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Theoretical approaches to the spatial structure of linear macromolecular chains are reviewed. The

associated problems are found to be essentially different when repulsion and attraction between chain

elements are respectively dominant. In the case of attraction, the chain condenses on itself and forms a

globule with a definite structure which can be analyzed in the self-consistent field approximation. In the

case of repulsion, the result is a coil with a fluctuating structure and, in this situation, one must use the

methods of scaling theory. The coil-globule transition is also analyzed.
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1. INTRODUCTION cause the system has two large parameters that can be
explicitly taken into account.

A. Basic Concepts
Thus, firstly, the molecular system exhibits a hier-

1) Linear memory and volume interactions. Current a r c h y of interactions: the covalent bond energies £ t

interest in the statistical theory of polymers and, in a r e m u c h greater than all other energies E2 in the sys-
particular, of polymer solutions, is supported by the tem, i.e., Ex/Ez» 1. In relation to a polymer chain,
needs of applied chemistry and biology. There is, in this means that the sequence of links in the chain is de-
addition, a further reason for the interest in this theo- termined by the high energies of the longitudinal val-
ry: there is an analogy with many topical problems in e n c e bonds, and the relative position of each link in the
theoretical physics, first and foremost with the physics c h a i n is fixed once and for all. This is conveniently
of phase transitions and critical phenomena. indicated by saying that a polymer chain has a fixed lin-

Apart from the particular quantitative analogy between e a r memory.
certain problems in these subjects (see below), there is secondly, the other large parameter is the total num-
an analogy insofar as the overall approach to these b e r o f l i n k s i n t h e c h a l n N>> ^ I n c o m m o n s y n t h e t i c
problems is concerned. Many problems in the theory p O i y m e r s , N~ 104-105, and in the DNA macromole-
of polymer solutions are similar to problems in the cules N~ 105-107

theory of phase transitions in that they can be formu-
lated in a way that is both general and useful. In this, The above two large parameters enable us to ap-
they differ from such related fields as the theory of proach the theory of polymer solutions as follows,
complex molecules and the statistical theory of liquids. Firstly, since JV» 1, the polymer chain may be looked
To a considerable extent, this situation has arisen be- upon as a mcaroscopic system. Effective utilization of
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the methods of statistical physics is thus found to sim-
plify the theory of polymers as compared with the
mechanical theory of ordinary molecules. Secondly,
the hierarchy of interactions frequently enables us to
look upon a polymer chain as a one-dimensional ther-
modynamic system. This has led to the elucidation of
very many important phenomena ranging from the elas-
ticity of rubber-like polymers to the coil-globule tran-
sition in proteins and nucleic acids (see the classic
monographs by Vol'kenshtein,1 Birshtein and Ptitsyn,2

and Flory3). Finally, the availability of the above two
large parameters enables us, independently of the sta-
tistical theory of liquids, to consider even problems
for which the fact that the polymer chain is a three-
dimensional system is an essential feature.

We are concerned here with phenomena in which the
so-called volume interactions, i.e., interactions be-
tween distant links in the chain, which are brought clos-
er together in space as a result of the flexure of the
chain, are important. We shall examine these phenom-
ena in the present review.

2) Scope of the review. The statistical physics of
volume interactions in polymer solutions is a very large
subject which cannot be adequately examined in a single
review paper. We shall therefore confine our attention
to the statistics of volume interactions within a single
isolated macromolecule, i.e., we shall discuss the the-
ory of dilute polymer solutions when the individual mac-
romolecules may be looked upon as noninteracting.
Moreover, we shall confine our review to a homoge-
neous sequence of links along the chain (we shall refer
to this type of chain as homopolymeric) and, even then,
we shall be interested only in geometric characteristics
such as root mean square separation between the ends
of the chain, (R2), and the density distribution w(x) in
the system.

Throughout this review, we shall speak of the inter-
action between monomers, apparently ignoring the
presence of the solvent molecules. It will then, of
course, be important to remember that we shall be
dealing with the effective interaction between monom-
ers, which is renormalized by the presence of the sol-
vent molecules. Whether or not this type of effective
interaction can be introduced will be discussed below.

3) Flexibility of a polymer chain. The importance of
volume interactions in the physics of a polymer macro-
molecule lies in the fact that the natural configuration
of a polymer chain is not rectilinear, but takes the form
of a coil tangled up in space. The flexibility of the chain
is responsible for this state of affairs.

Rotational isomerization1 is the main mechanism for
the flexibility of ordinary polymer chains. The essence
of this phenomenon is that, if we consider a particular
link in a particular state, the next link can be found
with the same order of probability in one of several
states, namely, the rotational isomers. There is now
a well-developed theory of the flexibility of polymer
chains due to rotational isomerization.1"3 These ques-
tions are not directly related to volume interactions
and we shall not examine them here.

It is clear that, whatever the mechanism responsible
for the flexibility of the chain, the mean value of the
cosine of the angle θ between two parts of the chain sep-
erated by a sufficiently large distance s measured along
the chain must decrease exponentially with s:

<cosO(i)>~exp(_.i-); (1.1)

where I is the so-called persistence length and is an
important characteristic of the chain stiffness. Its
meaning is as follows: a segment of the chain that is
short in comparison with I will behave as a solid rod,
and different segments I can rotate practically indepen-
dently of one another.

