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Effects associated with the penetration of an electric field Ε into a superconductor with deviations from

thermodynamic equilibrium are considered. The penetration of a static field Ε incident to the passage of

a current across the boundary between the superconductor and the normal metal (S-N boundary) is

analyzed. At temperatures close to the critical temperature the penetration depth Ιε of a field Ε into the

S region may be much greater than the correlation length or the London depth and may reach

macroscopic dimensions in sufficiently pure specimens. In isotropic superconductors the magnitude of lE

is determined by the branch imbalance relaxation processes. The change in the gap width at the S-N

boundary leads to an additional branch imbalance relaxation mechanism which, in pure specimens, is due

to Andreev reflection of quasiparticles. The resistance of a superconductor in the intermediate state is

calculated. Weakly damped collective oscillations with an acoustic spectrum, which exist in

superconductors near the critical temperature, are considered. This collective mode is characterized by

oscillations of both the field Ε and the branch imbalance. The propagation velocity of the oscillations is

somewhat lower than the Fermi velocity. Effects associated with the penetration of the field Ε to great

depths in Josephson bridges are analyzed. The theory of the phenomena considered is presented, using

the kinetic equation and the equations for the Green's functions. Experiments are described for

measuring effects associated with the penetration of a static field Ε into a superconductor and for

detecting the collective oscillations.
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1. INTRODUCTION

It is well known that a steady current j can flow in a
superconductor without energy dissipation in the ab-
sence of an electric field E. If the current varies in
time there will appear in the superconductor an alter-
nating transverse electric field whose strength falls off
within a distance from the boundary of the supercon-
ductor of the order of the London depth λ£ [or the skin
depth \i(oo)<XL, if the frequency ω is high enough]. In
this case energy dissipation occurs at temperatures
differing from zero. For a long time it was widely be-
lieved that an electric field Ε (and especially a static
one) cannot exist within a superconductor at distances
from the boundary exceeding the characteristic lengths
of the superconductor: the magnetic field penetration
depth \L or the correlation length ξ(Τ). This belief was

apparently based on an examination of the equation of
motion of the condensate:

—γ̂  = ?Ε4-νμ, . 11.1/

wherep s= (l/2)VX- (e/c)A is the momentum of the con-
densate, μ = (ΐ/2)(9χ/9ί) + βΦ is the gauge invariant po-
tential, X is the phase of the order parameter, and Φ is
the electrostatic potential. Equation (1.1) can be re-
garded not only as the equation of motion of the conden-
sate, but also as the definition of Ε in terms of the
gauge invariant quantities p s and μ. In fact, on substi-
tuting the expressions for p s and μ, we obtain the defi-
nition of Ε in terms of the vector and scalar potentials
A and Φ. Moreover, Eq. (1.1) follows directly from the
London equation (4irX|/c)rot j s + H=O, the Maxwell
equation rotE = -ο'^Η/θί, and the expression j s

= Γ2(4πλ|β)"1ρ5 for the superconduction current.
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If we could neglect the second term on the right in
Eq. (l.l) (as will be shown below, it is not, in general,
legitimate to do this) the presence of the field Ε would
mean that the condensate was being continually acceler-
ated. This is what led to the conclusion that no electric
field can exist within a superconductor far from its
boundary. Studies conducted in recent years, however,
have shown that under certain conditions an electric
field Ε can penetrate into a superconductor to a depth
greatly exceeding the characteristic lengths \L and ξ(Γ)
of the superconductor. It is important to note that only
the longitudinal part of E, which does not give rise to a
magnetic field, penetrates into the superconductor.

Some of the earliest experiments to stimulate interest
in this problem were those of Landau1 and Pippard
et al.,2 who measured the electrical resistance p* of a
superconductor in the intermediate state produced by
the application of a magnetic field H. The resistance
p* of the superconductor was measured by passing a
weak current / through it in the direction perpendicular
to the alternating S and Ν layers. The experimental de-
pendence of p* on Η is shown in Fig. 1. If only the nor-
mal phase Ν contributed to the resistance p*, the Η de-
pendence of p* would be represented by a straight line,
since the concentration Cs of the normal phase is pro-
portional to H. As is evident from Fig. 1, however, the
reistance p* exceeds the reistance ρ of the normal
phase. This excess p3 = p* - ρ tends to zero at low tem-
peratures and increases as the temperature Τ ap-
proaches the critical temperature Tc. To account for
this phenomenon, Pippard et al.2 suggested that a dis-
continuity in the potential Φ arises at the boundary be-
tween the S and Ν phases, i.e. that a charge double lay-
er is formed. These authors associated the magnitude
of the discontinuity with the relaxation time T Q for the
branch imbalance Q, i.e. the difference between the
populations of the electronlike (% = v(p-pF)>0) and
holelike (ξ <0) branches of the quasiparticle spectrum
zip) (here v=pF/m is the Fermi velocity). Subsequent
theoretical studies, however, showed that Φ is contin-
uous at the S-N boundary, i.e., that the electric field
Ε penetrates into the superconductor. The penetration
depth of the field E, however, and therefore also the
magnitude of the potential at the S-N boundary, are
actually determined by the relaxation time τ0. In the

U H/H,

FIG. 1. The effective resistance ρ*σ = σ/σ* of superconducting
indium in the intermediate state (σ is the conductivity when Η
^•H^ vs the magnetic field strength Η for the following temp-
eratures1 (°K): 3.37 (circles), 3.3 (crosses), 3.247 (curve 1),
3.164 (curve 2), and 3.09 (curve 3); curve 4 is based on mea-
surements at 2.8, 2.73, 2.31, and 2.12 °K.

following Division we shall derive an equation for the
spatial variation of Ε in a superconductor.

2. STATIC ELECTRIC FIELDS IN SUPERCONDUCTORS

a) Generalized Ginzburg-Landau equations for a gapless

superconductor

The penetration of an electric field into a supercon-
ductor incident to the passage of a current through the
S—N boundary was first discussed by Rieger, Scalapino,
and Mercereau3 on the basis of a generalization of the
Ginzburg-Landau equations to the nonequilibrium non-
stationary case. The authors generalized the equations
on the basis of purely phenomenological considerations.
Earlier, however, Gor'kov and Eliashberg4 had shown
on the basis of a microscopic theory that generalized
Ginzburg-Landau equations could only be obtained,
generally speaking, for the special case of a gapless
superconductor having a high concentration of paramag-
netic impurities ( T S T « 1 , whereT sis the time for spin-
flip scattering of an electron from a paramagnetic im-
purity). In this case the equation for the order param-
eter Δ has the form1 '

— 12τοί-^- + 2;«φ) Δ + ξ^^ν^Δ + Δ ( 1 — ' AJ~ ) -••<), (2.1)

where το= fer^2)'1 and ύ^ = 2ΐ!2{Τ\-Τ2). Let the super-
conductor (the normal metal) occupy the region χ >0
(x<0). In the stationary case of interest to us the

I A • A

equation for the modulus Δ = | Δ | of Δ reduces to the
Ginzburg-Landau equation:

(l_*LW\ = o. (2.2)

The solution Mx) to this equation that satisfies the
boundary condition Δ(θ) = 0 is

Δ (χ)" Δ th . \Δ.ο)

If we take the imaginary part of Eq. (2.1) we obtain the
equation of continuity for the quasiparticle current,
which, in the X = const, gauge, has the form

1 2 σ φϋ^Ι = ΐ2(Γ)-2ίι=-ξ2(7-)-^- (2.4)
Δ§ οχ (Ar

Here we have used the equation of continuity for the
total current

/ = /. + I.. (2.5)

and the following expression for js:

Using the expression

(2.6)

(2.7)

for jn and the χ dependence of Δ [Eq. (2.3)], we obtain
the equation for the χ dependence of the potential Φ,
and therefore also of the field E, in the S region:

(2.8)12 th2

The solution of Eq. (2.8) can be expressed in terms of
the hypergeometric function.5 From the very form of
Eq. (2.8), however, it follows that in this case the po-
tential Φ and the field Ε fall to zero in a distance equal

J>We use units in which H = kB = l (kB is Boltzmann's constant).
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to the correlation length ξ(Τ). The χ dependences of Ε
and Δ are shown schematically in Fig. 2. Thus, in the
case of a gapless superconductor now-being considered,
there is a peculiar proximity effect for Ε and Δ; Ε dif-
fers from zero only in the region in which Δ varies with
x. A more interesting result is obtained for the case of
a superconductor with a gap.

b) The equation for the electric field in an ordinary
superconductor with a low impurity concentration (the
phonon relaxation mechanism)

