Electronic transition probabilities and lifetimes of electronically excited states of diatomic molecules

N. E. Kuz'menko, L. A. Kuznetsova, A. P. Monyakin, Yu. Ya. Kuzyakov, and Yu. A. Plastinin

M. V. Lomonosov Moscow State University Usp. Fiz. Nauk 127, 451-478 (March 1979)

Recent results on the probabilities of electronic transitions of diatomic molecules are reviewed. Experimental methods for determining the absolute $(S_e, |R_e^{m\pi}|^2, f_e^{m\pi}, \tau_{n\nu})$ and relative probabilities, the systematic classification and analysis of the data, and criteria of the reliability of the recommended values are discussed. The absolute and relative probabilities published up to and including 1977 have been collected and used to obtain recommended (most reliable) values of the band strengths $S_e(r_{\nu\nu})$ and oscillator strengths $f_e^{m\pi}$ for more than 200 molecular systems. The experimental lifetimes $\tau_{n\nu}$ are analyzed for more than 150 electronically excited states. Most reliable values are recommended for these lifetimes.

PACS numbers: 33.70.Ca, 33.70.Fd

CONTENTS

1. Introduction 1 2. Basic theoretical equations 1 3. Experimental methods 1 4. General principles of analysis and recommendations of most reliable values for the band strengths, the variation of these strengths with the internuclear distance, and the lifetimes	160 161 162							
of electronically excited states 1	163							
of electronically excited states								

1. INTRODUCTION

The probabilities of optical transitions are fundamental physical properties, which quantitatively determine the intensities in absorption and emission spectra. These probabilities are described by several related concepts, such as the Einstein coefficients, the band strengths, the matrix elements of the electronic-transition dipole moments, the oscillator strengths, and the lifetimes of the electronically excited states.

The most extensive systematic classification of the corresponding data for diatomic molecules published up to 1973 was given in the review by Kuznetsova *et al.*¹ In the years since then there has been a sharp increase in the number of papers on optical transition probabilities, because of improved experimental methods for determining the transition probabilities and the increasing importance of these results in such fields as quantum electronics, astrophysics, radiation gas dynamics, and the spectroscopy of flames, plasmas, and shock waves.

Since the publication of the review by Kuznetsova et al.,¹ several papers of a generalizing nature have appeared,²⁻⁷ but none can claim to offer a complete systematic classification of the data. In some cases, these papers do not even judge the reliability of the transition probabilities recommended. The recommendations of Hefferlin et al.³ on the oscillator strengths of certain diatomic molecules essentially ignore research over the last decade, and the attempts by this group^{2,4} to find correlations among the matrix elements of the electronic transition (dipole) moments are also based on outdated experimental data and on theoretical transition probabilities which must be judged as no more than estimates, as has been pointed out many times in the literature. Hsu and Smith⁷ examined the data for only a limited number of molecular transitions of astrophysical interest. In the two-volume handbook by Suchard and Melzer^{5.6} there is detailed information on the electronic spectra and molecular constants of diatomic molecules, but the listings on the electronic transition probabilities are fragmentary, chosen at random.

A serious shortcoming of all the reviews which have been published previously is that there has been no joint review of the data on absolute and relative values of the various properties, with the goal of recommending normalized functional dependences of the band strengths on the internuclear distances, for which there is an obvious need in several technical applications. In the present review we attempt to fill this void. Specifically, (1)we have compiled and systematically classified all the factual data from experimental determinations of absolute and relative probabilities for electronic transitions of diatomic molecules published through 1977; (2) on the basis of a joint critical analysis of the data on the absolute and relative probabilities, we have identified most reliable values for the band strengths as functions of the internuclear distance; (3) we have normalized the recommended values to the absolute values, making use of all the reliable work on the absolute transition probabilities.

We emphasize that it is usually not a trivial matter to recommend most reliable values for the transition probabilities. The data in the literature are frequently contradictory, not simply because of the difficulties in ex-

0038-5670/79/030160-14\$01.10

perimentally determining these probabilities but also because of different points of view regarding several fundamental questions: the concept of the electronic transition moment, the normalization of the Hönl-London factors, the best approximation of the electronic transition moment as a function of the internuclear distance, and several others. Accordingly, in Sec. 2 we will briefly discuss several theoretical points which would benefit most from some clarification, judging by the literature, and we will list the basic theoretical equations which are used to convert the published values of $\tau_{m'}$, $f_{v'v''}$, f_e , and $|R_e|^2$ into the band strengths S_e .

The probability recommendations are developed by a common method, on the basis of several principles which are stated in Sec. 4. On the basis of our analysis we recommend most reliable values for the electron transition probabilities and the lifetimes of the corresponding electronically excited states for more than 200 molecular systems.

2. BASIC THEORETICAL EQUATIONS

In the Born-Oppenheimer approximation, the Einstein coefficient for an individual rotational line of an electronic-vibrational-rotational transition can be written (in using the term "rotational line" we mean the sum of the Zeeman components) in the form

$$A_{mv'J'}^{nv'J'} = \frac{64\pi^4}{3h} v^3 \frac{|R_{v'v'}^{nn}|^2 S_{J'J'}}{2J'+1}, \qquad (1)$$

$$R_{v'v'}^{nm} = \int \psi_{e'}^{n} \psi_{v'} M_{e} \psi_{e'}^{m} \psi_{v'} d\tau_{e} dr, \qquad (2)$$

where $d\tau_{e}$ is the volume element in the electron configuration space.

Under the assumption that the electronic wave functions of the coupled states are relatively independent of the internuclear distance and under the assumption that the electronic moment operator M_e is independent of the internuclear distance, we obtain

$$|R_{v'v''}^{nm}|^2 = |R_e^{nm}|^2 q_{v'v''},$$
(3)

where $(q_{v'v''} = |\int \psi_v, \psi_{v''} dr|^2$ is the Franck-Condon factor, and $(R_{e'}^{nm} = \int \psi_e^n, M_e \psi_e^m, d\tau_e)$ is the matrix element of the transition dipole moment.

It has been shown in a series of experimental studies (reviewed in Refs. 1 and 8) that the assumption that the dipole-moment matrix element is indpendent of the internuclear distance [in accordance with (3)] turns out to be incorrect in several cases. In such cases there is the problem of taking into account the dependence of the dipole-moment matrix element on the internuclear distance, $R_{e}(r)$. Essentially no theoretical calculations of $R_{c}(r)$ have been carried out, and a variety of semiempirical methods have accordingly been proposed for determining $R_{o}(r)$ (Refs. 9-12, 14, 15, 18, 19). The rcentroid method has been the predominant method.9-11 The more rigorous approximate approach for finding $R_{e}(r)$ which was proposed by Jain and Sahni (Ref. 14 and others), Cartwright,¹⁸ and Rapoport et al.¹⁹ has yet to be used in practice. The situation can be summed up well by noting that of the more than 190 studies of the function $R_e(r)$ which have been carried out over the past 20 years (see the fifth column in Table I) only a few have

used this approximation.¹⁴⁻¹⁹

In the r-centroid approximation the following equation is used:

$$|R_{v'v''}^{nm}(r)|^{2} = |R_{e}^{nm}(r_{v'v''})|^{2} q_{v'v''},$$
(4)

where

$$r_{v'v''} = \int \psi_{v'} r \psi_{v''} d\mathbf{r} / \int \psi_{v'} \psi_{v''} dr.$$

Despite the widespread practical use of the *r*-centroid approximation, doubts persist regarding its applicability.^{8,13,19,20} In a recent series of papers,²¹⁻³¹ there has been a systematic study of the rigorous criteria for the applicability of the *r*-centroid approximation. The most rigorous measure of the applicability of this approximation is that the following parameter be equal to unity:

$$\Phi_{v'v''}^{k} = \int \psi_{v'} r^{k} \psi_{v''} dr / r_{v'v''}^{k} \int \psi_{v'} \psi_{v''} dr.$$
(5)

Using this criterion, Drake and Nicholls²¹ showed that the *r*-centroid approximation is a good one for describing $R_e(r)$ for many classes of diatomic molecules: oxides, halides, and nitrides. For these molecules, the parameter $\Phi_{v'v'}^{k}$ differs from unity by no more than a few percent. It has been shown that of all the classes of diatomic molecules which have been studied only in the case of hydrides are there large errors in the behavior of $R_e(r_{v'v''})$.

Under the circumstances, all the $R_e(r)$ recommendations in the present paper are based on the *r*-centroid approximation, with the sole exception of the Br₂ molecule, for which this approximation is not known [because of the considerations explained below Table I shows the band strength as a function of the *r*-centroid, $S_e(r_{n'n''})$].

When the r-centroid approximation is used, the Einstein coefficient for a rotational line can be written in the form

$$A_{mv'J'}^{nv'J'} = \frac{64\pi^4}{3h} v_{J'J''}^3 | R_e^{nm}(r_{v'v'})|^2 q_{v'v''} \frac{S_{J'J''}}{2J' + 1}.$$
 (6)

The Franck-Condon and Hönl-London factors which are found theoretically must satisfy certain normalization conditions. For the Franck-Condon factors, these conditions are

$$\sum_{v'} q_{v'v''} = \sum_{v'} q_{v'v''} = 1.$$
(7)

The normalization of the Hönl-London factors has been the subject of a continuing discussion in the literature,^{1,32-34,37} because there is no single sum rule for these factors. Various normalization methods have been used in the calculations of these factors:

$$\sum_{\Sigma'\Sigma''} \sum_{p''p''} \sum_{J'} S_{J'J} = K''(2J''+1), \quad \sum_{\Sigma'\Sigma''} \sum_{p'p''} \sum_{J''} S_{J'J''} = K'(2J'+1), \quad (8)$$

where Σ and p represent the components of the spin multiplet and the Λ doublet, while the quantities K are given by

$$K' = (2 - \delta_{0, \Lambda'}) (2S + 1), \qquad K'' = (2 - \delta_{0, \Lambda'}) (2S + 1), \qquad (9a)$$

$$K' = K'' = (2 - \delta_{0, \Lambda'}) (2S + 1). \qquad (9b)$$

$$K' = K'' = (2 - \delta_{0, \Lambda'})(2S + 1),$$
(9c)
$$K' = K'' = (2 - \delta_{0, \Lambda' + \Lambda'})(2S + 1),$$
(9c)

in accordance with the normalization of Refs. 32, 33, and 37.

The single-valued relationship between the Hönl-London factors and the dipole-moment matrix elements deserves special mention. The use of Hönl-London factors normalized in different ways leads to different values of $|R_e(r_{v'v''})|^2$ which are found from measurements of the absolute intensities of rotational lines. It is thus suggested that the band strengths $S_e(r_{v'v''})$, which do not depend on the method used to normalize the Hönl-London factors, be reported instead of the matrix elements as a measure of the transition probabilities. These strengths are given by

$$S_e(r_{v'v'}) = \sum_{\Sigma'\Sigma'} \sum_{p'p''} |R_e(r_{v'v'})|^2 = K |R_e(r_{v'v'})|^2,$$
(10)

where K = K' or K'' is given in Eqs. (9a)-(9c).

It is useful to note that in most cases in which the transition matrix elements are used as measures of the probability these matrix elements are related to the band strengths in accordance with (10) and (9a). Here a distinction is made between the matrix elements in emission, R_e^{nm} , and those in absorption, R_e^{nm} :

$$|R_{e}^{nm}(r_{v'v'})|^{2} = \frac{S_{e}(r_{v'v'})}{(2-\delta_{0,\Lambda'})(2S+1)}, |R_{e}^{mn}(r_{v'v'})|^{2} = \frac{S_{e}(r_{v'v'})}{(2-\delta_{0,\Lambda'})(2S+1)}.$$
 (11)

Several papers (e.g., Refs. 38-43) give transition matrix elements which are related to the band strengths in accordance with (10) and (9c).

In addition to the transition matrix elements, the quanquantities $\tau_{nv'}$, f_e^{mn} , $f_{v'v''}^{mn}$, f_e^{mn} , and $f_{v'v''}^{nm}$ are cited in the original papers as measures of the probability. These quantities can be expressed in terms of the band strength as follows:

$$\pi_{nv'}^{-1} = \frac{64\pi^4}{3\hbar} \frac{1}{(2-\delta_{0,\Lambda'})(2S+i)} \sum_{m} \sum_{v'} S_{\sigma}(r_{v'v'}) q_{v'v'} v_{v'v'}^3, \qquad (12)$$

$$f_{v'v'}^{mn} = \frac{8\pi^2 mc}{3he^2} v_{v'v'} q_{v'v''} \frac{S_e(r_{v'v''})}{(2-\delta_{0,A''})(2S+1)},$$
(13)

$$f_{e}^{m} = \frac{3\pi^{2}mc}{3he^{2}} \frac{1}{(2-\delta_{0,\Lambda^{*}})(2S+1)} \sum_{v'} S_{e} (r_{v'v'}) q_{v'v''} v_{v'v''}, \qquad (14)$$

$$f_{\theta' \theta'}^{n_{\theta}} = \frac{8\pi^{2}mc}{3\hbar\epsilon^{2}} \frac{1}{(2-\delta_{0,A'})(2S+1)} S_{e}(r_{\theta' \theta'}) q_{\theta' \theta'} v_{\theta' \theta''}, \qquad (15)$$

$$f_e^{m} = \frac{B\pi^{4}me}{3\hbar e^4} \frac{1}{(2-\delta_{0,\Lambda'})(2S+1)} \sum_{\mathbf{v}'} S_e(\mathbf{r}_{\mathbf{v}'\mathbf{v}'}) q_{\mathbf{v}'\mathbf{v}'\mathbf{v}'\mathbf{v}''}.$$
 (16)

Here $(64\pi^4/3h = 2.026 \cdot 10^{-6}, 8\pi^2 mc/3he^2 = 3.037 \cdot 10^{-6}, S_e(r_{v'v''}))$ is expressed in atomic units, $(a_0e)^2$, and v is in reciprocal centimeters.

Unfortunately, the subscripts "mn" and "nm" are frequently omitted in the papers, making it difficult to interpret the results. This situation is yet another argument for describing the transition probabilities in terms of the band strengths $S_{\theta}(r_{v'v''})$, since these strengths are symmetric with respect to absorption and emission.

3. EXPERIMENTAL METHODS

The experimental methods for determining the band strengths can be classified arbitrarily into two large groups. The first is based on measurement of the absolute intensities in the electronic-vibrational-rotational spectra of diatomic molecules. The integrated emission coefficient for an isolated spectral line is

$$\int j_{v} dv = \frac{16\pi^{3}c}{3} v_{J'J'}^{4} |R_{e}(r_{v'v'})|^{2} q_{v'v''} \frac{S_{J'J''}}{2J'+1} N_{nv'J'}.$$
(17)

The corresponding equation for the integrated absorp-

tion coefficient of an isolated rotational line is

$$\int K_{v} dv = \frac{8\pi^{3}}{3\hbar c} v_{J'J'} | R_{e}(r_{v'v'})|^{2} q_{v'v''} \frac{S_{J'J''}}{2J''+1} N_{mv'J''}.$$
(18)

In Eqs. (17) and (18), ν is in reciprocal centimeters, $|R_e(r_{\nu'\nu''})|^2$ is in atomic units, $16\pi^3 c/3 = 3.22 \cdot 10^{-23}$, and $8\pi^3/3hc = 2.64 \cdot 10^{-18}$.