4) Unperturbed characteristics of a macromolecule.
Calculations on the mechanism of chain flexibility can
be used1"3 to determine the conditional probability
g(a,, ahx) that the j + 1-th link is in the state corres-
ponding to the rotational isomer atjtl, given that the j - th
link is in the state corresponding to the rotational iso-
mer ar We emphasize that all the links in the homo-
polymeric chain are characterized by the single matrix
g (αι and aftl are the matrix indices). Once this prob-
ability has been determined, we have to calculate the
characteristics of the macromolecule as a whole (for
example, the mean square end-to-end distance {R2)).
When volume interactions are ignored, this calculation
yields the unperturbed characteristics of the macro-
molecule.

The evaluation of these characteristics presents no
basic difficulty, and the problem can now be regarded
as solved.1"3 By suitably defining an elementary link in
the polymer chain, we can ensure that the state a i<f l of
the next link will depend only on the state* a^ of the pre-
ceding link. This means that the migration of the poly-
mer chain in space may be looked upon as a simple
Markov process, and the macroscopic characteristics
of the chain can be determined by the usual methods
used to describe, for example, the one-dimensional
Ising model, or the Brownian motion of a particle (fur-
ther details can be found in the literature1"3).

In particular, in the case of the analogy between a
polymer chain and a Brownian particle, the distance
from the origin measured along the polymer chain cor-
responds to time, and the persistence length corre-
sponds to the diffusion coefficient. It is clear from this
analogy that the mean end-to-end distance (R2)0 (the
subscript indicates that we are here dealing with unper-
turbed quantities) is given by the following order-of-
magnitude relation:

NP. (1.2)

The theory outlined in Refs. 1-3 can then be used to
calculate the persistence length I for each model of the
polymer chain, and to determine the numerical factor
in (1.2).

5) Gibbs distribution for a polymer macromolecule.
It is clear from the foregoing that the Gibbs distribution
for the polymer macromolecule with linear memory and
volume interaction is

• I , <*>). (1.3)
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where Γ ={ alt..., aN} is a point in the configuration
space of the system, ε(Γ) is the energy associated with
the volume interactions in the configuration Γ, and F is
the free energy of the system.

To establish important connections with the fund of
knowledge now available on real gases and liquids, we
shall find it convenient to represent the given form of
volume forces by thermodynamic functions for a sys-
tem of particles that are not linked in a chain but inter-
act through these forces. These thermodynamic func-
tions can be calculated from the Gibbs distribution

e x p f i S ^ l . (1.4)

A system with this distribution will be referred to as a
broken-link system.

B. Models of a polymer chain

A theoretical approach to the study of complicated
systems such as polymer solutions necessarily involves
model representations of the structure of the macro-
molecules under discussion. Since a sufficient set of
clear physical representations is not yet available in
the theory of polymers, it is useful to begin by consid-
ering models for which simple and mathematically ac-
ceptable formulations can be introduced. The natural
starting point is to consider the two opposite limiting
cases, namely, the discrete model, in which the links
are looked upon as localized particles (beads on a
string), and the continuous model in which the chain is
uniform along its entire length.

1) Beads-on-string model. Here, the polymer chain
is looked upon as a set of beads on a weightless string,
the beads being the monomers (Fig. la). The state of
each monomer is then completely defined by the posi-
tion χ of its center. The linear memory of this model
is specified by the function^(xy^-Xj), i.e., the condi-
tional probability that the; +l-th monomer is at the
point xJtl provided the j - th monomer is at x r Volume
interactions are determined by the potential u (|x, - xy |)
for the interaction between monomers i and j . For
homopolymers, to which we shall confine our attention,
the functions g and u are independent of i and j .

Since g(xJt.1 -Xj)=g (y) is a probability, we have

jg(y)<^ = ·!· (1.5)

The mean square distance a' between two monomers
that are adjacent in the chain is an important charac-
teristic and is given by

As a rule, theoretical studies use a function g that de-
pends on |y | only. The Gaussian function

ΙΤ(Μ) = (4πα*Γ3 / 2βχρ(-^) (1.7)

is an example of such a function. This type of correla-
tion is obtained when the individual beads are connected
by a long and perfectly flexible string.

The potential u(r)=u(\xi-xJ\) is usually assumed to
correspond to strong repulsion at small distances and
attraction at large distances (Fig. 2). There is little
point in providing a more detailed description of u(r)
because it describes the effective interaction, including
the contribution of the solvent molecules. We shall as-
sume a short-range potential with a characteristic
range r 0 and characteristic volume v~r%.

The physical realization approaching the beads-on-
string model is a copolymer with large side groups em-
bedded in a thin main chain.

2) Persistent model. Here, the polymer chain is
looked upon as a long flexible elastic "hose" of diam-
eter d and persistence length I (Fig. lb). Segments of
this chain interact with one another with a certain lin-
ear interaction density which depends on their mutual
disposition. This model is obtained by smoothing out
the properties of the polymer chain at the microscopic
level.

3) Lattice model. This model is usually employed in
the simulation of the properties of polymer macromole-
cules on a computer. The polymer chain is represented
by a random-walk trajectory on some space lattice (Fig.
lc). The function g, which describes the linear memo-
ry, is then defined on a discrete set of points. Volume
interactions are specified by demanding that the random
walk must not cross itself (repulsion) and by assigning
an energy - ε < 0 to each pair of sites separated by one
lattice constant (attraction).

