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A comparative discussion is given of two approaches to taking spatial dispersion into account in the
electrodynamic problem of molecular scattering of light. The first, more traditional approach, may be
called the "distributed dipole" approximation (DDA) and is based on the assumption that any given
molecule at a given instant of time scatters light as an electric dipole. In this approach spatial dispersion,
i.e., the dependence of the spectrum on the variation of the propagation vector q =ki — k2, is determined
by the correlation of the positions of a given molecule (or of different molecules) at different times.
Another approach, developed in recent years by Barron and Buckingham for the problem of light
scattering by molecules with right-left asymmetry, may be called the "local multipole" approximation
(LMA) and is based on taking into account the magnetic dipole and the electric quadrupole as well as
the electric dipole interaction of a molecule with the field. A list is given of sets of "complete
experiments" for measuring all the independent constants that determine the scattering cross section in
both approaches. It is shown that the DDA approach is needed to describe the relatively large (~1)
effects of spatial dispersion in measurements with high spectral resolution (ScoSqv, where ν is the
velocity of sound in the medium) while the LMA approach is required to describe the small effects
(~α/Λ, where a is the size of the molecule and Λ is the wavelength) measured with relatively low
spectral resolution δω<ζαυ. It is asserted that the right-left asymmetry of the differential (with respect to
frequency) cross section for scattering in a gas containing chiral molecules need not involve the smallness
parameter ka if ql ~ 1, where a is the size of the molecule and / is the mean free path. Also new lines are
predicted in the rotational Raman scattering in a gas—transitions with UJ =+l,±i in the case of
noncentrally-symmetric molecules with a cross section ~ 10~6 of the Rayleigh cross section arising in
second order in α /λ due to the higher multipoles.

PACS numbers: 33.80. - b, 42.65.Cq
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1. INTRODUCTION

Most optical phenomena can be very well described by
assuming that the interaction of a light wave with atoms
and molecules can be considered in the electric-dipole
approximation. The validity of this approximation is
based on the availability of the very small parameter
α/λ~1Ο~3-1Ο~5, where α~1Ο"7-1Ο~8 cm is the char-
acteristic linear dimension of an atom or a molecule
and λ~10"4-10~3 cm is the wavelength of visible or in-

frared radiation. In general, corrections that depend
on the wave vector k of the light wave (jkj = 2ττη/λ,
where η is the refractive index), which are often re-
ferred to as spatial dispersion effects, are therefore
found to be of the relative order of magnitude of ka
~a/\, or some higher power of this parameter. On the
other hand, the condition for the validity of the dipole
approximation in electrodynamics is 6/λ s i , where b is
the characteristic linear dimension of the radiating sys-
tem. If, by the radiating system, we understand all
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atoms or molecules in the given medium (solid, liquid,
or gas), we find that, in optics, the opposite condition
is usually satisfied, namely, &/λ»1. The resolution of
this apparent contradiction is achieved by noting that, in
most cases, different atoms and molecules radiate or
interact with the overall radiation field in a statistically
independent way. Let us examine this in greater detail.

In the case of direct radiation and in the case of scat-
tering, the spectral composition of the emitted photons
with wave vector k2 and frequency ω2 is determined by
the space-time correlator of the current density
j(r,i):

/(Mi) <=» j <*' (*' - Ο d (f - f) </· (r', f) j (r", i")>

xexp [ifi>j if —t ')-ka ·(*" — *')]· (1.1)

The frequency-integrated characteristics of the direct
or scattered radiation are then determined by the cor-
relator of currents at equal times:

" - Ο « P l - i k i - ( r " - r ' ) ] . (1.2)

f / (k2, ω2) da>2 c

However, equal-time correlation of the amplitudes of
direct radiation, or the correlation of fluctuations in
the parameters of the medium which govern the light
scattering process, are known to extend only to
distances of the order of the atomic size (this ignores
certain special cases such as, for example, the neigh-
borhoods of phase transition points). It follows that the
frequency-integrated characteristics of direct and scat-
tered radiation can, in fact, be calculated if we neglect
corrections of the order of ~a/\ in the electric-dipole
approximation, and turn out to be independent of k for
direct radiation or of k^kj for scattered radiation. It
follows that spatial dispersion effects are very small-
of the order of α/λ or less-for the frequency-integrated
quantities.

An essentially different situation arises in the case of
frequency-differentiated characteristics. We shall con-
fine our attention in this paper to light scattering prob-
blems for liquids and gases (spatial dispersion in
solids is examined in Ref. 1). Strong spatial dispersion
effects in gases in the case of the usual single-photon
absorption are discussed in our previous paper.2

The spectrum of scattered radiation is usually dis-
cussed in the approximation that may be referred to as
the distributed-dipole approximation (DDA). In this ap-
proximation, the current density j(r,t) at a given point
r in space and a given time t is given by the dipole ex-
pression

ii Or. t) = -± · £ I6elfc (r, ί,ω) Eh(r) c.c], (1.3)

where E(r)e" '" ' is the incident wave and δε,»(Γ, ί,ω) is
the fluctuation in the dielectric permittivity. The es-
sential point is that spatial dispersion is not taken into
account in the relation between j and Ε given by (1.3).
Substitution of E(r) = e1e'ki* and the evaluation of the
scattered field in the far zone enable us to determine
the differential scattering cross section per unit vol-
ume

( M a )

^ j ί+τ)> βχρ(-ίδωτ+iq-r),

(1.4b)

q = kx — k2, δω = ω, — ω,, /j ^cj

where ω2 is the scattered frequency, n^k^/fej, and e2

is the polarization unit vector. The characteristic fea-
ture of DDA as expressed by (1.4a) and (1.4b) is that
the differential cross section per unit frequency per
unit solid angle is independent of the wave vectors kt

and k2 of the incident and scattered waves separately,
but is a function only of their difference q = k, - k2. The
tensor Titlm, regarded as a function of the scattered
frequency ω2, is also shown by (1.4b) to depend mainly
on the difference δω = ω , - ω 2 because δε(Γ, t, ω) has a
smooth dependence on the frequency ω well away from
resonance.

"Spatial dispersion," i.e., the dependence of the
tensor Ttklm which determines the spectrum of the scat-
tered radiation on q has been thoroughly investigated
experimentally. This is, in fact, the polarized
Mandel'shtam- Brillouin doublet with the frequency shift
A(,)=±qvL, and the depolarized doublet (fine structure
of the Rayleigh line wing3), which has the shift Δω
= ±qvT, where vL and vT are the velocities of longi-
tudinal and transverse hypersound in liquids, respec-
tively. There are, of course, many other effects as
well (see, for example, Refs. 4 and 5); Phenomeno-
logical examination of the problem, performed in the
distributed-dipole approximation by Zel'dovich,6 has
also led to the inclusion of possible effects associated
with the left-right asymmetry of the scattering medium.
The results obtained in this way will be briefly sum-
marized in Sec. 2.

It is important to note that the approach which we
call the distributed-dipole approximation is widely
used also in the electrodynamics of absorption and re-
fraction, for example, in various problems in plasma
physics. The theory of the anomalous skin effect is a
good illustration of this point. Here, spatial dispersion
effects are strong in the sense that the electron mean
free path I turns out to be much greater than the char-
acteristic scale a~k~l of changes in the field, i.e.,
kl»l, where k is the effective wave vector. Neverthe-
less, this effect is usually discussed by assuming that
the electrons experience only the electric field at the
given point on the electron trajectory, i.e., without
taking into account the Lorentz force. This, in fact,
corresponds to the spatially distributed dipole interac-
tion. However, in the present paper, we shall confine
our attention to light scattering problems and will leave
absorption and refraction problems aside.

On the other hand, natural optical activity of liquids
consisting of left-right asymmetric molecules (and
also of gases and solids) is usually discussed as a
spatial dispersion effect of the first order in α/λ. This
phenomenon consists of the difference between the re-
fractive indices (or the difference between absorption
coefficients in the region of absorption bands) for right
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and left polarized light. To describe this phenomenon,
one must go beyond the pure dipole approximation and
include magnetic dipole and (for solids) electric quad-
rupole interactions between the molecules and the light
waves (see, for example, Refs. 7 and 8). In recent
years, Barron, Buckingham et al. (see, for example,
Refs. 9 and 10) have developed a theory of light scat-
tering by left-right asymmetric molecules, which also
involves the inclusion of magnetic dipole and electric
quadrupole interactions. This approach may be re-
ferred to as the local multipole approximation (LMA).
This theory predicted, and the prediction was subse-
quently confirmed experimentally,10 that the Raman
scattering cross sections for left and right polarized
incident waves should be different. The Barron-
Buckingham theory (LMA) in the case of left-right scat-
tering asymmetry9'10 is in roughly the same relation
to the theory of natural optical activity as the theory of
electric-dipole scattering (placzek, 1930;11 see also
Refs. 12 and 13) is in relation to the theory of the
ordinary electric-dipole refractive index. The basic
points of LMA will be formulated briefly in Sec. 4 and
an account will be given there of new results on the
question of the "complete experiment."

It is shown in Sec. 5 that the left-right asymmetric
terms in DDA, when the effect is taken into account
only in the first order in q = kt - k2, correspond to the
"two-group" mechanism14 in the left-right asymmetric
terms in LMA.

In Sec. 3, a model of collisions between left-right
asymmetric molecules in a gas is used within the
framework of the DDA to show that the left-right
asymmetric terms in the frequency differential
cross section may be quite large (of the order of
0.01-0.1) if the spectral resolution Δω is better than
qvT (ντ is the thermal velocity of the molecules) and the
mean free path I is such that ql~\. At the same time,
in the frequency-integrated cross section, the left-right
asymmetric terms should, as before, be of the order of
ka~10~3- 10"4, in accordance with the LMA approach.

Finally, Sec. 6 suggests that it may be possible to ob-
serve new lines associated with rotational Raman scat-
tering in gases, namely, transitions with AJ = ± 1,± 3
for non centrally-symmetric molecules for which the
scattering cross section is about 10~6 of the Rayleigh
cross section. Such lines appear in the second order in
β/λ because of the presence of the higher (as compared
with the dipole) multipolarities in the radiation.

We note that these spatial dispersion effects, i.e.,
nonlocal effects, in scattering can be adequately de-
scribed by only one of the above two approaches. The
difference between them is connected with the difference
between the very mechanisms responsible for the ap-
pearance of nonlocal behavior. In the case of LMA, one
is concerned with the nonlocal response of the induced
current to the field within the limits of an individual
molecule. In contrast, in DDA, one is concerned with
nonlocal behavior connected with the motion of the
molecules and the correlations between them in space.

