete lattice
and full self-consistence are achieved. Nevertheless,
in the opinion of Bennet,7 it is the appearance and
further development of these researches that mark
the entrance into "a new era in the theory of electron
properties of surfaces." It is remarkable that these
self-consistent calculations automatically include the
development of a theory of surface (Tamm) states.
An exposition of these (model) approaches and re-
sults, and also references to the original papers are
given in a review by Davison and Levin.58

6. Surface energy (calculations)

The problem of surface energy has played an impor-
tant part in the development of the applied theory of the
DFM. The peculiar "ultradensity catastrophe," in
which the "jelly" model value of σ becomes negative
for small r,, posed vary sharply the problem of dealing
with the discreteness of the lattice, and also stimulated
an intensive analysis of the applicability of the gradient
expansion and the LDA to calculations of £1<;[n].

a) "Jelly" model

The simplest self-consistent calculation of the sur-
face energy of a ''jelly" metal was first carried out by
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FIG. 6. Comparison of theoretical and experimental values of
the surface energy. Curves 1-3, theory: 1—PTFM, LDA,37

2—PTFM with nonlocality taken into account60 {gfe calculated
from the data of Ref. 59), 3—PHM, LDA.39 The vertical seg-
ments (4) describe the theoretical values obtained using a
pseudopotential (lower value with LDA, upper with nonlocal
£^.[«]). 5—experimental values for solid metals,6 5·6 6, 6—found
by extrapolating to 0° Κ the data on surface tensions of liquid
metals (given in cases where no data were found for the solid
state), 7—homogeneous background model.

Smoluchowski34 by means of the TFM, in which only the
kinetic and electrostatic components of σ are con-
sidered. Using Eqs. (4.5), (4.6), (2.4), and (5.1), one
can show that

9/2.= — λ μ η f < p ' 2 ( z ) d x = — 0.0763/·-

This result is absurd; the experimental values of σ
are of course positive and increase rapidly as rs

becomes smaller. Smith37 used the PTFM in calculat-
ing surface energies [cf. Eqs. (5.6)-(5.8)]. The func-
tional form of o(rs) which he found is shown in Fig. 6
(curve 1). In the series of alkali metals (Cs, Rb, K,
Na, Li) the calculated σ is positive and increases
with density like the experimental value, although the
theoretical values are too low. For r s

K 3 . 1 they begin
to drop, and they become negative at rs~ 2.6, which
indicates that the model used becomes unsuitable at
high densities. If, remaining within the framework of
the "jelly" model, we include the first gradient cor-
rection to Exc[n], using the results of Ref. 59 to
calculate g", the theoretical values of σ become
larger,6 0·6 1 and the agreement with experiment for the
light metals is improved (curve 2). For small r 3,
however, the behavior of a(rs) is still "pathological."

A quantum-mechanical calculation (PHM)39 (Fig. 6,
curve 3) also does not rectify the behavior of cx(ra) for
high background densities, in spite of the exact treat-
ment of the functional Ts[n], Eq. (3.14) (the LDA was
used for Exc in Ref. 39). The correctness of Lang and
Kohn's analysis39 within the framework of the model
employed ("jelly", LDA) can be confirmed by means
of an exact relation between the one-particle (as) and
the total surface energy of a "jelly" metal.62 As was
pointed out in subsection 4, Point b), σ, is the only
negative contribution to the surface energy. Con-
sequently, the disagreement with experiment is due to
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an underestimate of the electrostatic and/or the ex-
change-correlation components of σ. Lang and Kohn39

proposed that the cause of the discrepancy lies in
the neglect of the discreteness of the lattice. u )

b) Discrete lattice

The lattice contribution to the surface energy is calcu-
lated in Ref. 39 in first-order perturbation theory [see sub-
section 5, Point b), 2)]. We denote by σ0 and n0 the surface
energy and electron density calculated in the uniform-
background model. In view of the stationarity condition
(1.5) the change of the surface energy in first-order per-
turbation theory can be expressed in terms of the density
no(x). Therefore the values of Ta[n] and Exe[n] remain
the same as in the "jelly" model, and the change
δσ= σ - σ0 in the surface energy is completely due to
the difference between the energies of interaction of
all positive and negative charges in the discrete lattice
model in question and in the "jelly" model. Lang and
Kohn39 carried out the calculation of bo for the closely
packed planes fee (111) and bec (110), using Ashcroft's
pseudopotential46 and neglecting the relaxation of the
surface density. The lattice contribution leads to
positive values of σ even for small rs and improves
the agreement with experiment (see subsection 6). In
the cleaving of the crystal there may be a displace-
ment in the χ direction of lattice planes parallel to the
newly formed surface. It has been shown61 that the
effect of this on σ is small.

A variational procedure has been proposed64 which
takes into account the averaged effect of lattice dis-
creteness by introducing a term added to the potential
inside the metal which depends on the structure of the
lattice and the surface considered. Calculations showed
that for some metal surfaces the linear approximation
is not accurate enough, since the perturbing term
6V(r) is not always small. A particularly large dif-
ference was found for Pb (111); the value σ~ 550 erg/
cm2 found in this way agrees better with experiment65

(690 erg/cm2) than the result of the linear approxima-
tion39 (1140 erg/cm2). The averaged term <6F(r)> in
this case is about a third of i>eff (-»). This method
("variation of the potential") is also effective in the
calculation of other characteristics (density, poten-
tial, work function).

c) Effects of nonlocality of exchange and of correlations

We have shown that including ionic pseudopoten-
tials can correct shortcomings of the theoretical
dependence σ(τ,) found in the "jelly" model. It is not
obvious, however, that neglect of discreteness is the
main and single cause of the discrepancies between
theory and experiment and that the theory cannot be
improved while remaining within the framework of,
say, t^SL îeHyu-flaodel. Two papers8 7·6 8 have con-
sidereerme-eentrfbution to the surface energy of a

"jelly" metal caused by the change of the zero point
energy of plasmons owing to the appearance of sur-
face modes when the crystal is split into parts. In a
simple model which neglects dispersion of the plas-
mons this contribution is

where k% and kf are the smallest values of the wave
vector for which decay into an electron-hole pair
(Landau damping) is possible for surface and volume
plasmons, respectively, and ω0 is the frequency of
plasma excitation in the volume. Setting, as in Ref s.
67, 68, *• =*? =kc, we get

(6.2)

Having found good agreement between Eq. (6.2) and the
experimental values of σ, the authors of these pa-
pers 6 7 ' 6 8 suggested that σρ1 be taken as the total surface
energy. The assumption was that all other contributions
(not included in their calculations) exactly cancel
each other. Other papers6 9"7 1 criticized the result
(6.2). It was pointed out that the assumption that k%
and kfl are equal, which led to agreement ofthe value (6.2)
with experiment, is not justified, since the damping of sur-
face plasmons begins at much larger wavelengths than that
of volume plasmons. Feibelman72 showed that fcf must be
smaller than k*/2x>2. Then Eq. (6.1) shows that the plas-
mon contribution is negative and cannot agree with experi-
ment. However, Harris and Jones73pointed out that these
objections bear on details of the calculations in ques-
tion,6 7 '6 8 but do not fully settle the question of the con-
tribution of the zero-point vibrations to the surface
energy. In particular they showed that this contribu-
tion is not included in the calculations of Lang and
Kohn39; the reason for this is the use of a local ap-
proximation for μχβ(η). The plasmon contribution,
caused by large-scale correlations in the electron gas,
is of course associated with an essentially nonlocal part
of nxc(n). For the analysis of the nonlocal effects
Harris and Jones, and also Wikborg and Inglesfield,74

derived exact expressions for the exchange-correla-
tion energy of a bounded electron gas (see also Ref.
75). For electrons in a potential well with an infinite
barrier at the boundary12' they calculated the exchange
part of the surface energy, σχ,

73 and also calculations
were made in the random phase approximation for both
oxc and σ0.

74 These values were compared with ΰχ,
&„, and axc calculated in the LDA). It turned out that
the difference between &« and oXB is small (within 10
percent), but the exchange and correlation contribu-
tions differ quite significantly. ax exceeds the exact
value by about 50 percent, while ΰ0, on the contrary,
comes out much smaller (by about a factor 6). Ac-
cordingly, the LDA provides much better results for
the sum of the exchange and correlation energies than
for each of them separately. The calculations of

11)The discreteness of the lattice has also been taken into ac-
count in papers by S. N. Zadumkin and his collaborators (see
Ref. 63 and paper cited there). The method used is reminis-
cent of the PTFM and included a number of empirical param-
eters.

12)Thls model is useful for the analysis of the suitability of
various approximate descriptions of an inhomogeneous elec-
tron gas, but is too crude for use in calculating surface
properties.76"77 Much better approximations are given by
models with linear 78 and step (finite height)77·79-81 barriers.
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Refs. 76, 79-81, 83-85, based on more realistic
models of the surface barrier, also confirm that the
contribution of the LDA to oxc[n] has a decisive effect.
For example, a completely self-consistent analysis81

in which g\c[n) was used23 (cf. Eq. (2.8) leads to non-
local corrections that do not exceed 16 percent of
σχο[η], although the relative contribution of nonlocality
to the total surface energy can be large (up to 40
percent), since for the majority of metals oxc>o (see
Ref. 39). Therefore inclusion of it allows us to bring
the theoretical values of σ closer to the experimental
values found for solid metals (Fig. 6).

IV. INFLUENCE OF AN EXTERNAL PERTURBATION
ON THE ELECTRON PROPERTIES OF METAL
SURFACES

In this section we discuss the stationary response
of a metal surface to a uniform electric field, and also
the interaction of atomic particles with a metal (ad-
sorption) and the interaction of two metals (adhesion).
In accordance with the general spirit of this survey,
we have not included here many papers in which self-
consistency was not considered or was not fully
realized (for example, in which the ground state was
treated non self-consistently). In some cases it has
been necessary to refer to such papers.