In these methods in which absolute intensities are measured, local thermodynamic equilibrium must prevail in the source of the molecular spectrum. This requirement is imposed because the overwhelming majority of diatomic molecules can be produced in substantial numbers only at high temperatures and only in mixtures with other atoms and molecules, so that in practice the concentrations of the molecules of interest in the initial state can be calculated only for conditions of local thermodynamic equilibrium. Only a few sources meet this equilibrium requirement: shock tubes, high-temperature furnaces, dc arcs, and certain types of flames, for example. These methods have the advantage that they yield the band strengths directly, and measurements of various electronic-vibrational bands reveal the behavior of S_r as a function of the r-centroid. The basic disadvantage of these methods is that the equilibrium composition in the source of the molecular spectrum must be calculated, and these calculations require thermodynamic functions of all the components of the hot gaseous medium. The reliability of the absolute probabilities determined by this method depends primarily on the validity of treating the plasma formed in the sources as an equilibrium plasma and on the accuracy of the thermodynamic functions used.

The second and largest group of methods for determining the band strengths is based on measurement of the lifetimes of excited states. The lifetime measurements consist essentially of a pulsed (periodic) population of the level of interest, followed by a determination of the parameters of the radiative-decay curve. To analyze the many versions of this method (the delayedcoincidence method, the phase-shift method, the beamfoil method, the Hanle-effect method, the rf-deflection method, and several others^{35,35,375}) would go beyond the scope of the present review; we will restrict the discussion to certain aspects of these methods.

In experimental determinations of the lifetimes τ_m , there are several difficulties peculiar to the methods. In those cases in which an electron beam is used for excitation it is difficult to arrange selective excitation of certain levels, and cascade population effects must be taken into account. A second difficulty is that the measured values of τ_{-} , must be extrapolated to zero pressure, since radiative decay is accompanied by relaxation through collisions (the effect is to reduce the actual radiative lifetime) and by "trapping" of radiation (here the effect is to increase the radiative lifetime). Because of the complicated nature of the curves of the lifetime as a function of pressure, it is by no means a trivial problem to extrapolate to zero pressure. These effects make it necessary to carry out the investigations at low absolute concentrations of the molecules of interest, but then it becomes very difficult to measure the signals. In particular, it is not always possible to use spectrometric apparatus of adequate resolution. The superposition on the spectrum of interest of the spectra of other particles may be unavoidable in such cases, and it may lead to important systematic errors, in the same way that the extrapolation to zero pressure and the occurrence of cascade transitions do. In studies of metastable levels the diffusion of molecules out of the excitation zone must also be taken into account. Finally, we should emphasize the fundamental problem of distinguishing between $\tau_{\rm red}$ and $\tau_{\rm pred}$, which arises in a study of predissociation states.

The basic advantage of these methods is that they do not require knowledge of the number of radiating molecules [see (12)], so that it is possible to avoid the primary source of systematic error which afflicts the absolute-intensity methods. This is the reason why it is these methods which have been used recently to determine the transition probabilities of most diatomic molecules. These methods are becoming particularly attractive because of the development of a variety of mutually complementary versions of these methods and the widespread use of laser sources for selective excitation. Unfortunately, the lifetime-measurement methods are also inadequate in certain cases. In particular, the value of $S_{e}(r_{v'v''})$ for a particular transition can be determined from the measurement of τ_{nv} , only if the probabilities are known for all other transitions from the given electronic level to lower levels, as is obvious from (12). In such cases the most effective approach seems to be to combine the lifetime method with the more traditional method of measuring absolute intensities.

In addition to these two primary groups of experimental methods for determining the probabilities for electronic transitions of molecules, there have been so far a few attempts to use the Rozhdestvenskii hook method,⁴⁴⁻⁴⁷ which is an interference method, and the method of measuring the energy lost by electrons as they are scattered by the molecules of interest.⁴⁸⁻⁵¹

The experimental methods for determining the electronic transition strengths from the *r*-centroid can also be divided into two major groups. The first group involves a study of the relative intensities in the emission spectra. The excitation conditions are not necessarily equilibrium conditions in this case, since the populations N_i do not have to be known if the function $S_e(r_{v'v''})$ is determined in a progression of bands with v' = const:

$$S_{e}(r_{v'v'}) = \frac{16\pi^{3}c}{3} \frac{J_{v'v'}\lambda_{v'v'}^{4}}{q_{v'v'}} N_{v'}^{-1} (2-\delta_{0,\Lambda'}) (2S+1).$$
(19)

In a simultaneous analysis of the intensities of bands of different progressions, the relative values of $S_e(r_{v'v''})$ are referred to a common coordinate scale through a normalization in a common *r*-centroid interval by the approach described in Ref. 52. The superposition of bands from different progressions makes it very difficult to find reliable values for the relative intensities. This superposition problem can be alleviated to some extent by obtaining a spectrum under nonequilibrium conditions, with a low rotational temperature and with only a few rotational lines in each of the bands. As an example of this latter approach we can cite Best and Hoffman's study,⁵³ in which the strength of the $A^{1}\Sigma - X^{1}\Sigma$ transition of the BaO molecule as a function of the *r*-centroid is determined under the low-temperature conditions in the upper atmosphere. Other, extremely promising, approaches are to carry out the measurements at low rotational temperatures in the laboratory^{38,54} and to study the resonance fluorescence excited by narrow-band lasers.⁵⁵ Yet another method for taking the band superposition into account in measurements of the relative intensities is to use the "synthetic line shape"⁵⁵⁻⁵⁹ for analyzing the spectra.

A second method for determining how S_e varies with the *r*-centroid is to measure τ_{nv} , for various vibrational levels, but the function $S_e(r_{v'v''})$ determined in this way is relatively unreliable, as has been pointed out several times in the literature.^{58,60} This method for finding $S_e(r_{v'v''})$ has not been adopted widely, and it is apparently only as an auxiliary method.

We emphasize that the reliability of the results obtained for $S_e(r_{v'v''})$ is governed not only by the accuracy of the experimental data but also by the reliability of the Franck-Condon factors and the *r*-centroids which are used.

4. GENERAL PRINCIPLES OF ANALYSIS AND RECOMMENDATIONS OF MOST RELIABLE VALUES FOR THE BAND STRENGTHS, THE VARIATION OF THESE STRENGTHS WITH THE INTERNUCLEAR DISTANCE, AND THE LIFETIMES OF ELECTRONICALLY EXCITED STATES

Despite the specific features of each of the molecular systems considered in this review, we have reached our recommendations on the probabilities for all the transitions by a common method, on the basis of several principles which we will now discuss.

First, we analyzed each original paper on the determination of the transition probabilities (we analyzed the conditions under which the data were obtained, the methods by which the data were interpreted by the authors, and any criticism of the results which was published subsequently). In the work on lifetime determinations, we took note of the pressure range in which the measurements were made, the perturbations of the levels of interest by other states, and so forth. In the work on absolute-intensity measurements, we took note of the reliability of the thermodynamic functions used and the validity of the assumptions used in calculating the properties of the gas. In analyzing the work on the behavior of the band strengths as a function of the r-centroids we took into account the reliability of the Franck-Condon factors and the r-centroids used in finding the functions $S_e(r_{v'v''}).$

In the next stage, we selected the most reliable depen/ dence of the band strength on the r-centroid, taking into account the extent to which this dependence agrees with previously selected reliable data on absolute transition probabilities. The measure of this agreement is the standard deviation of the normalization factor found from the absolute-probability data under the assumption of some particular dependence. In several cases, as

TABLE I.	Recommended values of the band	strengths and dependence	of the	strengths o	n the	r-centroid.
----------	--------------------------------	--------------------------	--------	-------------	-------	-------------

Mol- ecule	Electronic trans- ition, Δλ, nm	$\begin{array}{c} S_{e} \ (r_{v',v''}), \ (a_{0}e)^{2}, \\ range \ of \\ r_{v',v''}, \ \mathring{A} \end{array}$	$f_e^{mn};$ $S_e(r_{00}), (a_0e)^2$ $r_{00}, Å^*)$	Refer- ences on relative probabil- ities	Refer- ences on absolute proba- bilities	Mole- cule	Electronic transition, $\Delta \lambda$, nm	$S_{\varphi} (r_{\varphi' \varphi'}), (a_0 \varepsilon)^2,$ range of $r_{\varphi' \varphi'}, \dot{A}$	J ^{mn} ; S _e (r00), (a0e) ² r00, Å *)	Refer- ences on relative probabil- ities	References on absolute probabilitie
A10	$\begin{vmatrix} B^{2}\Sigma^{*}-X^{3}\Sigma^{*}\\ 405-571 \end{vmatrix}$	$(19.0\pm5.9)(1-0.46 r_{v'v'})^{2}$ 1.50-1.85	3.92.10~2 1.12±0.35	70, 71	63-64		178—258 b³∑ — a³∏ 266—383	$(4.21\pm0.25)\cdot10^{2}$ $(1-0.943 r_{p'p'})^{2}$	2.94±0.17	127	117, 120, 124
BBr	$A^{1}\Pi = X^{1}\Sigma^{+}$	0.99	1.0.10-1		65		e³Σ−−a³Π	1.08-1.16 const	1.149	128	
BCl	$A^{1}\Pi - X^{1}\Sigma^{+}$ 261-298	1.04	1.2.10-1		41		427—543 a ¹⁸ Σ+ — a ⁸ Π	1.23-1.30 0.405±0.089	2.2.10-8		117, 125,
BF	$A^{1}\Pi - X^{1}\Sigma^{+}$ 186-210	2.88	4.5.10-1		41	í í	390—860 с ^в П — а ^в П	3.4	7.8.10-2		126 117
вн	$A^{1}\Pi - X^{1}\Sigma^{+}$ 395-460	0.5	3.5.10-2		46		230—271 d ³ ∆ — a ³ Π	0.65±0.43		143	117, 126,
во	$\begin{array}{c} A^2\Pi - X^2\Sigma^+ \\ 310 - 850 \end{array}$	$0.024 (1-0.4584 r_{p'p'})^{2}$ 1.24-1.33	2.0.10 ⁻⁴ 0.0042 1.2760	72	97		377-750	1.18-1.26	5.7.10 ⁻⁸ 0.65 <u>+</u> 0.43 1.2855 6.2.10-8	14	129, 130
	$B^{3}\Sigma^{+} - X^{3}\Sigma^{+}$ 210370	$const \cdot (1-1.434 r_{v'v'})^3$		73		00	308-850	(1.24 ± 0.36) 10 ⁻⁽⁻¹ +1.738 $r_{v'v''}$ -0.7454 $r_{v'v''}^2$)	0.209±0.06	4	
BaBı	$C^{2}\Pi - X^{2}\Sigma^{+}$ 514-543	a. b 37.6	~ 1		••		$B^2\Sigma^{\dagger} - X^2\Sigma^{\dagger}$	$^{(1.07-1.20)}_{(1.39\pm0.10)(1)}$	1.6.10-2	80) 61, 94, 110
BaCl	C ² Π X ² Σ ⁺ 505532	a, b 15±25	4.4.10-1		48, 59		180316	$-0.5301 r_{p'v''}$	1.1449		123, 131, 187-141
BaF	$C^{3}\Pi - X^{3}\Sigma^{+}$ 484-514	^b 10.32	3.2.10-1	ł			$B^2\Sigma^+ - A^2\Pi$ 330-420	d 0.104±0.016	2.1.10-3		J.,
Bal	$C^{2}\Pi - X^{2}\Sigma^{+}$ 528-570	a, b 18.96	5.1.10-1	[64	cs	$A^{1}\Pi - X^{1}\Sigma^{+}$ 240-330	$(0.6\pm1.4)(1-0.40r_{v'v''})^2$ 1.35-1.75	(0.86	1	63 , 163
BaO	$\begin{bmatrix} A^{1}\Sigma - X^{1}\Sigma \\ 230 - 840 \end{bmatrix}$	$1.10[1-41.3 (r_{v'v''}-2.0268)^3]^3$ 1.88-2.12	3.3.10 ⁻¹ 1.09 2.0321	\$3	74	CaO	$1\Sigma = 1\Sigma$	$const \cdot exp(-3.58 r_{v'v''})$	$\pm 2.00 \cdot 10^{-1.5576}$	1 145	
BeO	$B^{1}\Sigma - X^{1}\Sigma$	903 (1-2.416 rg/g*	3.6-10-2	85	75	CaBr	730-923 $4^{2}\Pi - X^{2}\Sigma^{+}$	1.74-1.92 * 14.3	3.5.10-1		68
	418-570	1.10-1.70	1.3521	74	76	Gulli	614-640 $B^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	a, b 5.2	1.3.10-1		48
Brs	511-867	2.10-2.55					600-613 $C^{2}\Pi - X^{2}\Sigma^{+}$	a, b 3.7	1.4.10-1		48
	$^{1}\Pi_{1u} - X^{1}\Sigma_{g}^{+}$	0.115 (1-0.1798 r) ² 2.10-2.55	<u> </u>	76	76	CaCl	380-411 $A^{2}\Pi - X^{2}\Sigma^{+}$	a 16.3	4.0.10-1		68
C ₂	$d^3\Pi_g - a^3\Pi_u$	$(33\pm17)(1-0.52 r_{y'y'})^{3}$	3.3.10-2	59	78-84		605-637 $B^{2}\Sigma^{+}-X^{2}\Sigma^{+}$	a, b 5.40	1.4.10-1		••
	540 705	0.65	1.2937		81		582-608 C ³ Π-X ³ Σ ⁺	a, b 4.2	1.7.10-1		••
1	1100-2700	0.00	2.0.10			CaF	364395 A ² ΠX ³ Σ+	a 21.9	5.9.10-1		68
1	$\begin{vmatrix} c^{*11}g - a^{*11}u \\ 237 - 328 \\ 417 \\ 237 - 328 \\ 417 \\ 418 $	0.40	4 4 40-3				583-630 $B^{2}\Sigma^{+}-X^{2}\Sigma^{+}$	a, b 5.9	1.7.10-1		4E
1	$A^{11}u - X^{2}z_{g}$ 672-1549	0.38	1.1.10 -			Cal	515-542 $A^{2}\Pi - X^{2}\Sigma^{+}$	a 12.4	2.9.10-1		56
	$\begin{array}{ } D^{1}\Sigma_{u}^{+}-X^{1}\Sigma_{g}^{+}\\ 231-241 \end{array}$	0.38 ± 0.50	5.0.10-*]			622-670 $B^{2}\Sigma^{+}-X^{3}\Sigma^{+}$	a, b 5.0	1.2.10-1		
	$\begin{bmatrix} C^{1}\Pi_{g} - A^{1}\Pi_{u} \\ 339 - 411 \end{bmatrix}$	1.73	7.0.10-2		83	Сан	$A^{2}\Pi - X^{2}\Sigma$	2.4	8.1.10-1		146, 147
	$E^{1}\Sigma_{g}^{+} - A^{1}\Pi_{u}$	2.26	1.6.10-1		\$1	Clo	A ³ Π - X ³ Π	1.4±2.5	-		148, 149
Cī	$\begin{array}{c} B^{2}\Sigma - X^{2}\Sigma \\ 500 - 590 \end{array}$	0.6	1.7.10-2		87	F_2	$A^{1}\Pi_{u} - X^{1}\Sigma_{g}$	0.0038	3.2.10-4		150
CF	$A^{2}\Sigma^{+} - X^{2}\Pi$ 220296	0.84±0.16	3.0.10-2		41, 88	\mathbf{Cu}_{2}	$A^1\Pi_u - X^1\Sigma_g^+$	a 1.7	1.1.10-1		161
СН	$\frac{B^2\Delta - X^2\Pi}{A^2\Delta - X^2\Pi}$	0.88 0.322±0.024	3.3-10-* 5.6-10-*		41 56, 66,		485-575 $B^{1}\Sigma^{+}-X^{1}\Sigma^{+}_{g}$	b 3.8	2.3.10-1	1	151
	431489 B ² Σ ⁻ X ² Π	0.166±0.013	3.2.10-3		89,90,92	GeO	449-472 $D^{1}\Pi - X^{1}\Sigma$	const · (10.476 r _{v'v"}		161	
	363449 C ² Σ ⁺ X ² Π	0.288	7.0.10-3		e 98, This		225-332	$-0.061 r_{0'v'}^{s}$	2	1.67	
CD	$\lambda_{00} = 314, 4$ $A^{3}\Delta = X^{2}\Pi$	0.33±0.04	5.6.10-*	1	66, 92	H ₂	$B^{1}\Sigma_{u}^{+} - X^{1}\Sigma_{g}^{+}$	(0.027 ± 0.002) (1+6.707 $r_{p'v'}$) (0.55-0.96)	² 3.0.10 ⁻¹ 1.38±0.12	1	48, 152~1
СН+	431-489 $A^{1}\Pi - X^{1}\Sigma$	0.24±0.20	1.7.10-1	99, 100	00,99,100		$C_{111} = 30203$ cm	$(0.382 \pm 0.033)(1 \pm 0.748 r_{max})$	0.918 2 3.2.10 ⁻¹	187	48, 154~15
	373-480 $B^{1}\Delta - A^{1}\Pi$	0.20±0.12	8.8.10-1		\$2,\$9,100		Vec =	0.58-0.85	1.04±0.09 0.871		
CN	340350 $A^2\Pi - X^2\Sigma^+$ 437-1500	(0.144 ± 0.041) (1 +0.5717 $r_{v'v'}$) ²	6.4.10 ⁻³ 0.41±0.12	17	39, 101, 102		$ B'^{1}\Sigma^{+} - X^{1}\Sigma^{+}_{g} \nu_{00} = $	0.12	-		157
	$B^{2}\Sigma^{+} - X^{2}\Sigma^{+}$	(1.05-1.27) $(1.00\pm0.08)(1-0.03r_{v'v''})^3$	1.2060 3.6·10 ⁻³	109	108, 104, 106-108		= 110478.5 cm $D^{1}\Pi_{u} - X^{1}\Sigma_{\sigma}^{+}$	0.16	5.4.10-2		157
	344460	0.95-1.32	0.93 ± 0.07 1.1658		41 59		$v_{00} =$ = 112871 cm	1			
CO	$A^{1}\Pi - X^{1}\Sigma^{+}$ 114280	$\begin{array}{c} (1.68 \pm 0.05) 10^{\bullet} (1 - 3.1357 r_{y'y''} \\ + 3.6922 r_{y'y''}^{\bullet} - 1.9205 r_{y'y''}^{\bullet} \\ + 0.3716 r_{e',v'}^{\bullet})^{3} \end{array}$	1.2.10 ⁻¹ 0.58 <u>+</u> 0.02 1.1816	This paper	111-116		$d^{3}\Pi_{u} - a^{3}\Sigma_{g}^{+}$ $v_{00} =$ = 16619.8 cm	9.9	1.7.10-1		160
	B15+ - Y15+	1.00-1.50	7.9.10-3		0.00.115.	HBr+	$A^{2}\Sigma^{+} - X^{2}\Pi$ 326-392	4.84.10 ⁴ exp (9 $r_{v'v''}$) 1.58-1.78	0.031	171	163
	110-115 $B^{1}\Sigma^{+}-A^{1}\Pi$	d (0.133±0.025) (1	2.1.10-2	127	118-123, 376. This	HC1+	$A^{2}\Sigma^{+} - X^{2}\Pi$	$1.14 \cdot 10^3 \exp(-7.2 r_{n'n'})$	1.5854 1.6.10 ⁻³	171	168
	412-668	$+1.745 r_{v'v''}-0.768 r_{v'v''}^{a}$	0.52±0.09) paper		280-400	1.44-1.82	0.041 1.4216		1
	$C^{1}\Sigma^{+} - X^{1}\Sigma^{+}$	d 0.37±0.08	1.2.10-1		e 41, 50, 115, 118,	HgBr	$B^{2}\Sigma - X^{2}\Sigma$ 320-508	* 3.4	1.2.10-1		164
	$C^{1}\Sigma^{+} - A^{1}\Pi$ 368-521	d 0.54±0.12	2.2.10-1	ł	376, This paper	1,	$B^{\mathbf{a}}\Pi_{O_{\mathbf{a}}^{\mathbf{a}}} - X^{\mathbf{b}}\Sigma_{\mathbf{a}}$	0.16	-		165, 166
l	$E^{1}\Pi - X^{1}\Sigma^{+}$ 105-108	0.22	6.2.10-1	1	e 50, This paper		E^{430840} $E^{3}\Pi_{0g}^{+}B^{3}\Pi_{0}$	1.1 \$ 1.1	1.4.10-1		167
I	$a^3\Pi - X^1\Sigma^+$	$f_{00} = (1.7 \pm 0.2) \cdot 10^{-7}$	-	1	364-370	ł	400-440 $D^{1}\Sigma_{\mu}^{+}-X^{1}\Sigma_{\mu}^{+}$	≜ 0.3	3.57.10-*		168
****	a film at man	time the value of forme	the second	d orives	S (m.)	к.	195-346 $B^{1}\Pi - X^{1}\Sigma^{+}$	26±41	~1		169, 170
- 110 and	the third give	yes r_{00} . Where the fund	ction $S_{a}(r)$	ha (، بر م	LaO	625-695 B ³ Σ ⁺ -X ³ Σ ⁺	2.422.105 (-1.0	1.6.10-1	172	110	
beer	n studied, th	e fourth column gives	only f_{θ}^{mn} .	The va		501-645	$+1.74275 r_{p'p''}$ -0.99636 $r_{p'n''}^{*}$	5.3 1.8424		{	