2. DISTRIBUTED-DIPOLE APPROXIMATION IN THE
THEORY OF MOLECULAR SCATTERING OF LIGHT

As noted in the introduction, the differential cross
section per unit frequency is determined in DDA by the
tensor Τ ίΗ)Β(δω,ς) given by (1.4). To find the most
general form of this tensor without using models, it is
convenient to take into account6 the symmetry proper-
ties of the integral (1.4). In particular, for liquids or
gases, i.e., media that are invariant under the rotation
group, the symmetry of (1.4) corresponds to the one-
parameter group of rotations around the direction η of
the wave vector q = qn (we shall refer to it as the small
group). In the Placzek approximation, we neglect anti-
symmetric scattering,15·16 so that the symmetric real
tensor δείΛ(Γ, t) can be decomposed into two irreducible
(with respect to the group of three-dimensional rota-
tions) components, namely, the scalar and the zero-
trace symmetry. Next, the scalar of the three-dimen-
sional rotation group is, at the same time, the irreduc-
ible scalar representation of the small group, and the
symmetric zero-trace tensor of three-dimensional
space generates the vector (Ff) and the zero-trace
tensor (£ik) representations of the small group:1'

1 , / It.

^=--3-ε,,6/4-(ε, ι,-τε,1δ,(
1 1

(2.1a)

(2.1b)

Here and henceforth, we omit the symbol δ in the fluc-
tuation tejk. The symbol iik in (2.1a) represents the
symmetric zero-trace tensor in the two-dimensional
space orthogonal to n. To evaluate the integral (1.4b)
of the correlator (cik(r, t) xctm(r', t')}, we can use the
results of group theory, according to which only pro-
ducts of identical representations of the small group
have nonzero averages. This yields6

T№ln - M i [6,/, (δ,η, - 3 n i n J + 6,m ( 6 , k - 3

+ Μ3 (δ/ι, — 3H,H;.) (fi|m — 3n,nm)

№ - δβ'δβ) + ιΛ/β (eilp6hm

) np + i {Μη — Mt) (eHvnknm + e;mpnhn,

, (2.2)

11 Strictly speaking, the two-dimensional representations (Vj)
and (Sik) are irreducible only for the broader symmetry
group, namely, the group C«̂  of rotations and reflections in
planes containing n. In contrast, the group CM of pure rota-
tions (without reflections) is an Abelian group and contains
only the one-dimensional irreducible representations. For
example, the vector representation (Vj) is then found to split
into two irreducible representations corresponding to circu-
larly polarized vectors of the form (ex ± iey), where n=e z ;
similarly, the quantities (£,·$) are also found to decompose
into two circular representations. This type of decomposition
is particularly convenient for systems with strong left-right
asymmetry. It was introduced by Brazovskii and Dmitriev27

in connection with the scattering of light near the point of
phase transition of an isotropic liquid into a cholesteric liquid
crystal (the approach adopted in Ref. 27 was analogous to
what we refer to as DDA). Conversely, for systems with
weak left-right asymmetry, the decomposition (2.1a) is the
more convenient. We are indebted to N. V. Tabiryan for dis-
cussions of this point.
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where

(2.3)

The quantities Mt - M5 are scalar and Mg, M7 pseudo-
scalar real functions of the scalar arguments δω and
| q | , and are defined by

Μ* (δω, I q |) = 4~ [ d f e - i t o l f <№'<!>* (r, τ),
— oo

where

(2.4)

(2.5)

r, T)-3e, m (r, τ) »,«„]>, (2.6)

Φ 3 = -&<[e,, (0) - 3 ε , , (0) nant] [e,, (r, τ) - 3ε,ρ (r, τ) η,ηρ]>, (2.7)

<Dt = - i <FP (0) 7 Ρ (r, τ)> = <ε«(0) ε«(Γ, τ», (2.8)

Φ« = <βΙ,(0)βΙ|,(Γ,τ)>, (2.9)

Φ.= - 4 ( « x » ( 0 ) e " ( r ' Τ )7 ε" ! ' ( Γ · τ > ) , (2.10)
Φ , = -ί<ε«(0) Ε ι / ζ (Γ, τ)>. (2.11)

The above expressions for the functions Φ4-Φ7 are given
in the coordinate frame in which the ζ axis lies along n.

Expansions of this kind and integrals of correlators of
different components of the tensor 6cik are frequently
given and discussed in the literature.4*5 The most im-
portant difference between our decomposition of the
tensor Tiktm and the corresponding formulas given in
the literature4'5 is that we admit the possibility of left-
right asymmetry in the properties of the liquid or gas
under consideration. This is why our decomposition
contains pseudoscalar terms proportional to M6 and

It is important to note that, although, formally, the
expression for Tiktm given by (2.2) contains the two in-
dependent left-right asymmetric terms ~M6 and
~(M7-M6), only the term ~M6 comes into play in real
situations.6 This is connected with the following point.
The polarization unit vectors e t, e2 of the incident and
scattered waves are always orthogonal to the corre-
sponding directions of propagation nl = )nl/kl,nz = 1iL2/k2,
so that (nj · e,) = 0, (tij · e2) = 0. If the frequency shift
δω =Wj - ω2 associated with the scattering process is
small in comparison with the frequency ω1 of the inci-
dent light, we may set | kt | a j ĥ  [, and

Ί ^ l — ̂ 2 ^ n i — ns /9 1 O\

In this approximation, the tensor structure which ap-
pears in the cross section with the coefficient M7-Me

yields a result identically zero after multiplication by
the polarization unit vectors.

To determine all six functions Μχ-Μ% which deter-
mine the frequency differential cross sections in the
DDA approach under consideration, we must have a set
of not less than six independent experiments with dif-
ferent incident and scattered wave polarizations. To be
specific, let us examine the case of scattering through
90°. It will be convenient to take the coordinate frame
as shown in Fig. 1.

If the medium is left-right symmetric, we need only

FIG. 1. Orientation of coordinate axes in the problem of light
scattering at 0= 90° (k̂  and k2 are the wave vectors of incident
and scattered light).

five experiments because M6 = 0. The remaining ex-
periments use different linear (and not elliptic) polar-
izations of the scattered wave for arbitrary polariza-
tions of the incident wave, but yield only four linearly
independent combinations of the five functions M t-M5.
This is also the case when the incident wave is repre-
sented by only linear polarizations and the scattered
wave by arbitrary polarizations. To perform the
"complete experiment," we must add a further mea-
surement in which both the incident and scattered waves
are elliptically polarized. This "complete experiment"
is exemplified by the following set of scattered inten-
sities (differential in frequency):

= lyz, V ' °i 1RL· (2.13),

where the first subscript indicates the polarization of
the incident and the second of the scattered wave, the
symbol 45° indicates linear polarization at 45° to the
plane of scattering, and the subscript R(L) represents
right (left) circular polarization.

To determine all six functions M^-M^ (in the case of
a left-right asymmetric medium), it is sufficient for
example to add the measurement of IRR to the five inten-
sities in (2.13). It is interesting that the pseudoscalar
term ~M6 does not contribute to any of the intensities
in (2.13), but it does contribute to / R S . If, on the other
hand, we are interested specifically in the left-right
asymmetric term Λί6, we must, for example, measure
the difference:

Mt co IRX - lLx. (2.14)

Measurement of the difference (2.14) may be tech-
nically feasible (compare this with the experiments
described in Ref. 10) if the incident-wave polarization
can be rapidly switched over from right to left circular
and back again without change in intensity. The quantity

IRx~lL (2.15)

characterizes (compare this with Ref. 10) the degree of
left-right asymmetry of the scattering cross section (in
this case, the frequency-differentiated cross section).

3. LEFT-RIGHT ASYMMETRY OF THE SPECTRUM
OF LIGHT SCATTERED BY A GAS DUE TO
COLLISIONS WITH CHIRAL MOLECULES (DDA
APPROACH)

In this section, we consider the DDA approach to the
problem of the left-right asymmetric terms in the
Raman spectrum of light scattered by a gas containing
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chiral, i.e., left-right asymmetric, molecules. To do
this, we consider a rotational or vibrational-rotational
Raman transition, for example, one with AJ = + 2 in an
arbitrary molecule. For simplicity, we shall assume
that the molecule is diatomic and thus left-right sym-
metric. We shall suppose that a low-density gas con-
sisting of these diatomic molecules is immersed in a
denser gas of chiral molecules. Collisions with the
chiral molecules perturb the rotation of the diatomic
molecules and thus contribute to coUisional broadening
and shift Γ +ίΑω. In the coUisional theory of broad-
ening of spectral lines 1 7 ' 1 8 it is common the express
these quantities in terms of the broadening and shift
cross sections σ' +ia", i.e., Γ + »Δω =Νντ(σ' +ϊσ"),
where N is the density of the perturbing particles (the
perturbers-in our case, the chiral molecules) and vT

is the relative velocity of the colliding particles. We
shall assume that the diatomic molecules are much
lighter, so that only their velocity ν need be taken into
account.

We now introduce the most essential assumption from
the point of view of our subsequent analysis, namely,
that the line-broadening and shift cross sections contain
left-right asymmetric terms that depend on the mutual
orientation of the linear velocity ν and the angular ve-
locity Ω of the diatomic molecule:

Γ + i Δω = Νυτ [ο' + ία" + (b' + ib"), (3.1)

where the signs of b' and b" will change when the
"right" perturbers are replaced by the "left" perturbers
in accordance with the pseudoscalar character of the
product (v ft).

Our aim is to find the mechanism responsible for the
appearance of the left-right asymmetric scattering of
light which is proportional to M6 in (2.2) and is due to
the pseudoscalar contribution to the coUisional broad-
ening cross section in (3.1). To achieve a qualitative
description of this mechanism, we consider the follow-
ing geometry of the experiment. Suppose the scattered
light is recorded in the backward direction (180° scat-
tering) and consider two types of experiment insofar as
the polarization of the incident and scattered light is
concerned, namely, Λ — Λ and L — L, i.e., experiments
with purely circular polarizations. It then follows from
(1.4a) and (2.2) that, for backward scattering,

IRR =A(Mb + Me), III = 4 (M5 - Mt),
Me (δω, q) = (2A)-1 {IRR - ILL),

where A is a constant.