7. Metal surface in an external electric field

a) Boundary conditions, asymptotic form of potential

If the ground state is treated non self-consistently,
the boundary condition for the field is prescribed on
some plane x=a near the surface:

φ' (α) = Fx; (7.1)

here F is the external field, which is directed normal
to the surface. For example, a=0 if the unperturbed
density is approximated by a step function,86"89 or if
it coincides with the boundary of the "well" in a model
with an infinite potential barrier.9 0"9 2 Actually, be-
cause the electron density is "smeared out", the field
near the surface depends both on the external field and
on the perturbation of the surface charge that it causes,
and it itself subject to definition. The only thing that
can be regarded as prescribed is the field at a large
distance from the surface:

limy'(x) = Fx. (7.2)

Using Eq. (1.9) and the condition

φ ' (*„) = Fx; (7.5)

J »„<*)<** = •£•, (7.3)

which is equivalent to the boundary condition of electro-
statics, F = l-ny (γ is the density of surface charge),
and also the fact that n(x) drops rapidly for x> 0, we
can easily show that φ(χ) has the asymptotic form

ψ (*) = <ρα (χ) + Fx(x- χ0 (Fx)), χ > 2Α, (7.4)

where xo(Fx) = j*~nF{x)xdx/y is the "center of gravity"
of the charge density induced by the field. Accordingly,
xo(Fx) has the meaning of the "boundary of the metal
in the field." We note that for Fx> 0 the motion of the
electrons becomes finite, and Eq. (7.2) takes the form

in this case xo(Fx) coincides with the classical turning
point at which the Fermi level intersects the potential.

b) Electronic properties of a surface in an external field
(calculations)

1) Thomas-Fermi method. The problem of the
penetration of a field into a metal was first solved by
Rice86 on the basis of approximate Thomas-Fermi
equations with the boundary condition (7.1) and α =0
(the unperturbed distribution was approximated by a
step function). Subsequent papers87"89 were devoted
to a more accurate solution of the problem with the
same boundary conditions, and complete self-con-
sistency in the framework of the TFM was achieved
in Ref. 36. According to Eq. (5.5) the TFM does not
apply to the description of a surface in a field Fx<0;
even an infinitely small field "pulls electrons out" of
the metal. Therefore a field Fx> 0 was considered in
Ref. 36 [cf. Eq. (7.5)]. Calculating the first integral of
Eq. (5.1) and using the fact that φ(χ) and φ'(χ) are
continuous, one can find the value of the potential at
the boundary of the background: ψ(0, α) = -0.6μ(1 - α2),
where a =F/F is a dimensionless parameter, and
FCT = (A.8nnJir2~ 8A9n5/e and lies in the range 2· 108-
3 · 109 V/cm. The quadratic dependence on the field
is due to the external (x>0) screening, and neglect
of this effect led to a nearly linear relation.88·89 It
can be easily shown that the field correction found
here, δφ(0, α) = 0.6μα2 = F2/8itn agrees with the exact
result for the "jelly" model, which, when Eqs. (1.9) and
(7.3) are used, follows from the "sum rule"

II

V2 = 2« j nF (χ) χ dx.

As was shown in subsection 5, Point a), the value
<po(0) = -0.6μ obtained with the TFM can be very dif-
ferent from the exact value, especially for large r s .
Accordingly, the TFM gives a considerably better
description of the field correction to the potential in-
side the metal than the unperturbed potential. Figure 7/
shows the function xo(Fx) obtained by numerical inte-
gration of the TF equation with the condition (7.5). It
can be seen that the field, in deforming the electron
distribution, shifts its boundary toward the metal and
"pushes" electrons into the limits of the background for
a = 1. For large fields (a <: 0.7) the effect of external
screening can be neglected; the field, deforming the
surface barrier, "makes its way" to the metal.

χ,,Κ

FIG. 7. Shift of the boundary of the electron density under the
influence of an electric field. 1—Thomas-Fermi model,36 2—
self-consistent quantum-mechanical calculation.98

341 Sov. Phys. Usp. 22(5), May 1979 Μ. Β. Partenskii 341



.-, a.u.

FIG. 8. Normalized density of the screening charge induced by
a weak uniform electric field (Linear-response approxima-
tion)110 * is the coordinate of the "center of mass".

2) Many-particle and quantum effects. The TFM,
being self-consistent, gives a qualitatively correct
picture of the effect of a field Fx> 0 on the distribu-
tion of the electrons. But this model, as has already
been pointed out, describes poorly the quantitative
characteristics of the surface and is entirely useless
for Fx < 0. These shortcomings of the TFM can be
overcome by taking into account many-particle and
quantum corrections to the energy. Within the frame-
work of linear response (LR) this was done by Lang
and Kohn30 in connection with the analysis of the effect
of the discreteness of the lattice on the work function
[see subsection 5 b)]. It was found that in the region of
LR changing the field strength changes only the ampli-
tude of the induced density, and not its shape. In
other words, in this region x0 does not depend on F,
and *o(0) Φ 0. The normalized density of the induced
charge for r5 = 2 is shown in Fig. 8. According to Ref. v

30, xo(0) is positive and ranges from 1.6 atomic units
(r, = 2) to 1.2 a.u. (rs = 6). Similar results for xo(0) are
obtained in the limit .F- 0 from calculations that go
beyond the framework of the LRA.93'94 Theophilou and
Modinos93 used a self-consistent quantum-mechanical
approach. Empirical considerations were taken into
account in choosing the effective potential v${x) of
the unperturbed surface,13' and the Coulomb part of .
the induced potential was determined in a self-con-
sistent.way. Exchange and correlation were included
in the framework of the LDA. The function xo(Fx)
shown in Fig. 7, (curve 2) is an average of values of
jt'^F,) and x(g>(Fx) calculated for two approxima-
tions to v<${x). As the field increases xo(Fx) shifts
toward the metal for Fx>0 [6xo(Fx) = xo{Fx)-xo(0)<0]
and in the opposite direction for Fx< 0. A similar be-
havior has also been obtained by means of the PTFM.94

Conversely, the model with an infinite barrier at the
boundary90 yields 6x{Fx) < 0 for Fx < 0. For Fx > 0 the
results of Ref s. 93 and 94 agree qualitatively with the
TFM. The quantitative difference is most important
at weak fields, when the significant region for this

^Further from the metal the potential v§\(x) chosen in Ref.
93 goes over into an image potential, and deep within the
metal it takes on a value »0, found by considering experimen -
tal evidence. Two models were used for the potential in the
transition region. The calculations showed that the final re-
sults for observable physical quantities (for example, for the
current density and the electron energy distribution in cold
emission) depend only weakly on the choice of model. This
justifies the partial lack of self-consistence in the calcula-
tions.

problem includes the vacuum "tail." As has been
pointed out [subsection 5, a)], the TFM is least effec-
tive in this region. In particular, it gives too smooth
a decrease of the electron density, which leads to
#0(0) =°°. For Fx 2 7 · 108 V/cm the results of the TFM
agree with Ref. 93 to within 0.3 A.

3) Discussion (comparison with experiment). The
shift of the boundary in the field leads to a change of
the dipole moment of the double layer of charge.
Consequently the surface Coulomb barrier changes
by the amount δ(Δφ) = Fx6x0(Fx). According to the
calculations in Ref. 93 this amounts to 1.2 eV for
Fx = 5 · 108 V/cm (see Fig. 7). Thus nonlinear effects
in strong fields lead to a decided nonadditivity of the
"field" (-Fxx) and "proper" contributions to the sur-
face barrier. We consider its possible manifestations.

a) Considering that outside the metal <po(x) goes over
asymptotically into the image potential, with the plane
x=xo(0) serving as the "mirror" [see subsection 8, a)],
we find from Eq. (7.4) that for χ £2 A we have <p(x)
= - | χ =*0(0)|"1 + Fx[x-xo(Fx)]. The height of the Cou-
lomb barrier in a field Fx<0 is raised by δ(Δ<ρ) in
comparison with the "Schottky barrier" (xo = 0) and is
given by14) φ™* = -Flk + F6xo(F). The shape of the
barrier also changes. For sufficiently strong fields
(F> 107 V/cm) this must lead to deviations from the
Fowler-Nordheim (F-N) law for cold emission, which
predicts that lg(j/F2) is a linear function of F'1 (j is
the emitted current density) and is derived on the as-
sumption that the contributions to the barrier are
additive.15' Deviations of this sort are observed ex-
perimentally for -F2 5'107 V/cm (cf. Ref. 93, Fig. 10).
At the present time, however, no unambiguous con-
clusion can be reached about the true nature of this
nonlinearity. First, the calculation of Ref. 93 showed
that the experimental deviations cannot be ascribed
entirely to the shift of the boundary. Space charge
effects, which are important at high current densities,96

must also be taken into account, and so must the in-
homogeneity of the emitter.97 Second, a more rigorous
description of the act of emission on the basis of the
"threshold" theory (Section 5, subsection 4 in Ref. 95)
predicts a deviation from the F-N law independently of
all these factors, even for a model with a triangular
barrier.

Evidently more unambiguous information about the
effect of a field on the surface barrier can be obtained
from experiments on thermal self-emission. As was
pointed out in Ref. 98, curves of the distribution of the
total energy of the emitted electrons ./"(ε) change slope

at an energy em
* - - F6x0, which is the height

of the barrier relative to the Fermi level in the metal.
(At ε = ε,η» the tunnel mechanism gives way to the
thermal one.) Therefore it can be expected that mea-

14)We recal that φ^χ = <Ρ(*ι), where *j is determined by the
condition φ' (x)x ,xl = 0 for Fx < 0.