*The first row gives the value of f_{σ}^{mn} ; the second gives $S_{\sigma}(r_{00})$; and the third gives r_{00} . Where the function $S_{\sigma}(r_{v'v''})$ has not been studied, the fourth column gives only f_{σ}^{mn} . The value of f_{e}^{mn} is not given if the information of the Franck-Condon factors required for the calculation is not available.

Sov. Phys. Usp. 22(3), March 1979 164

164 Kuz'menko et al.

 $\begin{array}{c} 2.422\cdot10^{b} (-1.0 \\ +1.74275 r_{v'v''} \\ -0.99636 r_{v'v''}^{a} \\ +0.18803 r_{v'v''}^{a} \\ 1.60-2.10 \end{array}$

.

TABLE I. (Continued)

Mole- cule	Electronic trans- ition, $\Delta\lambda$, nm	$S_{e} (r_{p'p''}), (a_{0}e)^{a},$ range of $r_{p'p''}, \dot{A}$	$f_e^{mn}; S_e^{(\tau_{00}), (a_0e)^2}$	Refer- ences on relative probabil- ities	References on absolute probabilities	Mole- cule	Elec
	$C^{2}\Pi - X^{2}\Sigma$	6.08	2.1.10-1		110		$\frac{D^{2}2}{170}$
Li2	$A^{1}\Sigma^{+} - X^{1}\Sigma^{+}$	12.2	5.4.10-1		173		F ² 2
MgH	$A^{2}\Pi - X^{2}\Sigma^{+}$	2.0	5.9.10-*		174		$\frac{b^{4}\Sigma}{750}$
MgO	$B^{1}\Sigma^{+} - X^{1}\Sigma^{+}$	$0.34(-1+3.381r_{v'v''})$	3.0.10-8 0.05	200	¹⁰⁵ , This. paper		a41 320
	367380	1.750-1.835	1.7500			NO+	A ¹ I 120
	$C^{1}\Sigma - A^{1}\Pi$ 483-520	0.056	2.2.10-3		105	No	41
	$D^1\Delta - A^1\Pi$ $d^3\Delta - a^3\Pi$	0.10	2.6.10 ⁻³ 1.8.10 ⁻³		e 372,	Mag	600
				201	This paper		456
MnU	480-670	$+1.99 r_{v'v''}^2$				Nil	
N ₂	$B^{3}\Pi_{\sigma} - A^{3}\Sigma_{\mu}$	1.74-1.90 (92±16) (1-1.278 $r_{v'p''}$	6.1.10-3	38	38, 40, 56,		B ² /
	470 4900	$+0.410 r_{v'v''}^2 + 0.02 r_{v'v''}^3$	0.61 <u>+</u> 0,10 1.2536		177-186	0,	490 A ³ 2
	$C^{3}\Pi_{u} - B^{3}\Pi_{g}$	$(2.49\pm0.19)10^2(-1)$ $\pm1.9583r$ $-0.8602r^2$ $)^2$	5.0.10 ⁻² 3.17+0.24	202	41, 42, 118, 122, 131,		243
	200 040	1.03-1.30	1.1843		177, 185, 187-199		B ³ 2
	$A^{3}\Sigma_{u} - X^{1}\Sigma_{g}^{+}$ 210-506	$1.724 \cdot 10^{-6} (-1.173 + r_{v'v''})^2$ 1.08-1.14	$1.5 \cdot 10^{-9}$ S _e (r ₀₃)	203	203		110
		$3.08 \cdot 10^{-6} (-1.206 + r_{p'p''})^2$	$= 3.0 \cdot 10^{-9}$ $r_{03} = 1.8373$	363	e 204,	0.	143 A ²
		1.236-1.413			This paper		194
	$a^{1}\Pi_{g} - X^{1}\Sigma_{g}^{+}$ 109260	^b (0.34±0.09)·10 ⁻⁴	6.5.10-6	205	205-209		b ⁴ Σ
	$b'^{1}\Sigma^{+} - X^{1}\Sigma^{+}_{g}$ 83-96	~ 0.6	~ 1.7.10 ^{−1}		²¹¹ , This paper		499
	$b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}$ 85-99	~ 0.8	~ 1.7.10-1		²¹¹ , This	он	$\frac{A^2}{26}$
	$D^{3}\Sigma_{t}^{+} - B^{3}\Pi_{g}$ 225-291	1.68	-		212		D^2
	$c^{\prime 1}\Sigma - X^{1}\Sigma_{g}^{+}$	a 0.37	1.2.10-1		41, 210, 211	OD	12: A ²
	$a^{\gamma}{}^{1}\Sigma_{\overline{u}} - X^{1}\Sigma_{g}^{+}$	2.2.10-7	6.7.10-8		e 213, Thie		270
	108-200	a . 0 49	. 3 8 40-8		paper 210, 211	0H+	_4° 33
	86-96	~ ~ 0.12	~ 0.0.10 -		,	OD+	A^{3} 34.0
	213-274	~ 4.3.10-6	~ 2.10-0		e 209, 214,	РН	- A ³ - 318
	$v_{00} = 36691$	~ 1.4.10	~ 2.0.10		This paper	PN	A1 237
	$v_{00} = 6841$ $B'^{3}\Sigma_{} = B^{3}\Pi$	~ 0.9.10 -	2 .9.10 ■		e 373,	рьо	B1
	606-892	0.02	1.2 10		This paper		55
N_2^+	$A^{2}II - X^{2}\Sigma$ 610-950	$(1.14\pm0.28)(1-0.463 r_{v'v''})^{5}$	$4.2 \cdot 10^{-3}$ 0.25+0.06	18	132, 178, 181, 184,	S11	24
	$B^2\Sigma - X^2\Sigma$	$(289\pm3)(1-1.631 r_{m'm'})$	1.149 3.8.10-2	233	215-221 36, 41, 98,	SO 1	202 A31
	280590	$+0.704 r_{v'v''}^{3})^{2}$	0.97±0.01 1.097	234	118, 131, 139, 140,		$\frac{240}{B^{3}}$
		0.974-1.203			177, 185, 188, 189,		190
1					191, 192,	ScO	A2I
					222, 223,		B ² 2
\mathbf{NH}_{1}	$A^3\Pi - X^3\Sigma^-$	0.26 3± 0.012	7.9-10-3		91, 193,	SiBr	822 987
	302308				229-231, 360	0.01	D:5
	$b^1\Sigma - X^3\Sigma^-$	a 2.7.10-6	5.4.10-8		232	SICI	285
	$c^1\Pi - b^1\Sigma$	^b 0.23	1.6.10-2		103, 229, 230	SiF	$A^2\Sigma$
	$c^{1}\Pi - a^{1}\Delta$ 303365	p.0.00	$4.2 \cdot 10^{-3}$		193, 229, 230		420
. 1	$d^{1}\Sigma - c^{1}\Pi \sim 253$	^b 0.35	2.1.10-2		235		264
NH⁺	$A^2\Sigma^ X^2\Pi$ 431466	a 0.09	1.5.10-3		236		$a^4\Sigma$
	$B^2 \Delta - X^2 \Pi \sim 436$	a, b 0.17	2.9.10-3		236	SH	- 324 - A ² -A - 44.4
	$C^{2}\Sigma^{+} - X^{2}\Pi$ 273-290	a, b 0.06	1.6.10-3		236	SiH™	A ¹ D 390
NO	$A^{2}\Sigma^{+} - X^{2}\Pi$ 195-340	$(3.14\pm0.35)\cdot10^3$ (1 -2.8986 $r_{v'v''}$ +2.74995 $r_{v'v''}^2$	$2.1 \cdot 10^{-3}$ 0.079 ± 0.009	This paper	44, 46, 175, 237-249	5iN	$B^2\Sigma$ 380-
	D211 V-11	$\frac{-0.8597}{1.00-1.20}r_{v'v''}^{*}$	1.1090	TL	47. 237	Si0	$A^{1}\Pi$
	$3^{211} - X^{211}$ 200-650	$(1.82\pm0.12)\cdot10^3$ (1 -2.2352 $r_{p'p''}$ +1.6551 $r_{p'p''}^2$	$3.5 \cdot 10^{-3}$ 0.078 ± 0.05	This paper	238, 240, 250 251	.~	240- F15
		$-0.4024 r_{v'v'}^3$ 1.16-1.58	1.2692			SAF	171
	$C^{2}\Pi - A^{2}\Sigma$ 1205-1235	53.2 <u>+</u> 45.7	6.6.10-1		252, 253	our	460-
	$C^{2}\Pi - X^{2}\Pi$ 184-210	0.36 ± 0.14	1.5.10-2		135, 240, 245, 248,		Α-Σ 510-
	$B^{\prime 2}\Delta - X^{2}\Pi$	b0.116	5.4.10-3		204-256 245	Sn0	D1П 307-
	140 - 200 $D^2 \Sigma^+ - A^2 \Sigma^+$	12.0±3.3	1.7.10-1		41, 245,	SrBr	A°П
· 1	10551130	I	1	1 1	440, 2 3 7		