4) Connection between models of polymer chains.
Standard Gaussian model. The following questions nat-
urally arise: What is the relationship between the
above models among themselves and with real chains?
Are the results sensitive to the choice of a particular
model of a chain? Answers to these questions may be
found in the ensuing account.

For the moment, we merely note that, under certain
definite conditions, the behavior of a polymer macro-
molecule is universal, i.e., it does not depend on the
particular structure of the chain and, consequently, on
the choice of its model. It follows that, when these
conditions are satisfied, the model can be chosen on the
basis of mathematical convenience alone. In fact, the
beads-on-string model with the correlation given by
(1.7) and the monomer interaction potential shown in
Fig. 2 is the most convenient for our purposes. We

FIG. 2. Example of the
potential u(r).

FIG. 1. Models of a polymer chain: beads-on-string (a), per-
sistent model (b), lattice (c).
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shall refer to this model of the polymer chain as the
standard Gaussian model.

Unless stated to the contrary, we shall throughout
this paper discuss volume interactions within the
framework of the standard Gaussian model. Insofar as
the universal, i.e., model-independent, behavior of the
macromolecule is concerned, we shall indicate a meth-
od of transferring the results obtained for the standard
model to the other models of the polymer chain. When-
ever the results obtained for the standard Gaussian
model are qualitatively invalid for other models, this
will be explicitly stated.

C. Polymer coil and polymer globule

1) Definition of coil and globule. It is well known
that a polymer globule is defined in molecular biology
as a dense three-dimensional structure from the core
of which practically all the solvent has been displaced
by the monomers of the chain.4 As a rule, such a
structure is biochemically highly active. Heating of the
globule results in denaturation, the dense structure is
destroyed, and biochemical activity ceases. The glo-
bule is then said to transform into a coil.

However, more precise definitions are essential for
the development of a quantitative theory. Analysis of
the possible macroscopic states of the homopolymer
chain suggests that the following definitions will be
convenient.

A globule is a state of the polymer macromolecule
with a definite thermodynamically stable spatial struc-
ture in which density fluctuations are small compared
to the density itself, and their correlation length is
much smaller than the size of the whole macromolecule.

Conversely, a coil is a state of the macromolecule
without a stabled spatial structure. In this state the
density fluctuations are of the order of the density it-
self, and their correlation length is of the same order
as the size of the macromolecule.

2) The coil-globule transition. Terminology. Thus,
according to our definition, the globule and the coil dif-
fer from one another by their fluctuational state. From
the standpoint of statistical physics, it is natural to re-
fer to such very different states as phases, and the
transition between them as a phase transition. How-
ever, it is important to remember that, in statistical
physics, phase states and transitions between them are
rigorously defined only for i\T-°°. On the other hand,
real polymer chains have large, but not infinite, values
of Ν (this number may even be very small in compari-
son with the classical applications of thermodynamics).
A given finite chain cannot, therefore, always be as-
signed to a particular phase state. This means that
there is a definite transition width ΔΓ (to be specific,
we consider a transition occurring as the temperature
Τ is varied) which separates regions that can be reli-
ably assigned to different phases, i.e., regions in which
one of the phases provides the dominant contribution to
the partititon function.

We shall adhere to the following terminology in the

classification of transitions occurring for finite N. A
conformational transition will be called a phase transi-
tion if its width ΔΤ tends to zero for N-"*>. A phase
transition is said to be of the first order if, in the tran-
sition region, there are two free-energy minima and,
correspondingly, two stable states in the space of the
macrovariables, each of which is thermodynamically
stable on one side of the transition point and metastable
on the other. A phase transition is said to be of the
second order if, in the transition region, there is only
one free-energy minimum in the space of the macro-
variables, i.e., there are no metastable states on the
other side of the transition point. This terminology is
reasonable from the physical point of view and from the
point of view of analyses of experimental data.

3) Macromolecule without volume interaction-the
polymer coil. Depending on the strength and nature of
the volume interactions, a polymer macromolecule can
exist either in the coil or the globular state. As an ex-
ample, we consider the possible state of a macromole-
cule in the absence of any volume interactions, i.e.,
when t<(r) = 0.

We recall that, unless stated to the contrary, we are
dealing with the standard model. We can then use (1.7)
to show quite easily that the mean square end-to-end
distance for a chain of Ν +1 links is given by

(/?*>„ = (1.8)

If we place the initial (zeroth) link of the chain at the
origin, we find that the distribution function for the fe-th
link is

(1.9)

We now introduce the microscopic monomer number
density

(1.10)

and the mean density

Replacing summation by integration, we find that

exp ( — (1.12)

where ξ =χ/«Λ2)0)
ι/2. For 1/N« ξ « 1 , this density

falls off as l/ξ, i.e., the characteristic length related
to the density distribution is ξ ~ 1.

To characterize the density fluctuations, we must find
the correlation function. By analogy with (1.12), we
have

126 Sov. Phys. Usp. 22(3), March 1979
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from which it is clear that the correlation length for the
density fluctuations, i.e., the characteristic length cor-
responding to the correlation function

<T(»I)TW> t i (1.14)

is of the same order as the characteristic size of the
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macromolecule. This, in turn, means that the unper-
turbed chain is in the coil state.5

In Sec. 2, we shall examine the theory of macromole-
cules in the coil state, in Sec. 3 in the globular state,
and in Sec. 4 the theory of the coil-globule transition.
The range of problems which we shall examine is seri-
ously restricted, as indicated in subsection A, para. 1).
The approach on which our account of the theory of the
globular state is based was suggested by Lifshits5 and
was developed in a number of subsequent papers.6 '8

2. VOLUME INTERACTIONS IN POLYMER
COILS

A. Universal behavior of polymer coils

1) The Qpoint. When volume interactions are pres-
ent, distance segments of the chain will either attract
or repel as they approach one another as a result of
flexure. If the potential u(r) is as shown in Fig. 2, re-
pulsion between the monomers will predominate at high
temperatures and attraction at low temperatures.