In the case of an ordinary superconductor with a gap,
the equation for the potential Φ is most easily obtained
by starting with the kinetic equation for the quasiparti-
cle distribution function η (ρ, Γ , ί).β The kinetic equation
is valid provided the reciprocal lengths and frequencies
characteristic of the variations of n(p) are small com-
pared with ξ"ι(Γ) and cx (e r~ ηιϊη{Δ, τ} is the charac-
teristic qua'siparticle energy and Δ is the width of the
energy gap). The impurity concentration should also be
fairly small ( τ Δ » 1 , where τ is the momentum relaxa-
tion time). We shall examine the most interesting case
of temperature close to the critical temperature Tc

(i.e. when Δ « Τ ) . At low temperatures (X « Δ) the field
strength is exponentially low in the S region. In the
presence of an electric field and a superconduction cur-
rent, the kinetic equation has the form7

dn dE dn d& dn j t r

It + ~dj IF ~ ΛΓ "βρ" = i m + p l "
(2.9)

where ε = ^ ξ + Δ2 +ρ4ν is the excitation energy, | = ξ + μ
+ (pl/2m), i = v{p -pF), and Iim and /p h are the collision
integrals for collisions with impurities and phonons,
respectively. Equation (2.9) is to be used to find the
linear response of the system to a weak static electric
field E. Suppose that the momentum relaxation is due
to scattering from impurities and that τ « τ ε, where
τε is the energy relaxation time (τε ~Θ|,/Γ3, ΘΒ being

the Debye frequency),
to (2.9) in the form

Then we may seek the solution

6n»«» —n,(e) = no + D,-i-, (2.10)

in which wF(£) = (1/2)(l-th(e/2T)) is the Fermi distri-
bution function. Only the first two terms remain in the
expansion of δη in Legendre polynomials since the other
terms are small in terms of the parameter r/rt. We
substitute (2.10) into (2.9) and linearize the resulting
equation:

i-vV6«= — l i i i n ^ (2.11)

where

Ε(i)

Δ (χ)

FIG. 2. Electric field strength £ in a gapless superconductor
vs the coordinate χ when current flows across the boundary
between the superconductor (S) and the normal metal (N). The
χ dependence of the order parameter Δ(*) is also shown.

ε, -ε')ΐ( 1 + -

- β ' , ε)]},

(2.11')

and a^ is the coupling constant for the interaction with
phonons (α^~ 1). In obtaining the expressionfor /ph we
took into account the fact that« 0 is an odd function of ξ
(see below). The scattering from impurities is assumed
to be isotropic. The equations

n,= — Zsgn|Vno> (2.12)

-LJ-uVn^/pnK), (2.13)

for nl and n0, where 1 = ντ is the mean free path, follow
from (2.11).

The function η ! determines the quasiparticle current7:

\n~eNpz~1 \ dtyii, (2.14)

and the function n0 is related to the potential Φ (or to the
potential μ in the more general nonstationary case).
To find the relation between w0 and Φ we calculate the
change in the total number of particles in the supercon-
ductor:

where u\= 1 - v\= (l/2)(l + (ξ/ε)). Now we substitute oiV
into Poisson's equation

ν 2 φ = 4|.ρ<6ΛΓ

1 (2.15)

where k'^F = (6ire2N/cF)'in is the Thomas-Fermi screen-
ing length. Since the field penetration depth lE is much
greater thanfc^, we can neglect the left-hand side of
(2.15) and use the quasineutrality condition to obtain the
relation between Φ and n0:

βΦ= f d|-|-reo. (2.16)

Thus, Φ is related to the angle-independent ξ-odd part
of the increment δη of the distribution function nF(i").
For the normal metal, the integral in (2.16) is the dif-
ference between the numbers of electrons and holes;2'
for the superconductor close to Tc, it determines the
difference between the populations n> of the electronlike
(ξ >0) and n,. of the holelike (ξ <0) branches of the quasi-
particle spectrum (Fig. 3), i.e. the branch imbalance Q:

Q = n> — n< pFm.n" j ι sgn ξ. (2.17)

Near Tc we have ε ~ Γ for the characteristic energy
variations of «0; hence £/casgn£, and the integrals in
(2.16) and (2.17) agree with one another to the first ap-
proximation in Δ/Γ.

To obtain the desired equation for Φ(χ) we multiply
(2.13) by ξ/ε and integrate over all ξ near Tc.

3 > In in-

2 )It should be recalled that the Fermi function nFfe) in which
the potential e4> was added to the chemical potential was used
at the outset. The deviation δη from the equilibrium function
nF(c), averaged over the angles, vanishes in the normal metal
but not in the superconductor.

3'A more rigorous analysis based on the expansion of MJ in pow-
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FIG. 3. Single-particle excitation spectrum zip) for a normal
metal (dashed lines) and a superconductor (smooth curve).
The black circles represent electronllke excitations (£ >0),
and the open circles, holelike ones (ξ <0).

tegratingthe left-hand side we may assume that (ξ/ε)2

«1. Then, using (2.14), we obtain

(2.18)

where D=vl/Z i s the diffusion constant, and the fre-
quency vQ is defined by the last of Eqs. (2.18):

vQ (ε) = 4<χρ,1Δ
2θ32 I de'F (ε, ε') (ε

- ε') (εε')"1 ( ε ' 2 - Δ 2 ) " 1/2Θ (| ε'| - Δ ) .

Calculating the frequency ι>0(ε) for e~T, we find

νβ(ε) = -g cti>2f". vs.loj

The integral on the right in Eq. (2.17) vanishes for the
normal metal. This follows directly from (2.19) (y o=0
when Δ = 0) and is an expression of the law of conserva-
tion of particles, since the right-hand part of (2.18) is
the collision integralfor collisions with phonons summed
over all momenta, and this conserves the number
of particles (we note that no=/o when ξ > 0 and no=-fo

when ξ< 0, where f0 is the electron distribution func-
tion). The frequency u0 introduced in (2.18) is accord-
ingly also zero. It is easy to clarify the physical mean-
ing of the frequencies vQ(c) and vQ on the basis of their
definition in (2.18). If we consider the time variation of
the branch imbalance Q [Eq. (2.17)] in a spatially uni-
form system (e.g., in one of the electrodes of a tunnel
junction) then in place of (2.18) we obtain °

Thus, TQ = V~Q is the branch imbalance relaxation
time.10·11 In the normal metal vQ=0. In other words,
if, disregarding the violation of neutrality (assuming,
for example, that the electron charge is zero), we pro-
duce a population difference Q, then in the normal metal
this population difference will not relax as a result of
scattering of quasiparticles from phonons, since in
scattering, an electron (hole) either passes over into an
electron (hole) or recombines with a hole, so that the
difference between the number n> of electrons and the
number «< of holes remains unchanged: Q = const.
Actually, of course, in the normal metal the number of
electrons is always equal to the number of holes be-
cause of the Coulomb interaction (we may neglect the
slight deviation from neutrality due to the perturbations
under consideration since the perturbations are smooth

compared with the Thomas-Fermi screening length).
In the superconductor uQ*0, since there it is possible
for a quasielectron (ξ>0) to undergo a transition into a
quasihole (|<0) as a result of inelastic scattering from
phonons.11 The magnitude of uQ was estimated and
measured by Tinkham and Clarke.10·11

Now let us calculate the right-hand part of Eq. (2.18).
In the case of temperatures close to the critical tem-
perature, which is the one we are considering, n0 is the
same in the S and Ν regions to the zeroth approximation
in Δ / Γ (we are neglecting Andreev reflection of quasi-
particles at the S-N boundary), fa the Ν region,

(2.20)

On substituting (2.20) and (2.19) into (2.18), we obtain
the desired equation

| ·ν} η =-τβ 'Φ, (2.21)

where

τ<ϊ = τ,-̂ -, τ.' = 14αρ̂

ίθί)·ζ(3), (2.22)

and r c is the energy relaxation time. From (2.14) and
(2.20) we obtain an expression for the quasiparticle cur-
rent 1, = σΕ that agrees with (2.7) (here a = e2Nr/m is
the conductivity .in the normal state). By making use of
the expression for j n , we can rewrite Eq. (2.21) in the
form

Here

(2.23)

(2.24)

ers of (Δ/Γ) shows that this integration leads essentially to
the condition that Eq. (2.13) for the first correction to nP

have a solution.8'9

is the penetration depth of the field into the supercon-
ductor.

Thus, when a current flows across the boundary be-
tween a superconductor and a normal metal, the field Ε
penetrates into the S region to a depth IB that exceeds
the energy relaxation length lt = VDTE , and the latter,
in turn, may be much greater than ξ(Τ) or \L. In alu-
minum, for example, we havesT ~ 10"8 sec,12 so in pure
aluminum we may have It. s l mm. Since Ιγ~^ΓΚ, there
is a continuous change in resistivity from the supercon-
ducting state to the normal state: at Τ approaches Te

the field Ε penetrates deeper and deeper into the S re-
gion from the Ν region and the resistivity induced in the
superconductor increases, approaching the resistivity
of the normal metal. Formulas for the resistivity in-
duced in the superconducting region are given in Sec-
tions e) and f).