Mole- cule	Electronic trans- ition, $\Delta \lambda$, nm	$\begin{array}{c} S_{\varrho} \ (r_{\upsilon' \upsilon''}), \ (a_0 e)^2, \\ \text{ range of } \\ r_{\upsilon' \upsilon''}, \ \dot{\lambda} \end{array}$	$f_{e}^{mn}; S_{e}^{(\tau_{00}), (a_{0}e)}; T_{00}, \dot{A}^{*})$	relative probabil- ities	absolute proba- bilities
	$D^{2}\Sigma^{+} - X^{2}\Pi$	0.32	1.4.10-2		258, 259
	$F^2\Delta = X^2\Pi$	^a 0.09	4.4.10-3		245
	145—162 b ⁴ Σ — a ⁴ Π	0.06	2.3.10-4		
	750—980 a⁴∏ — X²∏	3 6.10-7	2 6.10-8		200
NO⁺	320 - 490 $A^{1}\Pi - X^{1}\Sigma$	$1.82 (1-0.68 r_{min})^2$	4.9.10-2	268	224 41 111
	120-170		0.101±0.062 1.1248		,
Na ₂	$A^{1}\Sigma_{u}^{+} - X^{1}\Sigma_{g}^{+}$ 600-860	16.2	6.4.10-1		261
	$\frac{B^{1}\Pi_{u} - X^{1}\Sigma}{456 - 504}$	$((2.43\pm0.04) + (0.17\pm0.02) r_{v'v''})^2$	$5.5 \cdot 10^{-1}$ 8.9	262	262
Nil	$A^{2}\Delta - X^{2}\Delta$ 642-665	^{2.3–6.0} ^a 0.42	5.0.10-8		267
	$B^{2}\Delta - X^{2}\Delta$ 490-626	^a 0.49	5 8·10-3		267
02	$A^{3}\Sigma_{u}^{+} - X^{3}\Sigma_{g}^{-}$ 243-488	$(10.2\pm2.3)\cdot10^{-6}\cdot r_{p'p'}^{-7.6}$ 1.31-1.53	(1.04 ±0.23)10-6	303	269, 270,
	$B^{3}\Sigma^{-} - X^{3}\Sigma^{-}$ 130-535	$(23.3\pm1.0) \exp(-1.832 r_{v'v'})$ 1.30-1.75	1.3500 	This paper	49, 148, 271-282
	$^{1}\Pi_{u} - a^{1}\Delta_{g}$	0.15	1.6.10-2	l	284
O ¹ 2	$A^2\Pi - X^2\Pi$ 194-653	$(3.01\pm0.94)\cdot10^{-3}$ (1 -6.934 $r_{p'v'}$) ²	$5.9 \cdot 10^{-3}$ 0.175 ± 0.055	285	285, 859
	$b^{4}\Sigma_{g}^{-}-a^{4}\Pi_{u}$ 499—853	$\begin{array}{l} 1.20 - 1.40 \\ (9.03 \pm 0.78) \ (1 - 0.587 \ r_{p'p''})^2 \\ 1.05 - 1.44 \end{array}$	$\begin{array}{r} 1.243 \\ 2.1 \cdot 10^{-3} \\ 0.43 \pm 0.04 \\ 1.3320 \end{array}$	285	196, 285, 286, 359
он	$A^2\Sigma^+ - X^2\Pi_{261} - 411$	$(0.706\pm0.017)(1-0.75 r_{v'v'})^{\pm}$ 0.8-1.2	$1.2 \cdot 10^{-3}$ 0.742 ± 0.001 1.0080	35	45, Ref. 29 300, 353
	$D^2 \Sigma^ X^2 \Pi$	* 0.06	4. (·. 10=3		202
OD	$A^2\Sigma^+ = X^2\Pi$ 270-340	0.040±0.004	9.6.10-4		288, Ref. 29 295-297,
0년+	.4°Π — X³Σ~ 333—398	0.25	7.0.10-3		235
OD+	$A^{3}\Pi = X^{3}\Sigma^{-}$ 3:.6-399	0.21	5.9.10-3		315
PH	$A^{3}II = X^{3}\Sigma$ 318 = 360	⁴ 0.002	5.9.10-5		222
PN	$A^{4}\Pi - X^{4}\Sigma^{+}$ 257 - 300	0.0425 exp (0.3568 r _{v'r"}) 1.426—1.6 3 0	8.7.10-3 0.073	312	3.04) -
рьо	$B1 - X^{1}\Sigma$ 398 - 577	$8.2 (1-0.5408 r_{v'v''})^2$ 2.020-2.148	1.0215 1.1.10 ⁻³ 0.046 1.9880	313	307
S_2	$5^{5}\Sigma^{-} - X^{3}\Sigma^{-}$ 240-711	$5.5{\pm}3.0$	1.95.10-1		43, 308- 310
SH	$A^{2}\Sigma^{+} - X^{2}\Pi$ 202-249	0.034	7.9.10-4		298
so	$A^{3}\Pi - X^{3}\Sigma^{-}$ 240 - 263	5.5	$2.1 \cdot 10^{-1}$		311
	$B^{3}\Sigma - X^{3}\Sigma$ 190-457	$3.182 \cdot 10^3 (1 - 1.08 r_{v'v'} + 0.282 r_{v'v'}^2)^2$	$0.29 \\ 1.6197$	311	43
ScO	$A^2\Pi - X^2\Sigma$	a 12.0	3.0.10-1		110 .
	$B^{2}\Sigma - X^{2}\Sigma$	^a 3.4	1.0-10-1		110
SiBr	450-577 $B^2\Sigma - X^2\Pi$ 287-323	$const \cdot exp (8.22)(1 - 0.4672 r +))$		n2 3	
SICI	$B^2\Sigma - X^2\Pi$	2.10-2.28 const-exp (12.62 (1		323	
- • • • •	285-310	$-0.4836 r_{r'r'}))$ 1.92-2.08			
SiF	$A^2\Sigma - X^2\Pi$ 423-497	3.5 1.626-1.7 3 5	$5.7 \cdot 10^{-2}$ 3.5 1.697	324	64, 315
	$B^2\Sigma - X^2\Pi$ 264-321	$\begin{array}{c} 10.82 \exp \left(12.7 \left(1 \\ -0.6457 r_{t't''} \right) \right) \\ 1.454 - 1.635 \end{array}$	1.9.10 ⁻¹ 8.8 1.574	323	64
	$a^{4}\Sigma^{-} - X^{2}\Pi$ 334-337	5 · 16-5	9-10-7		64
SH	$A^{2}\Lambda = X^{2}\Pi$ 414,2(0.0)	0.19 <u>±</u> 0.08	3.5.10-3		229, 316-318
SiH	$A^{1}\Pi = X^{1}\Sigma$ 390=480	0.08	6.1 10-3]	318 .
51N	$\frac{B^2\Sigma - X^2\Sigma}{380 - 520}$	$ + 0.412 r_{v'v''}^2 $		325	
510	$A^{1}\Pi - X^{1}\Sigma$ 210-293	1.38-1.71 1.3±3.8	1.6.10-1		319, 320
	$ \begin{array}{c} E^1\Sigma - X^1\Sigma \\ 171 - 200 \end{array} $	$3.16 (1-0.1353 r_{v'v''})^2$ 1.45-1.61	3.3.10-1	321	321
SnF	$A^{2}\Sigma - X^{2}\Pi_{1/2}$ 460-630	$\operatorname{const} \cdot (1 - 0.5307 r_{v'v''})^2$ 1.9-2.2		326	
	$A^2\Sigma - X^2\Pi_{3/2}$ 510-660	$const \cdot (1-0.5208 r_{v'v''})^2$		326	
SnO	$D^{1}\Pi - X^{1}\Sigma$ 307-466	$\begin{array}{c} 1.0-2.2\\ const \cdot (1-1.119 r_{v'v''})\\ +0.356 r_{v'v''}^2 \end{array}$:	327	
	1	18		1	

165 Sov. Phys. Usp. 22(3), March 1979

TABLE I. (Continued)

Mole- cule	Electronic trans- ition, $\Delta \lambda$, nm	$S_e (r_{v'v''}), (a_0e)^2,$ range of $r_{v'v''}, A$	$f_e^{mn}, S_e^{(r_{00}), (a_0e)^2}$	Refer- ences on relative probabil- ities	References on absolute probabilities	Molecule	Electronic trans- ition, $\Delta\lambda$, nm	$S_{\mu} (\tau_{D'D'}), (a_{D}e)^{2},$ range of $\tau_{D'D''}, \dot{A}$	j ^{mn} ; S _e (r00),(20e) ² r00, Å*)	Refer- ences on relative probabil- ities	References on absolute probabilities
	629-690 $B^{2}\Sigma - X^{2}\Sigma$	a, b 6.44	1.5.10-1		6 8		$C^2\Pi - X^2\Sigma$ 425-434	a, b4.32	1.5.10-1		68
	$C^{2}\Pi - X^{2}\Sigma$	a, b4.60	1.7.10-1		6 8	TiO	$C^{3}\Delta - X^{3}\Delta$ 404-630	$S_e(r_{10}) = 12.3$ $S_e(r_{10}) = 17.6$	1.2.10 ⁻¹ 12.3	328	318
SrCl	$A^2\Pi - X^2\Sigma$ 646-690	^a 19.02	4.3.10-1		68		A ³ Φ X ³ Δ 570 865	$S_e(r_{01}) = 23.7$ $S_e(r_{00}) = 43.7$ $S_e(r_{00}) = 65.4$	1.6590 $3.1.10^{-1}$	328	\$28
	$B^{2}\Sigma - X^{2}\Sigma$ 623-660	a, b6.54	1.6.10-1		68		$c^1 \Phi = a^1 \Lambda$	$S_e(r_{01}) = 92.6$ 10 1	43.7		339
	$C^2\Pi - X^2\Sigma$ 390-405	a, b 4.68	1.8.10-1	I	68		490-580	1.50-1.65	10.1		
SrF	$A^2\Pi - X^2\Sigma$ 628-687	^a 24.04	5.6.10-1		68	VO ZnH	$\begin{array}{c} C^4\Sigma - X^4\Sigma \\ A^2\Pi - X^2\Sigma \end{array}$	1.1 2.16	$1.4 \cdot 10^{-2}$ 7 8.10^{-2}		5, 332 147
Srl	$A^{2}\Pi - X^{2}\Sigma$ 618-709 $P^{2}\Sigma = \Sigma^{2}\Sigma$	a be os	3.3.10-1	1	68	YO	360-522 $A^2\Pi - X^2\Sigma$	13.4	3.3.10-1		110
	437-448	7 - 0.00					$B^{2}\Sigma - X^{2}\Sigma$ 440 - 560	3.7	1.2.10-1		110

Notes. ^aThe calculation was carried out under the assumption $q_{v'v''} \approx \delta_{v'v''}$. ^bThe conversion from $\tau_{nv'}$ to S_g is made under the assumption that the probabilities for all allowed transitions other than that under consideration are zero. ^dThe error cited does not take into account the error in the branching ratio used in the calculations. ^eThe value from the corresponding paper, obtained from relative measurements, is renormalized in accordance with the recommendations of the present review.