The fundamental concept in the statistical physics of
volume interactions in a macromolecule is the concept
of the Θ point. According to Flory,9 this is the temper-
ature at which attraction and repulsion between the seg-
ments of the chain are completely compensated and all
the characteristics of the macromolecule assume the
values found in the state unperturbed by the volume in-
teractions. Repulsion between the monomers that pre-
dominates for Τ>Θ (good solvent region) and attraction
predominates for T<Q (poor solvent region).

In this chapter, we shall consider the region Γ > θ . It
was shown at the end of the last chapter that, in the ab-
sence of volume interactions, i.e., f o r T = 0 , the mac-
romolecule exists in the coil state. It is clear that, for
Τ>Θ, the additional forces of repulsion will only make
the structure of the macromolecule much looser, so
that it will correspond more closely to the coil state.

2) Role of binary interactions. Simple estimates can
readily be used to establish the origin of the virtually
complete compensation of volume interactions at the
particular temperature T=Q. Let us imagine that the
macromolecule is a cloud of monomers within a volume
~R3, where R is the size of the molecule. For Γ = θ ,
we have Λ-aiV1'2 [see (1.8)], and for T > 0 , R>aNl/\
because the presence of repulsion facilitates an in-
crease in the size of the coil. The mean monomer num-
ber density in this cloud for Τ^θ is n~N/R3^a-3N~1/2.
It is clear that, when N»l, the density is exceedingly
low, i.e., the monomer cloud becomes very tenuous.
Consequently, in this case, the number of binary colli-
sions between monomers (described by the second vir-
ial coefficient B) predominates over the number of
higher-order collisions (described by the third, fourth,

and so on, virial coefficients C, D, ), so that the
higher-order interactions can be neglected with a high
degree of accuracy. Thus, f o r T * © , the conforma-
tional properties of polymer coils for large Ν are de-
termined by binary interactions between monomers
and, consequently, depend only on the second virial co-
efficient B(T).

From this point of view, the θ point is the inversion
temperature for B(T), i.e., £(θ) = 0. This is the tem-
perature at which the contribution of the binary interac-
tions is reduced to zero, the contributions of higher-
order interactions are small, and, consequently, the
characteristics of the macromolecule assume the un-
perturbed values.

3) Universality. It is clear from the forego ng that
the conformational characteristics of polymer macro-
molecules do not depend for Γ ϊ θ ο η the detailed shape
of the volume interaction potential u(r), but depend only
on one of its integral characteristics, namely, the sec-
ond virial coefficient B(T). This is indeed a reflection
of the universal behavior of polymer coils, namely, the
fact that its properties depend on £ in a universal fash-
ion, independently of the particular nature of the forces
contributing to this virial coefficient (these properties
also depend on the parameters Ν and a, which are not
related to the volume interactions1').

4) Quasimonomers. The above analysis does not,
however, take into account one important fact, namely,
that the monomers are linked in a chain and are not,
therefore, independently distributed within the coil.
Hence, despite the fact that the mean monomer number
density in the coil for large Ν is low, the local density
of other monomers in the neighborhood of the given
monomer is not at all small, and does not decrease
with increasing iV.10 This high local density is due to
neighboring monomers in the chain. It would appear
that, because of the high density of monomers, it will
not be enough to take into account only the second vir-
ial coefficient for their interaction, so that the univers-
al character of the behavior of polymeric coils becomes
doubtful, at least as formulated above.

It is, however, clear intuitively that if the mean mo-
nomer number density in the coil is small, this should
lead to a degree of universality. This does indeed turn
out to be the case.1 1 If we consider not the interaction
among the monomers in a polymer coil but the inter-
action between distant segments of the chain, the fact
that the mean density in the coil is low signifies that
binary interactions between the segments predominate
over higher-order interactions. It has been shown11»"13

that this predominance leads to a universal behavior
analogous to that obtained above, but this universal
property is due to the representation of the polymer coil
not by a cloud of Ν uncoupled monomers but by a cloud
of Ν uncoupled quasiparticles (quasimonomers). Quasi-
monomers differ from monomers by the fact that they
interact with the renormalized characteristics that ef-
fectively take into account the linking of the monomers
into a chain (in particular, they involve the effective
second virial coefficient B* and not B). The represen-
tation of a polymer coil by a cloud of quasimonomers is
possible because each monomer in a chain is in a stand-
ard environment of other monomers, mainly its nearest
neighbors in the chain.1 1 '1 3 This "standard environ-
ment" is, in fact, responsible for the renormalization

"We recall that, unless the converse is explicitly stated, we
are dealing with the standard Gaussian model of the polymer
chain.
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of the properties of each monomer, so that it reflects
the presence of volume interactions in the macromole-
cule by behaving as a quasiparticle whose characteris-
tics are different from the characteristics of the origi-
nal monomer.