15)With the traditional "tunnel" approach the dependence of
\n(j/F2) o n f · 1 turns out to be linear, both for a triangular
barrier and when the Schottky correction for image forces
(cf., e.g., Ref. 95, Sections 1,3) Is used.
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surements of j(e) at different fields F will give a key
to the determination of δχ0.

b) Owing to the widespread use of the ion projector
method, research on surface ionization and on evapor-
ation of surface atoms has become important (see,
for example, Ref. 99, Sections 2 and 3). Miiller100

was the first to point out that the shift of the electronic
boundary because of a field must change the binding
energy of atoms to the surface. Thus the activation
energy for evaporation of an ion with charge Ζ is re-
duced in a field by the amount 6Q, = ZF6xo.

le) For
evaporation of tungsten ions W3* and W* from a W
surface this quantity amounts to several electron-volts,
and provides an explanation of the fact that smaller
fields are required to evaporate multiply charged ions
than are predicted on the assumption of barrier
additivity.

The penetration of the field into the metal also dimin-
ishes the critical distance at which an atom at the sur-
face can be ionized,102 as a result of which the ionic
current must be larger and the energy distribution of
the ions must be narrower than according to the ad-
ditive model. These conclusions are in agreement
with experiment. Moreover, the narrowing of the ion-
ization zone makes it more probable that ionization will
occur without a previous adsorption (scattering with
redistribution of charge). The part played by such
processes has been emphasized in a number of
papers (cf. Ref. 103).l7)

c) The different positions of the geometric and
"electric" (x0) boundaries of the metal must affect the
capacitance of a parallel-plate capacitor. Let us con-
sider the case in which the two plates are made of the
same metal. Suppose plate 1 is given a positive charge
of density J^nl(x)dx = Y, and plate 2 receives charge
with surface density £^n2(x)dx = -y.18) The corre-
sponding potential difference between the plates is
then

u = 4n J χ [re, (χ) + nt (x)] dx = 4πγ (z<a" — x?').

Using the definition of capacitance (per unit area) c =y/
u, we get*) {c = (x[° -x[2))/iv = lc/4ii (sic), where lc

is the effective gap width. Since ^ ' ( O ) and x[2)(0) are
shifted into the gap relative to the geometric boundar-
ies, c<co= lo/4ir (sic), where l0 and c 0 are the "geo-
metrical" gap width and capacitance.} The difference
between c and c0 becomes quite appreciable for l0 s 50
A, and can reach 30-40 percent for /„-10 A. We know
of no direct measurements of capacitance with narrow

*>Note from translation editor: The material in figure brackets
is a literal translation of the Russian text which appears to be
mathematically incorrect.

16>Ih the derivation of the expression for 6QZ It is assumed
that the field does not affect the equilibrium position of the
surface atoms; this may be untrue for large fields (^ 1V/A).
Therefore this expression can be used only for crude esti-
mates.

17)The results of theoretical and experimental research on sur-
vace ionization and evaporation are discussed in detail In
Ref. 104 (see also references given there).

18)The thickness of the plate is by hypothesis much larger than
the region of localization of the induced charge nl(x)ln2(x)],
which justifies the use of infinite limits of the integrals.

gaps. Indirect confirmation that c and c0 are different
comes from measurements of tunneling characteristics
of dielectric gaps, as has been pointed out in Ref.
88.19) It follows from the calculations of Ref. 93 that
c is practically independent of the field, since 6#(

o

l)(.F)
and 6x(

0

2)(F) have different signs [Fx<0(>0) respectively
for the first (second) plate]. This constitutes a serious
discrepancy with the results of Refs. 88, 89. Owing to
the use in these papers of a model with a sharp break-
off of the electron density and consequently a violation
of self-consistency, it turns out that xo(Fx) shifts
outward whatever the sign of Fx. Therefore the pre-
dicted effect of the field on the capacitance of a narrow
gap is enormously exaggerated in Refs. 88J_89i_

8. Chemisorption of atoms on a metal surface
The phenomenon of chemisorption has been widely

studied with a variety of experimental methods which
give information about the states of individual ad-
sorbed particles, and also about the structure and
properties of adsorbed films. A brief description of
these methods and a bibliography can be found, for
example, in a recent review.105 The first qualitative-
theoretical analysis of the electronic state of an ad-
sorbed atom was carried out by Gurney.106 Subse-
quently semiempirical methods were widely used in
the electron theory of chemisorption, based on quan-
tum-mechanical approximations for molecular orbits
and valence bonds. Discussion and bibliography on
this work can be found in a number of reviews.104"109

With these methods various metal-adsorbate systems
were studied, dealing both with the chemisorption of
individual atoms and with the effects of interaction
between atoms adsorbed on a substrate. The result was
that a qualitative understanding of the phenomenon of
chemisorption was achieved. At the same time, the
use of "fitting" parameters and artificial assumptions,
and also the partial or complete violation of self-
consistency, reduce the heuristic value of these model
calculations and hinder the consistent quantitative
analysis of chemisorption.

Therefore the use of the DFM, which enables us to
start from "first principles" and describe the "self-
organization" of the system adsorbed atom-metal, is
of undoubted interest even with the crudities associated
with the "jelly" model.

a) Interaction of a point charge with a metal (linear
response)

The chemical binding of an atom to a surface can be
considered on the basis of the DFM if we include in
v(r) the electrostatic potential produced by the nucleus
of the atom. The direct DFM analysis of chemisorption
was preceded by a number of papers in which the inter-
action of a point change with a surface was studied on
the basis of the LRA (subsection 1, b). Let us briefly
consider the results of this work.

The interaction energy of a metal with a positive

19)In analyzing the results of these experiments, one must al-
low for the effect of the dielectric on the surface charge dis-
tribution. This Is discussed in Ref. 104.
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charge located at the point xl has the form20'

(8.1)

when the LRA is used; here <po(x) is the potential of
the unperturbed surface (repulsion), and < l̂(?,Afl) is
the potential of the screening charge (attraction). Using
Eq. (8.1), Lang and Kohn110 showed that

for ( 8 · 2 )

Here xo=xo(F = 0) is as introduced in subsection 7.
This relation is confirmed by actual calculations.111"112

Near the boundary, where the double layer has an
effect, there is a deviation from Eq. (8.2). In this
region the repulsion begins to prevail over the attrac-
tion, and because of their competition £ t a t (qtx1)\t.mat
has a minimum, corresponding to an equilibrium
position of the charge. The dipole moment caused by
the point charge is

ρ = q \xx — x0 fa)]. (8.3)

Here allowance has been made for the fact that in
general x0 depends on the position of the charge. It is
now not hard to see that in the region of applicability of
the linear response approximation (LRA) x^xj re-
mains unchanged if we replace the point charge by a
charged plane x=xt with a small (LR1) charge density
γ. Then it is obvious that xo{Xj)-xo(F) (F = AVY) in
the limit xy— *>, i.e., it is determined by the response

. to an electric field. It follows that for large xx the
dependence p(xx) becomes a linear function (as for a
plane-plate capacitor), as is confirmed by calculation
carried out on the basis of the PTFM"3 and the PHM.110

However, for small xx these approaches give decidedly
different results; in Ref. 110 p(x,) goes smoothly to
zero for xx— 0, but in Ref. 113 p(x,) changes sign at
^ « 0 . 7 atomic units and takes on a small negative value
for xx =0. We can find out which result is the more
accurate by using a "sum rule," which in our notation
is of the form

*.) = 4r-( J nF(x)xdx + xi
(8.4)

where n, is the charge density induced by the electric
field in the LRA. It follows from this rule that *0(0)
= 0. Therefore [see Eq. (8.3)]/>(0)=0. Consequently,
use of the PTFM with the gradient expansion for
Ts[n] (Ref. 113) leads to a qualitatively incorrect be-
havior of p(x). On the other hand, the result based on
the PHM, where T, is taken into account exactly,

M)We use the Gell-Mann-Feynman theorem (equation F', R.
P. 93)

Here H{a) is the Hamiltonian, which depends on a parameter
a. Let a be q, the external charge. Then it can be shown
easily that

agrees very well with Eq. (8.4).114 Consequently, for
these problems the PHM has decided advantages.21'

However, Eq. (8.4) gives no indication as to the ap-
plicability of the LRA itself. Lang and Williams115

showed that the response of the metal is nonlinear near
the surface even for q = 1,22) i.e., the LRA cannot be
relied on even for the analysis of the adsorption of
hydrogen.

We note that in another paper116 the LRA is applied
to the calculation of the effective polarizability of
noble-gas atoms adsorbed on a metal surface. In this
case the linear approximation is better justified, since,
first, the physical adsorption occurs at larger distances
than chemisorption, and second, the point dipole which
models the adsorbed atom in the field116 produces a
much smaller perturbation than a point charge. We
also point out a paper117 in which the LRA is used with
the TFM. In this form the problem can be solved
analytically. The screening of the charge is considered
as it moves from -°° to +<*>. As could be expected,
for xl — °° the screening charge is situated symmetrical-
ly with respect to xl and is dragged along with q, as a
consequence of Φ =0 [see Eq. (5.5)]; i.e., p = 0. When
many-particle and quantum effects are taken into ac-
count the screening charge remains near the surface
when q recedes from it.

b) Effect of chemisorption on electronic properties of a

metal surface.

1) Chemisorption of isolated atoms. The first
self-consistent calculation of chemisorption was
carried out by Smith, Ying, and Kohn.113 Using the
PTFM and the LRA, they considered the chemisorption
of hydrogen on the surface of a "jelly" metal. This
same approach has been applied to the chemisorption
of alkali metals.118 The potential of the ion was
modeled by a spherically symmetric pseudopotential.
For Na, K, and Cs the calculated values of p and of
the binding energy Ea are in reasonable agreement with
experiment. Huntington, Turk, and White119 also used
the PTFM for the chemisorption of Na, but did not
confine themselves to the framework of the LRA. Owing
to the fact that the PFTM and LRA are not very suit-
able for the description of chemisorption (see previous
subsection), the most interesting papers for the de-
velopment of the theory are those in which the inter-
action of the adsorbed atom with the metal surface is
investigated on the basis of the PHM and without re-
striction to the linear approximation. This was first
done by Lang and Williams for the chemisorption of
H, Li, and O,115 and subsequently of Si and Cl,120 on a

Noting that in the approximation used </»i(?,x) is a linear
function of q, and integrating over q, we obtain Eq. (8.1).