We also note that since we assumed the distribution
function to be continuous at the S-N boundary, the field
Ε and the quasiparticle current j n will be continuous
(Fig. 4). The current is = Nsws is found from the condi-
tion that the total current j be continuous. In the case
of massive S and Ν regions in contact with one another
(e.g., a superconductor in the intermediate state), we
have j s= -jn, since the total current vanishes deep in
the S region. The total current is carried by pairs and,
unlike the quasiparticle current, flows along the S-N
boundary in the Meissner layer, and its distribution is
determined by the equation
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FIG. 4. Quasiparticle (jn) and superconduction (j^ currents vs
the coordinate χ when current flows across the boundary in the
case of a massive specimen (a) and a thin film (b).

4JW ·
rot rot p, = j - j .

If the system under consideration is a thin narrow film
of which part is in the normal state and part in the
superconducting state, the current j flowing across the
S—N boundary will be independent of the coordinate.
Hence ja=j -jn. Thus, the quasiparticle current is con-
verted into superconduction current in the length lc.
Figure 4 shows the distributions of the currents j n and

j s for the cases of a massive specimen and of a thin
film.

The above equation (2.23) for Φ was derived from a
kinetic equation that is valid for sufficiently pure super-
conductors (Δτ»1). It turns out, however, that neither
Eq. (2.23) nor the length lE changes for arbitrary im-
purity concentrations provided only that Z B >|(T). 8 · 9 · 1 3

The results obtained above provide a qualitative ex-
planation for the experimental data on the resistance of
superconductors in the intermediate state.1 '2 A quanti-
tative comparison of lE with the experimentally deter-
mined field penetration depth was made in Refs. 14 and
15. In Ref. 15 a thin narrow (~1 Mm) film of tin or indi-
um was used to measure lE. A notch was made in the
film so that the width of the film at the notch was re-
duced by about one-half. A current was passed through
the film. An electric field appeared at the narrow spot
when the current exceeded a critical value. The length
over which the field fell off was determined with micro-
probes placed close together (~2 Mm) near the notch.
It was found, in agreement with theory, that lE in-
creased weakly according to the law lE~ Δ~1/2~(1 - ( Γ /
Tc))'1/4 as the temperature Γ approached Tc. Tinkham
and Clarke,10 and Clarke and Paterson16 measured T Q .
The experiment was conducted with a.nN-1-S tunnel
junction. The superconductor was either tin or lead.
When a voltage was applied to the junction nonequilibri-
um quasiparticles were injected into the S electrode and
a branch imbalance Q arose (in this case conversion of
the quasiparticle current to superconduction current
also takes place: quasiparticles flow into the S elec-
trode from the Ν electrode and a pair current j s flows
out). A potential difference Φ developed between the
region of injection into the S electrode and the distant
part of the S region (Fig. 5), which was proportional to
the relaxation time T g #«.«."-i8 T n e r e i a x a t i O n time TQ

was determined from measurements of Φ. It turned out
that To= 2.10"10(1_ (T/TC)Y112 sec for tin.

FIG. 5. The S-I-N tunnel system used by Tinkham and
Clarke10 to measure the potential Φ due to the injection of non-
equilibrium quasiparticles into the superconductor.

It follows from Eq. (2.21) that a potential Φ arises
when the divergence of jn differs from zero. This can
take place not only in the case of passage of current
through the boundary: a divergence arises, for exam-
ple, when sound or light is absorbed (the acoustoelec-
tric and photoelectric effects), and this leads to the
appearance of a quasiparticle current jn(x) flowing in
the direction of propagation (along the χ axis) of the
sound or light waves.19 In addition, a quasiparticle cur-
rent Jr = -0VT arises in the presence of a temperature
gradient VT, while the total current in the open speci-
men is zero. At the S—N or S-S' boundary there ap-
pears a divergence Vjr (the coefficients β and β' for the
superconductors S and S' must be different) and along
with it, a thermoelectric field ET.

e A detailed discus-
sion of thermal effects in superconductors will be
found in the review by Ginzburg and Zharkov.20

c) Andreev reflection at the boundary between a
superconductor and a normal metal in the presence of a
current across the boundary

In the preceding sections attention was mainly concen-
trated on the mechanism for the relaxation of the branch
imbalance Q and of the quasiparticle current j n in a
superconductor as a result of inelastic scattering of
quasiparticles from phonons. There are also other
branch imbalance relaxation mechanisms, which affect
the spatial dependence of the field Ε in the supercon-
ductor. One such mechanism is associated with the co-
ordinate dependence of the gap width Δ. It is well
known that Δ varies near the S-N boundary because of
the proximity effect. At temperatures close to Tct the
χ dependence of Δ is given by formula (2.3). Allowance
for the χ dependence of Δ leads to different results in
the cases of clean and dirty superconductors. In the
first case allowing for the χ dependence of Δ reduces
to allowing for Andreev scattering of quasiparticles at
the S-N boundary. As is well known, an electron (|>0)
moving from the Ν region with energy ε < Δ and velocity
νιχ=9ε/&ρχ = ντξ/ε>0, transforms on reflection into a
hole with the same energy ε but moving in the opposite
direction with vtx<0 (ξ<0).2 1 Here the quasiparticle
momentum remains unchanged but the group velocity
Βε/8ρχ = υχζ/ζ changes sign. Physically, this process
amounts to the following: the moving electron under-
goes a transition to the condensate, forming a Cooper
pair with a second electron having the opposite momen-
tum, and the loss of this second electron results in the
appearance of a hole in the Ν region. In this process
the electric current does not vanish in the S and .N re-
gions (the current in the S regions is carried by pairs)
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while the quasiparticle flux and energy vanish.

If the electron energy ε is greater than the gap width
Δ, there is a finite probability, which tends to unity for
ε » Δ, for the electron to pass into the S region and to
move there as an electronlike excitation (ξ > 0) with the
same energy. From consideration of such processes
one can obtain the conditions for matching the distribu-
tion functions at the boundary and can then find the po-
tential Φ(%) by using these conditions and the kinetic
equation.22 We, however, intending also to treat the
case of a dirty superconductor, shall obtain the match-
ing conditions and determine Φ(#) by using the micro-
scopic equations.

d) Microscopic equations

A convenient and at the same time powerful method
for investigating nonequilibrium processes in supercon-
ductors, and the effects we are considering are among
these, is the method of Green's functions integrated
over the variable £=v(p -pF). For example, on inte-
gration the retarded Green's function becomes

g " = -l j d|GB(p, r, ε, ί)· (2.25)

Such functions and the equations for them were intro-
duced by Eilenberger,23 and also by Larkin and Ovchin-
nikov.24 These equations were later generalized by
Eliashberg25 to the nonequilibrium case. The technique
for investigating nonequilibrium processes on the basis
of these functions and equations was developed in Refs.
26 and 27 and was used to analyze the effects of pene-
tration of an electric field into a superconductor in
Refs. 13, 8, and 9. Another method for investigating
such effects was developed by Galatko.30

To describe nonequilibrium processes we introduce
not only the functions GR(A\ but also the function G
= ί(ψ*(1')ψ(ΐ)-Ψ(1)Ψ*(1')>.28 For a superconductor, each
of these functions ( G S U ) and G) is a matrix. For ex-
ample,

* - U ;)• ( 2 · 2 6 )

The components of £ are related to one another:

gp(s, r, i) = g- p( — ε, r, i) = g_p( — ε, r, t),

/J(e, r, *) = /*„(-ε, r, ί) = /ί(ε, r, t)· (2.27)

The function # may be represented as the sum of a reg-
ular part and an anomalous part2 5"2 7:

(2.28)

in which ε± = ε ± (ω/2). The anomalous part £la) differs
from zero only when there are deviations from equilib-
rium. The functions gs<A* andg<tt> satisfy the equa-
tions25-27

i ( v

+ Λ*.