(3.2)

The condition AJ= + 2 means that scattering ensures
that twice the "angular velocity" 2ΩΓΟΙ=4ποΒ(2«/ + 3) is
added to the frequency ω of the incident light in the case
of the purely rotational transition, and to the frequency
ω +w T l b shifted by the vibrational quantum # ω τ 1 6 in the
case of the vibrational-rotational transition. If we take
the positive direction of the χ axis along the incident
light wave vector kj, simple quasiclassical calculations
and quantum-mechanical formulas for the matrix ele-
ments (see, for example, Ref. 19, Sec. 107) show that
the 180° R — R scattering with h.J= + 2 is mainly due to

molecules with angular velocity Ω χ<0, whereas the
main contribution to L —• L scattering is due to mole-
cules with Ωχ> Ο. For the purposes of a qualitative dis-
cussion, we replace the true distribution of the mole-
cules over the directions of the angular velocity Ω (or
the m- components in quantum-mechanical language) by
the following two-point distribution: we assume that
half the molecules have Slf= Ω, = 0, ΩΙ=+ Ω, and the
rest Ων= Ω,= Ο, ΩΙ = -Ω.

Doppler broadening of the scattered line, &wD=qvT,
due to the translational thermal motion of the mole-
cules and the ratio of coUisional to Doppler broadening
will be important for the ensuing discussion. The pa-
rameter (r/AWj,)"1 can be rewritten in the form

ip-= ;£zL= iZ, (3.3)

where I = (Νσ)~ι is the mean free path for the particular
process. The effect in which we are interested
vanishes both for very small and very large perturber
densities ΛΓ.

In fact, in the first case, Ν-Ό and ql — <». The col-
lisions between our diatomic molecules and the per-
turbers are then completely turned off. If we trans-
form to the rest system of each of the scattering mole-
cules, we can place the target molecule at the origin
r = 0 for an infinitely long interval of time, so that the
spatial dispersion effects seen in scattering because of
the presence of the factor exp(iq- r) are rendered in-
operative for r = 0. All that this transformation to the
moving frame and back again will yield is the Doppler
frequency shift &u>D = q· v. Spatial dispersion then
manifests itself only in the Doppler shape of the spec-
trum, but not in the polarization structure. In the
other limiting case, ΛΓ — °°, we have ql — 0. The mole-
cule traverses a very small distance I «q'1 during the
time of one free path (for this particular process).
Spatial dispersion effects are then of the order of ql.
We are thus left with the most interesting region of
perturber pressures, for which Γ~Δω 0 , i.e., ql~l.

For the purposes of qualitative interpretation of the
left-right asymmetry in scattering, we replace the
Maxwellian velocity distribution again by the two-point
distribution: half the molecules will have vy = ve=0,
vx = +vT and the other half vy=vt=0, vx = -vT. The
qualitative model thus corresponds to the following dis-
tribution of probabilities of ν and Ω at a given time:

/ (v, Q) = /, (v) /, (Ω) = [i-6 (v- exvT)

(3.4)
Consider the effect of the pseudoscalar part of the

broadening b' and take 6" = 0. (The effect of the left-
right asymmetric part of the line shift b"Φ0 for b' = 0
can be examined similarly.) Figure 2 shows the scat-
tered spectra recorded in the R — R (a) and L — L (b)
experiments. The broken curves show the contribu-
tions of molecules with vx = vT and vx = - vT. To be
specific, we have assumed that b'>0, having thus
established that, when ν and Ω are parallel, the given
chiral perturbers produce greater broadening than
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β ff-ff «L-t

FIG. 2. Qualitative Illustration of the origin of left-right
asymmetry in the Raman Spectrum with AJ= + 2 (see text for
details).

when ν and Ω are antiparallel. Figure 2c shows the
pseudoscalar Λί6(δω,<?), which turns out to be an odd
function of detuning from the central transition fre-
quency for b " = 0.

Calculations based on a semiclassical model are
analogous to those given earlier in the case of the
resonance natural optical activity due to collisions.2

We therefore only reproduce the final result. Assuming
that (3.1) describes the broadening cross section for the
transition, and that \b' +ib"\«a', it can be shown that

i f ,s j l i , s 0, Μ, = Λ/β,

3Λ/, = Mt = M% = - £ = · Im Ft (Δ, Γο, Ο),
V π

where
Ft (Δ, Γο, O) = j exp ( -ίΔτ-Γ«τ--^-) dx

Γ.
D

(3.5)

(3.6)

(3.7)

(3.8)

i.e., the functions Ft and F2 are expressed in terms of
the error integral of a complex argument and its deriv-
ative. Normalization of (3.5) and (3.6) is such that
$ Α . Moreover, in (3.5)-(3.8),

— qvT,

Φ (ζ) = 1 —2π- 'Λ ί e-V dy.

(3.9)

in deriving (3.5)-(3.8), we retain only the first-order
terms in \b' +ib"\. It turns out that, in this approxi-
mation, Me = M7 and the functions M3, Mv and Ms are
proportional to one another. The dimensionless quan-
tity Δζ in (2.15), which characterizes the left-right
asymmetry of the 90°-scattered spectrum, is given by

A,= ± 0 . i 4 £ (3.10)

for Γ 0 = Χ» when Δ=± Γο (for simplicity, we have as-
sumed that a "=ft"=0).

The magnitude of the asymmetry, measured for 180°

scattering in experiments of the form (3.2) for Δ
= ± Γο, turns out to be greater by a factor of five:

=•±0.7- (3.11)

Thus, within the framework of DDA, the relative mag-
nitude of the left-right asymmetry Δ, in this model at
the relevant pressure does not contain the small pa-
rameter α/λ, but depends on the parameter b'/a',
which characterizes the left-right asymmetry of the
collision cross section.

4. LOCAL MULTIPOLE APPROXIMATION TO THE
SCATTERING OF LIGHT BY LEFT-RIGHT
ASYMMETRIC MOLECULES (LMA APPROACH)

In this section, we follow largely the work of Barron
and Buckingham9·10 and survey the approach in which
scattering problems are treated by including the inter-
action of the higher-order multipoles of the molecule
(magnetic dipole and electric quadrupole) with the light-
wave field. Since the behavior and orientation of the
different molecules are assumed to be independent, this
approach will be referred to as the local multiple ap-
proximation (LMA).

A. Expansion of induced multipole moments of the
molecule in powers of a/λ and symmetry relationships

We shall suppose that the electronic state of the
molecule is nondegenerate and that the frequency of the
incident light lies in the transparency band of the
molecule under consideration. To consider the prob-
lem of Rayleigh and vibrational-rotational Raman scat-
tering, it is sufficient to confine our attention to the
Born-Oppenheimer adiabatic approximation, which is
often referred to as the Placzek approximation in the
case of scattering problems. In this approximation,
the scattering problem is first solved for fixed nuclei
and then the dependence of the amplitude of the scat-
tered field on the vibrational and rotational coordinates
of the molecules is taken into account. As already
noted, to take into account the first-order terms in
β/λ in the scattered-wave amplitude, we must find the
electric dipole (μ) and magnetic dipole (m) as well as
the electric quadrupole (0a S) moments induced in the
molecule by the incident light wave. We shall use the
following normalization of these moments in the cgs
system of units:

In this notation, the expressions for m and 0tk that
are linear in the amplitude of the incident wave
Ε exp(-tu>i + tk -r) have the general form

m — ' — ο* Ε θ — A*- E (4 2)

Our notation is essentially the same as that used in
Refs. 9 and 10 except that our tensor, plk, is related to
the tensor Gik in Refs. 9 and 10 by GM = - >ωριλ and we
use cgs units rather than SI units. In (4.2), we have
confined our attention to the first nonvanishing approxi-
mation in α/λ. In other words, the right-hand sides of
(4.2) contain only the field intensity Ek experienced by
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the molecules and not the gradients kjE,,, etc. This is
so because, already in this approximation, the tensors
ρ and Λ have the dimensions of L* and contain an extra
power of the molecular size α as compared with the
electric dipole polarizability a, which has the dimen-
sions of i 3 .

The true tensor Atkl and pseudotensor pit can be re-
ferred to as the dipole-quadrupole and dipole-magnetic-
dipole cross polarizabilities.20 The first part of this
designation (dipole) indicates that the electric field in
the incident wave is looked upon as uniform. The quan-
tum-mechanical analysis of the interaction between
electrons in a molecule and the classical wave E(r, t)
in terms of the electric dipole Hamiltonian2'

Γ = 0, ί). (4.3)

enables us to find expressions for the tensors A and p;
the point r = 0 corresponds here to the conventional
position of the "center" of the molecule. For the non-
degenerate electronic state of the molecule in the ab-
sence of a static external magnetic field, the tensors
A and ρ and the electric dipole polarizability tensor a
turn out to be real in the transparency region and are
given by

(4.4)

(4.5)

(4.6)

where the sum over « of the products of the matrix ele-
ments denotes summation over the electronically ex-
cited molecular states and the subscript 1 represents
the ground state. The fact that the tensors a, p, and A
are real is readily understood if it is recalled that the
total Hamiltonian is invariant under time reversal t
— - t. In fact, the nondegenerate electronic state
transforms into itself under time reversal for the T-
even Hamiltonian. The quantities μ, and §ilt remain
invariant and m, change sign under time reversal. The
operation t— - t corresponds to transition to the com-
plex conjugate quantities because the time dependence
of the wave field is E~ e~'"K Finally, the assumption
that there is no absorption removes possible time ir-
reversibility connected with going around the poles in
the resonance denominators. In view of the foregoing,
the expressions given by (4.2) turn out to be invariant
under time reversal only for real p(k and Alhl. The
asterisk representing complex conjugation in (4.2) can,
therefore, be omitted. We also note that all three ten-
sors a, p, and A have finite nonzero static limits for
ω — 0 (this property is not exhibited by the tensor Gik

= -i<j)lk discussed in Refs. 9 and 10).

The pseudotensor pik is, in general, nonsymmetric in
the space indices and contains nine independent compo-
nents. The third-rank tensor Alkl is a zero-trace sym-

2)We note that throughout we ignore corrections of the Lorenz-
Lorentz type and similar others which are connected with the
difference between the effective and macroscopic fields.

metric tensor in its indices k,l, which refer to the
quadrupole on the left-hand side of (4.2):

Am = Aln, AtJi = 0, (4.7)

so that, in general, it contains 5x3 = 15 independent
components.