It follows that all the foregoing discussion remains in
force except that Β must be replaced by the renormal-
ized coefficient B*. Henceforth, we shall assume that
this renormalization has been carried out.

The idea of quasimonomers has been very useful in
the analysis of inhomogeneous polymer chains (finite
chains, chains containing defects, branched chains, and
so on11"13). If the chain is not homogeneous, the stand-
ard environment of all the monomers is modified but,
for most monomers, this change is small and can be
regarded as being a linear function of the change in the
local density of the monomers around the given mono-
mer, &nloc. The characteristics of the interactions of
a quasimonomer based on a given monomer are modi-
fied in the same way, i.e., linearly in Awloc. Once the
change in these characteristics has been found, it is a
relatively simple matter to obtain any other quantity
describing the volume interactions by starting with the
polymer coil, looked upon as a gas of quasimonomers
with known interaction characteristics suitably modi-
fied to take into account the inhomogeneity of the
chain.11"13

5) Expansion factor of a macromolecule. The mean
square end-to-end distance can be writ ten in the form

<Λϊ> = α2{№)0, (2.1)

where ( R z ) 0 is the unperturbed value of (R2), defined by
(1.8). The quantity a i s the expansion factor of the
macromolecule, and it is c lear that, for T>Q, for
which repulsive forces predominate, α > 1 .

It is c lear from the foregoing that a2 is a universal
function of N, a, and B*:

<x2 = a2(W, ο, β·) = α'(Λ, -^-) (2.2)

(the last equation follows from dimensional considera-
tions). We shall now try to evaluate a2 by considering
the volume interaction as a perturbat ion. 1 4 " 1 6

The part i t ion function of a chain of Ν+ί monomers
with the initial (zeroth) link at the origin and the last
link at the point R can be writ ten in the form [see (1.3)]

(2.3)

where the p-th order of perturbation theory corresponds
to the retention in (2.5) of terms involving the product
of p Mayer functions, i.e., it is equivalent to taking in-
to account p simultaneous binary collisions.

j - l

where Γ is a point in the configuration space of the
macromolecule and ε(Γ) is the microscopic volume in-
teractia» energy in the given configuration, i.e., ε(Γ)
=T/i*i<J«/fu(\xl -Xj |). We now introduce the Mayer func-
tion

Μχ,-»,Β-«ρ[-;?<"'-"" ] - i (2.4)

and, if we expand the integrand in (2.3) in powers of/,
we obtain

In addition, we assume that

in δ (χ, — xf), (2.6)

1S1OSJV

(2.5)

which means that u(r) i s a short-range potential. It has
been shown1 1 that the proportionality factor in (2.6) is
the renormalized coefficient B*.

Next, we can evaluate all the integrals in (2.5) taking
(2.6) and (1.7) into account. The quantity a2 is given by

)d3RJ\ Z(JJ| ^)dJi?(i?2>0 (2.7)

so that the final s e r i e s for a2 i s 1 7

aa = a1 (z) = 1 + *iz + K# + • • •' (2.8)

where z=B*N1/2/a3 and k{ are numerical coefficients.

This series shows that the expansion coefficient a2 is
a function of a single real variable, namely, z. The
series is, however, suitable for the evaluation of a2

only for \z \ «1, whilst the quantity ζ contains the large
factor Nl/2, so that \z \ « 1 holds only in a small neigh-
borhood of the θ point, i.e., the temperature for which
B* = 0 [the convergence of the series given by (2.8) is
discussed in the literature18"20]. Thus, despite the fact
that the mean monomer number density in the coil is
small, the effect of the volume interactions on the coil
size cannot, in general, be taken into account within the
framework of perturbation theory.

The function a2(z) can be evaluated for the entire do-
main of ζ only by more sophisticated methods which are
described in subsection C.

6) Two-parameter theory. It follows that {R2) for a
polymer chain depends on the basic parameters N, a,
and B* inthe form of the following two combinations:
Na2 and N1/2B*/a3. Similarly, it can be shown that any
other conformational characteristic of a polymer coil,
for example, (Rp) with ρ Φ 2, depends on N, a, and B*
for Γ » θ only in the form of these two combinations.17

It is therefore usual to speak of the two-parameter the-
ory of dilute polymer solutions: all the macroscopic
conformational characteristics are functions of the two
parameters Na2 and N1/2B*/a3 only.

B. Connection between the models of a polymer chain
in the universal region

1) Equivalent standard Gaussian chain. The universal
behavior of polymer coils is a consequence of the pre-
dominance of binary interactions between the chain seg-
ments as compared with the higher-order interactions
and, in this sense, it should be valid for any model of a
polymer chain. This means that, for any model, one
can introduce the effective second virial coefficient B*
for the interactions between the chain segments, after
which the polymer coil can be represented by a tenuous
cloud of quasimonomers interacting with this virial co-
efficient. Next, one can choose a standard Gaussian
chain of beads for which the parameters of the cloud of
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quasimonomers are the same as for the model. This
beads-on-string chain will be referred to as the equi-
valent standard chain. It is clear that all the macro-
scopic conformational characteristics of the original
and the standard coils will be equal.

It is thus clear that there is no loss of generality if
we confine our attention to the standard Gaussian model
in the universality region Γ * θ because any polymer
chain can be associated with an equivalent standard
chain, and the results obtained for the standard model
can be used to evaluate the macroscopic characteris-
tics.