(2.29)

- ^ {έ.Β .'+B[A»-2ne'6 (ω) 5,1 (th

-[Α.-2«ε6(ω) 5,] (th JL.-thi^?

where
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Λ ω = [2πεδ (ω) — ν ρ 5 (ω)] σζ — βμ (ω) 1 -f- ίΔ (ω) σ,,

~ Η ( Α > _ f <iQ - Β ( Λ )

and σ and σΓ are the Pauli matrices. The notation
[^u,sl = ^-uS-i^-a i s intended to include an integration
over the internal frequency:

In addition, the functions £ R M > satisfy the normalization

and orthogonality conditions27

<^<Α>)»=ΐ, (2.30)

«"£<«>+?*'"fA=0. (2.31)

and

With the aid of £ we can find the potential and the cur-
rent density:

μ = — -|- J <*ε̂ , ft-iSpj-βί, (2.32)

and

j ^ — g i j d e j-fj-pSp(Si). (2.33)

Now let us find the relation between # ( a ) and the quasi-
particle distribution function η (we recall that η is ob-
tained7 by integrating G over ε). In the case of a pure
superconductor and a weak quasiclassical perturbation,
the part of £ averaged over the angles is related to η as
follows7:

For the deviations from the equilibrium values of gU)

and 6» we have

where the δ«± are the ξ-even and ξ -odd parts of δ«.
Thus, the ξ-even part of δη0 is related to the ξ-odd part
oigoai, and conversely [see (2.27)].

Equations (2.28) and (2.29) enable us to investigate the
effect of coordinate variations of the gap width on the
field distribution in the superconductor. Now let us
turn to the case of a fairly pure superconductor (Δ"1

<τ<τμ).

e) Resistance of a superconductor with a low impurity
concentration

In this case the kinetic equations (2.9) and Eqs. (2.12),
(2.13), and (2.23) are valid w h e n # » | ( T ) . They can
also be obtained from Eqs. (2.28) and (2.29), and rela-
tions (2.30) and (2.31). For this we must express £<a>

in the form

(2.35)

(2.36)

and make use of the expression for g$u>:

!(A) e_ .H(A) _

|B(A) _ ± -^ ε2 _ ^2 S gn εθ (Ι ε\ — Δ) + i >^Δ2 — ε' θ (Δ — | ε | ) .

We obtain an equation for g№ of the type Of (2.13),
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(2.37)

and a relation analogous to (2.12) between the trace
(Spur) of % £ and gu:

Sp(oIgl)=—g*l-?-gll. (2.38)

When χ £ ξ (Γ) the above relations do not hold and we
must take the coordinate dependences of gR(A) and Δ
into account. We shall obtain conditions for matching
the functions gu and gx at the S-N boundary that are
equivalent to the conditions for matching the quasipar-
ticle distribution functions calculated with allowance
for the Andreev reflection conditions.22

Let us consider the region 0<x « 1. Then the colli-
sion integrals for collisions with impurities and phonons
may be dropped from Eqs. (2.28) and (2.29). In the sta-
tionary case we can easily find from (2.29) that

ίυ— Sps ( a ) = O, I.e. [£μ1 = °. (2.•№)

when ε> Δ; here [#μ]=*•* -#? =£μ (0) -g^xj and ξ(Γ)
« * „ « 1. According to (2.32) this means that the poten-
tial Φ is continuous at the boundary. When |ε |<Δ, we
have g% =0. Let us multiply Eq. (2.29) by at and Eq.
(2.31) by ay, and calculate the trace:

• cos βυ ^-(S1"'-«"")= - 2 A Sp (S

Sp ( 5 ^ _ί_ΐ£ΜΛ+Γ) ς -(„,
(2.40)

2 Reg"
;Ρβ1 '

where cos6=vjv. On calculating the corresponding
component of Eq. (2.28), we find

(2E + icosto^-)/B(A)-2A i

B(A). (2.41)

We require energies ε that are much larger than Δ, for
whichgR<A) = ±l. At such energies the sum of the Four-
ier components fRU> is

f" + ΙΛ = —4π(Δ (?) 6 (2e — qv cos Θ). ( 2 . 4 2 )

On substituting this equation into (2.40) and integrating
the first of Eqs. (2.40) over the region in which Δ(χ)
varies, we obtain

(i< 0 )+i ( <"). (2.43)
«COS θ

The coefficient on the right in (2.43) is small when
ε » Δ, so the coefficients of the Legendre polynomials
of higher order than the first will also be small. We
substitute expansion (2.35) into (2.43), calculate the
Fourier component of Δ(#) [using Eq. (2.3)], and aver-
age over the angle; this yields

Eq. (2.37) in the S and ΛΓ regions and match the solu-
tions at x = Q. We can simplify Eq. (2.37) considerably
if we note that at high energies t~T, the leading ap-
proximation to g№ in Δ / Γ is known: it is equal to the
value of g^ in the Ν region far from the boundary:

c o ) = • (2.46)

On the other hand, the term corresponding to the arri-
val of particles in the collision integral 7 ,̂(2.11') for
collisions with phonons [also see the connection (2.34)
between n0 andg^] is due to the integration over large
energies z~T. On substituting (2.45) into this part of
the collision integral, Eq. (2.37) becomes

Ρ-ΊΪΓ^^ + Ύ-^ττ)' Δ«ε«Γ. (2.47)

Thus, in the investigated energy interval Eq. (2.47)
has the same form in the Ν and S regions, the only dif-
ference being that ΦΝ(χ)=Φ(θ)-ΕΝχ, while Φδ(*:)
= EslB exp(-x/lB). On solving Eq. (2.46) with the bound-
ary conditions (2.39) and (2.44), we obtain

g (0)= h ( 2 4 8
e " W Τ (γίβ/2) + Ι C n 2Γ • ν*·™»

where lc = VX>TE. The characteristic energy tx below
which (2.48) differs from (2.46) is εΙ=·/378Δ(ίε//)1/4.
Using (2.48), we determine the field discontinuity from
(2.45):

ί /\w/4 T (2.49)

Here we have rewritten the condition for the applicabil-
ity of (2.47), using the value of cx. The contribution to
the resistance (per unit area) of the S-N system intro-
duced by the superconductor is 8 · 9

(3π)"2

\T) [—) J
(2.50)

Thus, Andreev reflection of quasiparticles leads to
perturbation of the distribution functions in the S and Ν
regions over a distance of h and to a discontinuity of
the field determined both by the χ dependence of Δ and
by the energy relaxation mechanism. The quantity h
may be considerably greater than the mean free path I
((IC/D1/4=(TC/3T)1'B). Nevertheless, because of the
weak dependence of [E] on τε/τ the discontinuity in Ε
near Tc is not large and a field Ε with amplitude Es

close to E" penetrates into the S region to the depth lB

(Fig. 6).

The matching conditions (2.39) and (2.44), together
with Eqs. (2.37) and (2.38), enable us to find the discon-
tinuity of the field Ε [more accurately, the change in
the field over the distance ξ(Γ) «lB] at the S-N bound-
ary. From (2.32), (2.38), and (2.44) we obtain the fol-
lowing expression for the discontinuity in E:

Δ - oo
Ν S 1 Γ 1 Γ lr\ Λ c \

4i J 4ί J
0 Δ

It follows from relations (2.31) t h a t ^ =0 when ε <Δ.
Near Tc, the main contribution comes from the second
term on the right in (2.45). To findg·,, (0) we must solve

Es

f S

\ Aft)

FIG. 6. Electric field strength Ε vs the coordinate χ when a
current / flows across (he S-N boundary in the case of a
superconductor having a gap Δ. The Δ(χ) dependence is also
shown.
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f) Resistance of a superconductor with a high impurity
concentration

Let the impurity concentration be such that the condi-
tion TT « 1 is satisfied.4' Then all the functions can
again be expressed as sums of two Legendre polynom-
ials (2.35). The main difference between this case and
the preceding one is that now formulas (2.36) remain
valid for the isotropic parts of gR{M for all values of x,
since the gradient terms in the Eilenberger equations
(2.28) turn out to be small. The following relation
holds25"27 for gR<A>:

). (2.51)

where

Yt

Using the known form (2.36) for gRU> and (2.51) for
gB<A), we can obtain the desired equation f o r ^ , which
is valid for all χ [including the region in which A(x)
varies]. 8 · 9 · 1 3 On substituting g(tt) into Eq. (2.29), which
is considerably simpler in the stationary case now
under consideration, we obtain the following equations,
which are similar in structure to Eqs. (2.12) and (2.13):

-g-»vg1+£B[sf, go] = /ph(io), (2.52)

Using relations (2.30) and (2.31), we can easily obtain
the following equation from (2.53):

g1=-iufvie+i,vi$). (2.54)

This equation is analogous to (2.12). The second term
differs from zero in the region in which Δ(#) varies.
Now let us substitute £ x from (2.54) into Eq. (2.52),
multiply the equation by gR, and calculate the trace for
| ε |> Δ (as was already noted, g№ = 0 when | ε |< 0). Tak-
ing Eqs. (2.30), (2.31), and (2.36) into account, we ob-
tain

On substituting the explicit form of gR from (2.36) we
obtain

where IStt= Sf>($ytJri)· The collision integral for colli-
sions with phonons is again determined by expression
(2.11') and agrees with the right-hand side of (2.47)
when Δ « ε « Τ.