21>It was pointed out in Section II that the PMTF, in the approx-
imation of Ref. 37, gives a good description of properties
which involve averaging over the surface (for example, Φ).
The parameters of chemisorption are not of this kind, being
determined by the charge distribution in the neighborhood of
the adsorbed atom.

2 2 )B was shown that the ratio p(q,x{)/q\ (for a^sconst), which
should be constant if the LRA holds, changes (at xt = l a.u.)
from 0.7 D for q« 1 to —0.5 D for q=l, i.e., the response
to a proton near the surface is decidedly nonlinear.
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FIG. 9. The energy of interaction of an oxygen atom with a
metal [E^bi)], the Coulomb force acting on the nucleus {FK),
and its components (Fo,FiS,F2s,Ft, andf a ) . F0 is the contri-
bution from the unperturbed surface; Fis and F2S are due to
the respective polarizations of the wave functions of the IS and
2S states of the discrete spectrum, and F, and F„ are from
electrons in states characterized by the respective magnetic
quantum numbers m = 0 and m = 1 in the continuous spectrum
(the classification of the states corresponds to the axial sym-
metry of the problem).

"jelly" metal. The only parameter in these calcula-
tions, besides the charge ζ of the nucleus, is rs (or the
background density «). What was considered was es-
sentially the "self-adaptation" of the adsorbed atom,
whose nucleus was placed in the inhomogeneous gas
near the boundary of the background. Indeed, no as-
sumptions were made about the form of the perturbing
potential, such as introducing a model potential and
assuming spherical symmetry near the nucleus,1 1 8·1 1 9

and no artificial distinction was made between "atomic"
and "metallic" electron states, such as characterizes
semiempirical methods; the Coulomb potential was
taken into account in the same way for all the elec-
trons,2 3 ' and the potential was made self-consistent.

In the general case the energy spectrum in the
presence of a nucleus contains both discrete and con-
tinuous components. In determining the equilibrium
position of the atom it turned out to be important to
take into account both kinds of states. Only then was it
possible to satisfy simultaneously the conditions
dEm (xl)/dxl =0 and FK(xl) = 0 (FK is the electrostatic
component of the force acting on the nucleus) which are
required by the Gell-Mann-Feynman theorem. The
various components of FK for an adsorbed atom ο are
shown in Fig. 9. The effect of chemisorption on the
electron structure of the surface is graphically de-
scribed by the change of the density of electron states
ΔΛΓ(ε), which is shown in Fig. 10 for Cl, Si, and Li.
We note that ΔΝ(ε) is an experimentally observable
quantity. It can be determined, for example, from the
energy distribution of photoelectrons.121 All calcula-
tions in Refs. 119 and 120 were made for r , = 2, which
corresponds to the volume density of electrons in
aluminum (r s = 2.07). It was shown that as the atom
recedes from the surface the peaks of the state den-
sity become narrower, are displaced, and go over
into discrete atomic states Is (H), 2s (Li), lp (O),
3s and 3p (Si), and Zp (Cl). Accordingly we can say
that the peaks (or resonances) arise from atomic

0.25

-15 -10 -5 0
Energy relative to vacuum, eV

FIG. 10. Change in the density of states in chemisorption. The
results shown are for specific equilibrium positions of the nu-
cleus. For Li, #i = 2.5 a.u.; for SI, 2.3 a.u.; for Cl, 2.6 a.u.

states, which go over, when the interaction with the
metal is "turned on," into a "band"2 4 ' of its electron
states. The degree of filling of the resonance, and
with it the effective charge of the atom, are deter-
mined by the position of the peak relative to the Fermi
level. It can be seen from Fig. 10 that the 2s reso-
nance of Li lies almost entirely above the Fermi level,
while the 3p resonance of Cl lies below it; that is,
they provide an example of the chemisorption of a
positive and a negative ion, respectively.

In Ref. 120 a calculation of the electron density in
the neighborhood of an adsorbed atom is made. It is
shown, for example, that the chemisorption bond Si-Me
is of markedly directive and covalent character.

Unfortunately an overwhelming majority of the ex-
perimental data for the adsorbates considered in
these papers relate to chemisorption on transition
metals and semiconductors, for which the "jelly"
model is an overly crude approximation.25' There-
fore the authors of Ref. 127 made a special study of
the energy distribution of the photoelectrons for the
system O/Al. The functions/)^) and F^xJ, as
calculated for this case in the "jelly" model, are
shown in Fig. 11. The equilibrium position x1 = 1.1 a.u.
corresponds to p(xl) = -i.1D, £ ^ = -2.2 eV (relative
to EF). On the other hand it follows from experiment127

that £ ^ = -7.2 eV and/>=0 (for a small concentration of
adsorbed atoms). This means that the 0" ions imbed
themselves below the boundary of the background (are
adsorbed).26' Similar results were obtained earlier
for the systems O/Sr128 and O/Cs.129

An analysis of the causes of the discrepancy between
theory and experiment showed that the "jelly" model is
quite unsuitable for calculating Emt (*,), leading to an
exaggeration of the distance between the adsorbed atom

2 3 )In calculations made with Anderson's model Hamiltonian121

(see, e.g., Refs. 122, 123), only the Coulomb interaction be-
tween "atomic" electrons is taken into account.

M>The concept of a "band" is given a conventional meaning in
the "jelly" model.

25)Appelbaum and Hamann125 have given a self-consistent calcu-
lation of the chemisorption of atomic Η on Si. The discrete-
ness of the lattice was taken into account with a pseudopoten-
tial. The effect of monolayers of Η and Cl on surface states
in Si (111) was studied in Ref. 126.

26>We recall that the boundary plane of the crystal lattice
passes through x= —a/2, which amounts to —2.2 a.u for Al
(111).
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FIG. 11. Energy of the 2p resonance [E2i(xi)] and magnitude of
dipole moment (p(xi)] as functions of the distance from the oxy-
gen atom to the boundary of the background (rs=2 a.u.).

and the metal. Already in first order in the pseudo-
potential the position of the minimum is shifted from
1.1 a.u. to 0.3 a.u. Inclusion of higher orders, and
also of local lattice distortion near the adsorbed atom,
makes it possible to explain the possibility of im-
bedding. This agrees qualitatively with the results for
the adsorption of hydrogen and with a model (cluster)
calculation. It has also been shown that taking account
of lattice discreteness changes the theoretical forms
of p(Xj) and E&ix,) only slightly. Accordingly, the
position of the resonance and the value of the dipole
moment in adsorption can be explained on the basis
of the "jelly" model by using the equilibrium position
as found by taking the discreteness of the lattice into
account. Alternatively, knowing p and E^ from ex-
periment, one can approximately determine the equi-
librium position of the adsorbed atom by using the
values of p(xj and E&ix,) calculated in the "jelly"
model. We see in Fig. 11 that the equilibrium position
indicated by experiment is xl =— 0.5 a.u.

From these considerations it follows that the "jelly"
model is a usable foundation for theoretical analysis
of chemisorption on metal surfaces, as well as of the
characteristics of the unperturbed surface (see Section
III). In subsequent papers130"131 Lang and Williams re-
lated these results to the concept of electronegativity
and considered the displacement of resonances with the
formation of holes in the valence shell of an adsorbed
atom; this has a direct bearing on the interpretation
of experimental data on x-ray photoemission. Up to
now calculations of chemisorption on transition and
noble metals are monopolized by semiempirical
methods. However, the very first self-consistent
analysis of the electron structure of a monolayer of
nitrogen on Cu(lOO)132 showed the effectiveness of the
DFM and the importance of self-consistency. Good
agreement between the calculated and experimental
values of AJV(e) was obtained.

2) Effect of adsorbed films on the work function.
Films of alkali and alkaline-earth elements on re-
fractory metals are of great practical interest for
emission electronics, and therefore their influence
on the work function has been particularly intensively
studied (cf., e.g., Ref. 105). In particular, it has
been proved that in most cases the dependence of the
work function on the concentration Ν of adsorbed
atoms has a deep minimum corresponding to sub-
monolayer covering (i.e., incomplete filling of a mono-

layer). Langmuir133 gave the first qualitative expla-
nation of this fact. According to the model he proposed,
when an atom of an alkali metal (AM) is adsorbed it
transfers one electron to the metal (complete ioniza-
tion) and forms, along with its "mirror image," a
dipole of moment/». The adsorption correction to the
work function is given by

ΔΦ = —4πρ (Ν) Ν.

The electric field produced by the dipoles leads to their
mutual weakening (depolarization). The competition
between the increase of Ν and the accompanying strong-
er depolarization is the principal reason why the func-
tion ΔΦ(Ν) is inherently nonmonotonic.133 The minimum
is at the concentration Ν for which dp/p = -dN/N.

We list the main shortcomings of this model: a)
The change in the degree of ionization (the shift rela-
tive to EF and broadening of the resonance, is ig-
nored; b) the classical law of image forces is used,
although it does not hold near the surface; c) the con-
cept of isolated dipoles loses its meaning when the
concentration of adsorbed atoms is high and their wave
functions overlap (metallization).