We have thus obtained the quadrupole and magnetic
dipole induced in the molecule by the uniform electric
field E(r = 0,i). The latter is present in the electric-
dipole Hamiltonian (4.3). To include all first-order
terms in α/λ, we must also expand in powers of α/λ
the dipole moment μ, induced by the wave in the mole-
cule. The corresponding phenomenologic expansion is

Since k· Ε = 0 in the transverse light waves, we can add
an arbitrary term of the form c(5IJt to the tensor βιη

without violating (4.8). We shall always choose this
term such that βαί = 0, in which case the tensor βΠΙι

will, in general, have 27 - 3 = 24 independent compo-
nents. This kind of tensor can always be decomposed
into two parts, namely, an antisymmetric part and a
zero-trace symmetric part in the last two indices:

1
elki

1 2
if βί/ (4.9)

The components of the dipole moment μ, in (4.8) are
proportional to the antisymmetric part of /3 jU in (4.9)
and are "excited" by the magnetic field Hi = - c/
ω β ι * ι ^ | £ * °f the incident wave, whereas the components
μ, in (4.8) that are proportional to the zero-trace sym-
metric part of pm are "excited" by the symmetric
gradient

dEh

dx,
dEt

dxk

dE,

i.e., the quadrupole part of the nonuniform electric field
of the incident wave. The first term in (4.9) can, there-
fore, be referred to as the magnetic-dipole-dipole
cross polarizability and the second as the quadrupole-
dipole cross polarizability. Microscopic evaluation of
the tensor /3JU from (4.8) requires the inclusion of the
magnetic dipole and electric quadrupole terms in the
interaction Hamiltonian: '

V'm= - Μ · Ε ( Γ = 0 , ( ( - f r a . j e c u r l E ( r , t')^

dEj oEj \ J

t dx\ "^ ϋχι } |r=0 * (4.10)

Evaluation of the induced dipole moment, which is
linear in the field amplitude, with the aid of the Hamil-
tonian (4.10) yields (4.8) with the expression for α given
by (4.4) and the real tensor β,,, given by (for a non-
degenerate state)

— Pijejik + — Ailh. (4.11)

Under the above assumptions, the tensor β(η thus turns
out to be uniquely related to ρ and A. This expresses
the fact that mutually symmetric cross polarizabilities
are equal. It is completely analogous to the symmetry
of the ordinary (dipole-dipole) polarizability tensor aik
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— akf and is a consequence of the invariance of both the
Hamiltonian and the (nondegeneratel) state of the mole-
cule under time reversal.

A very important point is the covariance of the above
expressions under a shift of the origin of the coordinate
frame.2 0·2 1 In the coordinate frame K', which is shifted
relative to the original system if by a vector b such that
r ' = r - b, the quantities m and 6{k acquire the following
additional terms:

μ'=μ,
(4.12)

In addition, in (4.2) and (4.8), the complex amplitude of
the field Ε was interpreted as the value E = E(r = 0) at
the origin of a coordinate frame attached (in general,
arbitrarily) to the molecule. When we transform to the
new coordinate frame, we must substitute E' = E'(r' = 0)
= E(r = b) in (4.2) and (4.8) at the new origin r ' = 0.
Since E~e'* ' r , the field E' takes the form E'(0) = Ee i k > 1 >

«E(l +ik· b). Here, we have confined our attention to
the expansion that is linear in b because we are only
interested in the first-order terms in α/λ. To this ac-
curacy, the corresponding transformation law for the
tensors α, β, Α, ρ is as follows:

ku = Am—j-(Zaikb, + (4.13)

Naturally, the symmetry relation (4.11) is also in-
variant under shifts of the coordinate frame. We shall
now illustrate the importance of the transformation
(4.13) by the following example. Consider a particle
(atom or molecule) that is symmetric under inversion
at some "center" r = 0 (nuclear center in the case of an
atom). In this coordinate frame, all the even-rank ten-
sors (including Aik, and £,„,) and all the pseudotensors
of even rank (including pik) that characterize the prop-
erties of the particle will vanish, i.e., Aikt = 0, βΜ

= 0, p,* = 0. When some other origin is chosen, non-
zero components A'lkl,Pm,p'ik, are found to appear and
are given by (4.13) without assumptions about the dy-
namics of the system.

It is well known that the usual polarizability tensor
atk=akl is conveniently decomposed into irreducible
components with respect to the group of rotations of
three-dimensional space, namely, the scalar and sym-
metric zero-trace components. Similarly, the tensor
Aikl can be decomposed into three representations of
rank Ζ = 3 (irreducible third-rank tensor), 1 = 2 (ir-
reducible second-rank pseudotensor) and 1 = 1 (vector).
The pseudotensor pih is decomposed into representations
with 1 = 2 (irreducible pseudotensor of rank two), 1 = 1
(vector), a n d i = 0 (pseudoscalar) (see Appendix 1).
Such decompositions are convenient for the subsequent
evaluation of quantities averaged over the molecular
orientations.

B. Differential scattering cross section in LMA

The scattered-field amplitude in the far zone is given

by the following standard expression which corresponds
to the sum of the amplitudes of dipole, magnetic dipole,
and electric quadrupole radiations:

E 2 ( R , t)= — η2] η 2]; (4.14)

where η is the refractive index of the medium and the
value of the right-hand side in (4.14) is taken at time
/' = t - η | R - r 0 1 / c . Here R is the point of observation,
| R - r o | » . R » X , n 2 = R/.R, 112 is the unit vector in the

direction of scattering, and 1^=ηωη 2 /ο. Quantities
referring to the incident wave a r e indicated by the sub-
script 1. Thus, for the wave vector, we have kj
= no)ni/c. we must now substitute into (4.14) the ex-
press ions for μ, m, and θ, induced in the molecule by
the inc ident waves:

μ>= [aik + lPi,e.iijkii + i-j- Aiklk,i) £kexp ( —ίωί + iki -'o)> (4.15a)

r0), (4.15b)

)· (4.15c)

Further results can conveniently be written in t e r m s of
the projection A2 of the amplitude E 2 along the polariza-
tion unit vector e 2 of the scattered wave: A2= (e* · E 2 ).
The scattering c ross section per unit solid angle" for a
wave with polarization e l f i.e., Ei=Aiel, into a wave
with polarization e 2 and with propagation directions nj
and 113, respectively, is given by

£<». (4.16)

In our particular approximation, the tensor (4»r)2JVPJ(tim

in the LMA approach has the same significance as the
tensor fTlkJmd(5u) introduced above [(see (1.4a)] in the
DDA approach. In the present expression, JV is the
number of scattering molecules per unit volume. When
the expression for |.A2|

2 is evaluated to the required ac-
curacy, we retain only the zero-order terms in a/\,
terms proportional to a2, and interference terms of the
first order in α/λ, which are proportional to the pro-
ducts ap and aA. In these small interference terms, we
neglect corrections of the order of (|ω( - ω2 \/&ι), which
are relatively small even for the vibrational Raman
scattering of light. The final result is

~ ' -37 (Aikpni}l — Akipn,p)

i^jr(Almlnu —

(4.17)

where the angle brackets represent averaging over the
orientations of the molecules. It is well known that this
averaging is most conveniently performed by decom-
posing the tensors into irreducible (with respect to the
rotation group) components. The only nonzero averages
are then those of the products of irreducible representa-
tions of equal dimensionality I. The final result is the
well-known expression for the correlator of the tensors

(4.18a)
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and the expressions for the terms of the first order in
α/λ:

( | ( 4 . 1 9 a )

<aikA,mn) = Cs (eilm6hn + ehlm6in + en Am + ek,nSlm), (4.20a)

where

i ^ (4.18b)

(4.19b)

(4.20b)

The tensor P W I m then assumes the form

i m J ) — -j (8ihelmj — f>imeihj) (nl} + nv) J

— ntj (26uehm

(4.21)

The expression for the scattering cross section is ob-
tained by multiplying this tensor by the polarization unit
vectors [see (4.16)]. In the case of Raman scattering,
the tensor aik must be replaced by its variation with
respect to the molecular coordinate Q, i.e., aik-~ (3α«/
3Q)Q in all these formulas. This also applies to the
tensors p(k and Aik.

We note particularly that the above expressions do
not depend (to within terms of the order of ~a/\, in-
clusive) on the choice of the origin in the molecule if we
take into account the transformation rules given by
(4.13).

The differential scattering cross section per unit
angle is characterized by five constants: two are of
zero order in α/λ and three are first order in this ratio.
The zero-order terms (electric dipole) are well known:
they correspond to scalar and symmetric zero-trace
scattering. At the same time, since the electronic term
is nondegenerate in the adiabatic approximation, there
is no antisymmetric scattering (see Refs. 15 and 16 in
this connection). It may be said that scattering of zero
order in α/λ corresponds to the process where a photon
corresponding to the spherical vector of the field of
electric-dipole type (see Ref. 13, Sec. 46) is removed
from the incident plane wave and a similar photon is
emitted into the scattered wave, i.e., we have the D~D
process. Scalar scattering then proceeds without a
change in the m-components of the spherical vector
whereas symmetric zero-trace scattering does, in
general, involve this change.

To avoid misunderstanding, we note the following. It
is well known (see, for example, Ref. 11) that the
selection rule for symmetric zero-trace and antisym-
metric D — D scattering is the same as for the infrared
absorption due to quadrupole and magnetic-dipole tran-
sitions, respectively. This is why the above types of

pure dipole scattering are frequently colloquially re-
ferred to as "quadrupole and magnetic-dipole scat-
tering." In our case, this terminology will only confuse
the situation because we shall have to consider scat-
tering with an actual participation of electric quad-
rupoles and magnetic dipoles. We shall therefore avoid
this terminology.

First-order terms in α/λ in this scattering cross sec-
tion arise due to interference of the D— D process with
the M— D, D~M, Q — D, and D— Q processes. Here,
Μ and Q represent spherical photons of the magnetic-
dipole and electric-quadrupole type (see Ref. 13, Sees.
46 and 47). The fact that the Μ and Q photons have
positive parity whereas the D photon has a negative
parity shows immediately that terms of the first order
in α/λ change sign under space reflection during scat-
tering by freely rotating systems. In other words, such
terms have different signs for the right-handed and
left-handed molecules, whereas, for left-right sym-
metric molecules, they are zero. The first-order cor-
rection in α/λ is also found to vanish for the racemic
(50%/50%) mixture of left- and right-handed molecules.