The solution to Eq. (2.55) is to be sought in the same
way as in the case of a superconductor with a low im-
purity concentration. If Ζ =V2)TE »ξ(Γ), the second
term in brackets in (2.55) can be replaced by

(2.56)

It is further necessary to solve Eq. (2.55) to the left
and right of the boundary, dropping the second term in
brackets [in this case Eq. (2.55) coincides with (2.47)],
and then to match the solutions, using the continuity of
gu and the matching condition for [9^/8*] given by the
function (2.56). When Δ « ε « Τ and x = 0, the function
gu (x) takes the form

**. ( 2 · 5 7 )

4 )Thls case was first treated by Schmld and Schon.13
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The field discontinuity, calculated with (2.45), is

( 2 · 5 8 >
In this case the contribution from the superconducting
region to the resistance of the S-N system is 8 · 9

•'. (2.59)ps_ Έ (ι ι ι/" " -.λ
p ° \ +V 3/2 *3/2

The Τ dependence of p s obtained in (2.59) differs from
the results of Ref. 13 obtained with the aid of a com-
puter and from those of a more recent paper55 in which
the case of arbitrary temperatures was analyzed.

g) Other quasiparticle-current relaxation mechanisms
(paramagnetic impurities, condensate flow, anisotropy)

There are also other effective mechanisms for relax-
ation of the branch imbalance Q that determine the field
penetration depth. These include scattering from para-
magnetic impurities,8·9·1 3·2 9 relaxation of Q in a super-
conductor in which a sufficiently strong condensate
current j s flows (so that the term/)2 must be taken into
account),30 and also anisotropy of the superconduc-
tor. 9 · 1 1

As regards the first mechanism, it was partially ana-
lyzed in Section a) of Division 2, where it was assumed
that the concentration of paramagnetic impurities was
high (TS Τ « 1). In that case, however, the basic char-
acteristics of the superconductor—the density of states,
the critical temperature, etc.—are strongly altered. It
is interesting to examine the case of low impurity con-
centration (τ5Δ>> 1), in which the effect of paramagnetic
impurities on the thermodynamic characteristics may
be neglected. In this case the equation for gu has the
form of Eq. (2.55), but differs from it in having the
additional term 2Δ2(ε2τΙ)

-1# |1 on the right, which de-
scribes the relaxation of g№ due to scattering by para-
magnetic impurities.8·9 If scattering by paramagnetic
impurities dominates scattering by phonons (js «τ ε (Δ/
Τ)2), the solution to this equation in the S region (neg-
lecting the second term on the left, i.e. neglecting the
field discontinuity at the S-N boundary) is

1 / 2 A i f » " '

el. -ΓΜ-^)*
where IS=(DT^)XI2. Calculating the potential Φ(ΛΓ) shows
that the field Ε falls off in the S region in the length lB

«Ζ,Τ/Δ. If T 5 » (Δ/Τ)2τε, however, two cases are pos-
sible: a) T S » Tt; then lE is independent of T S and is de-
termined by formula (2.24). b) TS « τε ; then lB =lc (4T/

Taking the finite velocity of the condensate in the S
region into account leads to the appearance of a term of
the form ΒΔ^Ιε"2 in Eq. (2.55).26·30 Since this addition-
al term has the same structure as the term describing
scattering by paramagnetic impurities, the analysis
given above remains entirely valid provided la is re-
placed by V2P'1.

In anisotropic superconductors, relaxation of the
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branch imbalance Q takes place as a result of elastic
scattering by ordinary impurities.11 In this case, for
sufficiently pure superconductors lB is again equal to
V£>T0, while το = τΓ/(α2>Δ(1 + (Γ*/Δ)), where Δ is the
gap width averaged over all directions and (a2) is the
anisotropy factor. For example, (a2) = 0.02 for tin.11

As the impurity concentration increases (with Δτ<1)
the effect of anisotropy decreases.

h) Resistance of a superconductor in the intermediate
state

A good system for investigating field penetration ef-
fects is a superconductor in the intermediate state. By
altering the magnetic field one can vary the relation be-
tween the thicknesses of the superconducting (Ls) and
normal (LN) layers (for simplicity we consider the case
of alternating plane parallel layers), on the one hand,
and the characteristic lengths {l,lz,lE) that determine
the penetration of the field into the S region, on the
other hand. From measurements of the effective re-
sistance of the system,

FIG. 7. Electric field strength Ε and potential μ (dashed
curve) vs the coordinate χ when a current flows through suc-
cessive layers of S and N. It is assumed that £(T)«LStN, so
the change in Ε over the correlation length |(T) is represented
as a discontinuity.

, 1
P ~ a

E(x)dx (2.60)

one can extract information on the mean free path, the
energy relaxation mechanism, etc. The formulas for
the field discontinuity [E] at the S-N boundary and for cEs_ ap» LN I^ t h A \ _ dp, c£N^
the resistance p* are not directly applicable in the s

present case since the solutions to the diffusion equation m d t h e electrical conductivity is given by

2) l»LNS.
5i In this case it is Andreev reflection

that exerts the dominant influence on the motion of an
electron (especially at low temperatures). The colli-
sion integral for collisions with impurities and phonons
may be neglected in the zeroth approximation. The dis-
tribution function n0 has the form

nf = Cs'1'[x±TLs,lr).

The matching conditions (2.64) remain in force, but in
the second condition one may neglect the right-hand
part. The fields Es·" are determined directly from
formula (2.16),

P S dp, Ly 1 . , Δ \ dp, UN (n en)

eE =-£--,—Γ77 1 — th-5=- )=-£- — eEN, (i.bl)

*!_"«_ Δ«ε«7\ (2.61)

were chosen as functions that fall off exponentially from
the boundary. However, it is not difficult to generalize
the results obtained.22

Let us consider the most interesting case of a fairly
pure superconductor of the first kind (ΔΤ » 1). Two
limiting cases are possible:

1) I « lt,LSN. The function nx that determines the
current is given in the S region as before by Eq. (2.12),
but in the Ν region by

'Γ-+Ψ-Ψ)- (2.62)

This formula is also valid at low temperatures. The
lower bound on Τ is determined by the smallness of the
right-hand side of the second of the matching conditions
(2.64):

Τ >Δ

The second term takes account of the presence of a
phase difference at the Ν layer that increases with time.
It follows from (2.62) and (2.1) that

(2.63)/„ =
In this case the matching conditions (2.39) and (2.44)
take the form

The solution to (2.61) is

<"=^{-Φ+£»'*[(ΐΤώι)|]}. (2.65)

The constants Cs·" are found from conditions (2.64), and
the field discontinuity, from (2.45):

1*] = -^(£Π-έ-)'>(^Κ-ηΐΛ (2-66)
where a = (l/2)(cth (Ls/2lc) + ct\\(Ls/2h)). Here the field
Ε is independent of χ in the Ν regions, but in the S re-
gions we have E(x)=Es

 ch((* -Ls/2)lB)/ch(Ls/2lB) (Fig.
7). The effective resistance (2.60) is given by

It is evident from (2.67) that at low temperatures (Δ
»T) Es is exponentially small as compared with E".

3. COLLECTIVE OSCILLATIONS IN
SUPERCONDUCTORS

In this Division we shall obtain equations for the lin-
ear response of a superconductor to an alternating elec-
tric field. In particular, these equations describe
weakly damped collective oscillations with an acoustic-
type spectrum, which exist in the superconductor at
temperatures close to Tc. Such oscillations were ex-
perimentally detected by Carlson and Goldman31 and
were obtained theoretically by Schmid and Schon32 for
the limiting case of a dirty superconductor (Ττ« 1),
and by the present authors33 for the case of a pure sup-
erconductor (Δτ»1).

The possible existence of weakly damped collective
excitations in superconductors has been repeatedly dis-
cussed in the literature. In 1958 Bogolyubov (see Ref.
34) and Anderson35 considered weakly damped oscilla-
tions of the order-parameter phase, which have an

5 'It is assumed that LNS » ξ(Τ), so the Josephson effect need
not be taken into account.
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acoustic spectrum in the case of an uncharged Fermi
liquid. These oscillations, however, involve distur-
bance of the electron density, so in real superconduc-
tors, owing to the Coulomb interaction, the frequency
of such oscillations rises to the plasma frequency. But
since the plasma frequency is several orders of magni-
tude higher than the width of the energy gap in a super-
conductor, the difference between such oscillations in a
superconductor and plasma oscillations in a normal
metal may be neglected.