In subsequent researches, the first of which was
Ref. 134, these shortcomings were partially over-
come by means of various semiempirical models.
However, the effects of the interaction of the ad-
sorbed atoms were not taken into account fully
enough (even in the most detailed calculations135 the
exchange interaction between them was neglected), and
therefore the applicability of these theoretical results
was confined to cases of low concentrations. A paper
by Lang,136 on the other hand, put the accent on the
collective properties of the adsorbed layer. He pro-
posed a model in which the ionic charge of an adsorbed
atom is "smeared out" into a step function of positive
charge (an analog of the "jelly" model). The thickness
of the layer was taken constant, equal to the distance
between the closely packed planes in the bulk of the
alkali metal, and the charge density h in the layer (the
height of the step) was varied, modelling the change of
concentration of the adsorbed atoms. The calcula-
tion was made with the PHM, so that the Coulomb and
exchange interactions between the electrons in the
layer were taken into account automatically.

In interpreting the results it is convenient to intro-
duce the distance a between the centers of gravity
of the positive charge and of the negative charge screen-
ing it (the "moment arm" of the dipole). Then ΔΦ
= -4ττήα. The calculations showed that α(ή) decreases
nonlinearly. Owing to the competition between the in-
crease of the charge and the decrease of the "moment
arm" of the dipole a minimum appears on the curve
of ΔΦ(η), and on the whole the form of the function is
like the experimental curve, including the appearance
of a maximum at the point where filling of a second
adsorbed layer begins (Fig. 12). The calculated min-
imum values Φπιίπ for various metals agree well with
the experimental values (Fig. 13).

The slope of the curves in the limit ή — 0 is also in.
passable agreement with experiment, despite the ob-
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Φ, eV

Ν. 10 M /cm 2

FIG. 12. Change of work function on adsorption of Na. Theo-
retical curve as obtained in Ref. 136, experimental curve from
Ref. 137.

vious crudeness of the model at low concentrations.
The reason is that the calculation of Φ involves an
averaging of the electron distribution in the plane of
the surface, and the average values for the "smeared
out" and for the discrete distributions are nearly
equal even for small ή (see Ref. 136, Appendix). Of
course this model cannot be used to determine the
"local" characteristics of chemisorption, such as the
heat of desorption per atom.

The most important shortcoming of this metal is that
it is hard to relate it to the concept of chemisorption
of an individual atom and that it cannot provide a de-
scription of the gradual transition from individual
properties (of isolated adsorbed atoms) to collective
properties. Wojciechowski147 tried to clarify this
matter by considering the effect of a submonolayer of
Cs adsorbed on W on the energy and width of the res-
onance peak of an adsorbed Cs atom. The charge
distribution in the submonolayer was modelled, as in
Ref. 136, with a step function. A semiempirical
approach148 was used to calculate the width of the res-

FIG. 13. Minimum values of work function during adsorption.
The curve is the theoretical result for ΦπΛη(ιίΐί116 (rfis the thick-
ness of the step). The small circles are experimental values.
Points 1 to 9 correspond to respective references 138—146.
Points 3, 6, 9 are for a (100) surface of Ta, 4 is for Ni (111),
and the rest are for W (110). fThe corresponding spread in
values of η has little effect on the theoretical values of
φηίΕ((ϊ).136] From the experimental data given in Ref. 136
(when they numbered more than three) we have chosen for each
alkali metal the largest, the smallest, and the value closest to
the calculated value.

onance. The calculations showed that in a layer of
low density, with degree of covering θ s 0.2, the Cs is
adsorbed in the form of ions, for a larger concentra-
tion (Θ 2 0.3) the layer consists mainly of atoms, and at
high concentrations (#£0.8) the coating becomes
metallized, and its properties do not differ much from
those of metallic Cs. The W then has almost no effect
on the work function, its action being nearly complete-
ly screened. We note that the quantitative results1 4 7

must be handled with care, since several crude ap-
proximations were used. For example, the polariza-
tion of an adsorbed atom was not considered, self-
consistency was not secured, and no allowance was
made for the possibility that the position of an adsorbed
atom depends on «. Nevertheless the results give an
intuitive picture of the "collectivization" and agree
qualitatively with experimental data. An indirect con-
firmation of metallization can be found in the fact that
for large w the relation Φ(ή) is analogous to the de-
pendence of the work function on the background den-
sity for a number of alkali metals (cf. Fig. 5 in Ref.
147).

In conclusion we present a generalized sum-rule for
a "jelly"-metal coated by a submonolayer of adsorbate
(the latter is treated by means of the "step" model136)
which is adjacent to a dielectric medium of permittivity
ε:

Φ (ο,-φ < — > + ΐ -»(β)] - -

(8.5)
where D(#) is the electric displacement, Do is its value
far from the metal (external field) and d is the thickness
of the "step." For ε=1, Eq. (8.5) reduces to the rig-
orous relations obtained by Budd and Vannimenus41

<n = 0,Do = 0), Bigun187 (n*0,Do = 0), and Kuzema and
Partenskii188 (ή * 0, Do Φ 0).

It can also be easily shown that the solution of the TF
equation, which has the following form for the system
under consideration (DOx>0:

satisfies relation [Eq. (8.5)] exactly. To do this it is
sufficient to evaluate the first integral of the equation
and to utilize the continuity of D(p) and <p(x).

9. Adhesion of metals

It is known from experiments that when clean metal
surfaces are brought into contact considerable forces
appear between them (adhesion), which are of great
practical importance (friction, deposition of metal
films, formation and "collapse" of cracks). Cabrera
and Mott149 were evidently the first to point out the
part played by electric contact phenomena in the ad-
hesion of solids. Subsequently electroadhesion phe-
nomena were widely studied, both theoretically and
experimentally.150 In the last five years there have
been attempts to construct a self-consistent micro-
scopic theory of adhesion based on the DFM. We shall
discuss briefly a number of papers which characterize
the level that has been reached in this work. The
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boundaries of the interacting metals are assumed to be
plane. We can distinguish conventionally three ranges
of separation between metals. At small distances d
of the order of 2 A or less the main contribution to the
energy of the interaction is due to the overlapping of the
"tails" of the electron densities of the metals (range A).
At large distances d S4-5 A the interaction is of the
van der Waals type (range C). In the intermediate
range (B) the transition from a contact interaction to
a dispersion interaction occurs. The range C has
been well enough investigated, beginning with a pioneer
paper by Lifshits151 (see also Refs. 152, 153, and the
references given there). Ferrante and Smith,154 in
analyzing the interaction function E(d) (E is the total
energy of the interacting metals) approximated the
electron density near the surface with a superposition
of the distributions ηχ(χ) and n2(x) for the separate
metals. In this procedure the relaxation of the n^x)
was neglected; they were taken in the form of Eq.
(5.7) with the β derived by Smith37 for an unperturbed
surface. The discreteness of the lattice was taken into
account to first order in the pseudopotential. For all
pairs of metals considered (Al, Mg, Zn) the calculated
functions and values of E(d) have a minimum at d
=do%2 (a.u.). The calculated values of the binding
force agree qualitatively and in order of magnitude with
experiment. The adhesion binding energy Ea(d) is de-
fined by the relation

Ea(d) = — - . —•; l»»JJ

12 d, a.u-

A is the area of contact. For contact between like
(same) metals and d = 0 Eq. (9.1) is identical with the
definition (4.4) of surface energy, and in the general
case it is accepted procedure to put (9.1) in the form
^α(̂ ο) = ̂ (σι+σ2+σΐ2)> where σ12 is the "interphase
tension" and σ( is the surface energy of the tth metal.
In Ref. 154 £„ and its components were calculated, and
it was shown that the exchange interaction makes a
decisive contribution. The deviation of d0 from zero,
found in Ref. 154 for the case of a like-metal contact,
is an erroneous result, associated with the neglect of
the relaxation of n(x). For the Al-Al contact it was
rectified in a self-consistent calculation based on the
PHM (Fig. 14).157 The self-consistent calculation
changes the position of the minimum and increases its
depth, bringing Ea(d0) closer to the experimental value
of σΑ 1. Similar results were obtained for Mg, Zn,
and Na in Ref. 158, where it was also shown that in-
clusion of the nonlocality of Exc[n] brings the calcu-
lated values of Ea(d0) still closer to the experimental
values for a like-metal contact. The curve of Ea(d)
for Al is shown in Fig. 14.

Budd and Vannimenus41 derived a very useful "sum
rule" showing that in the limit d- 0 the surface density
of repulsive force F12(d)/A for a like-metal contact of
"jelly" metal goes to a negative pressure -P:

IuB.~-P=-lfil<*™\\ (9.2)

Subsequently159 these authors made a semi-self-
consistent calculation with the PTFM, matching the
force with Eq. (9.2) for d- 0 and with the dispersion
force152 for d s 4 A. A similar extrapolation together

«-σ»· (experiment)

FIG. 14. Energy of Al-Al adhesion bond as a function of the
distance between the surfaces (111). Curve 1 is from the cal-
culation in Ref. 154, which does not take relaxation into ac-
count; 2 from the self-consistent calculation of Ref. 157
(LDA); 3 from a self-consistent calculation including nonlo-
cality, S^In].158 The experimental value of σΑ1 for the solid
metal is taken from Ref. 65.

with inclusion of a pseudopotential for small d was
used160 for the Al-Al adhesion.

For a more exact analysis of F12{d) in range Β one
needs to include nonlocal exchange and correlation
effects and the plasmon contribution to the energy.
However, the position and depth of the minimum of
E(d), and along· with them also Ea(d0), are determined
mainly by the contact interaction (range A).154"158

Therefore it is easier to calculate Ea(d0) than the force
Fi2(d) for arbitrary d.

Heinrichs and Kumar161 generalized Eq. (9.2) to the
case of adhesion of different metals:

(9.3)

The second term is equal to the electrostatic force
F(0)z/8it (f(0) is the electric field at the boundary),
which appears on contact between different metals.
Values of the force of adhesion calculated as Ε'α(ά)\Λ.ο

on the basis of the results of Ref. 154 agree well with
Eq. (9.3 ),162 in spite of the faults that have been pointed
out in the method used in Ref. 154.