Specifically, the two constants C3 and C4 are due to
interference between the D - D process and the D~M
and M—D processes. The constant C3 appears as a
result of interference of the scalar ai( with the pseudo-
scalar Pu and C4 originates in the interference of the
irreducible symmetric tensors of rank two, aik and pik.
The further constant Cs corresponds to interference of
D -~ D with D -» Q and Q — D processes, in which only
the symmetric zero-trace part of the tensor Aikl (ir-
reducible tensor of rank two) and a similar representa-
tion of au are involved.

C. Angle integrated scattering cross section

In order to evaluate the scattering cross section
summed over the scattered wave polarizations, we must
replace the tensor e2<

e*r by the projection operator
e2ie*i ~* ̂ ii - W2,w2i· Β ^ s ' n e n a relatively simple matter
to obtain the integrated cross section by integrating with
respect to the solid angle άΌΛ2. A still simpler pro-
cedure is to use the general expression for the radia-
tion intensity integrated with respect to the angles. '
Neglecting second-order terms in α/λ (see Ref. 22 or
Appendix 2), we find that the integrated intensity is
given by the usual dipole formula

(erg/sec^-Jrl·»2 =-|τ(μιμ*) (4.22)

Substitution for μ( from (4.8), averaging over the
angles, and division by the flux density C |£ | 2 /8TT (erg/
cm 2 · sec) yields the following total cross section:

where Pc = i(nl[e*ei\) is the degree of circular polar-
ization of the incident wave; Pc= +1 and P c = - 1 for
right- and left-polarized radiation, respectively. We
note that, in contrast to the differential cross section
do/do, the total cross section σ does not include the
quadrupole term C5. This is so because the quadrupole
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photon has J~ 2 and cannot, therefore, interfere with
the dipole photon (in the incident wave) during averaging
over orientations, in contrast to this, the magnetic
dipole photon in the incident wave ( J = l ) does interfere
with the electric dipole {J=l) and the parity restriction
is removed by the left-right asymmetry of the mole-
cule.

In conclusion, we note the following curious point.
Consider a one-component gas of left-right asymmetric
molecules of low density, so that the refractive index
is very close to unity. Suppose further that the sym-
metry of the molecules allows the presence of only the
scalar part of the polarizability au, Le., the aniso-
tropy of the dipole-dipole polarizability atk is zero. We
thus arrive at a situation that was examined long ago
by Rayleigh. It was, in fact, Rayleigh who appears to
have been the first to point out that, in the case of
molecules with a purely isotropic electric dipole polar-
izability, the Rayleigh scattering cross section of a gas
can be expressed in terms of its refractive index. We
now draw attention to the fact that terms of the first
order in α/λ in the scattering cross section are then
also expressed in terms of the refractive properties of
the gas:

(4.24)

where the subscripts (+) and (-) refer to the right- and
left-polarized waves, respectively. The most con-
venient way of deriving (4.24) is to use the optical
theorem from wave theory (see, for example, Ref. 23),
according to which the refractive index is determined
by the zero-angle scattering amplitude. We note, final-
ly, that (4.24) cannot be written as a simple generaliza-
tion of Rayleigh's formula σ± = const· (n±- I) 2 . This
type of "generalization" would yield (σ* - σ_)/σ greater
by a factor of two than the correct value given by (4.24).

D. The "complete experiment" within the framework of
LMA

Although the existence of left-right asymmetry in light
scattering has itself been reliably confirmed by experi-
ment,10 actual measurements of this asymmetry carried
out to-date have not, unfortunately, been very accurate.
Nevertheless, it is basically interesting to consider the
question of the "complete experiments within the frame-
work of the LMA approach.

Left-right asymmetric terms ~C3, C4, and C5 in the
scattering cross section have no effect if both polariza-
tions, i.e., the polarization of the incident and scat-
tered waves, are plane (linear). It is, therefore, suf-
ficient to have two experiments to determine Cl and C2;
for example, one can measure I,, and /„ = /„ = /^ for
scattering at 9=90° (Fig. 1).

The essential difference between the LMA approach
as exemplified by (4.21) and the DDA approach repre-
sented by (2.2) is that the polarization measurements
of the cross section at a single angle are no longer
sufficient to enable us to determine all five constants
Cj - C5 in the LMA approach. In particular, calcula-

tions similar to those performed in Ref. 6 show that,
for any fixed scattering angle in the LMA approach,
there are only four linearly independent experiments,
for example, /„, /„, /R i, IRx. An in order to determine
all five constants Cj - C5, one must perform polariza-
tion measurements for at least two different values of
the scattering angle.

The following is an example of such a "complete ex-
periments :

/ „ (Θ = 90c), Ι,, (Θ = 90°), IRz (Θ = 90°),

IRX (Θ = 90°), IRR (Θ = 180°).
( 4 > 2 5 )

Accordingly, measurements of only the left-right
asymmetric constants C 3,C 4,C 5 in the LMA approach
can be.achieved within the framework of the following
experiments:

90°:

180°:

(4.26)

Measurements of the cross section differences (4.26)
are quite difficult. Such measurements are, neverthe-
less, to be preferred as compared with measurements
selected from (4.25) with subsequent subtraction of the
small differences between large quantities recorded for
(4.25) under appreciably different experimental condi-
tions.

5. RANGES OF VALIDITY OF DDA AND LMA

We have examined two approaches to taking spatial
dispersion into account in molecular scattering of light.
The problem now naturally arises as to what is the
relationship between these two approaches and what is
the range of validity of each.

Let us begin by considering the limiting case in which
these two regions of validity overlap. As noted in the
Introduction, DDA means that we can use the dipole
permittivity C|*(r, t) or polarizability a(k at each point.
The corresponding approximation in the local multipole
approach is the so-called two-group mechanism.14 It
involves the following model of the interaction between
a molecule and a light field. Let us suppose that a
molecule of size ~a consists of Κ structural units of

s i z e 5 « a , located at the points r = r ( i > (j = l K),
so that | r ( i > |~o. We shall now suppose that each struc-
tural unit has only the dipole polarizability tensor a^ '
and all the higher-order tensors p^ ,A\[\ are zero.
More precisely, this may be formulated in the form of
the following approximate expressions:

PW ~ b* « 0, A<>> ~ b* * 0. (5.1)

and Α\{\However, the assertion that the tensors
are zero and the estimates (5.1) can be made for each
structural unit only in its "own" coordinate frame with
origin at the point r = r ( · " . The transformation to a co-
ordinate frame that is common to all the components of
the molecule can be based on (4.13), which gives
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4 2

(5.2)

This still depends on the choice of the origin but, if we
evaluate the coefficients Ci,Ci,Ci, which determine the
scattering cross section, we find that they are no longer
functions of the choice of the origin. In particular, it
follows from (5.2) that

3C5 = J L l (5.3)

which involves the sum of the contributions of different
pairs j,p of structural units and this is the origin of
the phrase, "two-group mechanism." If we rewrite this
sum over all./,/> in the form of a sum, subject to the
condition j <p, we can remove the coefficient 1/2 from
(5.3). As noted in Ref. 10, the scalar part p ( l of the
tensor ρ (which is known to determine the natural opti-
cal activity of liquids) in the "two-group approxima-
tion" is zero. This is easily verified on the basis of
(5.2). The "two-group mechanism" is, therefore, a
possible mechanism for the left-right asymmetry, but
only in the case of scattering (through nonzero angle!).
It is not suitable for the refractive index. This is why
the constant C3 is also zero in this mechanism.

Since C4 = - 3C5, C3 = 0, the left-right asymmetric
terms in the tensor Piklm in (4.21) assume the form

™; + δimekij+ 6ueimj + 6kmetij) J

[-|- (n,j + n2}) (6nehmJ — 6kmeuj + 6imeikj — blkelml)

+ jnv(e,lmShj — 6jmeihl)j}. (5.4)

This expression is written in the form of two terms.
The term in the second pair of brackets is arranged so
that, when it is multiplied by the polarization unit vec-
tors ^2(ei»^2ieim> subject to the transversality conditions
(n,· et) = Q and (n2· e2) = 0, the result is identically zero.

In order to compare this expression with the left-
right asymmetric terms in the DDA approach, we as-
sume that the correlation between the fluctuations
( 6cik(Q)6c,m(r)) extends to distances | r | ~ a , much
shorter than the wavelength. More precisely, a « | q | - 1 ,
where q = kt - k2 is the change in the wave vector of the
photon after scattering. If in (2.4) we confine our at-
tention to the first approximation in qa, we find that

j M, (?, δω) d (δω) = - ± qeilp j <δε,* (0) 6e,m (r) rp) d»r, (5.5)

and the corresponding t e r m s in Tittm a r e

6Tih,m — iMe (enpSftm + «impSti + eh,pdim + etmp6u) np. (5.6)

If we compare (5.3)-(5.6), and use the transversality
condition, we find that the results are quantitatively the
same if the fluctuations in the permittivity tensor 6i(r)
in the DDA approach are taken in the form

6eik (r) = 4π J δ13» (r-r<'>) aft'. (5.7)

This, in fact, corresponds to the basis of the "two-
group mechanism" in the LMA approach.

We note that the above comparison cannot be looked
upon as an argument either for or against the validity
of the two-group mechanism in the case of real mole-
cules, and simply serves as an aid to a better under-
standing of the physical assumptions used in LMA and
DDA.

To establish the differences between the two ap-
proaches, we turn now to DDA and consider the form
of the integrated cross section (with respect to the fre-
quency of the scattered light) in the DDA approach. We
must first define our terms. We must establish the
frequency interval over which the cross section must
be integrated in order to obtain some useful result for
some particular variable. For example, it is clear
that the intensity of the scalar part of the Rayleigh line,
integrated with respect to the frequency, which was
calculated long ago by Einstein from thermodynamic
considerations, is not directly related to the intensity
of the individual lines in the vibrational Paman spec-
trum, which are separated from the Rayleigh line by
100-1000 cm"1. This shows that an integral over a
much smaller frequency interval should already exhibit
certain definite invariance properties, i.e., a kind of
spectroscopic stability. We shall now show that δω
= |q|f, can be taken as this minimum frequency inter-
val, where ν is the characteristic velocity of propaga-
tion of perturbations in the medium under consideration.
We begin by considering the expression for the scat-
tering cross section measured with a spectroscopic
device with an instrumental function £(Δω), normalized
so that f g(A>jt>)d(&u) = 1. Apart from numerical coeffi-
cients and factors such as the polarization unit vectors,
the DDA approach yields

/ m e a s (n,,

7"ifcim(q, ω 1 -(ο,-Λω) ί (Δ<ο)ί !(Δω). (5.8)

If we take the Fourier transform of the instrumental
function

) = -~ f (5.9)

we find that the scattered intensity at frequency ω2, as
measured by the instrument, is determined not by the
original tensor r j W B ( q , » , - ω2) given by (1.4b), but by
the tensor

Zttimfa. ω,-ω,) = -4 j <&fc(R, i)6e,m(R+r, ί + τ)) ( 5 > 1 0 )

X G (τ) exp [ — ; (ω, — ω2) τ + iqrj d3t άτ.