Mole- cule	Electron state	τ, nsec	References	Mole- cule	Electron state	τ, nsec	References		Mole- cule	Electron state	τ, nsec	References	Mole- cule	Electron state	τ, nsec	References
AlO Ar.	B ² Σ+ ³ Σ+	110 <u>+</u> 180 3100 <u>+</u> 400	62, 63 265, 333-336	CaBr	A ² Π	34.2(1) ² П _{1/2} 33.7(1) ² П ₃	68 68			$D^3\Sigma_u^+$	14.1	212	SD	A ² ∑+	280	208, 333
	¹ Σ ⁺ _u	5±11	333, 334		$B^2\Sigma^+$ $C^2\Pi$	42.9 33.2 ² II _{1/2}	68 68		1	$c'^{1}\Sigma_{u}^{+}$	0.9	41	SO	A3∏	1080	311
BBr	А ¹ П 41П	25.6(0.1)	65 41	CaCl	A ² Π	$31.8(1)$ $^{2}\Pi_{3/2}$ 29.4(2) $^{2}\Pi_{1/2}$	68		N+	12 1 L 2 L g	190-103	209, 214	ScF	<i>Ε</i> ¹ Π	17.3	371
BF	A11	2.8(0-2)	41		B32+	28.4(2) 211/8/2	68 68		**2	$B^2\Sigma_u^+$	63.1±1.7	36, 41, 93, 118,	ScO	³Φ A²Π₁/₀	1.10 ⁵ 35.9	371
BaBr	$C^2\Pi$	8	89 68 69	CoF		25.0	68					181, 139, 140, 185, 188, 188,		$A^{2}\Pi_{3/2}$ $B^{2}\Sigma$	27.0	110
BaCi BaF	$C^{2}\Pi$	$20\pm 32 \\ 23.6$	68	Car	A-11	18.4 °Π _{3/2}	68					191, 192, 194, 196, 198, 219,	SiF	$A^2\Sigma^+$	230	356, 357
BaI	$C^2 \Pi_{1/2}$ $C^2 \Pi_{3/2}$	17.9(25) 16.5	68	CaJ	$A^2\Pi$	25.1 41.7(3) $^{2}\Pi_{1/2}$	68			$C^2\Sigma^+_{\mu}$	77(1)	222, 226-228 853	SiD	$A^2\Delta$	680	229
BaO	A ¹ Σ A'Π	356 9400	74 337		B ² Σ ⁺	41.6(5) ² II _{3/2} 50.9(4)	68 68		NH	А³П	434 ± 28	91, 193, 222,	510	$E^{1}\Sigma$	10.5(1-7)	321
D.O	a ³ П B15	≈ 10 000	374 75	CdH	$A^2\Pi$ $B^2\Sigma$	70	146,147 147			b ¹ Σ+	17.8.106	229, 230 232	SiO+	a ³ 11 ?	⊂ 4.8.10 ⁶ 8.3 (?)	319
Br ₂	$B^{3}\Pi_{0u}^{+}$	280(1), 500(5)	338	CI2	³Π _{0μ} +	10000	341			c ¹ Π d ¹ Σ ⁺	441 <u>+92</u> 46	183.229,230 235	SiS SnO	a³∏ a³∏	c 29.106	322 322
		420(20), 1200(27)		FeO Cu ₂	Α ⁵ Σ, Β ⁵ Σ Α ¹ Π	450 70	342 151		ND NH+	$d^{1}\Sigma^{+}$ $A^{2}\Sigma^{-}$	62 1090	235	SnS	а³П	-320)·10 ³	322
1	[110(16). 310(19)		GeO	$B^{1}\Sigma^{+}$ $a^{3}\Pi$	30 c (420	151 322			$B^2\Delta$	930	236	SrBr	4211	-570) 103	68
BrCl	B ³ ∏₀u	18.5.10 ³	77 83, 84			$-2100) \cdot 10^{3}$			NO	A ² Σ+	400 170 <u>+</u> 44	241-249		$A^2\Pi_{3/2}$	33.2(2)	68
02	C'IIg	31.1	83	Ges	a311	c (625 	322			В•11 С²П	3100 25.7±15.1	42,248 133, 245, 248		$C^{2}\Pi_{1/2}$	42.2(3) 30.3(1)	68
GE	$D^1\Sigma_u^+$	$16 \pm 22(0 - 3)$	82, 63 41	H ₂	$B^{1}\Sigma_{u}^{+}$	0.8(3)	41		i	$\frac{B'}{D^2\Sigma^+}$	110 21.9±6.0	245 41, 245, 248,	SrCl	$C^{2}\Pi_{3^{\prime}2} A^{2}\Pi_{1/2}$	28.2(1) 31.3(1)	68
Cr	$B^2\Delta$	18.8	41 36 66 89-95		$a^3\Sigma^+_{\sigma}$	11.1±1.7	197,343,344			F ² A	90 	257		$A^2\Pi_{3/2} B^2\Sigma$	30.4(1) 38.8(1)	68
СН	$B^2\Sigma^-$	497 ± 38 364 ± 28	83, 90, 92, 96,		$d^3 \prod_{u}$	68	160			b ⁴ Σ a ⁴ Π	6430(1) c 160.106	260		$C^{2}\Pi_{1/2}$ $C^{2}\Pi_{1/2}$	26.1(1)	68 68
1	C²Σ+	(6-26) as a	90,92	HBr+	$A^2\Sigma^+$	4400	162		NO ⁺	$A^{1}\Pi$ $A^{1}\Sigma^{+}$	54 ± 33	41, 111	SrF	$A^2\Pi_{1/2}^{3/2}$ $A^2\Pi_{1/2}$	31.3(1)	68 68
		function of J		HgBr	$A^{3}\Sigma^{*}$ $B^{2}\Sigma$	2000	163		1982	$B^{1}\Pi_{\mu}$	7.5	262	Sr1	$A^2 \Pi_{1/2}$	43.3(6)	68
CD CH+	А²∆ А¹П	470 ± 50 360 ± 210	66,92 90,99,100	12	$B^{311}_{0u}^{+}$	for $v' < 13$	346-349		NaH Ne.	A ¹ Σ ⁺ ³ Σ ⁺	24.0(3) 5.9+9.1	264		$B^{2}\Sigma$	46.0	68
	$B^1\Delta$ $b^3\Sigma^-$	230 ± 140	92,99,100 99 [,]			$10^3 \cdot 0.88(20)$ $10^3 \cdot 0.98(32)$			02	$\alpha^1 \Sigma_u^+$	25 10 ³	283	TiO	$c^{1}\Phi$	36.0(8) 17.5	339
CN		8000	101 104, 106-108			$10^{3} \cdot 1.62(40)$ $10^{3} \cdot 9.0(62)$			0_{2}^{+}	$A^2 \Pi_u$ $b^4 \Sigma_{\pm}^{\pm}$	693 ± 216 1130 ± 100	285, 359	Xe ₂	$C^{3}\Delta$ $a^{3}\Sigma_{+}^{+}(I_{\mu})$	37 60	330, 331
co	$A^{1}\Pi$	10.42	41, 111, 112,		$E^{3}\Pi_{\theta g}^{+}$	27	167			425+	579 1 / 7	359 287-289 991		$A^1\Sigma_u^+(O_u^+)$	2	330, 331
	$B^{1}\Sigma^{+}$	$\frac{\pm 0.33(1)}{23.7\pm 1.8}$	118-123, 376	ICI	$D^{1}\Sigma^{+}$ $A^{3}\Pi_{1}$	15.5 10 ⁹	168 350		он	A-2	113 <u>+</u> 41	292, 295-299,		$b^{3}\Sigma_{g}^{+}(\mathbf{I}_{g})$	150	330, 331
	α ³ Π	1.9 ± 1.0 (7.7	367, 369, 370	IF K ₂	B ³ II B ¹ II	10 ⁶ 11±17	351 169, 170			C25+	6.1	301	XeF	$B^1\Sigma_g^+(O_g^+)$	500 48±43	330, 331 361, 362
1	$b^3\Sigma^+$	$\pm 2.0) \cdot 10^{6}$ 55.7 ± 5.0	117, 120, 124	Kr ₂ LaO	$3\Sigma^+$ $B^2\Sigma$	350 34.8	265		OD	A*2	770 <u>±</u> 60	299, 304	XeO	1 <i>S</i>	100	358
	e ³ ∑- a'3∑+	2000(4) 10300	86 117,125,126		$C^2 \Pi_{1/2}$	26.9 28.3	110 110		OH+ OD+	A ³ 11 A ³ 11	850 1010	236 305	ZnH	$A^2\Pi_{1/2}$	415 77	147
	c ³ Π	$\pm 800(4)$	117	Li ₂	$A^{1}\Sigma^{+}_{\mu}$	18 (v' > 6)	173 '		PH PN	А ^з П А ¹ П	440.10 ³ 227	222 306	ZnD	$A^{-11}_{3/2}$ $A^{2}\Pi_{1/2}$	73 76	147
	$d^{3}\Delta$ $D^{1}\Lambda$ (?)	7300(1) 97000	117 130	LiH N.	$A^1\Sigma^+$ $B^3\Pi$	$31.6 \pm 12.7(5)$ 6500 ± 1500	263, 352 40, 196		Pb0	$B1 B^3\Sigma$	1500 18.6+14.0	307 43, 309, 310	YO	$A^2\Pi_{3/2} A^2\Pi_{1/2}$	75 33.0	147 110
CO+	$\left B^2 \Sigma^+ \right $	52.0 ± 3.9	41, 94, 118, 123, 131, 137,		С ³ П ₄	41.0±2.9	41,42, 118,		SC1	2	10.2(?)	43		$A^2 \Pi_{3/2} B^2 \Sigma$	32.3 30.0	110 110
	4211	3830(A)	139, 140 132, 134, 136				187-198,340		ы	A*Σ*	280	298				
	A-11	$3610 \pm 360(1)$	43 149		a¹∏g	(115 +46),108	208-209									
CS	A'11	215±508	,		(Í	('		•		-	-			1

TABLE II. Recommended values of the experimental lifetimes.

Note. ^cThe lifetime is determined in a low-temperature matrix.

166 Sov. Phys. Usp. 22(3), March 1979

the result of a joint analysis of the data on the absolute and relative probabilities, we have found new functions $S_e(r_{v'v''})$, which we believe are more reliable than those in the literature [for the (4+) system of CO, for the Schumann-Runge system of O_2 , and for the γ and β systems of NO].

Since different quantities are used in the original papers as measures of the absolute probabilities $[f_{v'v''}^{nm}, f_{v'v''}^{mn}, \tau_{nv'}, S_e(r_{v'v''}), |R_e^{nm}(r_{v'v''})|^2, |R_e^{mn}(r_{v'v''})|^2], \text{ we}$ converted everything to values of $S_e(r_{00})$ on the basis of the function adopted. At this point we examined the validity of converting the lifetimes into values of $S_e(r_{00})$. In particular, the reciprocal of the lifetime was adopted as the Einstein coefficient of the transition only if the selection rules permit only a single transition from the level of interest to all lower levels. In calculating the quantities $\sum_{v''} S_e(r_{v'v''}) q_{v'v''} \nu_v^3 v_{v'v''}$ in (12), we tried to carry out the summation in accordance with the requirement $\sum_{v''} q_{v'v''} = 1$. In those cases in which the conversion from τ_{m} , to $S_e(r_{00})$ required an extrapolation of the function outside the range in which it had been determined, we considered whether this extrapolation might lead to a physically meaningless result.

For each study, we calculated a single value of $\overline{S}_e(\mathbf{r}_{00})$, averaged over all the measurements of that study. In other words, regardless of the number of electronic-vibrational bands used in determining the absolute probabilities in the given study, or regardless of the number of vibrational levels used in determining $\tau_{m'}$, we converted all these values to values of $S_e(\mathbf{r}_{00})$. These values were averaged, and the result was ascribed to the given study. In those cases in which a given author was involved in obtaining several experimental results on the probability for some transition, and there was a significant difference in the results, we considered only the most recent result.

Our experience with the literature on electronic transition probabilities have convinced us that the variation in the nature of the errors from study to study makes it impossible to construct any scale of statistical weights by year, by experimental method used, or whatever. Accordingly, in recommending absolute probabilities for electronic transitions we assigned equal weights to the results of all the selected studies, and we assumed that these results were in a normal distribution with respect to the actual value. We found that the discrepancy between the results of different studies frequently does well beyond the errors cited; in other words, these cited errors do not tell us the actual accuracy of the data, so they cannot be used to introduce statistical weights.

The values of $S_{e_{rec}}(r_{00})$ were calculated from

$$S_{e_{\text{rec}}}(r_{00}) = \frac{1}{n} \sum_{i=1}^{n} \overline{S}_{e_{i}}(r_{00}), \qquad (20)$$

where n is the number of original papers which we used.

If the results of certain studies differed from the average value found by more than 2σ (σ is the standard deviation), these results were discarded. The resulting values of $S_{erec}(r_{00})$ are shown in the fourth column of Ta-

ble I, and the papers used in finding these results are listed in the sixth column.

The errors of the recommended values, ε , were calculated with the help of Student's coefficients⁶¹ t_{n-1}^{α} for a confidence interval $\alpha = 0.95$:

$$\varepsilon = \sqrt{\frac{\sum\limits_{i=1}^{n} \Delta_i^2}{\frac{1}{n(n-1)}}} t_{n-1}^{\alpha}, \qquad (21)$$

where $\Delta_i = S_{e_{rec}}(r_{00}) - S_{e_i}(r_{00})$.

If a normalized function $S_e(r_{v'v''})$ is recommended, the corresponding error ε is also given for the normalization factor (in the third column in Table I). Where the recommendation is based on a single study, no error is indicated for the recommended values in Table I. In the third column, underneath the recommended dependence, is the *r*-centroid interval over which this dependence is determined. In the fourth column, underneath the recommended the recommended value of $S_e(r_{00})$ is the *r*-centroid for the 0,0 band.

In all cases in which the function $S_e(r_{v'v''})$ was not studied, or no recommendation could be made, the corresponding values of τ_{mv} , were converted to values of S_e under the assumption $S_e(r_{v'v''}) = \text{const}$, and the third column shows the recommended value of S_e , which is an average for the entire electronic transition.

We have also felt it useful to show (in the fourth column of Table I) the recommended values of the electronic transition oscillator strengths f_e^{mn} , as calculated from Eq. (14).

Since data on the lifetimes of the excited states are in large demand, we give recommended values in Table II. The recommendations regarding $\tau_{m\nu}$, are based solely on an analysis of papers reporting experimental measurements of the lifetimes: No theoretical calculations and no measurements of absolute intensities have been used here. As a rule, Table II shows lifetimes for the zero vibrational level. If this level has not been studied, we recommend a value of $\tau_{n\nu}$, for the lowest-lying level which has been studied, and this level is specified in parentheses along with the recommended value of $\tau_{n\nu}$.

In conclusion we note that in the course of writing this review it was necessary to compile a system of comments regarding the particular features of each of the molecular transitions considered. Because of space limitations, we cannot reproduce all these comments here, even in a very abbreviated form. For the same reason, we do not give the complete bibliography of all the papers which we read (more than 1000); the only papers cited are those from which we used data in generating the recommendations in Tables I and II. The comments and references which we have omitted here are all included in a monograph by the authors, *Probabilities for Optical transitions of Diatomic Molecules*, which is to be published (in Russian) by the Nauka publishing house in 1979.

We offer our sincere thanks to A. D. Smirnov for carrying out many calculations whose results were used in compiling this review. $A_{\pi\pi}$ -Einstein coefficient for emission, sec⁻¹

$$a_0 = \frac{h^2}{4\pi^2 m e^2}$$
 - first Bohr radius, 0.529 · 10⁻⁸ cm

- a_0e product of the first Bohr radius and the electron charge, $2.5416 \cdot 10^{-18} \text{ g}^{1/2} \cdot \text{cm}^{5/2}/\text{sec}$
- $f_e^{mn}, f_e^{mn}, f_{v'v''}^{mn}, f_{v'v''}^{mn}$ oscillator strengths for the entire electron transition (in absorption and emission) and oscillator strengths of the individual electronic-vibrational bands (in absorption and emission), dimensionless quantities
 - v, J, S-vibrational, rotational, and spin quantum numbers
 - Λ, Σ quantum numbers giving the projection of the orbital angular momentum and spin of the electrons onto the internuclear axis
 - $\overline{\Lambda}$ the smaller of the two values of Λ of the coupled electronic states
 - j_{v} spectral emission coefficient, erg/(sec · cm³ · sr)
 - K_v spectral absorption coefficient, cm⁻¹
 - N_i population of level *i*, molecules/ cm³
 - $q_{v'v''}$ Franck-Condon factor, dimensionless
 - $|R_e^{m_n}|^2$, $|R_e^{n_m}|^2$ square of the dipole-moment matrix element of the electronic transition in absorption and emission, atomic units, $(a_0 e)^2$ δ - Kronecker delta
 - ν transition wave number, cm⁻¹
 - τ_{nv} , lifetime of the excited electronic-vibrational state; all lifetimes in this review are given in nsec
 - Ψ_e, Ψ_v, Ψ_J electronic, vibrational, and rotational wave functions
- ¹L. A. Kuznetsova, N. E. Kuz'menko, Yu. Ya. Kuzyakov, and Yu. A. Plastinin, Usp. Fiz. Nauk **113**, 285 (1974) [Sov. Phys. Usp. **17**, 405 (1974)].
- ²R. Hefferlin, J. Quant. Spectrosc. Radiat. Transfer 15, 925 (1975).
- ³R. Hefferlin, J. Mashburn, J. Flechas, and R. P. Main, J. Tennessee Acad. Sci. 51, 100 (1976).
- ⁴R. Hefferlin, J. Quant. Spectrosc. Radiat. Transfer 16, 1101 (1976).
- ⁵S. N. Suchard, Spectroscopic Data: Vol. 1. Heteronuclear Diatomic Molecules, IFI/Plenum, New York, 1975.
- ⁶S. N. Suchard and J. E. Melzer, Spectroscopic Data: Vol. 2. Homonuclear Diatomic Molecules, IFI/Plenum, New York, 1976.
- ⁷D. K. Hsu and W. H. Smith, Spectr. Lett. 10, 181 (1977).
- ⁸H. Klemsdal. J. Quant. Spectrosc. Radiat. Transfer 13, 517 (1973).
- ⁹P. A. Fraser, Can. J. Phys. 32, 515 (1954).
- 168 Sov. Phys. Usp. 22(3), March 1979