In Ref. 163 an exact integral relation between σ12 and
the electrostatic potential ψ(χ), was derived. Ap-
proximate calculations163'164 taking lattice discreteness
into account show that σ12 makes a large contribution
to Ea when the metals in contact are very dissimilar.
For example, for the pair Al-Ag σ12 is comparable
with σΑ ι and σΑβ, and for Al-Na σ12» 6aNa and is nearly
equal to σΑ Ι, as calculated in the LDA.39 It must be
pointed out that in these papers no allowance is made
for defects such as boundary dislocations, which can
arise when different lattices are put together (see,
e.g., Ref. 165) and which make a considerable con-
tribution to σ12 (Refs. 167, 168).27) It has been difficult
so far to include their effect in a self-consistent way.
Moreover, the problem becomes much more compli-
cated when at least one of the adhesion pair is a

2 7 ) Concerning the effect of dislocations on the work function
and on the emission of electrons from metals see Ref. 166.
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transition metal. An analysis of the difficulties that
arise in this case, and also semiempirical calculations
with boundary dislocations taken into account, are
given in Ref. 168.

V. CONCLUSION

We are convinced that many problems of the physics
of surfaces can be successfully solved on the basis
of the density-functional method. Starting from a "first
principle"—that the energy of the ground state must be
a minimum—comparatively simple models of the ion
lattice ("jelly," pseudopotential) and of the electron
gas (LDA plus the first nonlocal corrections) suffice
for the explanation of a wide variety of experimental
data relating both to free and to perturbed metal
surfaces. We note that the range of problems we have
discussed does not exhaust all applications of the DFM
to the description of surface phenomena. For a more
complete picture we must mention a number of papers
on topics close to the subject of this review. For ex-
ample, there are papers on the electron properties of
a surface containing impurity atoms1 6 9 and subject to
deformation,170 the adsorption of inert gases,171 ad-
hesion of a metal and an ionic crystal,172 surface
properties of alloys,173 work functions for positrons174

and for spin-polarized electrons,175 and the electron
structure of vacancies176 and cavities (internal* sur-
faces).177 The influence of the transition layer at the
boundary of a metal on the dispersion and damping of
surface plasmons has been widely discussed.178'179 It
has been pointed out, for example, that optical spec-
troscopy of surface plasmons178 is a promising way to
obtain information on the distribution of charge near
the surface. For problems of microelectronics the
study of the electron structure of a metal-semi-
conductor boundary180 or of a semiconductor junction181

is of great practical interest. Papers have appeared
in which the DFM is used to study the reconstruction
of semiconductor surfaces,182 i.e., an instability
leading to deviation of the structure of the surface
from that "prescribed" by the volume. We note in
passing that recently there has been a marked increase
in the fraction of papers devoted to the self-consistent
theory of semiconductor surfaces. Research is also
in progress on perfecting the DFM itself. Generaliza-
tions of the H-K theorem to the cases of nonzero
temperature1 8 3 and of nonlocal external potential184

have been derived. An "immanent" self-consistent
procedure based on the use of the density-matrix
formalism in the framework of the DFM has been
developed and tested.185 A procedure has been pro-
posed186 for expanding G[n] in terms of correlation
functions of various orders.

The self-consistent theory of surfaces is sure to be
extensively developed further, and among its next
successes may be a consistent inclusion of effects of
nonlocality and, in particular, of plasmon effects,
in G[n], and also a more exact allowance for lattice
discreteness than can be made by using the volume
ρ seudopotential.

In addition to the applications of the DFM to the study
of surfaces, which are discussed in this review, this

method is promising for the analysis of volume proper-
ties in cases when there is a sharp inhomogeneity in
the volume structure. For example, inhomogeneous
corrections so calculated may be important in calcula-
tions of the structure of single dislocations and aggrega-
tions of dislocations, of packing defects, and of grain
boundaries in polycrystalline metals.

4C. B. Duke and R. L. Park, Phys. Today 25, 23 (1972). [Russ.
Transl. USP Fiz. N a u k l l l , 139 (1973)].

2 P . Hohenberg and W. Kohn, Phys. Rev. B136, 864 (1964).
3W. Kohn and L. J. Sham, Phys. Rev. A140, 1133 (1965).
*N. D. Lang, in Collection: Solid State Physics, New York,

Academic Press, Vol. 28, p. 225, 1973.
5D. S. Boudreaux and M. J. Suretschke, in Structure and Prop-

erties of Metal Surfaces (Maruzen Company, Tokyo, 1973)
p. 94.

6S. Lundqvist, in Surface Science. Lectures presented at an
Intern. Course at Trieste from 16 January to 10 April 1974.
IAEA, Vienna 1, 331.

7A. Bennet, in Collection: Novoe ν issledovanii poverkhnosti
tverdykh tel (New developments in the study of surfaces of
solids), Part 1, Moscow, Mir, 1977, ρ 211.

8 J . A. Appeibaum and D. R. Hamann, Rev. Mod. Phys. 48, 479
(1976).

9N. D. Lang, in Electron Structure and Reactivity of Metal Sur-
faces (Plenum Press, New York, 1976), p. 81.

1 0 L. D. Landau and E. M. Lifshits, Kvantovaya mekhanika,
Nerelyativistskaya teoriya (Quantum mechanics. Nonrelativ-
istic theory), Moscow, Nauka, 1974. English trans!.: Per-
gamon Press, 1977.

" S . T. Epstein and C. M. Rosental, J . Chem. Phys. 64, 247
(1976).

1 2 J. S. Langer and S. H. Vosko, J. Phys. and Chem. Sol. 12,
196 (1959).

1 3 D . Pines, Electronic excitations in Solids, New York, Ben-
jamin, 1964. [Russ. Transl. Mir, Moscow (1965)].

1 4M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

15A. S. Kompaneets and E. S. Pavlovsku, Zh. Eksp. Teor. Fiz.
31, 427 (1956) [Sov. Phys. JETP 4, 328 (1957)].

1 6D. A. Kirzhnits, Tr. Fiz. tost. Akad. Nauk SSSR 16, 3 (1961).
17 L. J. Sham, in Computational Methods in Band Theory (Plen-

um Press, New York, 1971), p.458.
1 8S. K. Ma and K. A. Brueckner, Phys. Rev. 165, 18 (1968).
1 9 J. B. Ortenburger and F. Herman, cited in Collection of Ref.

17, p. 469.
2 0D. J. W. Geldart, M. Rasolt, and C. O. Ambladh, Sol. State

Comm. 16, 243 (1975).
2 1L. Kleinman, Phys. Rev. Ser. Β 10, 2221 (1974).
22A. W. Overhauser ibid. 3, 1888 (1970).
2 3D. J. W. Geldart and M. Rasolt ibid. 13, 1477 (1976).
MK. H. Law and W. Kohn, J. Phys. and Chem. Sol. 37, 99

(1976).
2 5 F . Herman, J. P. Van Dyke, and J . B. Ortenburger, Phys.

Rev. Lett. 22, 807 (1969); Intern. J. Quantum Chem. 35, 807
(1969).

M D . A. Kirzhnits, Yu. E. Lozovik, and G. V. Shpatakovskaya,
Usp. Fiz., Nauk 117, 3 (1957) [Sov. Phys. Uspekhi 18, 649
(1976)].

2 7 P . Gombas, Problema mnogikh chastits ν kvantovoi mekhan-
iki (The many-particle problem in quantum mechanics), Mos-
cow, IL, 1953) (Russian transl. of German original, Verlag
Birkhauser, Basel, 1950.)

2 8 P . A. M. Dirac, Proc. Cambr. Phil. Soc. 26, 376 (1930).
2 9 J. C. Slater, Phys. Rev. 81, 365 (1951).
3 0N. D. Lang and W. Kohn ibid. Ser. Β 3, 1215 (1971).
3 1 E. Wigner and J. Bardeen, Phys. Rev. 48, 84 (1935).
3 2N. Wiser and Μ. Η. Cohen, J. Phys. Ser. C 2, 193 (1969).

349 Sov. Phys. Usp. 22(5), May 1979 Μ. Β. Partenskii 349



38

3 3 J . Frenkel, Zs. Phys. Bd. 51, 232 (1928).
3 4 A. G. Samoilovich, Zh. Eksp. Teor. Flz. 16, 135 (1946).
3 5 B. Mrowka and A. Recknagel, Phys. Zs. Bd. 38, 758 (1937).
M M. B. Partenskii, E. I. Popov, and V. E. Kuzema, Fiz. Met.
_ Metalloved41, 280 (1976).
* " j . R. Smith, Phys. Rev. 181, ρ 522 (1969).

Ν. D. Lang, Sol. State Comm. 7, 1047 (1969).
3 ! )N. D. Lang and W. Kohn, Phys. Rev. Ser. Β 1, 4555 (1970).
40V. S. Fomenko, Emissionye svoistva materialov (Emission

properties of materials), Kiev, Naukova Dumka, 1970.
4 1 H. F. Budd and J . Vannimenus, Phys. Rev. Lett. 31, 1218

(1973).
4 2R. Smoluchowski, Phys. Rev. 60, 661 (1941).
4 3R. W. Strayer, W. Mackie, and L. W. Swanson, Surf. Sci. 34,

225 (1973).
W P . O. Gartland, S. Berge, and B. J. Slagsvold, Phys. Rev.

Lett. 28, 738 (1972).
4 5 J . R. Smith, ibid. 25, 1023 (1970).
4 eN. W. Ashcroft, Phys. Lett. 23, 48 (1966).
4 7 J . A. Appelbaum and D. R. Hamann, Phys. Rev.Ser. Β 6, 2166

(1972).
4 8 J . A. Appelbaum, G. A. Baraff, and D. R. Hamann, ibid. 14,

588 (1976).
4 9 T. Ando ibid.J.3, 3468 (1976J._
5 0G. P. Kerker, S. G. Louie, and M. L. Cohen ibid. 17, 706

(1978).
5 1 J. Ihm, S. G. Louie, and M. L. Cohen ibid. p. 769.
S 2G. P. AlldredgeandL.Kleinman ibid. 10, 559 (1974); Phys.