2) Method of constructing the equivalent chain. We
must first consider how we can associate a given coil
with its equivalent standard coil, i.e., a standard coil
whose macroscopic characteristics are the same as the
characteristics of the original macromolecule.21

All macroscopic conformational properties in the
standard model depend only on the two parameters Na2

and N1/2B*/a3 (see subsection A, para. 6) and these two
parameters have a particular physical interpretation:
Na2 is (R2)0, and ζ = Nx/2B*/a3 is a single-valued func-
tion of a2. Hence, it is clear that, if we take the pa-
rameters N, a, and B* of the equivalent standard model
so that (R2)0 and a2 (or z) for the equivalent chain are
equal to those for the original chain, all the other char-
acteristics of the original and equivalent chains will be
equal.

Since we must specify the three parameters Ν, α, Β*
in order to define completely the properties of the stan-
dard chain, and we subject this choice to only two con-
ditions, one of them can be chosen arbitrarily. This
means that the original chain can be divided in arbi-
trary fashion into the monomers, i.e., one can arbi-
trarily select N, but, thereafter, the parameters a and
B* are unambiguously fixed. The choice of the elemen-
tary monomer is restricted by a single condition,
namely, it must not interact through the volume forces
with itself since, otherwise, it would not, of course, be
elementary. For example, the length of the elementary
monomer along the chain cannot be greater than the
persistence length.

3) Equivalent standard chain for the persistent model.
We shall illustrate the above general discussion of the
reduction to the equivalent standard chain by taking the
persistent model as an example (see Fig. lb). We must
first define the partition of the persistent chain into
monomers. Since we have two characteristic length
parameters d and I for the chain, it is natural to divide
the chain either into pieces of length I or pieces of
length d. In these two cases, we reduce the persistent
chain to two different but equivalent standard chains.

Suppose that we have divided the chain into pieces of
length I (case 1). Let Nt be the number of persistence
lengths in the chain, i.e., Nx=L/l (where L is the total
length of the chain. Since, in this case, {R2)0~N,l2

[see (1.2)] and (Λ2}0 for the persistent chain and for its
equivalent standard chains must be equal, we must take
ax~l. The order of magnitude of B* in this case must,
clearly, be the same as that of the second virial coef-

ficient for the interaction between cylinders of diameter
d and length I, i.e., we may write B*~dZ2T, where τ
= (Τ - Θ ) / θ . All the parameters of the equivalent stan-
dard chain are thus determined. An analysis of the
properties of the persistent model in the case of a rigid
chain with the aid of the equivalent standard model de-
fined above can be found in the literature.2 2

Let us now divide the persistent model into pieces of
length I (case 2). Since, in this case,

(№•),-Ντ±μ~ΝιΡ<Ρ, (2.9)

where N2 = L/d and p = l/d, we must take aa=p1/2d. The
coefficient B% for this case can be found from the condi-
tion that the values of ζ in the above two cases must be
equal:

N\'*lf> _ N^BJ (2.10)

Ί ~ «i '

and, hence, B*~dh.

Either representation of the persistent chain with the
aid of the equivalent standard chain can be used for any
particular application.

Let us finally estimate the ration ν/α3, where ν is the
monomer volume in the equivalent standard chain in the
case of flexible (p ~ 1) and stiff (p » 1 ) persistent
chains. Since for the usual potentials u(r) (see Fig. 2)
we have Β*~ντ, and if we compare the above expres-
sions for B* for the equivalent standard chain, we find
that, in the case of the flexible chains, v~a3, whereas,
for stiff chains, ν «a3 in both representations. Hence,
for flexible chains, the equivalent standard chain is as
shown in Fig. 3, whereas, for stiff chains, it is as
shown in Fig. la.

The reduction of the stiff persistent chain to the stan-
dard model is, of course, only possible in the absence
of effects connected with orientational ordering, i.e.,
in the absence of the liquid-crystal phase.

C. Evaluation of the function a 2 (z). Polymer-magnet
analogy

1) Excluded volume problem and early approaches to
it. We now return to the standard model and consider
the evaluation of the function OL2(Z) which describes the
effect of volume interactions on the size of the polymer
coil.

We begin by considering a long polymer macromole-
cule in a good solvent. We then have B*~v and ζ
~N1/2v/a3»l. Consequently, in this region, we must
know the asymptotic behavior of a2(z) for ζ » 1. The
problem of the asymptotic behavior is known as the
self-avoiding random walk problem, or the excluded
volume problem.

Extensive literature is now devoted to this subject.
The most important advances prior to the establishment
of the analogy between polymers and magnets were due
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to ilory 2 3 and Edwards.24 Flory's method is described
by Tsvetkov et al.25 and Edwards' ideas are developed
in detail by Freed.2 6 An elementary derivation of
Edwards' results is given by de Gennes.27

Both the Flory and Edwards methods yield the same
result for the asymptotic form of a2{z) for ζ » 1 , name-
ly:

d1 (ζ) (2.11)

This is hardly surprising since both theories are essen-
tially self-consistent field theories.

2) Analogy with the problem of second-order phase
transitions. It is, however, clear that, since the poly-
mer coil is a highly fluctuating system (the density fluc-
tuations are of the order of the density itself), the self-
consistent field approach is not exact. In this sense,
the situation is analogous to that arising in the case of
second-order phase transitions (to be specific, in mag-
nets): the fluctuations become so large near the tran-
sition point that the Landau self-consistent field theory
ceases to be valid. The above analogy becomes deeper
if we compare the universal behavior of polymer coils
with the universal behavior of magnets near second-or-
der phase transition points.