In other words, f' differs from f as given by (1.4b)
by the fact that the space-time correlator (δ~·δ*)
is multiplied by the function G(T). General properties
of Fourier transforms show that G ( T ) ~ 1 only for τ
s ioij'1, where Δω0 is the width of the instrumental
function G(Ao>). The function G(r) falls off rapidly for
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larger values of r[if the function ^(Δω) is smooth the
reduction in G(T) for \r\ — °° is exponential].

We now assume that the correlator ( &e(R, t) χ 6e(R
+ r, ί + τ)) is nonzero only within the sphere r «a 0

+ v\T\, where ν is the characteristic velocity of per-
turbations in the medium, and a0 is the simultaneous
correlation length:

, ί).δβ(Κ+Γ, ί + τ))=Ό for (5.11)

Far from the phase transition points the parameter a0

is of the order of a few molecular dimensions and mea-
sures the short-range order. To within an order of
magnitude, ν is equal to the velocity of sound, i.e.,
w-104-105 cm/sec. In the case of elementary excita-
tions such as excitons, ν may turn out to be of the
order of 1O7-1O8 cm/sec.

When the integral in (5.10) is evaluated subject to
(5.9) and (5.H), two limiting cases may be encountered,
namely, high and low resolution Δω0 of the spec-
troscopic instruments. In the case of high resolution,
when Δω ο «9υ, we have qr~ qv/bu)0»l in the region
where both factors, i.e. ( δε · δε) and G(T) are appre-
ciably different from zero. Spatial dispersion, i.e.,
the q-dependence of T'iklm, is then important and one
must use the expansions of the DDA approach given by
(2.2)-(2.11). If, on the other hand, we have low reso-
lution, Δωο»ςν, the exponential exp(iq· r) can be re-
placed by unity over a large portion of the integration
range. The result is the simple Placzek theory with
the q-independent tensor T'fklm, i.e., without spatial
dispersion:

2, ω,) (ω
m +Α/;νη,(ω2)

(5.12)
Moreover, we can use (5.9)-(5.11) to estimate the
degree of approximation involved in (5.12). It is con-
venient to do this by writing down the expressions for
the functions M{(i = 1-6) from (2.2) as measured by the
instrument with spectral resolution

- ) * ] , (5.13)

(-^~Y], (5.14)

£^)2], (5.15)

) 2 ] , (5.16)

) s ] , (5.17)

] . (5.18)

; (5.19)

where O(x) represents smal l quantities of the order of
x.

Roughly speaking, the LMA approach considered in
Sec. 4 is concerned with the polarization s t ructure of
the small t e r m s represented by O(ka) in (5.18).1 In
this sense, the LMA approach may be said to have the
higher precision of the order of a/x, inclusive. At the
same t ime, LMA does not enable us to take into account
fine spectral effects due to the spreading of the fluctua-

tion correlator with time over large (s λ) distances. In
this sense, the LMA approach has lower precision be-
cause it is only concerned with scattered intensities
averaged over the spectral interval Δω0 s qv.

The limiting value of the spectral resolution Δω 1 1 η

= qv can be written in the form Δ ω Η β = ω0(ιΆΙι1ι)2 8ϊη(θ/
2), where ctit = c/n is the phase velocity in the medium
and θ is the scattering angle. Thus, in the typical
situation ΔωΙ1β/ω0~1Ο"3-1Ο"6, since the velocity ν is
much smaller than the velocity of light (see above).

We note that spatial dispersion, i.e., the dependence
on the wave vectors kt and kj of the incident and scat-
tered waves appears in different ways in LMA and DDA.
In particular, in DDA, we must take into account the
complicated functional dependence on kj and 1 ,̂ but
only through the difference q = k t - k2. Conversely, in
the LMA approach, we have the dependence on each of
the vectors k, and 1̂  separately, but in the form of a
polynomial in kj,k2 of degree not higher than one.

To describe low-resolution experiments (Δωο»#ί>)
that are not too accurate, i.e., if we neglect correc-
tions of the order of (α/λ)" and (qv/Δω^)", it is sufficient
to use a still simpler approach, namely, the local-
dipole approximation (LDA) which is described in all
textbooks on electrodynamics, quantum electrodynam-
ics and molecular optics. In the LDA approach, the
polarization dependence of the scattering cross section
is given by the well-known expression (5.12). The pa-
rameter η then characterizes the inadequacy of the LDA
approach: n = 2 for left-right symmetric terms and
n = l for left-right asymmetric terms.

Conversely, measurement of the polarization char-
acteristics of scattering performed with very high pre-
cision (better than a/x) and very high spectral resolu-
tion (better than qv) would already need the distributed
multipole approximation (DMA) for their interpretation.
Since this problem is very difficult both experimentally
and theoretically, we shall not discuss DMA here. All
the foregoing may be summarized in the following table:

TABLE I.

^ \ ^ Spectral
^ ^ resolution

^ \ ^ Δωο

Measurement \ ^
precision ^ ^ .

~ 1
α

~T

Worse
than
qv

LDA

LMA

Better
than
1"

DDA

DMA

6. ROTATIONAL RAMAN SCATTERING OF LIGHT
BY NON CENTRALLY-SYMMETRIC MOLECULES

We have seen that observed effects of the first order
in a/x are wholly determined by the left-right asym-
metry of the ensemble of scattering molecules. For
left-right symmetric molecules, effects ~a/x are there-
fore absent and corrections to dipole processes are of
the order of (α/λ)2 (in the local approximation). Since,
in the visible range, α/λ~10~3, the corresponding cor-
rections are of the order of 10"6 of the dipole-dipole
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scattering cross sections. Such small corrections are
practically impossible to observe against a large back-
ground. However, the exception is the situation where
some particular frequencies are forbidden in the scat-
tered radiation for D— D processes. The D~ Q and
D~ZM processes then have a relatively low probability,
but can be observed without a background.

We note that the appearance of new Raman lines cor-
responding to a change in the parity of the state of the
scatterer due to the £> = Q and D~ Μ processes ap-
pears to have been discussed for the first time in Ref.
24. However, the discussion given in that paper was,
from our point of view, exceedingly complicated and
laborious because the adiabatic Born-Oppenheimer ap-
proximation, i.e., the Placzek approximation in scat-
tering theory, was not used, and all the formulas were
written down directly for the quantized rotational states
of the molecule. In contrast, our discussion is based,
as in Sec. 4, on the preliminary evaluation of the in-
duced multipole moments, followed by averaging over
translational, rotational, and vibrational motion of the
nuclei. This, i.e., the adiabatic, approximation turns
out to be much more convenient in the discussion of
such important questions as covariance with respect to
the choice of the origin of the reference frame, the two-
group mechanism, and so on. Let us consider some
specific examples.

a) The methane molecule, CH4. This molecule has
symmetry planes and is left-right symmetric. The
terms of the first order in α/λ are therefore absent
from the scattered intensity. The electric dipole po-
larizability alk for this molecule in the vibrational
ground state reduces to the scalar alk= ao5ik because of
the presence of four third-order symmetry axes. As is
well known, rotational Raman scattering by this mole-
cule is therefore absent (the rotation of the molecule
does not modulate the induced dipole moment μ = α0Ε).
However, this conclusion is valid only for D^-D pro-
cesses. Since CH4 does not have an inversion center,
the process D~Q is not, in general, allowed. In this
approximation, the rotation of the molecule is ac-
companied by the modulation of the components of the
induced current (μ and eik) at the ordinary and tripled
rotational frequencies. In quantum-mechanical lan-
guage, this corresponds to transitions with AJ=± 1 and
Ae7=± 3. The cross section may amount to ~ (α/λ)2-ΊΟ"6

of the Rayleigh cross section. Since, however, the
Rayleigh background is absent at the rotational lines of
methane, one would hope that this scattering would not
be too difficult to detect, especially since the rotational
constant of methane in the vibrational ground state is
relatively large (B = 5 cm"1). The dependence of the
cross section for the rotational Q — D Raman scattering
by methane on the polarization and propagation direc-
tions (e,, e2, n l f n2) is written out in Appendix 3.

b) Linear molecules. In the case of scattering by
asymmetric linear molecules, for example, HCL or
HD, we have both the well-known lines with Δ</=0, ± 2
(£>—£> process) and the very weak lines with AJ=± 1,
AJ = ±3 (Λ/— D and Q~D processes). The intensity of
the latter lines is lower by a factor of 104-106 as com-

pared with the allowed lines with AJ = 0, ± 2.

The isotope-substituted hydrogen molecule HD is also
interesting because it can be analyzed exactly. Thus,
within the framework of the adiabatic approximation,
the electronic properties of this molecule are the same
as those of H2. If we take the origin of the coordinates
at the mid-point between the nuclei (which are fixed in
the adiabatic approximation), then for both molecules,
i.e., HD and H2, the tensors /aJM, Aikl, and pik are all
zero because of the presence of a center of inversion.
However, to achieve the correct description of the time
dependence of the scattered-wave amplitude, i.e., of its
spectrum, we must place the origin at the center of
gravity of the molecule which is free from periodic dis-
placements at the rotation frequency. In this new co-
ordinate frame, the tensors p(kt, Am, and pik of the HD
molecule assume nonzero values, in complete corre-
spondence with the fact that, when the motions of the
nuclei, i.e., their masses, are taken into account, the
HD molecule does not have a center of symmetry. The
essential point is that the values of the tensors β, Α, β
can be expressed through (4.13) in terms of well-known
variables such as the displacement vector b, which is
equal to l/6 of the separation between the nuclei, and
the electric dipole polarizability tensor aik, which is
known from various experiments.25 The large value of
the rotational constant (B * 46 cm"1) means that one can
use spectroscopic instruments with relatively low reso-
lution and, therefore, high luminosity. Appendix 4 lists
the corresponding expressions and numerical values for
scattering by HD molecules with AJ = ±1 and &J=±3.