Lett. Ser. A 48, 337 (1974); J . Phys. Ser. F 4, L207 (1974).
M R. W. Hardy and R. E. Allen, Sol. State Comm. 19, 1 (1976).
M J . R. Chelikowsky, M. Schliiter, and S. G. Cohen ibid. 17,

1103 (1975).
5 5S. G. Louie, Ho Kai-Ming, J. R. Chelikowsky, and H. L.

Cohen, Phys. Rev. Lett. 37, 1289 (1976); Phys. Rev. Ser. Β
15, 5627 (1977).

K E . Caruthers and L. Kleinman, Phys. Rev. Lett. 35, 738
(1975).

5 7 J . G. Gay, J . R. Smith, and F. J . Arlinghaus ibid. 38, 561
(1977).

5 8S. Dfivison and Dzh. Levin, Poverkhnostnye (Tammovskie)
sostoyaniya (Surface [Tamm] states), Moscow, Mir, 1973.

5 *P. Vashista and K. S. Singwi, Phys. Rev. Ser. Β 6, 875
(1972).

6 0G. Paasch and M. Heltschold, Phys. Stat. Sol. Ser. Β 67, 743
(1975).

6 1M. Hietschold, G. Paasch, and P. Ziesche, ibid. 70, 653
(1975).

M J . Vannimenus and H. F. Budd, Phys. Rev. Ser. Β 15, 5302
(1977).

6 3S. N. Zadumkin and R. M. Digilov, In: Poverkhnostnye yav-
leniya ν rasplavakh i voznlkayushchikh iz nikh tverdykh faz-
akh (Surface phenomena in melts and In solid phases arising
from them), Kishinev, Shtilntsa, 1974.

M J . P. Perdew and R. Monnier, Phys. Rev. Lett. 37, 1286
(1976); Phys. Rev. Ser. Β 17, 2595 (1978).

6 SH. Z. Wawra, Zs. Metallkunde, Bd 66, S. 395, 492 (1975).
66Kh. B. Khokonov, in book cited in Ref. 63, p. 190.
e 7R. A. Craig, Phys. Rev. Ser. Β 6, 1134 (1972).
e 8 J . Schmit and A. A. Lucas, Sol. State Comm. 11, 415 (1972).
6 *P. J. Feibelman, ibid. 13, 319 (1973).
70W. Kohn, ibid. p. 323.
7 1 J . Heinrichs, ibid. p. 1599.
7 2 P . J. Feibelman, Phys. Rev. 176, 551 (1968).
7 3 J . Harris and R. O. Jones, J. Phys. Ser. F 4, 1170 (1974);

Phys. Lett. Ser. A 46, 407 (1974).
7 4 E. Wikborg and J. E. Inglesfleld, Sol. State Commun. 16, 335

(1975).
7SM. Jonsonand G. Srinivasan, Phys. Scripta, 10, 262 (1974).
7 6 J. S.-Y. Wang and M. Rasolt, Phys. Rev. Ser. Β 13, 5330

(1976).

78V. Sahni, J. B. Krieger, and J. Gruenebaum, ibid. Ser. B. 15,
1941 (1977).

79V. Sahni and J. Gruenebaum, ibid. p. 1929.
8 0M. Rasolt, J.S.-Y. Wang, and L. M. Kahn, ibid. p. 580.
8 1 J. H. Rose, H. B. Shore, D. J . w. Geldart, and M. Rasolt,

Sol. State Comm. 19, 619 (1976).
8 2N. D. Lang and L. J. Sham, ibid. 17, 581 (1975).
^A. K. Gupta and K. S. Singwi, Phys. Rev. Ser. Β 15, 1801

(1977).
M J . P. Perdew, D. C. Langreth, and V. Sahni, Phys. Rev. Lett.

38, 1030 (1977).
8 5D. C. Langreth and J . P. Perdew, Sol. State Comm. 17, 1425

(1975); Phys. Rev. Ser. B. 15, 2884 (1977).
8 6O. K. Rice, ibid. 31, 1051 (1928).
8 7N. F. Mott and R. J., Watts-Tobin, Electrochem. Acta, 4, 79

(1961).
8 8N. Y. Ku and F. G. Ullman, J. Appl. Phys. 35, 265 (1964).
89T T T s o n g ) E W g Miiller, Phys. Rev. 181, 530 (1969).
90A. V. Sidyakin, Zh. £ksp. Teor. Fiz. 58, 573 (1970) [Sov.

Phys. JETP31, 308 (1970)].
9 1 D. M. Newns, Phys. Rev. Ser. Β 1, 3304 (1970).
9 2 J . A. Appelbaum and G. A. Baraff, ibid. 4, 1246 (1971).

33A. K. Theophilou and A. Modinos, ibid. 6, 801 (1972).
**M. B. Partenskii and Ya. G. Smorodinskii, Fiz. Tverd. Tela

16, 644 <1974)JSov. Phys. Solid State 16, 423 (1974)].
95A. M. Brodskii and Yu. A. Gurevich, Teoriya elektronnoi

emissi iz metallov (Theory of electron emission from met-
als), Moscow, Nauka, 1973.

^ J . P. Barbour, W. W. Dolan, J. K. Trolan, Ε. Ε. Martin,and
W.D. Dyke, Phys. Rev. 92, 45 (1953).

97A. Modinos, Surf. Sci., 9, 459 (1968).
9 8 J . W. Gadzuk and E. W. Plummer, Phys. Rev. Ser. Β 3, 2125

(1971).
"Avtoionnaya mikroskopiya (Field-emission microscopy),

Moscow, Mir, 1971.
1 0 0 E. W. Muller, Adv. Electron, and Electron. Phys. 13, 83

(1960).
1 0 1 E. W. Muller, J. Panitz, and S. B. Me Lane, Rev. Sci. Instr.

39, 83 (1968).
1 0 2 T. Tsong and E. W. Muller, J. Chem. Phys. 41, 3279 (1964).
1 0 3 D. S. Baudreaux and P. H. Cutter, Surf. Sci. 5, 230 (1966);

Phys. Rev. 149, 170 (1966).
104A. V. Kobelev, R.M. Kobeleva, V. E. Kuzema, M.B.Part-

enskii, Ο. Μ. Rosental', and Ya. G. Smorodinskii, Fiz. Met.
Metaloved. 41, 493 (1976). Μ. Β. Partenskii and V. E. Ku-
zema, in: Tezisy dokladov XVII Vsesoyuznoi konferentsii po
emissionnoi elektronike (Abstracts of reports at the Seven-
teenth Ail-Union Conference on emission electronics), Len-
ingrad, 1978, p.139.

1 0 5 L. A. Bol'shov, A. P. Napartovich, A. G. Naumovets, and
A. G. Fedorus, Usp. Fiz.Naukl22, 125 (1977) [Sov. Fiz.
Uspekhi 20, 432 (1977)].

1 0 6R. Gurney, Phys. Rev. 47, 479 (1935).
107K. Wojciechowski, Progr. Surf. Sci. 1, pt. 1, 65 (1971).
1 0 8R. Gomer, in Solid State Physics. 30(Academic Press, New

York, 1975), p. 93.
1 0 9 T. B. Grimley, Progr. Surf, and Membrane Sci. 9, 71 (1975).
1 1 0N. D. Lang and W. Kohn, Phys. Rev. Ser. Β 7, 3541 (1973).
U1V. E. Kenner, R. E. Allen, W. M. Saslow, Phys. Lett. 38,

255 (1972).
1 1 2 J. P. Appelbaum and D. R. Hamann, Phys. Rev. Ser. Β 6,

1122 (1972).
1 1 3 J. R. Smith, S. C. Ying, and W. Kohn, Phys. Rev. Lett. 30,

610 (1973); Phys. Rev. Ser. B. 11, 1483 (1975).
1 1 4H. F. Budd and J. Vannimenus, ibid. 12, 509 (1975).
U 5 N . D. Lang and A. R. Williams, Phys. Rev. Lett. 34, 531

(1975).
116W. C. Meixner and P. R. Antoniewicz, Phys. Rev. Ser. Β 13,

3276 (1976).
1 1 7S. C. Ying, J. R. Smith, and W. Kohn, J. Vac. Sci. Technol.

350 Sov. Phvs. Usp. 22(5), May 1979 M. B. Partenskn 350



9, 575 (1972).
1 1 8 L. M. Kahn and S. C. Ying, Sol. State Comm. 16, 799 (1975).
1 1 9H. B. Huntington, L. A. Turk, and W. W. White, Surf. Sci.

48, 187 (1975).
1 2 0N. D. Lang and A. R. Williams, Phys. Rev. Lett. 37, 2120

(1976).
1 2 1 P . W. Anderson, Phys. Rev. 124, 41 (1961).
m D . M. Newns, ibid. Ser. Β 178, 1123 (1969).
1 2 3R. Gomer, in: Novoe ν issledovanii poverkhnosti tverdogo

tela (New Developments in the study of surfaces of solids),
Moscow, Mir, 1977, p. 189.

124T E F l s h e r j J # vac. Sci. Technol. 9, 860 (1972).
1 2 5 J. A. Appelbaum and D. R. Hamann, Phys. Rev. Lett. 34,

806 (1975).
12GM. Schluter and M. L. Cohen, Phys. Rev. Ser. Β 17, 716

(1978).
127K. Y. Yu, J . N. Miller, P. Chye, W. E. Spicer, N. D. Lang,

and A. R. Williams, ibid. 14, 1446 (1976).
1 2 8 C. R. Helms and W. E. Spieer, Phys. Rev. Lett. 28, 565

(1972); 32, 228 (1974).
1 2 9 P . E. Gregory, P. Chye, H. Sun ami and W. E. Spicer, J.