It is well known that several types of weakly damped
collective excitations with an acoustic spectrum exist
in superfluid He Π.36 Of these, first, second, and
fourth sound are bulk oscillations. The question arises
whether oscillations of these types can propagate in
superconductors. Acoustic oscillations in He II can be
described in terms of the two-fluid model within the
limitations of the hydrodynamic approximation. Two
types of excitations, first and fourth sound, are asso-
ciated with density oscillations, either of both the nor-
mal and superfluid components of the liquid (first
sound), or of the superfluid component alone (fourth
sound). These modes are accompanied by perturbations
of the total density of the Fermi liquid; hence, as in the
case of the modes considered by Bogolyubov and Ander-
son, the Coulomb interaction converts them into plasma
oscillations.37

Second sound consists of temperature (entropy) oscil-
lations; it has nothing to do with oscillations of the
density of the liquid (although it is associated with os-
cillations of the density of excitations) and in principle
it might exist in superconductors. The possibility that
second sound might exist in superconductors was con-
sidered by Bardeen38 and Ginzburg,39 who showed that
second sound would be highly damped except under very
rigid conditions on the parameters of the superconduc-
tor that cannot be met in practice. This is due to the
fact that the frequency of the sound must be large com-
pared with the frequency of collisions with impurities
and phonons, but small compared with the reciprocal of
the time required for establishing local thermodynamic
equilibrium in the quasiparticle gas (i.e. ω « τ£, where
ree is the quasiparticle-quasiparticle collision time).
In addition, the wavelength \=ν2/ω {v2 is the velocity of
second sound) must be large compared with vTee, i.e.
ω « T^vjv. Thus, we should have τ~ρ\« ω «T^vjv,
and since v2«v, this condition on the frequency is very
difficult to meet.

The collective oscillations that we shall consider in
this Division are not analogous to the known acoustic
oscillations in liquid He II. Neither are they associated
with second sound. In particular, they do not involve
the temperature and excitation-density oscillations
associated with second sound. Unlike second sound, the
collective oscillations under consideration cannot be
obtained from the hydrodynamic equations for the sup-
erfluid liquid, which were derived under the assumption
that the system is in local thermodynamic equilibrium,
i.e. that the quasiparticle distribution function has the
equilibrium form but with the thermodynamic charac-
teristics varying with position and time. As will be

evident from what follows, collective oscillations can
exist in a superconductor only at frequencies exceeding
ΐ / τ ε and ΐ / τ 0 , the reciprocals of the energy and branch
imbalance relaxation times. In these oscillations the
distribution of quasiparticles between branches is not
an equilibrium distribution, and the form of this distri-
bution is used in an essential way in deriving the equa-
tions for the oscillations. The collective modes to be
considered consist of oscillations of the branch imbal-
ance Q, accompanied by oscillations of the phase of the
order parameter and, correspondingly, of the conden-
sate velocity. Incident to these oscillations, there also
arises in the superconductor an alternating longitudinal
electric field Ε=-(νμ/β) + (9ρ/8<), but the field is weak
(| Ε | « | νμ/e |) in the region in which the oscillations
are weakly damped. The normal-excitation and conden-
sate currents arising in the superconductor are directed
opposite to one another, so that the total current van-
ishes at each instant. Since there is no current, and
hence no magnetic field, these oscillations can exist in
the bulk of the superconductor where the electric field
cannot penetrate owing to the Meissner effect.

a) Equation for the electric field in the nonstationary case

Let us generalize Eqs. (2.7) and (2.21) to the nonsta-
tionary case. We shall consider a uniform supercon-
ductor. We shall impose no limitations on the impurity
concentration (i.e., we treat the parameters Ττ and ΔΤ
as arbitrary). We shall use the equations for the anom-
alous Green's functions g(a).

Assuming that the wavelength of the disturbance is
large compared with the mean free path 1=υτ, we ex-
press gia) as in (2.35). From the linearized equation
(2.29) for the Fourier components jf0 and glt we obtain

and

where

(3.2)

(the gRiA) are the equilibrium retarded and advanced
functions). We have not written the collision integral
with phonons in Eq. (3.1); it has the same form as in
(2.11')· To express £ t in terms of gm we use the ortho-
gonality condition (2.30) and condition (2.31),

and obtain

g,(e, ω) = «<χβρ,(ω) (Sz-«?Orff)-(kiPif;0, (3.3)

where β =(1 -ίτ(ξ? + ξί))"1. Substituting (3.3) into (3.1),
we determine the isotropic part g0,

g0 = - α μ (ω) κ-> (1 - ? ? g f) + ictf>i-iCkps (ω) Q*σ2 - 5~gd), ( 3 . 4 )

where x. = £f + if +i&Dk2. It follows from Eq. (3.4) that
the functiongA = Sp($Mg,), which describes the perturba-
tion of the energy distribution of the quasiparticles and,
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accordingly, the perturbation of the gap width Δ, van-
ishes in the linear approximation in μ and p s . In the
kinetic equation method, gA corresponds to δη and is
odd in ξ [see (2.34)]. The perturbation of the branch
imbalance is described by the function # u =%£„, which,
according to (3.4), is given by

, μ _ - 2 ^ <«,[!_ j ! = ^ p L ] + 2»»rV*»(±-±.). (3.5)

We find the function g1 = Sp($tg1)/2, which determines
the anisotropic part of the quasiparticle distribution
function, by substituting (3.4) into (3.3), multiplying
(3.3) by <r£, and taking the trace:

(3.6)
The function^! determines the quasiparticle current
[see (2.33)].

It will be evident later that the collective oscillations
will be weakly damped provided the conditions

n , 2 /. ,, . , , T „ ~ T-i (O rj\
DkJ ^ ω ^ Δ ^ / , ω ^ τ 1 \o. I )

are satisfied. Conditions (3.7) simplify the calculations
substantially. Let us calculate the current jn. The
main contribution to the integral (2.33) comes from en-
ergies ε~Γ, the only exception being the term in (3.6)
that contains the product £f|f, for which low energies
are also important. Under conditions (3.7) and the fur-
ther condition | ξ ± | » u>, the functions v- and β have the
form

j (1 — (ωτε/Ι*)-» * 1, | ε | > Δ ,
P ~ \ (1 + 2τ | | | ) , I e I < Δ,

, .Η . .... -Β . . . . ( 3 . 8 /
ea/lR + iDk*

21 Ι Ε Ι ,

εω/ξ" | e | > Δ,

Ι

Taking (3.8) into account, we can obtain the following
expression for the current j n :

)Α/ 1 (3.9)

where

•l·
(3.10)

To emphasize the manner in which (3.9) differs from
the static case [see (2.7)] we have expressed μ in terms
of Ε with the aid of (1.1).

J has the following asymptotic behavior:
Δ

. ( • • * .
I 1 , Δ

ι-1η—-
Δτ»1.

(3.11)

The kinetic equation (2.9) cannot be used to obtain the
correct form of the term with J in (3.9), since the ki-
netic equation was derived under the assumption that
the characteristic values of the energies ε and ξ sub-
stantially exceed ω and T1, whereas energies ξ ~ ω
« Δ turn out to be important in calculating J.

Let us obtain the equation of continuity for the quasi-
particle current, using formula (2.32) and expression
(3.5). Here it must be borne in mind that the integral
of the first term in (3.5) over the energy region ε ~T
gives μω and therefore cancels with the left-hand part.
Hence we cannot neglect .Dfc2 compared with ω in the

expression for H, and in integrating this term we must
take the contribution from the energy region ε ~ Δ into
account. As a result, we obtain

ία-%--±-μ = ΟΡμ + Οω\ίρ,. (3.12)

Now let us perform an inverse Fourier transformation
and, as was done in the static case, take the phonon
collision integral into account:

We also write the expression for the superconduction
current, which is determined by the regular part of g
[see Section d) of Division 2]. When conditions (3.7) are
satisfied, js has the form

(3.14)

where

1,

7 ; (3)

When conditions (3.7) are satisfied, Eqs. (3.9), (3.13),
and (3.14), together with Maxwell's equations, deter-
mine the response of a superconductor to a longitudinal
field E.

In particular, it follows from these equations that the
law according to which an alternating field Ε of fre-
quency ω falls off within the superconductor is deter-
mined by the wave number

In the static case (ω = 0), Eq. (3.15) reduces to the well
known result k~Q=ilB.

b) Spectrum of the collective oscillations

To calculate the spectrum of the collective excitations
of a superconductor one must find the range of values of
ω and k for which Eq. (3.13) has a nontrivial solution
with j =jn +js = 0. The corresponding dispersion equation
has the form

The oscillations described by (3.16) will be weakly
damped provided the conditions6'

τ;1, am J '

are satisfied. They have an acoustic spectrum

(3.17)

(3.18)

and their propagation velocity K=Re(u)/&) is

j/i^-, rt«i.