It is well known that the renormalization group method
is the basic method for the description of phenomena
occurring near second-order phase transition points.28

The ideas upon which this method is founded have re-
cently been used in connection with polymer coils.29

De Gennes29 has, in fact, used the well-known renor-
malization group approach to describe volume interac-
tions.29 Part of a chain of g successive monomers was
combined into a single effective monomer with new in-
teraction characteristics, so that a chain of Ν monom-
ers was reduced to an effective chain of N/g monomers.
The procedure was then repeatedly applied to the sys-
tem and, by suitably choosing the parameters, it was
possible to establish the recurrence relations that gave
the required point when the number of iterations tended
to infinity, which, as is well known, is the basis of uni-
versality (further details will be found in the de Gennes
paper2 9).

All these facts indicate that the analogy between the
polymer coil and a magnet near the second-order phase
transition point should be quantitative and not merely
qualitative. This has, indeed, been shown to be the
case: de Gennes has demonstrated30 that the correla-
tion function for a magnet is equal to a generating func-
tion of

| R / ·

if the number of components of the elementary spin in
the magnet is formally set equal to zero (see next para-
graph).

3) Connection between the correlation function of a
magnet and the partition function of a chain with fixed
ends. There are several different methods of deriving
this connection.30*34 The simplest and most elegant de-
rivation is given in the appendix to the paper by Daoud
et al.3Z Here, we shall briefly outline the original
method put forward by de Gennes.30

It is well known28 that the central feature of the theory
of second-order phase transitions is the analysis of
fluctuations in the field φ with the Landau Hamiltonian:

Si

ί [ ( £ ) ] H ( )
(2.12)

where a = (Γ - To)/To is the dimensionless deviation
from the transition point, d is the dimensionality of the
space, and η is the number of independent components
of the order parameter. To evaluate the correlation
function

Gis (R) = <<p, (x) <pj (x + R)> = 6tl® (R) (2.13)

we must apply the Fourier transformation which con-
verts 3fa to the sum of the Hamiltonians of the indepen-
dent oscillators. The next step is to expand exp(#* lnt)
into a series and to average each of the terms of this
series with the aid of Wick's theorem. It is easily veri-
fied that the ingoing and outgoing lines on each of the
diagrams obtained in this way have the same polariza-
tion index, and this has already been reflected in (2.13)
by the presence of the δ-function 6 ( y. However, the dia-
grams with closed loops are connected to other parts of
the diagram only by interaction lines contain summation
over the loop polarizations, i.e., simply the factor»
(since nothing depends on the loop polarization index).
Hence, we may formally substitute » = 0 and thus obtain
the diagram series without closed loops.

This series differs from the perturbation theory se-
ries for the partition function of a polymer chain [see
(2.5)] only by the absence of the condition of constant
chain length between the end points 0 and R. This length
must be fixed by a special chemical potential, and we
then obtain

\ (2.14)

The phase transition point corresponds to at =0, i.e., an
infinitely long chain N— ». The polymer quantities a
and Β correspond to the field quantities β and y.

The fundamental result given by (2.14) was first ob-
tained by de Gennes.30 It provides a relatively complete
characterization of the function

It is well known that, near the second-order transition
point, the function © is scale-invariant, i.e., it has the
form

.R,-<+»-«, f-SU. E~a-v (2.15)

where ξ is the correlation length, ν, η are the critical
exponents, and/ is a universal function with known
asymptotic behavior. From (2.14) and (2.15), we obtain
analogous expressions for Z:

where h is a new universal function with the following
asymptotic behavior:

const · exp (— | χ |) for
, ι t-d+2-11 .e

const • χ tor

(2.16)

(2.17)
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Hie critical exponents have been calculated35 as func-
tions of d and η in the general formulation of the prob-
lem of second-order phase transitions. For real poly-
mers, d = 3 andn=0. The exponent y turns out to be 3 0

very close to 3/5 and η s 0.05.

The expression given by (2.16) can be used to find any
characteristic of the coil in the good-solvent region.
In particular, the mean size of the coil turns out to be
(R'y-N2". The corresponding asymptotic form of a2

turns out to be (quite fortuitously) close to but not iden-
tical with the asymptotic form given by (2.11).

4) Form of a2(z) for z~ 1. We thus see that, when
\z | « 1 , the function <*2(z) can be described with the aid
of perturbation theory [see (2.8)], whereas, for ζ » 1,
the asymptotic behavior of a2(z) is close to that indi-
cated by (2.11). To describe the behavior of the poly-
mer coil near the Θ point, we must also know the form
of the function a2(z) for a ~ 1.

There is a large number of published attempts to de-
termine a2(z) for the intermediate values of z. Most of
them have been reviewed by Yamakawa.17 However, all
these conclusions are based on certain arbitrary and
generally invalid assumptions and, as a rule, are in-
capable of describing the behavior of real polymers.

A purely pragmatic approach to this problem has been
formulated by Domb and Barett.36 They suggest that one
should simply tabulate the universal function a2(z) for
some particular simple model, for example, the lattice
model (cubic lattice). They then use the data obtained
for this model as a basis for the following simple inter-
polation formula for az(z):

a? = 1 + 4f- ζ + 4πζ2. (2.18)

Such an approach to the problem seems to be the most
reasonable at present, and subsequent studies37"38 have
confirmed the validity of (2.18).