Since the anisotropy of the electric-dipole polariza-
bility of the hydrogen molecule is low (see, for exam-
ple, Ref. 25), 3(o,,- α1)/(α,,+2α1)«0.377, it is in-
structive to consider the limiting case obtained for
an = cti. In this limiting case, the rotation of the
molecule does not modulate the electric dipole polar-
izability aik = αοδ ( >. The appearance of rotational lines
with the selection rule Δ<7=±1 in the case of the HD
molecule is due to the simple fact that the position r(t)
of the "electric-dipole center of gravity" (compare with
Ref. 26) rotates around the mechanical center of grav-
ity. The complex scattering amplitude which contains
the phase factor exp[i(kj -k 2 )r(i)], then acquires, be-
cause of the rotation r(i)~ sin(f2/ + <p) terms of the first
degree in r(i):

exp [i k2) r («)] » 1 + t k.) r (i). (6.1)

The first term in this expression corresponds to the
usual unshifted scattering and the second corresponds
to scattering with selection rules AJ = ± 1. In this ap-
proximation with arl = aL , scattering with AJ=±3 does
not appear. It is interesting to note that, for polar-
ization with a,, = a x , both types of scattering (Δ<7=0
and AJ — ±1) are scalar. In other words, the scattering
cross section corresponding to Δ<7=±1 is proportional
to (ω/c)41ejej | 2 | k j - k 2 | 2 . The scattered intensity with
Δ<7=±1 is then a maximum for 180° scattering, and
zero for zero-angle scattering. The scattered intensity
with the selection rule AJ=±3 is also a maximum for
180" scattering and tends to zero as ~ |k t - kj | 2 for

155 Sov. Phys. Usp. 22(3), March 1979 N. B. Baranova and B. Ya. Zel'dovich 155



small scattering angles although its polarization de-
pendence no longer reduces to 1 + \et· e21

2 - / 1
• e* | 2 , and can have a more complicated form.

APPENDIX

1. Decomposition of cross polarizability tensors ρ and Λ
into representations irreducible under the rotation group

The true tensors a(k and A(k, and the pseudotensor
pik can be decomposed into the following irreducible
representations:

ρ».=P iPj+Pik;

(Al.l)

(A1.2)

(A1.3)

where the superscript in parentheses represents the
"quantum number V corresponding to the given repre-
sentation and the signs (+) and (-) indicate the nature of
the corresponding irreducible tensor of rank l\ (/+)
corresponds to the true tensor and (/-) to the pseudo-
tensor. Moreover, we use the following notation:

= — Aiki-r

A'iK= ——

(A1.4)

where α0 is a true scalar, p0 is a pseudoscalar, A
and ρ are true vectors, A"ik and pjt are irreducible
(zero-trace symmetric) pseudotensors of rank 2 and
Afi** is an irreducible true tensor of rank 3. This clas-
sification enables us to reduce very substantially the
number of independent components of these tensors for
molecules with a particular symmetry group.

Finally, it will be useful to write out the relationships
between the components of the tensors ρ,Α, β, that are
the analogs of the Hermitian condition for the tensor a{k

and that follow only from the condition that there is no
absorption (but, in general, without the condition of
time symmetry):

= α · . R. e _ p » < l , + i J ( · (A1.5)

In general, alk, βΜ,Ρα,,Α{ΙΙΙ are complex numbers.
The relationships given by (A1.5) are also invariant
under the transformation (4.13) if it is assumed that the
Hermitian condition aik = aj, holds.

2. Expansion of radiation intensity in powers of a A in
electrodynamics2 2

In subsection c) of Sec. 4, we used the formula for
the usual electric dipole approximation to calculate the

intensity integrated with respect to the angles. In this
Appendix, we shall show that this formula is, in fact,
valid to within terms of the order of ~α/λ, inclusive,
and thereby obtain a (more complicated) expression for
the intensity integrated with respect to the angles and
valid to within terms of the order of ~ (α/λ)2. This
problem is important because standard textbooks on
electrodynamics28"30 contain an error and give expres-
sions that are incorrect and non-covariant with respect
to the choice of the origin of the coordinate frame.

We recall that the dipole moment of a set of charges
is independent of the choice of the origin, but only if
the total charge S e of the system is zero. When this
charge is not zero, the dipole moment μ' in a new
frame shifted by b relative to the old is given by

μ' = μ - b (A2.1)

However, this result does not affect the expression
(2/3c3)(#)2 for the intensity of dipole radiation because
the total charge does not change with time and the shift
b is also time-independent.

Similarly, if the dipole moment μ of the system of
charges is nonzero, the magnetic dipole moment m and
the electric quadrupole moment tensor θα depend on the
choice of the coordinate frame:

(A2.2)

(Α2.3)

(where our tensor θ is related to the tensor D from Ref.
28 by .0=20). However, in contrast to the dipole case,
here, the terms ~ μ have nonzero time derivatives. The
well-known expression for the radiation intensity to
within terms of the order of (β/λ)2, inclusive, [see, for
example, Ref. 28-Eq. (71.5); Ref. 29-Eq. (18.5), and
Ref. 30-Eq. (12.22)]

(A2.4)

is thus found to acquire an additional term of the order
of (α/λ)2 when the coordinate frame is shifted if we sup-
pose that b-a. At the same time, it is clear that the
correct expression which takes into account all terms
~ (α/λ)2 ought to be modified after this shift only jn
terms of order ~ (δ/λ)3 or higher. We have thus ob-
tained the correct expression which turns out to be

where

(A2.5)

(A2.6)

Thus, to determine the radiation intensity integrated
with respect to angles to within terms of order of
~ (α/λ)2, inclusive, it is not sufficient to specify the
dipole, electric quadrupole, and magnetic dipole terms.
A further vector characteristic of the system, namely,
L must also be introduced. Direct substitution of the
transformation laws defined by (A2.1)-(A2.3) and the
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analogous expression for L into (A2.5) shows that the
latter is invariant under small shifts of the origin to
within terms of the order of (α/λ)2, inclusive. More pre-
cisely, the formula given by (A2.5) acquires additional
terms of the order of (α/λ)2 after a shift b ~a, but these
terms take the form of the total time derivative of a
bounded function and thus do not contribute over a few
periods of oscillation of the wave.

Of course, the new term in (A2.5), which is pro-
portional to L, is important only when the dipole mo-
ment of the system is nonzero or, more precisely,
when μ*0. Otherwise, (A2.5) reduces to the standard
expression given by (A2.4).

The expansion in powers of α/λ was discussed above.
All that remains is to decide the meaning of the term
~L in the language of the multipole expansion, i.e., ex-
pansion in terms of the spherical electromagnetic vec-
tors with given parity and angular momentum. Since
different spherical vectors in the intensity integrated
with respect to the angles cannot interfere because of
the orthogonality property, it is clear that the term
~L corresponds to an odd multipole with J—l, i.e., the
electric dipole radiation. To within ~ (β/λ)2, inclusive,
which is the precision in which we are interested, the
amplitude of the electric-dipole radiation is determined
no longer simply by the vector μ, but by the sum μ
+ (1/10C2)L.

In the gauge used in Ref. 13 (Sec. 46), the first term
in (A2.6) corresponds to the inclusion of the next term
in the expansion of the radial part of the scalar poten-
tial Φ in powers of (fer)2, and the second term corre-
sponds to the inclusion of the vector potential A in the
first nonvainshing approximation. We are, of course,
concerned here with the electric-dipole photon.

We now write out the expression for the radiation
amplitude in the far zone to within terms ~ (α/λ)2, in-
clusive. Denoting the direction of propagation by η
= R/|R |, and proceeding by analogy with the treatment
given in Ref. 28, we can easily show that

E=[nXH],

(Α2.8)

where Tm and Blk are, respectively, the electric
octupole and magnetic quadrupole:

(A2.9)

(Α2.10)

We note that, in contrast to the time-averaged in-
tensity, the instantaneous field amplitude in the far
zone (for r = | r · n | » λ) should be covariant under small
shifts of the origin:

E ' ( . , I ) = E ( I . , I - V ) . (A2.ll)

It is readily verified that (A2.7) satisfies (A2.ll) to
within terms of the order of - (δ/λ)2, inclusive, i.e.,
exactly with the precision to which it is written down.
If we retain only μ, θ and m, in (A.27), the corre-
sponding expression will satisfy (A2.ll) with linear
precision in b/\. if, on the other hand, we retain only
μ in (A2.7), then (A2.ll) will be valid only in zero order

in the small parameter 6/λ. The intensity differentiated
with respect to the angle contains terms of the following
form: ~μ2 (zero order in α/λ), μ§", jlm (first order in
β/λ), #L, mi', m2,"f, μ*Β, μΤ (second order in β/λ).
However, when the integration with respect to the
angles is performed, interference between the different
spherical vectors does not take place and, to within
~(α/λ)2, we obtain the expression given by (A2.5).

So far, we have examined the problem of radiation
emitted by an arbitrary set of charges. In the molecular
light-scatter ing problem, on the other hand, the ex-
pressions for μ, m, $, L, T, and Β induced by the inci-
dent wave, must themselves also be expanded in powers
of α/λ. This program was carried out in the first order
in α/λ in Sec. 4 [Eqs. (4.2) and (4.8)]. The corre-
sponding expressions including second-order terms in
α/λ will not be written out here.

3. New lines in pure rotational Raman scattering by CH4

We now consider which terms of the tensors plk and
Alk, in the expansions (A1.2)-(A1.4) are not zero for
molecules with the symmetry of methane. We note
firstly that all the pseudoquantities, i.e., pseudotensors
A% and p°k of rank 2 and the pseudoscalar p0 are equal
to zero. Moreover, the symmetry of methane does not
admit a vector, so that/I = 0, p = 0. Therefore, the
dipole- magnetic-dipole cross polarizability tensor ρ is
zero, pik = 0, and the dipole-quadrupole polarizability
tensor Alkt contains only the representation of rank 1 = 3.
(These statements refer to the coordinate frame whose
origin lies at the carbon atom). If we place the hydro-
gen atoms at four corners of a cube and direct the co-
ordinate axes at right-angles to the cube faces, the only
components Am that are not zero will be those for
which all three indices are different. These components
are: Axy,=Avx. = .... For the representation of rank
1 = 3, the correlator (AA) has the form

,'t) = C« δ^ρ

The constant Ce which is the coefficient of the part of
the correlator (AA) with 1 = 3 for an arbitrary AM is
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j-{AjnAtlc). (A3.2)

Specifically, for a molecule with the symmetry of
methane,

c,=BAi,,. (A3.3)

The differential cross section for pure rotational
Raman scattering is

* £ . = /iL\ 6 i l3!i/2[l_(n 1n 1)]+4le 1 i i l |> + 4le,n1|
1-|-2|e1e1|«[l-(B1iiI)]

—j I etej |2 [ 1 — ( D ^ ) ] — 2 Re foe,,) (efn2) (ef^)

-f i- Re (e,ei) (efnt) (β,η,) +~ Re foe,) (efn.) (ejn,)} . (A3.4)

This cross section is distributed over the scattered
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lines with Δ<λ=-3, Δ<7=-1, AJ= + 1 and AJ= + 3. The
expression for the distribution over these components is
rather complicated because of the identity of the hydro-
gen nuclei in CH4 (compare this with the discussion in
Ref. 19 or 31).