In the same limiting cases, conditions (3.17) for weak
damping can be rewritten as follows:

(3.18')

'Α, Ττ> χ

, Α2-,

{τ;1, -|-} < ω < Δ, Γτ«1.
(3.19)

6 )It can be shown that In pure superconductors (ω » 1/T) the os-
cillations die out because of Landau damping.
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Thus, the propagation velocity of the oscillations dif-
fers somewhat from the Fermi velocity ν by a factor
«0.5(1 - ( T / r e ) ) l / 4 when rT »1 and by a factor «1.5 ((Tc

- Τ)τ 2 Γ) 1 / 4 when rT « 1. It is evident from conditions
(3.17) and (3.19) that the oscillations will be weakly
damped in a temperature interval that is close to Tc

and is bounded both above and below. The conditions
for weak damping obtained in the earliest studies3 2 '3 3

in which the spectrum of the oscillations was calculated
differed somewhat from those given above. Thus, in
Ref. 32 the damping that limits the frequency from
above was not taken into account, and in Ref. 33, in
which the kinetic equation was used, the factor 1η(Δ/ω)
was not present. Ovchinnikov40 found the exact condi-
tions for damping in the case of arbitrary impurity con-
centration.71 He also explained how the presence of a
steady superconduction current increases the damping
of the oscillations. This phenomenon is in agreement
with the conclusion drawn in Section g) of Division 2
that the branch imbalance relaxation rate is increased
in the presence of ps. The presence of paramagnetic
impurities also leads to the same effect. The spectrum
of the oscillations for the case of low concentration of
magnetic impurities ( T S A » 1 ) was obtained by Galaiko
et al ,4 1 The corresponding oscillations in superconduc-
tors having a high concentration of magnetic impurities
was investigated in Refs. 42 and 43. In those studies,
however, the charge of the electron and the presence of
the field Ε were not taken into account.44 Taking them
into account led to additional damping of the oscilla-
tions, which turned out to be small only in the practic-
ally unachievable temperature interval 1-(T/Te)
<4·10"β.

c) Experimental observation of the collective modes

Weakly damped collective excitations in superconduc-
tors were detected experimentally by Carlson and Gold-
man,31 who measured the current-voltage characteris-
tic of an Al-/-Pb Josephson tunnel junction and deter-
mined the contribution δ/ to the single-particle current
due to order-parameter phase fluctuations δχ. The
contribution δ/ from the fluctuations could be deter-
mined by applying a magnetic field that was strong
enough to suppress the Josephson super cur rent and thus
allow the single-particle current to be measured. As
Ferrell 4 5 and Scalapino46 showed, the presence of in-
trinsic oscillation modes p s= (?/2)k6x in the supercon-
ductor leads to the appearance of peaks in the dynamic
structure factor S(k, u) = (a?(r, t)M0, 0 ) ) ί ω at the cor-
responding values of ω and k. On the other hand, δ/
~S(jc, ω), where the frequency ω is related to the poten-
tial at the Josephson junction by the formula 2eU =Κω,
and the wave vector k is related to a weak applied mag-
netic field H: k = 2eH(\ + (l/2)d)(£e)"\47 where d is the
thickness of the aluminum film and λ£ is the London
penetration depth into the lead (dPb>\L). The mea-

7)The spectrum of the collective oscillations has also been cal-
culated in a recent study56 for arbitrary frequency and im-
purity concentration. In that study, however, there was no
damping of the collective oscillations that would limit the fre-
quency from above.

1.7S317'K

1.74626'K

FIG. 8. Dynamical structure factor S(q, ω) for various values
of?: iV/T= 0.02 (1), 0.04 (2), 0.06 (3), 0.08 (4), and 0.1
(5). The dashed curves represent theory,53 and the full
curves, experiment.

surements were made at a temperature Τ close to TcM

so the fluctuations δχ in the lead film could be neg-
lected. The mean free path in the aluminum film was
very short, so that the condition rT « 1 for a dirty sup-
erconductor was satisfied. From measurements of δ/
as a function of U and H, the relation between LI and Η
corresponding the maximum of δ/ was determined. It
was found that U~H, which corresponds to a linear re-
lation between ω and k. Figures 8 and 9 show the ex-
perimental and theoretical dependences of S on ω for
fixed k, and the dispersion law for the collective oscil-
lations. It will be seen that the theory is in good agree-
ment with experiment.

Thus, weakly damped oscillations of acoustic type can
propagate, under certain conditions, in the electron
Fermi liquid of a superconductor, just as they can in
other superfluid liquids. Refined experimental tech-
nique was required to detect the oscillations, since in
the Carlson-Goldman experiment31 the amplitude of the
oscillations was determined by thermal fluctuations and
was therefore very low. The problem of observing col-
lective modes in superconductors would evidently be
simplified if the oscillations could be excited by extern-
al action. As was noted above, what oscillates in the
modes under consideration is the branch imbalance Q,
which is brought about by divergence of the quasipar-
ticle or Cooper-pair current. Such oscillations can
therefore be excited in a nonuniform system. In the
following Division we shall show that collective oscilla-
tions analogous to those considered above can actually

5-tf sec"1 ·

FIG. 9. Hie frequency ω at which S(q, ω) is maximum as a
function of the wave vector q (Ref. 53). t= (Tc- T)/T = 6.3
X10"3.
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be excited in a system consisting of a number of Jo-
sephson bridges lying close together and connected in
series.

4. THE JOSEPHSON EFFECT AND LONGITUDINAL
ELECTRIC FIELDS

The large penetration depth of an electric field into a
superconductor in the presence of collective oscilla-
tions leads to interesting features in the behavior of
weakly coupled superconductors.48 This is especially
the case for those types of weak coupling in which there
is no concentration of the total current.

That is the situation, for example, in Mercereau-
Notarys bridges,49 in which the gap depends on a single
coordinate and is locally depressed by the proximity
effect (Fig. 10). The resistance of such Josephson
bridges is determined by the field penetration depth.

Let us consider a simple model of such a junction.48

Let the critical temperature Tc of a thin strip depend on
the coordinate χ measured along the strip and let it be
lower in a certain small section of the strip than else-
where: TC(X) = T* when \x\<d, and Tc(x) = Tc>T* when
\x \>d [d is of the order of the correlation length ί(Τ)].
Let us assume that the temperature is close to Tc and
that the parameter v%= (T-T*)/(TC-T) is much greater
than unity. In addition, we shall assume that the mean
free path is short (τΤ « 1). Then the critical current jc

of the bridge will be exponentially small compared with
the Ginzburg-Landau critical current j C L for a uniform
strip: jt.= (3/3/2)jaL(2vosh[2vlfl/i(T)]r1. In the weak
coupling region (|#|<<i), under this condition, the
anomalous terms, which describe the deviations of the
distribution functions from their equilibrium values,
make only a small contribution, and the equation for the
complex order parameter Δ reduces to the Ginzburg-
Landau equation, from which the cubic term may be
dropped because it is small:

lHT)^r-vlA=0. (4.1)

When \x \>d, the modulus of Δ is the same as in the
equilibrium case, since in this region the effect of the
superconduction current on | Δ | is small: Δ(ΛΓ)=Δ№((*
+xo)//2 ξ(Τ))βχρ(ϊχ(χ)). Matching this function to the
solution of (4.1) at \x[=d and using expressions (3.9)
and (3.14) for the currents jn and jt, we obtain

j = aE (i) + /c sin <p, (4.2)

where ψ =2x(d) is the phase difference in the case of

I-*-

weak coupling and E(t) is the field in the region \x\ <d,
where it is independent of the coordinates. To close
Eq. (4.2) we must find the relation between E(t) and
<p(t). To find this relation we express the Fourier com-
ponent of the field Eit) in terms of νμ, using the equa-
tion of continuity for the total current j =jn +js and Eq.
(1.1):

.,„(„—-fe-(i_filfo)-\ (4.3)
where Ω = 2Τω/πν2. Substituting this expression into
(3.13), we obtain the equation for μω(χ):

FIG. 10. Schematic diagram of a proximity-effect Josephson
junction: S—st5>erconducting strip, N—normal strip. The de-
pendence of the gap width Δ on the coordinate χ measured along
the strip is also shown.