- ¹⁰R. W. Nicholls and W. R. Jarmain, Proc. Phys. Soc. London Sect. A 69, 253 (1956).
- ¹¹R. W. Nicholls and A. T. Stewart, in: Atomic and Molecular Processes (ed. D. R. Bates), Academic, New York, 1962, Ch. 2 (Russ. Transl., Mir, Moscow, 1964, p. 48).
- ¹²P. Halevi, Proc. Phys. Soc. London 86, 1051 (1965).
- ¹³T. C. James, J. Mol. Spectrosc. 20, 77 (1966).
- ¹⁴D. C. Jain and R. C. Sahni, J. Quant. Spectrosc. Radiat. Transfer 6, 705 (1966).
- ¹⁵D. C. Jain and R. C. Sahni, Trans. Faraday Soc. 64, 3169 (1968).
 ¹⁶D. C. Jain, J. Phys. B 5, 199 (1972).
 - ¹⁷D. C. Jain, J. Quant. Spectrosc. Radiat. Transfer 15, 571 (1975).
 - ¹⁸D. C. Cartwright, J. Chem. Phys. 58, 178 (1973).
 - ¹⁹L. P. Rapoport, V. I. Lisitsin, and S. M. Yazykova, J. Phys. B **10**, 3359 (1977).
- ²⁰P. H. Krupenie and W. Benesh, J. Res. Nat. Bur. Stand. A 72, 495 (1968).
- ²¹J. Drake and R. W. Nicholls, Chem. Phys. Lett. 3, 457 (1969).
- ²²R. W. Nicholls, Chem. Phys. Lett. 17, 252 (1972).
- ²³R. W. Nicholls, Chem. Phys. Lett. 20, 261 (1973).
- ²⁴R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 14, 233 (1974).
- ²⁵K. K. Docken, Chem. Phys. Lett. 30, 334 (1975).
- ²⁶R. W. Nicholls, Spectr. Lett. 9, 23 (1976).
- ²⁷J. C. McCallum, W. R. Jarmain, and R. W. Nicholls, CRESS Spectroscopic Report No. 1, York University, Toronto, 1970.
- ²⁸J. C. McCallum and R. W. Nicholls, CRESS Spectroscopic Report No. 2, York University, Toronto, 1971.
- ²⁹J. C. McCallum, W. R. Jarmain, and R. W. Nicholls, CRESS Spectroscopic Report No. 3, York University, Toronto, 1972.
- ³⁰J. C. McCallum, W. R. Jarmain, and R. W. Nicholls, CRESS Spectroscopic Report No. 4, York University, Toronto, 1972.
- ³¹J. C. McCallum, W. R. Jarmain, and R. W. Nicholls, CRESS Spectroscopic Report No. 5, York University, Toronto, 1972.
- ³²J. B. Tatum, Astrophys. J. Suppl. Ser 14, No. 124 (1967).
- ³³A. Schadee, Astron. Astrophys. J. 14, 401 (1971).
- ³⁴A. Schadee, J. Quant. Spectrosc. Radiat. Transfer 7, 169 (1967).
- ³⁵A. Corney, in: Advances in Electronics and Electron
- Physics, Vol. 29, Academic, New York, 1970, p. 115.
- ³⁶P. Erman, Phys. Scripta 11, 65 (1975).
- ³⁷E. E. Whiting and R. W. Nicholls, Astrophys. J. Suppl. Ser. **27**, No. 235, 1 (1974).
- ³⁸V. N. Egorov, L. N. Tunitskil, and E. M. Cherkasov, Zh. Prikl. Spektrosk. 8, 479 (1968).
- ³⁹M. Jeunehomme, J. Chem. Phys. 42, 4086 (1965).
- ⁴⁰M. Jeunehomme, J. Chem. Phys. 45, 1805 (1966).
- ⁴¹J. E. Hesser, J. Chem. Phys. 48, 2518 (1968).
- ⁴²M. Jeunehomme and A. B. F. Duncan, J. Chem. Phys. 41, 1692 (1964).
- ⁴³W. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 9, 1191 (1969).
- ⁴⁴A. Pery-Thorne and F. P. Banfield, J. Phys. B 3, 1011 (1970).
- ⁴⁵J. Anketell and A. Pery-Thorne, Proc. R. Soc. London, Ser. A 301, 343 (1967).
- ⁴⁶A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer **12**, 627 (1972).
- ⁴⁷A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 12, 635 (1972).
- ⁴⁸J. Geiger and M. Topschowsky, Z. Naturforsch. **21a**, 626 (1966).
- ⁴⁹R. H. Huebner, R. J. Celotta, S. R. Mielczarek, and C. E. Kuyatt, J. Chem. Phys. 63, 241 (1975).

- ⁵⁰E. N. Lassettre and A. Skebele, J. Chem. Phys. **54**, 1597 (1971).
- ⁵¹J. Geiger and B. Schröder, J. Chem. Phys. 50, 7 (1969).
- ⁵²R. G. Turner and R. W. Nicholls, Can. J. Phys. **32**, 468 (1954).
- ⁵³G. T. Best and H. S. Hoffman, J. Quant. Spectrosc. Radiat. Transfer 13, 69 (1973).
- ⁵⁴A. N. Vargin, O. A. Golubev, and O. A. Malkin, Zh. Prikl. Spektrosk. 22, 1027 (1975).
- ⁵⁵D. R. Crosley and R. K. Lengel, J. Quant. Spectrosc.
- Radiat. Transfer 15, 579 (1975).
- ⁵⁶D. E. Shemansky and A. L. Broadfoot, J. Quant. Spectrosc. Radiat. Transfer **11**, 1385 (1971).
- ⁵⁷C. Linton and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 9, 1 (1969).
- ⁵⁸H. H. Wu and D. E. Shemansky, J. Chem. Phys. **64**, 1134 (1976).
- ⁵⁹L. L. Danylewych and R. W. Nicholls, Proc. R. Soc. London, Ser. A **339**, 197 (1974).
- ⁶⁰G. R. Möhlmann and F. J. de Heer, Chem. Phys. 21, 119 (1977).
- ⁶¹D. J. Hudson, Lectures on Elementary Statistics and Probability, CERN, Geneva, 1963 (Russ. Transl., Mir, Moscow, 1967).
- ⁶²S. E. Johnson, G. Capelle, and H. P. Broida, J. Chem. Phys. 56, 663 (1972).
- ⁶³P. J. Dagdigian, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 62, 1824 (1975).
- ⁶⁴L. A. Kuznetsova, N. E. Kuz'menko, Yu. Ya. Kuzyakov, A. P. Monyakin, Yu. A. Plastinin, and A. D. Smirnov, Teoreticheskaya Spektroskopiya (Theoretical Spectroscopy), AN SSSR, Moscow, 1977, p. 160.
- ⁶⁵B. L. Lutz and J. E. Hesser, J. Chem. Phys. 48, 3042 (1968).
- ⁶⁶W. H. Smith, J. Chem. Phys. 54, 1384 (1971).
- ⁶⁷N. E. Kuz'menko, L. A. Kuznetsova, Yu. Ya. Kuzyakov, and B. N. Chuev, Zh. Prikl. Spektrosk. 20, 491 (1974).
- ⁶⁸P. J. Dagdigian, H. W. Cruse, and R. N. Zare, J. Chem. Phys. **60**, 2330 (1974).
- ⁶⁹G. A. Capelle, R. S. Bradford, and H. P. Broida, Chem. Phys. Lett. 21, 418 (1973).
- ⁷⁰G. R. Hébert and D. C. Tyte, Proc. Phys. Soc. London 83, 629 (1964).
- ⁷¹D. C. Tyte and G. R. Hébert, Proc. Phys. Soc. London **84**, 830 (1964).
- ¹²A. P. Walvekar, Ind. J. Phys. 43, 742 (1969).
- ⁷³D. Robinson and R. W. Nicholls, Proc. Phys. Soc. London 75, 817 (1960).
- ⁷⁴S. E. Johnson, J. Chem. Phys. 56, 149 (1972).
- ⁷⁵G. A. Capelle, S. E. Johnson, and H. P. Broida, J. Chem. Phys. 56, 149 (1972).
- ⁷⁶R. J. Le Roy, R. G. Macdonald, and G. Burns, J. Chem. Phys. **65**, 1485 (1977).
- ⁷⁷J. J. Wright, W. S. Spates, and S. J. Davis, J. Chem. Phys. **66**, 1566 (1977).
- ⁷⁸J. O. Arnold, J. Quant. Spectrosc. Radiat. Transfer 8, 1781 (1968).
- ⁷⁹A. R. Fairbairn, J. Quant. Spectrosc. Radiat. Transfer 6, 325 (1966).
- ⁸⁰A. G. Sviridov, Tr. FIAN SSSR, Vol. 51, 1970, p. 124 (Proceedings of the P. N. Lebedev Physics Institute, Vol. 51. Physics of Atomic Collisions, Consultants Bureau, New York).
- ⁸¹D. M. Cooper and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 15, 139 (1975).
- ⁸²W. H. Smith, Astrophys. J. 156, 791 (1969).
- ⁸³L. Curtis, B. Engman, and P. Erman, Phys. Scripta 13, 270 (1976).
- ⁸⁴T. Tatarczyk, E. H. Fink, and K. H. Becker, Chem. Phys. Lett. 40, 126 (1976).
- ⁸⁵G. W. F. Drake, D. C. Tyte, and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 7, 639 (1967).
- 169 Sov. Phys. Usp. 22(3), March 1979

- ⁸⁶T. G. Slanger and G. Black, J. Chem. Phys. **63**, 969 (1975).
- ⁸⁷W. S. Cathro and J. C. Mackie, J. Chem. Soc. Farad. Trans. II 69, 237 (1973).
- ⁸⁸I. A. Svyatkin, A. P. Monyakin, L. A. Kuznetsova, and Yu. Ya. Kuzyakov, Vestnik MGU, Ser. Khimiya 18, 38 (1977).
- ⁸⁹E. H. Fink and K. H. Welge, J. Chem. Phys. 46, 4315 (1967).
- ⁹⁰J. Brzozowski, P. Bunker, N. Elander, and P. Erman, Astrophys. J. **207**, 414 (1976).
- ⁹¹R. G. Bennet and F. W. Dalby, J. Chem. Phys. 32, 1716 (1960).
- ⁹²J. E. Hesser and B. L. Lutz, Astrophys. J. **159**, 703 (1970).
- ⁹³T. Sawada and H. Kamada, Bull. Chem. Soc. Jpn. 43, 325 (1970).
- ⁹⁴S. W. Jørgensen and G. Sørensen, J. Chem. Phys. 62, 2550 (1975).
- ⁹⁵J. Carozza and R. Anderson, J. Opt. Soc. Am. 67, 118 (1977).
- ⁹⁶R. A. Anderson, J. Peacher, and D. M. Wilcox, J. Chem. Phys. **63**, 5287 (1975).
- ⁹⁷N. H. Brooks and W. H. Smith, Astrophys. J. **194**, 513 (1974).
- ⁹⁸M. J. Linevsky, J. Chem. Phys. 47, 3485 (1967).
- ⁹⁹J. Brzozowski, N. Elander, P. Erman, and M. Lyyra, Astrophys. J. **193**, 741 (1974).
- ¹⁰⁰N. H. Brooks and W. H. Smith, Astrophys. J. **196**, 307 (1975).
- ¹⁰¹T. Wentink, L. Isaacson, and J. Morreal, J. Chem. Phys. 41, 278 (1964).
- ¹⁰²J. O. Arnold and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer **12**, 1435 (1972).
- ¹⁰³J. O. Arnold and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 13, 115 (1973).
- ¹⁰⁴K. A. Mohamed, G. C. King, and F. H. Read, J. Electron. Spectr. and Related Phenomena 12, 229 (1977).
- ¹⁰⁵I. A. Svyatkin, I. P. Leiko, L. A. Kuznetsova, and Yu. Ya. Kuzyakov, Vestn. MGU Ser Khimiya 1978; Deposited Article No. 1825-78, June 1, 1978, All-Union Institute of Scientific and Technical Information.
- ¹⁰⁶H. S. Liszt, and J. E. Hesser, Astrophys. J. **159**, 1101 (1970).
- ¹⁰⁷W. M. Jackson, J. Chem. Phys. **61**, 4177 (1974).
- ¹⁰⁸C. K. Luk and R. Bersohn, J. Chem. Phys. 58, 2153 (1973).
- ¹⁰⁹K. Prasad and S. S. Prasad, J. Phys. B 2, 725 (1969).
- ¹¹⁰K. Liu and J. M. Parson, J. Chem. Phys. 67, 1814 (1977).
 ¹¹¹R. D. Cowan and N. J. Peacock, Astrophys. J. 142, 390 (1965).
- ¹¹²R. E. Imhof and F. H. Read, Chem. Phys. Lett. **11**, 326 (1971).
- ¹¹³J. C. Rich, Astrophys. J. 153, 327 (1968).
- ¹¹⁴M. J. Pilling, A. M. Bass, and W. Braun, J. Quant. Spectrosc. Radiat. Transfer **11**, 1593 (1971).
- ¹¹⁵J. F. M. Aarts and F. J. de Heer, J. Chem. Phys. 52, 5354 (1970).
- ¹¹⁶R. L. Burman, R. C. Isler, and W. C. Wells, Phys. Rev. A6, 1327 (1972).
- ¹¹⁷H. A. Van Sprang, G. R. Möhlmann, and F. J. De Heer, Chem. Phys. 24, 429 (1977).
- ¹¹⁸L. W. Dotchin, E. L. Chupp, and D. J. Pegg, J. Chem. Phys. **59**, 3960 (1973).
- ¹¹⁹J. Rogers and R. Anderson, J. Opt. Soc. Am. **60**, 278 (1970).
- ¹²⁰J. Rogers and R. Anderson, J. Quant. Spectrosc. Radiat. Transfer 10, 515 (1970).
- ¹²¹R. E. Imhof, F. H. Read, and S. T. Beckett, J. Phys. B 5, 896 (1972).
- ¹²²A. Pochat, M. Doritch, and J. Peresse, J. Chim. Phys. et Phys.-Chim. Biol. (Fr). 70, 936 (1973).
- ¹²³J. E. Hesser and K. Dressler, J. Chem. Phys. 45, 3149

(1966).

- ¹²⁴A. J. Smith, R. E. Imhof, and F. H. Read, J. Phys. B 6, 1333 (1973).
- ¹²⁵T. Wentink Jr., E. P. Marram, L. Isaacson, and R. J. Spindler Jr., AFWL Tech. Rept. 67-30, November 1967, Vol. 1.
- ¹²⁶L. Isaacson, E. P. Marram, and T. Wentink Jr., Appl. Opt. 8, 235 (1969).
- ¹²⁷D. Robinson and R. W. Nicholls, Proc. Phys. Soc. London Sect. A 71, 957 (1958).
- ¹²⁸T. G. Slanger and G. Black, J. Chem. Phys. 64, 219 (1976).
- ¹²⁹E. Phillips, L. C. Lee, and D. L. Judge, J. Chem. Phys. 65, 3118 (1976).
- ¹³⁰W. C. Wells, W. L. Borst, and E. C. Zipf, Phys. Rev. A8, 2463 (1973).
- ¹³¹J. Desquelles, M. Du Fay, and M. C. Pulizac, Phys. Lett. A 27, 96 (1968).
- ¹³²R. F. Holland and W. B. Maier II, J. Chem. Phys. 56, 5229 (1972).
- ¹³³W. B. Maier II, R. F. Holland, J. Phys. B 5, L118 (1972).
- ¹³⁴R. Anderson, R. Sutherland, and N. Frey, J. Opt. Soc. Am. 62, 1127 (1972).
- ¹³⁵R. Anderson and M. Jursich, Am. J. Phys. 43, 535 (1975).
 ¹³⁶G. R. Möhlmann and F. J. De Heer, Chem. Phys. Lett. 43,
- 170 (1976). ¹³⁷R. G. Fowler, P. R. Skwerski, R. A. Anderson, G. E. Copeland, and T. M. Holzberlein, **50**, J. Chem. Phys. **50**,
- 4133 (1969). ¹³⁸K. C. Joshi, V. D. P. Sastri, S. Parthasarathi, J. Quant.
- Spectrosc. Radiat. Transfer 6, 205, 215 (1966). ¹³⁹A. J. Smith, F. H. Read, and R. E. Imhof, J. Phys. B 8, 2869 (1975).
- ¹⁴⁰M. Bloch and D. W. Turner, Chem. Phys. Lett. **30**, 344 (1975).
- ¹⁴¹D. L. Judge and L. C. Lee, J. Chem. Phys. 57, 455 (1972).
- ¹⁴²S. J. Silvers, Chiu Chi-Lian, J. Chem. Phys. 56, 5663 (1972).
- ¹⁴³T. G. Slanger and G. Black, J. Phys. B 5, 1988 (1972).
- ¹⁴⁴J. A. Coxon, P. J. Marcoux, and D. W. Setser, Chem. Phys. **17**, 403 (1976).
- ¹⁴⁵F. S. Ortenberg, Author's Abstract, Candidate's Dissertation lin Russianl, Moscow, 1961.
- ¹⁴⁶A. Jourdan, J. M. Negre, J. Dufayard, and O. Nedelec, J. Phys. Lett. (Paris) 37, Suppl., 29 (1976).
- ¹⁴⁷J. Dufayard and O. Nedelec, J. Phys. (Paris) **38**, 449 (1977).
- ¹⁴⁸D. M. Cooper, J. Quant. Spectrosc. Radiat. Transfer 17, 543 (1977).
- ¹⁴⁹M. Mandelman and R. W. Nicholls, J. Quant. Spectrosc. Radiat. Transfer 17, 483 (1977).
- ¹⁵⁰G. N. Makeev, V. F. Sinyavskii, and B. M. Smirnov, Dokl. Akad. Nauk SSSR 222, 151 (1975).
- ¹⁵¹R. E. Steele, J. Mol. Spectrosc. **61**, 477 (1976).
- ¹⁵²J. E. Hesser, N. H. Brooks, and G. M. Lawrence, J. Chem. Phys. 49, 5388 (1968).
- ¹⁵³G. N. Haddad, K. H. Lokan, A. J. D. Farmer, and J. H. Carver, J. Quant. Spectrosc. Radiat. Transfer 8, 1193 (1968).
- ¹⁵⁴J. Geiger, Z. Phys. 181, 413 (1964).
- ¹⁵⁵J. Geiger and H. Schmoranzer, J. Mol. Spectrosc. 32, 39 (1969).
- ¹⁵⁶W. Fabian and B. R. Lewis, J. Quant. Spectrosc. Radiat. Transfer 14, 523 (1974).
- ¹⁵⁷B. R. Lewis, J. Quant. Spectrosc. Radiat. Transfer 14, 537 (1974).
- ¹⁵⁸B. R. Lewis, J. Quant. Spectrosc. Radiat. Transfer 14, 723 (1974).
- ¹⁵⁹J. E. Hesser, N. H. Brooks, and G. M. Lawrence, Astrophys. J. L. **153**, 65 (1968).
- ¹⁶⁰P. Cahill, J. Opt. Soc. Am. 59, 875 (1969).
- ¹⁶¹M. L. P. Rao, D. V. K. Rao, and P. T. Rao, J. Quant.
- 170 Sov. Phys. Usp. 22(3), March 1979

Spectrosc. Radiat. Transfer 16, 467 (1976).