Appl. Phys. 46, 3525 (1975).
1 3 0N. D. Lang and A. R. Williams, Phys. Rev. Ser. Β 16, 2408

(1977).
131A. R. Williams and N. D. Lang, Surf. Sci. 65, 138 (1977).
1 3 2 J. R. Smith, F. S. Arlinghaus, and J. G. Gay, Sol. State

Comm. 24, 279 (1977).
1 3 3 I . Langmuir, L. Am. Chem. Soc. 54, 2798 (1932).
1 3 4R. W. Gurney, Phys. Rev. 47, 479 (1935).
1 3 5 J. P. Muskat and D. M. Newns, Sol. State Comm. 11, 737

(1972); J. Phys. Ser. C 7, 2630 (1974).
1 3 6N. D. Lang, Phys. Rev. Ser. Β 4, 4234 (1971).
13TA. P. Ovchinnikov and B. M. Tsarev, Fiz. Tverd Tela 9,

1927 (1967) [Sov. Phys. Solid State 9, 1519 (1968)].
138A. P. Ovchinnikov and Β. Μ. Tsarev, Fiz. Tverd. Tela 9,

3512 (1967) [Sov. Phys. Solid State 9, 2766 (1968)].
139V. M. Gavrilyuk and V. K. Medvedev, Fiz. Tverd. Tela 8,

1811 (1966) [Sov. Fiz. Solid State 8, 1439 (1966)].
1 4 0 D. L. Ferhs and R. E. Stickney, Surf. Sci. 17, 32 (1969).
1 4 1R. L. Gerlach and Τ. Ν. Rhodin, ibid. 19, 403 (1970).
M 2 E . V. Klimenko and V. K. Medvedev, Fiz. Tverd. Tela 10,

1986 (1968) [Sov. Phys. Solid State 10, 1562 (1969)].
1 4 3 L. D. Schmidt and R. Gomer, J . Chem. Phys. 45, 1605

(1966).
144A. P. Ovchinnikov, Fiz. Tverd. Tela9, 628 (1967) [Sov.

Phys. Solid State 9, 483 (1967)].
145V. M. Gavrilyuk, A. G. Naumovets, and A. G. Fedorus, Zh.

Eksp. Teor. Fiz. 51, 1332 (1966) [Sov. Phys. JETP 24, 899
(1967)].

l 4 6 L. W. Swanson andR. W. Strayer, J. Chem. Phys. 48, 2421
(1968).

147K. F. Wojciechowski, Suf. Sci. 55, 246 (1976).
1 4 8 J. W. Gadzuk, ibid. 6, 133, 159 (1967).
1 4 9N. Cabrera and N. F. Mott, Rept. Progr. Phys. 12, 163

(1948).
1 5 0B. V. Deryagin, N. A. Krotova, and V. L. Smilga, Adhezia

tverdykh tel (Adhesion of solids), Moscow, Nauka, 1973.
1 S 1 E. M. Lifshits, Zh. Eksp. Teor. Fiz. 29, 94 (1955) [Sov.

Phys. JETP 2, 73 (1956)].
1 5 2 J . Heinrichs, Sol. State Comm. 13, 1595 (1973).
1 5 3 J. E. Inglesfield and E. Wikborg, J . Phys. Ser. F. 5, 1475

(1975).
1 5 4 J. Ferrante and J . R. Smith, Surf. Sci. 38, 77 (1973).
1 S SD. M. Rouhani and R. Schuttler, Phys. Stat. Sol. Ser. Β 60,

Kll (1973).
1 5 6 D. M. Rouhani and R. Schuttler, Surf. Sci. 38, 499, 503

(1973).
1 5 7 J. Ferrante and J . R. Smith, Sol. State Comm. 20, 393 (1976).
1 5 8J. Ferrante and J . R. Smith, ibid. 23, 527 (1977).
1 5 9 J. Vannimenus and H. F. Budd, ibid. 17, 1291 (1975).
1 6 0 J. E. Inglesfield, J. Phys. Ser. F. 6, 68 (1976); R. M. Nie-

minen, ibid. 7, 375 (1977).
1 6 1 J . Heinrichs and N. Kumar, Sol. State Comm. 18, 687 (1976).
1 6 2 J . R. Smith and J . Ferrante, ibid. 21, 1059 (1977).
1 6 3 J. N. Swingler and J . C. Inkson, ibid. 24, 305 (1977).
1 6 4 J. P. Muskat and G. Allan, J. Phys. Ser. F 7, 999 (1977).

'J. H. Van der Merve, J . Appl. Phys. 34, 117 (1963).
165

166A. A. Andreev and Ya. Palige, Fiz. Tverd. Tela 3, 3076
(1962) [Sov. Phys. Solid State 3, 2238 (1962)]. Μ. Β. Parten-
skii, Fiz. Met. Metalloved. 32, 510 (1971); Author's abstract
of candidate's dissertation, Sverdlovsk, Ural Polytechnical
Institute, 1973. R. I. Mints, V. P. Melekhin, M. B. Parten-
skii, and I. Yu. Ievlev, Doklady Akad. Nauk SSSR 208, 814
(1973) [Sov. Phys. Doklady 18, 143 (1973)]. R. I. Mints, V. P.
Melekhin, and M.B. Partenskii, Fiz. Tverd. Telal6, 3584(1974)
[Sov. Phys. Solid State 16, 2330 (1975)]. R. I. Mints, V. P.
Melekhin, M. B. Partenskii, and G. I. Rosenman, Fiz. Met.
Metalloved.40, 886(1975). S. Yu. Davydov, Fiz. Tverd. Tela
19, 2418 (1977) [Sov. Phys. Solid State 19, 1415 (1977)].
F. G. Bass and fi. P. Fel'dman, in: XVI Vsesoyuznaya konfer-
entsiya po emissionnoi elektronike, Kratkie soderzhaniya
dokladov (Sixteenth All-union conference on emission elec-
tronics. Brief summaries of reports). Makhachkala, Dag-
estan Branch, Acad. Sci. USSR, 1976, Vol. 1, p. 125. E. F.
Chaikovskif and A. A. Taran, cited in book of Ref. 104, p. 143.

167A. I. Gubanov, Fiz. Tverd. Tela 17, 1089 (1975) [Sov. Phys.
Solid State 17, 692 (1975)]; Fiz. Met. Metalloved. 41, 457
(1976).

168A. I. Gubanov, Fiz. Met. Metalloved. 43, 15 (1977).
1 6 9 I . D. Moore, J. Phys. Ser. F. 6, L71 (1976).
170W. A. Tiller, S. Ciraci, and J. P. Batra, Surf. Sci. 65, 173

(1977); R. I. Mints, M. B. Partenskii and V. E. Kuzemaj in:
Tezisy dokladov Π Vsesoyuznogo simpoziuma poaklivnoi pov-
erkhnosti (Abstracts of reports at the Second All-Unlon Sym-
posium on Active Surfaces), Tartu, 1977, p. 26.

1 7 1 E. Zaremba and W. Kohn, Phys. Rev. Ser. Β 13, 2270 (1976);
15, 1769 (1977).

172A. I. Gubanov and S. M. Dunaevskii, Fiz. Tverd. Tela 19,
1369 (1977) [Sov. Phys. Solid State 19, 795 (1977)].

1 7 3R. Evans, J . Phys. C 7, 2808 (1974); R. M.Kobeleva, B.R.
Gel'chinskii, and V. F. Ukhov, Fiz. Met. Metalloved. 45, 25
(1978).

1 7 4 C. H. Hodges and M. J. Stott, Phys. Rev. Ser. Β 7, 73J1973).
1 7 5R. L. Kantz and Β. Β. Schwartz, ibid. 14, 2017 (1976).
1 7 6N. Manninen, R. Nieminen, P. Hantojarvi, and J. Arponen,

ibid. 12, 4012 (1975); G. Mori, J. Phys. Ser. F. 7, L7 (1977).
1 7 7 J. Gyemant and G. Solt, Phys. Stat. Sol. Ser. Β 82, 651

(1977).
1 7 8H. L. Lemberg, Phys. Rev. Ser. Β 10, 4079 (1974); P. Feib-

elman, ibid. 19, 5077 (1977).
1 7 9 D. E. Inglesfield and E. Wikborn, J . Phys. Ser. F 5, 1706

(1975).
1 8 0S. G. Louie and M. L. Cohen, Phys. Rev. Ser. Β 3, 2461

(1976).
1 8 1G. A. Baraff, J. A. Appelbaum, and D. R. Hamann, Phys.

Rev. Lett. 38, 237 (1977); S. G. Louie and M. L. Cohen,
Phys. Rev. Ser. Β 13, 2461 (1976).

1 8 2 J. A. Appelbaum, G. A. Baraff, and D. R. Hamann,
ibid. Ser. Β 14, 588 (1976); 15, 2408 (1977). G. P. Kerker,
S. G. Louie, and M. L. Cohen, ibid. 17, 706 (1978).

1 8 3N. D. Mermin, ibid. 137, 1441 (1965).
184

T. L. Gilbert, ibid. 12, 2111 (1975).
I 8 5 J . R. Smith and J . G. Gay, ibid. p. 4238.
1 8 6O. Yukio, J . Phys. Soc. Japan 39, 574 (1975).
1 8 7G. I. Bigun, Quoted on p. 44 of the collection of articles of

Ref. 104.
I88V. E. Kuzema and Μ. Β. Partenskii, in the book "Exoelec-

tron emission and its application: Abstracts of papers pre-
sented at the First All-Union Scientific Conference," Sverd-
lovsk, 1979, p. 118.

Translated by W. H. Furry

351 Sov. Phys. Usp. 22(5), May 1979 Μ. Β. Partenskii 351