We shall solve this equation under the assumption that
the penetration depth \k~* | of μ into the S region ex-
ceeds ξ(Γ). Finding μω(χ) and taking account of the re-
lation

we determine the desired relation between the Fourier
component Εω of the field in the bridge region (\x | *= d)
and (8<ρ/8ί)ω:

eEa = -

We have assumed for simplicity that \ku\£(T)v2

0«l.
This allows us to neglect the dependence of Δ on χ in
(4.3) and in the equation for μω(χ). Expression (3.15)
for ku simplifies in the case of a dirty superconductor
at frequencies ω « &:k2

u = (k' + ik*)2=-n{-iu> + Tl1)
x (1 -ζΩ)(Δ/4ΓΖ>). The junction potention Uu = 2Eu<d
+ i&~1) is the sum of the potential drop 2EJL in the case
of weak coupling and the quantity 2ik'^Eu, which is due
to the penetration of the field Ε into the superconductor
at the critical temperature Tc. From the expression
for Uu and Eq. (4.3) for Εω it follows that the Josephson
relation between Uu and (d<p/dt)u is not satisfied when
ω s Δ2/Τ, τΐ1. However, this relation is satisfied for
the time averages (U~Uus:() as it should be: 2eV

The relation between the average potential V and
8<p/9i will differ from the Josephson relation if the
normal-metal electrodes used to measure the potential
U are close enough to the weak coupling point.3 In this
case the field and the potential will not vanish near the
measuring electrodes, and the potential drop between
symmetrically disposed electrodes will be U=2E(d
+ lE(\ -exp(L/lE)), where 2(d+L) is the distance be-
tween the electrodes. The difference from the Joseph-
son relation in the case of a tunnel junction arises in
just the same way when the electrodes used to measure
U are close enough to the quasiparticle injection point,
where the potential μ differs from zero.3 '5 0

The collective phenomena considered in the preceding
Division manifest themselves especially clearly in a
system of proximity-effect Josephson bridges connected
in series. In practice, the number Ν of junctions may
reach 2000, the distance between neighboring junctions
may be of the order of a micron, and the spread of the
values of the critical currents may amount to ~10%.51

It has been found that the Josephson oscillations in the
junctions take place synchronously, i.e. with the same
frequency and phase, over a fairly wide range of cur-
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rents. Let us obtain an equation for the interaction of
the junctions. We shall consider Ν junctions (Fig. 11).
Assuming again that |£ω |ξ(Γ)ι>2« 1, we use the equa-
tion for μω(#) to the left (-) and to the right (+) of the
w-th junction to obtain

t cos kax + Bn sin kax. (4.4)

Proceeding as in the case of a single junction, we ex-
press μ*(ά) - μ~(-ά) in terms of the phase difference φ η

and the field En. Using Eq. (4.3) we express the fields
£π+ι(ω) in terms of the M*(tL) and add them:

+ En [cos KL — kad(l — iQ)-' sin kaL].

This equation, together with Eq. (4.2) (written for each
junction) describes the interaction between the junc-
tions and makes it possible to determine, for example,
the current-voltage characteristic of the system. The
characteristic interaction length (k^)'1 may be substan-
tially greater than the correlation length ξ(Γ), This
was just the situation in the experiment of Palmer and
Mercereau51 (the correlation length in the niobium
bridges used in this experiment was ~100-200 A). Syn-
chronism is lost at high enough frequencies [(Jfe")"1 de-
creases with increasing ω]. An equation of the type
(4.5) for the interaction of the junctions will be valid
not only in the case of one-dimensional bridges, but
also in the case of pinched bridges. This is associated
with the fact that the total quasiparticle current remains
unchanged on passing from one bridge to the next, pro-
vided Lk"< 1. Consequently, the field En will affect the
fields EnA.

The spectrum of the collective oscillations in a sys-
tem of Josephson junctions is distorted, and bands of
forbidden and allowed frequencies appear; in addition,
weakly damped oscillations are possible at frequencies
at which oscillations in a uniform superconductor would
be damped out. To find the form of the spectrum we
use Eq. (4.2) to express the field £„ for ; = 0 as En

= -O'e/^H^i to* K< 1) a n c^ transform to the collective
variable £ „ = £ , £ , exp(tw?.L) in (4.5). If the conditions

τ?«<ο, - £ - « ω « Δ · (4.6)

are satisfied the dispersion equation will have the form

Γ
where X = wi

0/w2

f, and ωο= V2CA/L.
We shall consider two limiting cases: a) \ « 1. In this
case when | ω/ω0 -ττη | » λ we obtain the spectrum of the
oscillations of a uniform superconductor, ω =q^2DA.
When | ω/ω 0 - im | & λ there is a splitting of the branches
due to the interaction of the junctions, and bands of
allowed and forbidden frequencies appear. The separa-
tion between the bands is δωη = 2ιτηλω0. b) λ » 1. Bands
also appear in this case. In the first band the spectrum

FIG. 12. Spectrum ω(φ of the collective oscillations of a sys-
tem of Josephson bridges connected in series. The dashed
lines show the spectrum in a uniform superconductor.

has the form of the spectrum of acoustic phonons in a
crystal: u = <j>Jsva.{qLf$). It is interesting that the os-
cillations in the first band are weakly damped even when
the second of conditions (4.6) is not satisfied, i.e. when
they would be damped in a uniform superconductor.
The oscillations in the other bands are weakly damped
under the conditions (4.6). Their spectrum is deter-
mined by the formula ω/ωο=πη + (λττηΤ^Ι - (-1)"
x cosfaL)), Μ = 2,3, 4 , . . . . The spectrum of the oscilla-
tions is shown in Fig. 12. The presence of weakly
damped collective modes leads to peculiarities of the
impedance and of the current-voltage characteristic of
the system. The impedance of the system has the form

FIG. 11. Schematic representation of a system of Josephson
bridges connected in series (each bridge is indicated by a
cross).

" v " ' ~ / (ω) i-ifi L lfl*.,U-(l-(Q)tg(t.£/2) J·
When conditions (4.6) are satisfied, impedance peaks
appear at frequencies that satisfy the equation tg(a>/2a>0)
= -λίω/αίο). The peculiarities of the current-voltage
characteristic appear in the case of potentials υ=·πωοη/
e(n = 1,2,...). No experimental study of the collective
modes of a system of Josephson junctions has yet been
conducted.

5. CONCLUSION

The effects of the penetration of an electric field Ε
into a superconductor discussed above are nonequilibri-
um phenomena, which may be elicited, for example, by
injecting quasiparticles into a superconductor. Other
nonequilibrium phenomena in superconductors include
effects that arise, for example, when electromagnetic
radiation acts on a superconductor (depression of Δ
under the action of laser light or, conversely, increase
of Δ near Tc under the action of uhf waves) (see the
review articles of Refs. 52, 55, and 57). The differ-
ence between these phenomena is that in the former
case the perturbed part δη of the distribution function
is asymmetric in ξρ (the appearance of electron-hole
asymmetry), while in the latter case δη is symmetric
in ξ ,̂ i.e. the number of electronlike excitations re-
mains equal to the number of holelike ones. The branch
imbalance arises when the divergence of the quasipar-
ticle (or Cooper-pair) current does not vanish. This
means that nonequilibrium phenomena of the first type
(in which the perturbed part of the distribution function
is asymmetric in ξ^), unlike the nonequilibrium phe-
nomena of the second type, can appear only in nonuni-
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form systems (or in uniform systems under the action
of nonuniform perturbations). In addition, in this case
the deviation from equilibrium is linear in the pertur-
bation. This makes it possible in some cases to obtain
accurate results for observed quantities directly from
the microscopic equations, or from simpler equations
(the kinetic equation or the generalized Ginzburg- Lan-
dau equations) derived on the basis of the microscopic
theory.

The principal result of the investigations examined in
this review is the establishment of the fact that a longi-
tudinal field Ε can penetrate into a superconductor to a
depth ls much greater than the lengths ξ(Γ) and \ L

characteristic of the superconductor. A magnetic field,
however, penetrates no farther into the body of the
superconductor (when Δ*0) than to the London depth
\L. We may therefore say that the expulsion of a mag-
netic field is a more fundamental property of a super-
conductor than the lack of electrical resistance to a
steady current.5 4

Another important result is the detection near Tc of
weakly damped collective oscillations of Ε and p s , the
search for which began as soon as the microscopic
theory of superconductivity was constructed. Both
these facts—the penetration of a static field Ε and
weakly damped oscillations of Ε— have been fairly well
verified by experiment. These phenomena, however,
will doubtless continue to be investigated. In particu-
lar, it would be very interesting to measure lE for pure
superconductors, where it might be comparable with
the dimensions of the specimen. As was already noted,
the study of the penetration of a field Ε into a super-
conductor near Tc is of the greatest interest, since at
low temperatures the discontinuity in the field at the
S—N boundary is large while the field strength at depths
greater than ξ(Τ) in the S region is exponentially small.
Even at low temperatures, however, the penetration of
a field Ε into the S region may be accompanied by in-
teresting phenomena—for example, by a logarithmic
growth of E(x) in the superconducting and normal re- .
gions at distances from the S-N boundary of the order
of the mean free path (see Ref. 22 and papers cited in
Ref. 9). In addition, collective excitations have not
been investigated experimentally either in supercon-
ductors with a low impurity concentration or in a sys-
tem of Josephson junctions.

The authors are grateful to V. L. Ginzburg for valu-
able advice, and to Sh. M. Kogan, F. Ya. Nad', and
Yu. N. Ovchinnikov for reading the manuscript and for
useful remarks.
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