- ¹⁶²G. R. Möhlmann and F. J. De Heer, Chem. Phys. 17, 147 (1976).
- ¹⁶³G. R. Möhlmann, K. K. Bhutani, and F. J. De Heer, Chem. Phys. 21, 127 (1977).
- ¹⁶⁴N. Djeu and C. Mazza, Chem. Phys. Lett. 46, 172 (1977).
 ¹⁶⁵A. Chutjian and T. C. James, J. Chem. Phys. 51, 1242 (1969).
- ¹⁶⁶M. Kroll, J. Mol. Spectrosc. 36, 44 (1970).
- ¹⁶⁷D. L. Roussean, J. Mol. Spectrosc. 58, 481 (1975).
- ¹⁶⁸A. B. Callear, P. Erman, and J. Kurepa, Chem. Phys. Lett. 44, 599 (1976).
- ¹⁶⁹W. J. Tango and N. R. Zare, J. Chem. Phys. 53, 3094 (1970).
- ¹⁷⁰G. Baumgartner, W. Demtröder and M. Stock, Z. Phys. 232, 462 (1970).
- ¹⁷¹M. J. Haugh, B. S. Schneider, and A. L. Smith, J. Mol. Spectrosc. **51**, 123 (1974).
- ¹⁷²L. Schoonveld and S. Sundaram, Astrophys. J. Suppl. Ser. 27, No. 246, 307 (1974).
- ¹⁷³P. H. Wine and L. A. Melton, Chem. Phys. Lett. 45, 509 (1977).
- ¹⁷⁴D. L. Lambert, E. M. Mallia, and A. D. Petford, Mon. Not. R. Astron. Soc. **154**, 265 (1971).
- ¹⁷⁵G. R. Möhlmann, H. A. Van Sprang, E. Bloemen, and F. J. De Heer, Chem. Phys. 32, 239 (1978).
- ¹⁷⁶R. E. Steele and C. Linton, J. Mol. Spectrosc. 69, 66 (1978).
- ¹⁷⁷A. N. Vargin, L. M. Pasynkova, and E. S. Trekhov, in: Fizika gazorazradnoi plasmy (Physics of Gas-Discharge Plasmas), Atomizdat, Moscow, 1969, p. 77.
- ¹⁷⁸E. B. Kupriyanova, V. N. Kolesnikova, and N. N. Sobolev, J. Quant. Spectrosc. Radiat. Transfer 9, 1025 (1969).
- ¹⁷⁹A. P. Dronov, N. N. Sobolev, and F. C. Faizullov, Opt. Spektrosk. **21**, 267, 538 (1966) [Opt. Spectrosc. (USSR) **21**, 158, 301 (1966)].
- ¹⁸⁰Yu. A. Plastinin, in: Svoľstva gazov pri bysokikh temperaturakh (Gas Properties at High Temperatures), Nauka, Moscow, 1967, p. 82.
- ¹⁸¹W. H. Wurster, J. Chem. Phys. 36, 2111 (1962).
- ¹⁸²J. C. Keck, R. A. Allen, and R. L. Taylor, J. Quant. Spectrosc. Radiat. Transfer 3, 355 (1963).
- ¹⁸³R. A. Allen, J. C. Camm, and J. C. Keck, J. Quant. Spectrosc. Radiat. Transfer 1, 269 (1961).
- ¹⁸⁴M. Hollstein, D. C. Lorents, J. R. Peterson, and J. R. Sheridan, Can. J. Chem. 47, 1858 (1969).
- ¹⁸⁵A. W. Johnson and R. G. Fowler, J. Chem. Phys. **53**, 65 (1970).
- ¹⁸⁶S. T. Chen and R. J. Anderson, Phys. Rev. A12, 468 (1975).
- ¹⁸⁷L. Kurzweg, G. T. Egbert, and D. J. Burns, Phys. Rev. **A7**, 1966 (1973).
- ¹⁸⁸M. Jeunehomme, J. Chem. Phys. 44, 2672 (1966).
- ¹⁸⁹R. G. Bennett and F. W. Dalby, J. Chem. Phys. **31**, 434 (1959).
- ¹⁹⁰S. T. Chen and R. J. Anderson, J. Chem. Phys. 63, 1250 (1975).
- ¹⁹¹F. W. Bingham, Bull. Am. Phys. Soc. 18, 609 (1973).
- ¹⁹²A. L. Osherovich and V. N. Gorshkov, Opt. Spektrosk. 41, 158 (1976) [Opt. Spectrosc. (USSR) 41, 92 (1976)].
- ¹⁹³T. Sawada and H. Kamada, Bull. Chem. Soc. Jpn. 43, 331 (1970).
- ¹⁹⁴L. L. Nicholls and W. E. Wilson, Appl. Opt. 7, 167 (1968).
- ¹⁹⁵H. Anton, Ann. Phys. (N. Y.) 18, 178 (1966).
- ¹⁹⁶P. Erman, J. Brzozowski, and B. Sigfridsson, Nucl. Instrum. Methods **110**, 471 (1973).
- ¹⁹⁷R. E. Imhof and F. H. Read, J. Phys. B 4, 1063 (1971).
- ¹⁹⁸J. Dufayard, J. M. Negre, and O. Nedelec, J. Chem. Phys. **61**, 3614 (1974).
- ¹⁹⁹E. B. Brusyanova, V. N. Kolesnikov, and N. N. Sobolev, Opt. Spektrosk. **19**, 819 (1965) [Opt. Spectrosc. (USSR) **19**, 453 (1965)].
- ²⁰⁰P. S. Dube, Ind. J. Pure Appl. Phys. 11, 445 (1973).
- ²⁰¹ P. S. Dube, A. K. Chaudhry, G. D. Baruah, and D. K. Rai, Appl. Spectrosc. 25, 554 (1971).

- ²⁰²D. C. Jain, J. Quant. Spectrosc. Radiat. Transfer **12**, 759 (1972).
- ²⁰³D. E. Shemansky, J. Chem. Phys. 51, 689 (1969).
- ²⁰⁴D. E. Shemansky and N. R. Carleton, J. Chem. Phys. 51, 682 (1969).
- ²⁰⁵D. E. Shemansky, J. Chem. Phys. 51, 5487 (1969).
- ²⁰⁶J. Olmsted III, A. S. Newton, and K. Street, Jr., J. Chem. Phys. 42, 2321 (1965).
- ²⁰⁷R. F. Holland, J. Chem. Phys. 51, 3940 (1969).
- ²⁰⁸A. Skerbele and E. N. Lassettre, J. Chem. Phys. 53, 3806 (1970).
- ²⁰⁹W. L. Borst and E. C. Zipf, Phys. Rev. A3, 979 (1971).
- ²¹⁰G. M. Lawrence, D. L. Mickey, and K. Dressler, J. Chem. Phys. 48, 1989 (1968).
- ²¹¹V. L. Carter, J. Chem. Phys. 56, 4195 (1972).
- ²¹²L. Kurzweb, G. T. Egbert, and D. J. Burns, J. Chem. Phys. 59, 2641 (1973).
- ²¹³S. G. Tilford and W. M. Benesch, J. Chem. Phys. **64**, 3370 (1976).
- ²¹⁴R. S. Freund, J. Chem. Phys. 50, 3734 (1969).
- ²¹⁵E. B. Kupriyanova, V. N. Kolesnikov, and N. N. Sobolev, J. Quant. Spectrosc. Radiat. Transfer 8, 1851 (1968).
- ²¹⁶J. R. Peterson and J. T. Moseley, J. Chem. Phys. 58, 172 (1973).
- ²¹⁷W. B. Maier II and R. F. Holland, Bull. Am. Phys. Soc. 17, GE8, 695 (1972).
- ²¹⁸C. A. Van de Runstraat, T. R. Govers, W. B. Maier II, and R. F. Holland, Chem. Phys. Lett. **18**, 549 (1973).
- ²¹⁹D. Gray, J. L. Morack, and T. D. Roberts, Phys. Lett. A 37, 25 (1971).
- ²²⁰D. D. Gray, T. D. Roberts, and J. L. Morack, J. Chem. Phys. 57, 4190 (1972).
- ²²¹R. F. Holland and W. B. Maier II, J. Chem. Phys. 57, 4497 (1972).
- ²²²E. Find and K. H. Welge, Z. Naturforsch. Teil A 19, 1193 (1964).
- ²²³K. L. Wray and T. J. Connolly, J. Quant. Spectrosc. Radiat. Transfer 5, 633 (1965).
- ²²⁴R. P. Frosch and G. W. Robinson, J. Chem. Phys. **41**, 367 (1964).
- ²²⁵L. I. Kisilevskii and V. D. Shimanovich, Opt. Spektrosk.
 24, 506 (1968) [Opt. Spectrosc. (USSR) 24, 266 (1968)].
- ²²⁶C. E. Head, Phys. Lett. A 34, 92 (1971).
- ²²⁷D. Gray, J. L. Morack, and T. Roberts, Bull. Am. Phys. Soc. 16, 848 (1971).
- ²²⁸D. I. Sebacher, J. Chem. Phys. 42, 1368 (1965).
- ²²⁹W. H. Smith, J. Chem. Phys. 51, 520 (1969).
- ²³⁰W. H. Smith, J. Brzozowski, and P. Erman, J. Chem. Phys. 64, 4628 (1976).
- ²³¹A. P. Monyakin, N. G. Ovsyannikova, and L. A.
- Kuznetsova, Vestn. MGU Ser. Khimiya 16, 235 (1975).
- ²³²B. Gelernt, S. V. Filseth, and T. Carrington, Chem. Phys. Lett. 36, 238 (1975).
- ²³³R. W. Nicholls, J. Atmos. Terr. Phys. **25**, 218 (1963).
- ²³⁴L. V. Wallace and R. W. Nicholls, J. Atmos. Terr. Phys.
- 7, 101 (1955). ²³⁵D. K. Hsu and W. H. Smith, J. Chem. Phys. 66, 1835(1977).
- ²³⁶J. Brzozowski, N. Elander, P. Erman, and M. Lyyra, Phys. Scripta 10, 241 (1974).
- ²³⁷J. W. Daiber and M. J. Williams, J. Quant. Spectrosc. Radiat. Transfer 1, 135 (1961).
- ²³⁸E. T. Antropov, in: Tr. FIAN SSSR, Vol. 35, 1966, p. 3 (Proceedings of the P. N. Lebedev Physics Institute, Vol. 35. Electronic and Vibrational Spectra of Molecules, Consultants Bureau, New York).
- ²³⁹V. Hasson, A. J. D. Farmer, R. W. Nicholls, and J. Ankettel, J. Phys. B 5, 1248 (1972).
- ²⁴⁰G. W. Bethke, J. Chem. Phys. 31, 662 (1959).
- ²⁴¹G. E. Copeland, J. Chem. Phys. 56, 689 (1972).
- ²⁴²H. Bubert and F. W. Froben, Chem. Phys. Lett. 8, 242 (1971).
- ²⁴³E. M. Weinstock, R. N. Zare, and L. A. Melton, J. Chem.
- 171 Sov. Phys. Usp. 22(3), March 1979

Phys. 56, 3456 (1972).