4. New lines in pure rotational Raman scattering by the
isotope-substituted hydrogen molecule HD

We denote the principal values of the polarizability
tensor of H2 and HD molecules by an (along the axis)
and aL (perpendicular to the axis). For the wavelength
λ = 6328 μ, we then have a,, sl.028x 10~24 cm3, ax

• 0.714 x 1O~24 cm3 (Ref. 25). In the coordinate frame
with the origin at the center of gravity of the HD mole-
cule, the tensors ρ and A then have the form

(A4.1)

| | - a l ) [«

where α»0.748χ ΙΟ"8 cm is the equilibrium separation
between the nuclei for the vibrational ground state of
the HD molecule, and η is the unit vector along the
molecular axis (from Η to D). The tensor β is ex-
pressed in terms of ρ and A by (4.11).

The presence of only the odd powers of the vector η
in ρ and A indicates that the selection rules for D~M
and D**Q scattering are: AJ=±1,±3. Since the ex-
pression for the differential cross section with respect
to the angle and the polarizations is very complicated,
we reproduce only the angle-integrated cross section;

/ O J \ 6 / 2 8 4 . \ / Λ / ! Ο \

±1, ±3) = 8n(—Ι [^Ρ2+-^Α\ + -τΑΙ); (Α4.2)

( Α 4 · 3 )

(A4.3')

where

The cross section a(J~ J + l) is given by

ad

(A4.4)
whereas the cross section for the J—</ + 3 transition is

(A4.5)

The cross sections for transitions with negative AJ can
be obtained with the aid of the relationships

σ (/ — /') (2/ + 1) = σ {/' - J) I.2J' -f 1). (A4.6)

The formula given by (A4.2) yields a«10" 3 s cm2 for λ
= 632.8 nm, where AJ = ±3 transitions account for ap-
proximately 1% of the total cross section.

Finally, we want to mention a number of further
publications. Left-right asymmetry in Raman scat-
tering is discussed in detail by Barron,32 who gives a
review of the experimental results and an account of the
theory which, in our terminology, corresponds to the

LMA approach. The polarization fine structure in the
Raman spectrum due to a gas is examined by Baranova
et al33 within the framework of the DDA approach. This
paper also contains a more detailed account of the ma-
terial given above in Sec. 3. Scattering by isotropic
liquids in the neighborhood of the point of phase transi-
tion to nematic or cholesteric liquid crystals is dis-
cussed theoretically within the framework of the DDA
approach (in our terminology) in Refs. 34-37. In par-
ticular, Zel'dovich and Tabiryan37 note that the corre-
lator M7 of the longitudinal-transverse components of
the tensor δε,» can be measured by coherent active
spectroscopy (these methods are reviewed in Ref. 38).
Natural optical activity, i.e., left-right asymmetry in
the refraction of light (in contrast to the effects seen in
scattered radiation, as reviewed above) due to the
spatial correlation between the fluctuations δει4 is dis-
cussed within the framework of the DDA approach (in
our terminology) in Refs. 27, 39, and 40.

'V. M. Agranovich and V. L. Ginzburg, Kristallooptika s uche-

tom prostranstvennoi dispersii i teoriya 6ksitonov (Crystal-

Optics With Allowance for Spatial Dispersion and the Theory

of Excitons), Nauka, M., 1965.
2N. B. Baranova and B. Ya. Zel'dovich, Preprint No. 11, Leb-

edev Physics Institute, USSR Academy of Sciences, Moscow,

1978; Optics Lett. 3, 1 (1978).
3M. Leontovich, J. Phys. 4, 499 (1941);S. M. Rytov, Zh. Eksp.

Teor. Phys. 33, 514 669 (1957) [Sov. Phys. JETP6, 401

(1958)1. V. S. Starunov, E. V. Tiganov, and I. L. Fabelinskii,

Pis'ma Zh. Eksp. Teor. Fiz. 5, 317 (1967) [JETP Lett. 5, 760

(1967)].
4 I . L. Fabelinskii, Molekulyarnoe rasseyanie sveta (Molecular

Scattering of Light), Nauka M., 1965.
5 B. J. Berne and R. Pecora, Dynamic Light Scattering with

Application to Chemistry Biology and Physics, Wiley-Ihter-

science, Ν. Υ., 1976.
6 B. Ya. Zel'dovich, Zh. Eksp. Teor. Fiz. 63, 75 (1972) [Sov.

Phys. JETP 36, 39 (1973)].
7C. W. Deutsche, D. A. Lightner, R. W. Woody, and A. Mosco-

witz, Ann. Rev. Phys. Chem. 20, 407 (1969).
8 L. D. Barron, Mol. Phys. 21, 241 (1971); J. Snir and

J. Schellman, J. Phys. Chem. 77, 1653 (1973).
9L. D. Barron and A. D. Buckingham, Mol. Phys. 20, 1111

(1971).
1 0L. D. Barron and A. D. Buckingham, Ann. Rev. Phys. Chem.

26, 381 (1975).
U G . Placzek, Rayleigh Scattering and the Raman Effect (Russ.

Transl. GNTIU, Kharkov, 1935).
1 2L. D. Landau and Ε. Μ. Lifshitz, Elektrodinamika sploshnykh

sred (Electrodynamics of Continuous Media), Gostekhizdat,

M., 1957 (English Transl. by Pergamon Press, 1960). ̂
13V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,

Relyativistskaya kvantovaya teoriya (Relativistic Quantum

Theory) Part 1, Nauka, M. 1968 (English Transl. published

by A.-W., 1971).
1 4L. D. Barron and A. D. Buckingham, J . Am. Chem. Soc. 96,

4769 (1974).
1 5L. D. Barron, Mol. Phys. 31, 129 (1976); Mol. Spectr. (Spe-

cialist Period. Rept.) 4, 96 (1976).
1 6N. B. Baranova and B. Ya. Zel'dovich, J. Raman Spectr. 7,

118 (1978).
1 7 1. I. Sobel'man, Vvedenie ν teoriyu atomnykh spektrov (Intro-

duction to the Theory of Atomic Spectra), Fizmatgiz, M,

158 Sov. Phys. Usp. 22(3), March 1979 N. B. Baranova and B. Ya. Zel'dovich 158



1963 (English Transl. published by Pergamon Press, 1972).
1 8 F . Schuller and W. Behmenburg, Phys. Rep. C 12, 273 (1974).

L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika
(Nerelyativtstskaya toeriya) Quantum Mechanics (Non-Rela-
tivistic Theory), Nauka, M., 1974 (English Transl. publ. by
Pergamon Press, 1975).

20A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).
21A. D. Buckingham and H. C. Longuet-Higgins, Mol. Phys. 14,

63 (1968).
2 2N. B. Baranova and B. Ya. Zel'dovich, Opt. Commun. 22, 53

(1977).
2 3H. C. Van de Hulst, Scattering of Light by Small Particles,

John Wiley, Ν. Υ., 1957 (Russ. Transl., IL, M., 1961).
Υ. Ν. Chiu, J. Chem. Phys. 52, 4950 (1970).

2 5N. J. Bridge and A. D. Buckingham, Proc. R. Soc. London
Ser. A 295, 334 (1966).

26A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).
2 7S. A. Brazovskii, and S. G. Dmitriev, Zh. Eksp. Teor. Fiz.

69, 979 (1975) |Sov. Phys. JETP 42, 497 (1975)].
2 8L. D. Landau and Ε. Μ. Lifshitz, Teoriya polya (Field Theo-

ry), 6th ed., Nauka, M., 1973.
2 9B. V. Medvedev, Nachala teoreticheskoi fiziki (Fundamentals

of Theoretical Physics), Nauka, M., 1977.
30V. V. Batygin and I. N. Toptygin, Sbornik zadach po elektro-

dinamike (Collection of Problems on Electrodynamics), Fiz-

matgiz, M., 1962 (publ. by Academic Press, 1965, and
translated by S. Chomet).

3 1G. Herzberg, Vibrational and Rotational Spectra of Poly-
atomic Molecules (Russ. Transl., IL, M., 1949).

3 2 L. D. Barron, in: Advances in Infrared and Raman Spectro-
scopy, ed. by R. J. H. Clark and R. E. Hester, Vol. 4, Lnd.-
Heyden, 1978, p. 271.

3 3N. B. Baranova, B. Ya. Zel'dovich, and T. V. Yakovleva,
Preprint No. I l l , Lebedev Physics Institute, USSR Academy
of Sciences, Moscow, 1978.

UP. G. de Gennes, Mol. Cryst.-Liquid Cryst. 12, 193 (1971).
3 5S. A. Brazovskii and S. G. Dmitriev, Zh. Eksp. Teor. Fiz.

69, 979 (1975) [Sov. Phys. JETP 42, 497 (1975)].
3 8R. L. Stratonovich, Zh. Eksp. Teor. Fiz. 70, 1290 (1976)

[Sov. Phys. JETP 43, 672 (1976)].
3 7 B. Ya. Zel'dovich and N. V. Tabiryan, Preprint No. 201,

Lebedev Physics Institute, USSR Academy of Sciences, M.,
1978.

3 8S. A. Akhmanov and N. I. Koroteev, Usp. Fiz. Nauk 123, 405
(1977). [Sov. Phys. Usp. 20, 899 (1977)].

3 9 E. I. Kats, Zh. Eksp. Teor. Fiz. 65, 2487 (1973) [Sov. Phys.
JETP 38, 1242 (1974)].

4 0 J . Cheng and R. B. Meyer, Phys. Rev. A 9, 2744 (1974).

Translated by S. Chomet

159 Sov. Phys. Usp. 22(3), March 1979 N. B. Baranova and B. Ya. Zel'dovich 159