- ²⁴⁴K. R. German, R. Zare, and D. R. Crosley, J. Chem.
 Phys. 54, 4039 (1971).
 ²⁴⁵7.
- ²⁴⁵J. Brozozowski, P. Erman, and M. Lyyra, Phys. Scripta
 14, 290 (1976).
- ²⁴⁶D. R. Crosley and R. N. Zare, J. Chem. Phys. 49, 4231 (1968).
- ²⁴⁷H. Zacharias. J. B. Halpern, and K. H. Welge, Chem. Phys. Lett. 43, 41 (1976).
- ²⁴⁸O. Benoist D'azy, R. López-Delgado, and A. Tramer, Chem. Phys. 9, 327 (1975).
- ²⁴⁹G. E. Copeland, R. T. Thompson, and R. G. Fowler, Bull. Am. Phys. Soc. 15, 429 (1970).
- ²⁵⁰V. Hasson and R. W. Nicholls, J. Phys. B 4, 1769 (1971).
- ²⁵¹J. C. Keck, J. C. Camm, B. Kivel, and T. Wentink, Ann. Phys. (N. Y.) 7, 1 (1959).
- ²⁵²W. Groth, D. Kley, and U. Schurath, J. Quant. Spectrosc. Radiat. Transfer 11, 1457 (1971).
- ²⁵³K. L. Wray, J. Quant. Spectrosc. Radiat. Transfer 9, 225 (1969).
- ²⁵⁴V. A. Kamenshchikov, Yu. A. Plastinin, V. M. Nikolaev, and L. A. Novitskii, Radiatsiomye svoistva gazov pri vysokikh temperaturakh (Radiation Properties of Gases at
- High Temperatures), Mashinostroenie, Moscow, 1971. ²⁵⁵M. Mandelman and T. Carrington, J. Quant. Spectrosc.
- Radiat. Transfer 14, 509 (1974). ²⁵⁶M. Mandelman, T. Carrington, and R. A. Young, J. Chem.
- M. Mandelman, 1. Carrington, and K. A. 100ng, 5. Chem Phys. 58, 84 (1973).
- ²⁵⁷J. Brzozowski, N. Elander, and P. Erman, Phys. Scripta 9, 99 (1974).
- ²⁵⁸L. M. Biberman and A. Kh. Mnatsakanyan, Teplofiz. Vys. Temp. 2, 148 (1966).
- ²⁵⁹A. A. Kon'kov, V. Ya. Neiland, V. M. Nikolaev, and
- Yu. A. Plastinin, Teplofiz. Vys. Temp. 7, 140 (1969).
- ²⁶⁰G. R. Möhlmann and F. J. De Heer, Chem. Phys. Lett. 49, 588 (1977).
- ²⁶¹T. W. Ducas, M. G. Littman, M. L. Zimmerman, and D. Kleppner, J. Chem. Phys. 65, 842 (1976).
- ²⁶²W. Demtröder, W. Stetzenbach, M. Stock, and J. Witt, J. Mol. Spectrosc. **61**, 382 (1976).
- ²⁶³P. J. Dagdigian, J. Chem. Phys. **64**, 2609 (1976).
- ²⁶⁴P. Baltayan, A. Jourdan, and O. Nedelec, Phys. Lett. A 58, 443 (1976).
- ²⁶⁵ T. Oka, K. V. S. Rama Rao, J. L. Redpath, and R. F. Firestone, J. Chem. Phys. 61, 4740 (1974).
- ²⁶⁶P. K. Leichner, Phys. Rev. A8, 815 (1973).
- ²⁶⁷D. L. Lambert and E. A. Mallia, Mon. Not. R. Astron. 151, 437 (1971).
- ²⁶⁸J. E. Mentall and H. D. Morgan, J. Chem. Phys. 56, 2271 (1972).
- ²⁶⁹V. Hasson, R. W. Nicholls, and V. Degen, J. Phys. B'3, 1192 (1970).
- ²⁷⁰V. Hasson and R. W. Nicholls, J. Phys. B 4, 1778 (1971).
- ²⁷¹N. I. Krindach, N. N. Sobolev, and L. N. Tunitskii, Opt. Spektrosk. 15, 298, 601 (1963) [Opt. Spectrosc. (USSR) 15, 161, 326 (1963)].
- ²⁷²R. D. Hudson and V. L. Carter, J. Opt. Soc. Am. 58, 1621 (1968).
- ²⁷³A. J. D. Farmer, W. Fabian, B. R. Lewis, K. H. Lokan, and G. N. Haddad, J. Quant. Spectrosc. Radiat. Transfer 8, 1739 (1968).
- ²⁷⁴V. Hasson, G. R. Hébert, and R. W. Nicholls, J. Phys. B 3, 1188 (1970).
- ²⁷⁵D. E. Buttrey, J. Quant. Spectrosc. Radiat. Transfer 9, 1527 (1969).
- ²⁷⁶G. W. Bethke, J. Chem. Phys. 31, 669 (1959).
- ²⁷⁷C. E. Treanor and W. H. Wurster, J. Chem. Phys. 32, 758 (1960).
- ²⁷⁸M. Halmann, J. Chem. Phys. 44, 2406 (1966).
- ²⁷⁹M. Ackerman, F. Biaume, and G. Kockarts, Planet. Space Sci. **18**, 1639 (1970).
- ²⁸⁰K. Watanabe, C. Y. Inn, and M. Zelikoff, J. Chem. Phys.

Kuz'menko et al. 171

mento et al. 17

- **21**, 1026 (1953).
- ²⁸¹S. A. Losev and N. A. Generalov, in: Optika i spektroskopiya (Optics and Spectroscopy), Vol. II, Nauka, Leningrad, 1963, p. 15.
- ²⁶²R. W. Ditchburn and D. W. O. Heddle, Proc. R. Soc. London Ser. A **220**, 61 (1953).
- ²⁸³V. Dose, U. Schmocker, and G. Sele, Z. Phys. K1. A 274, 1 (1975).
- ²⁸⁴S. Ogawa and M. Ogawa, Can. J. Phys. 53, 1845 (1975).
- ²⁸⁵M. Jeunehomme, J. Chem. Phys. 44, 4253 (1966).
- ²⁸⁶A. R. Fairbairn, J. Chem. Phys. 60, 521 (1974).
- ²⁸⁷W. H. Smith, J. Chem. Phys. 53, 792 (1970).
- ²⁸⁸B. G. Elmergreen and W. H. Smith, Astrophys. J. 178, 557 (1972).
- ²⁸⁹R. L. deZafra, A. Marshall, and H. Metcalf, Phys. Rev. A3, 1557 (1971).
- ²⁸⁰D. M. Golden, F. P. Del Greco, and F. Kaufman, J. Chem. Phys. **39**, 3034 (1963).
- ²⁹¹K. R. German and R. N. Zare, Phys. Rev. Lett. 23, 1207 (1969).
- ²⁹²P. A. Sutherland and R. A. Anderson, J. Chem. Phys. 58, 1226 (1973).
- ²³³P. E. Rouse and R. Engleman, J. Quant. Spectrosc. Radiat. Transfer 13, 297 (1973).
- ²⁹⁴T. Carrington, J. Chem. Phys. 31, 1243 (1959).
- ²⁹⁵K. R. German, J. Chem. Phys. 62, 2584 (1975).
- ²⁹⁶K. R. German, J. Chem. Phys. **63**, 5252 (1975).
- ²⁹⁷J. H. Brophy, J. A. Silver, and J. L. Kinsey, Chem. Phys. Lett. 28, 418 (1974).
- ²⁹⁸K. H. Becker, G. Capelle, D. Haaks, and T. Tatarczyk, Ber. Bunsenge. Phys. Chem. 78, 1157 (1974).
- ²⁹⁹K. H. Becker and D. Haaks, Z. Naturforsch. Teil A 28, 249 (1973).
- ³⁰⁰D. M. Golden, F. P. Del Greco, and F. Kaufman, J. Chem. Phys. **39**, 3034 (1963).
- ³⁰¹W. H. Smith and S. Gregory, J. Chem. Phys. **63**, 2395 (1975).
- ³⁰²S. Ray and H. P. Kelly, Astrophys. J. L. 202, 57 (1975).
- ³⁰³V. Degen and R. W. Nicholls, J. Phys. B 2, 1240 (1969).
- ³⁰⁴D. Wilcox, R. Anderson, and J. Peacher, J. Opt. Soc. Am. 65, 1368 (1975).
- ³⁰⁵J. Brzozowski, P. Erman, and H. Lew, Chem. Phys. Lett. **34**, 267 (1975).
- ³⁰⁶M. B. Moeller, M. R. McKeever, and S. J. Silvers, Chem. Phys. Lett. **31**, 398 (1975).
- ³⁰⁷S. E. Johnson, Thesis, Univ. of Calif., Santa Barbara, 1971.
- ³⁰⁸J. F. Bott and T. A. Jacobs, J. Chem. Phys. **52**, 3545 (1970).
- ³⁰⁹K. A. Meyer and D. R. Crosley, J. Chem. Phys. **59**, 1933 (1973).
- ³¹⁰K. A. Meyer and D. R. Crosley, J. Chem. Phys. **59**, 3153 (1973).
- ³¹¹W. H. Smith, Astrophys. J. 176, 265 (1972).
- ³¹²S. Sankaranarayanan, Physica (Utrecht) 29, 1403 (1963).
- ³¹³P. S. Dube, Curr. Sci. (India) 40, 32 (1971).
- ³¹⁴G. R. Hébert and R. V. Hodder, J. Phys. B 7, 2244 (1974).
- ³¹⁵Yu. Ya. Kuzyakov, I. E. Ovcharenko, N. E. Kuz'menko, and I. N. Kurdyumova, Zh. Prikl. Spektrosk. **12**, 555 (1970).
- ³¹⁶A. Shadee, Bull. Astron. Inst. Neth. 17, 311 (1964).
 ³¹⁷D. L. Lambert and E. A. Mallia, Mon. Not. R. Astron.
- **148**, 313 (1970).
- ³¹⁸N. Grevesse and A. J. Sauval, J. Quant. Spectrosc. Radiat. Transfer 11, 65 (1971).
- ³¹⁹W. H. Smith and H. S. Liszt, J. Quant. Spectrosc. Radiat. Transfer **12**, 505 (1972).
- ³²⁰C. Park and J. O. Arnold, J. Quant. Spectrosc. Radiat. Transfer 19, 1 (1978).
- ³²¹N. Elander and W. H. Smith, Astrophys. J. 184, 311 (1973).
- ³²²B. Meyer, J. J. Smith, and K. Spitzer, J. Chem. Phys. 53, 3616 (1970).
- 172 Sov. Phys. Usp. 22(3), March 1979

- ³²³N. E. Kuz'menko, Yu. Ya. Kuzyakov, N. N. Kabankova, G. E. Tokeris, L. Z. Fridlyand, and A. B. Bolotin, Lit. Fiz. Sb. 11, 433 (1971).
- ³²⁴N. E. Kuz[']menko, A. D. Smirnov, and Yu. Ya. Kuzyakov, Vestn. MGU Ser. Khimiya **11**, 357 (1970).
- ³²⁵A. E. Stevens and H. I. S. Ferguson, Can. J. Phys. 41, 240 (1963).
- ³²⁶J. Singh and P. S. Dube, Ind. J. Pure Appl. Phys. 9, 164 (1971).
- ³²⁷P. S. Dube and D. K. Rai, J. Phys. B 4, 579 (1971).
- ³²⁸M. L. Price, K. G. Sulzmann, and S. S. Penner, J. Quant. Spectrosc. Radiat. Transfer 14, 1273 (1974).
- ³²⁹J. Feinberg and S. P. Davis, J. Mol. Spectrosc. **65**, 264 (1977).
- ³³⁰M. Ghelfenstein, R. Lopez-Delgado, and H. Szwarc, Chem. Phys. Lett. 49, 213 (1977).
- ³³¹M. Ghelfenstein, H. Szwarc, and R. Lopez-Delgado, Chem. Phys. Lett. 52, 326 (1977).
- ³³²T. Wentink and G. Diebold, AFCRL-72-0191, 1972.
- ³³³J. W. Keto, R. E. Gleason, Jr., and G. K. Walters, Phys. Rev. Lett. 33, 1365 (1974).
- ³³⁴H. A. Koehler, L. J. Ferderber, D. L. Redhead, and P. J. Ebert, Phys. Rev. A9, 768 (1974).
- ³³⁵W. Wieme and J. Wieme-Lenaerts, Phys. Lett. A **47**, 37 (1974).
- ³³⁶N. Thonnard and G. S. Hurst, Phys. Rev. A5, 1110 (1972).
- ³³⁷J. G. Pruett and R. N. Zare, J. Chem. Phys. 62, 2050 (1975).
- ³³⁸G. Capelle, K. Sakurai, and H. P. Broida, J. Chem. Phys. 54, 1728 (1971).
- ³³⁹F. Zaraga, N. S. Nogar, and C. B. Moore, J. Mol. Spectrosc. **63**, 564 (1976).
- ³⁴⁰K. H. Becker, H. Engels, and T. Tatarczyk, Chem. Phys. Lett. 51, 111 (1977).
- ³⁴¹R. E. Huie, N. J. T. Long, and B. A. Thrush, Chem. Phys. Lett. **44**, 608 (1976).
- ³⁴²J. B. West and H. P. Broida, J. Chem. Phys. **62**, 2566 (1975).
- ³⁴³G. C. King, F. H. Read, and R. E. Imhof, J. Phys. B 8, 665 (1975).
- ³⁴⁴W. H. Smith and R. Chevalier, Astrophys. J. 177, 835 (1972).
- ³⁴⁵C. E. Johnson, Phys. Rev. A5, 1026 (1972).
- ³⁴⁶K. Sakurai, G. Taieb, and H. P. Broida, Chem. Phys. Lett. **41**, 39 (1976).
- ³⁴⁷M. Broyer, J. Vigué, and J. C. Lehmann, J. Chem. Phys. 63, 5428 (1975).
- ³⁴⁸G. A. Capella and H. P. Broida, J. Chem. Phys. 58, 4212 (1973).
- ³⁴⁹M. Broyer, J. C. Lehmann, and J. Vigué, J. Phys. (Paris) 36, 235 (1975).
- ³⁵⁰G. W. Holleman and J. I. Steinfeld, Chem. Phys. Lett. **12**, 431 (1971).
- ³⁵¹J. W. Birks, S. D. Gabelnick, and J. S. Harold, J. Mol. Spectrosc. 57, 23 (1975).
- ³⁵²P. H. Wine and L. A. Melton, J. Chem. Phys. **64**, 2692 (1976)
- ³⁵³P. Erman, Phys. Scripta 14, 51 (1976).
- ³⁵⁴R. A. Anderson and R. A. Sutherland, J. Chem. Phys. 59, 6690 (1973).
- ³⁵⁵K. H. Becker and D. Haaks. J. Photochem. 1, 177 (1972).
- ³⁵⁶S. J. Davis and S. G. Hadley, Phys. Rev. A14, 1146 (1976).
- ³⁵⁷S. J. Davis and S. G. Hadley, in: Electron Transition Lasers, MIT Press, Cambridge, Mass., 1976, p. 84.
- ³⁵⁸V. Ya. Aleksandrov, V. Yu. Vinogradov, V. V. Lugovskol, and I. V. Podmoshenskii, Opt. Spektrosk. 41, 390 (1976) [Opt. Spectrosc. (USSR) 41, 224 (1976)].
- ³⁵⁹E. H. Fink and K. H. Welge, Z. Naturforsch Teil A 23, 358 (1968).
- ³⁶⁰J. A. Harrington, A. P. Modica, and D. R. Libby, J.
- Quant. Spectrosc. Radiat. Transfer 6, 799 (1966).
- ³⁶¹J. G. Eden and E. K. Searles, Appl. Phys. Lett. 30, 287

(1977).

- ³⁶²R. Burnham and N. W. Harris, J. Chem. Phys. 66, 2742 (1977).
- ³⁶³A. L. Broadfoot and S. P. Maran, J. Chem. Phys. **51**, 678 (1969).
- ³⁶⁴T. C. James, J. Mol. Spectrosc. 40, 545 (1971).
- ³⁶⁵A. R. Fairbairn, J. Quant. Spectrosc. Radiat. Transfer **11**, 1289 (1971).
- ³⁶⁶V. Hasson and R. W. Nicholls, J. Phys. B 4, 681 (1971).
- ³⁶⁷C. E. Johnson, J. Chem. Phys. 57, 576 (1972).
- ³⁶⁸G. M. Lawrence and S. C. Seitel, J. Quant. Spectrosc. Radiat. Transfer **13**, 713 (1973).
- ³⁶⁹T. S. Wauchop and H. P. Broida, J. Chem. Phys. 56, 330 (1972).

- ³⁷⁰G. M. Lawrence, Chem. Phys. Lett. 9, 575 (1971).
- ³⁷¹L. Brewer and D. W. Green, High Temp. Sci. 1, 26 (1969).
 ³⁷²P. J. Evans and J. C. Mackie, J. Mol. Spectrosc. 65, 169 (1977).
- ³⁷³E. M. Gartner and B. A. Thrush, Proc. R. Soc. London Ser. A 346, 103 (1975).
- ³⁷⁴R. W. Field, C. R. Jones, and H. P. Broida, J. Chem. Phys. **60**, 4377 (1974).
- ³⁷⁵R. E. Imhof and F. H. Read, Rep. Prog. Phys. 40, 1 (1977).
- ³⁷⁶W. H. Smith, Phys. Scripta 17, 513 (1978).

Translated by Dave Parsons