5) Analogy between the Qpoint and the tricritical
point. Within the framework of the above analogy be-
tween the polymer coil and the zero-component magnet,
the Θ point turns out to be similar to the tricritical
point.39

We shall not demonstrate this analogy in detail here,
and will confine our attention to the following. In ordi-
nary systems, the tricritical point (i.e., the point at
which the line of second-order phase transitions goes
over into the line of first-order phase transitions) cor-
responds to transitions from the developed fluctuational
behavior to the thermodynamically stable behavior. The
tricritical region, with the intermediate behavior of the
system, occurs near this point. In the case of the poly-
mer coil, the θ region also corresponds to the transi-
tion from strong fluctuations in the coil surrounded by
a good solvent to the thermodynamically stable globular
state of the macromolecule (see Sec. 4). The asymp-
totic laws are then intermediate between the two re-
gions.

In the three-dimensional case, the critical exponents
near the tricritical points agree with the values obtained
by the Landau self-consistent field method.40 It follows

that, in the Θ region, the polymer chain is also cor-
rectly described by the self-consistent critical expo-
nent. On the other hand, whend = 3, there are logarith-
mic corrections to the self-consistent behavior near the
tricritical point. These corrections must also be intro-
duced for the polymer in the Θ region.41 Physically,
they represent ternary collisions between chain seg-
ments.

3. VOLUME INTERACTIONS IN THE GLOBULAR
STATE

A. Polymer macromolecule in a compressive external
field

1) Formulation of the problem. At temperatures low-
er than those discussed in the last chapter, attractive
forces begin to predominate in the volume interaction.
The tenuous, highly fluctuating, polymer coil may then
"condense on itself" and assume a dense and weakly
fluctuating (i.e., in our definition, globular) conforma-
tion. This conformation is stabilized by the self-con-
sistent compressive field due to the attractive forces
between the monomers, (in contrast to the polymer
coil, the idea of the self-consistent field is valid for
the weakly fluctuating polymer globule, so that the the-
ory of the polymer globule given below is of the self-
consistent field type.)

The first step in the derivation of the self-consistent
equations for polymer globules is to consider the prob-
lem of the polymer chain without volume interactions in
an external compressive field (p(x). The concepts for-
mulated in the course of this turn out to be subsequently
useful in the solution of the self-consistent field prob-
lem.

We note, by the way, that the solution of the problem
of a polymer chain in an external compressive field is
not only an important auxiliary step, but is frequently
of physical interest in its own right. The compressive
field is not necessarily a real physical field such as,
for example, the electric field. It can be any effective
thermodynamic characteristic reflecting the spatial in-
homogeneity of the solvent, the presence of phase sep-
aration boundaries or inhomogeneous particles in it,(

and so on.

The equations for the polymer globules were first ob-
tained by Lifshits5 and a more rigorous derivation was
given subsequently.8 In this review, however, we have
tried to achieve simplicity and brevity rather than
rigor.

2) Partition function for a polymer chain without
volume interactions in a compressive external field.
Suppose that the zeroth link of the chain lies at the point
η, whilst the N-th (final) link is at the point ξ. The par-
tition function for the chain is then of the form [see
(2.3)]

Λ' JV

Z Q D : = Ι δ ( χ ° ~ η ) δ ( χ · ν - l ) π s { x > " S ] - i ) n e x p ( - τ ) d r -

We now add the AT + 1-th link to the chain, which gives
us the recurrence relation
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The solution of this is the bilinear expansion5:

( 3 · 2 )

(3-3)

where ipk and Afc are the eigenfunctions and the corre-
sponding eigenvalues of the equation

£ψ = Λβχρ ( ~\ φ. (3.4)

where g is defined to be the integral operator

rr-fc = \ α (χ χ') ll· tx') d*x' (3 5)

If the largest eigenvalue of (3.4) belongs to the dis-
crete spectrum, and is separated from the next eigen-
value by a finite gap, the corresponding term dominates
(3.3). Next, using the symmetry of

in 7} and ξ, we can readily show that, in this case,
z ( iHr) w A W *W*e) · (3-6)

where Λ and ψ are the largest eigenvalue and corre-
sponding eigenfunction of (3.4), respectively.

It is clear, that the partition function (3.6) has split
into a product of factors. This means that, in the state
with the discrete spectrum, the ends of the chain are
statistically independent. This can be expected in the
state in which the correlation length is much less than
the size of the molecule, i.e., in view of the earlier
definition (see subsection 1C), in the globular state.
Consequently, we may conclude that the existence of the
discrete spectrum in (3.4) signifies that the compres-
sive field φ (χ) is so strong that it produces a globular
structure.

By increasing the temperature, one can always en-
sure that φ/Τ in (3.4) is so small that the discrete
spectrum in this equation is lost. Consequently, the
external field can produce a globular state only when
the temperature is low enough.

From (3.6), we find that the free energy in the state
with a discrete spectrum is

F = -TN In Λ (3.7)

where we have retained only thermodynamically addi-
tive terms proportional to N.

3) Density. The macroscopic state of a polymer glo-
bule will be defined by specifying the smooth density
function n(x). The smoothing volume ω is chosen as the
smallest of the volumes within which fluctuations in the
monomer number density are small in comparison with
the density itself. By virtue of the definition of the glo-
bular state (see subsection 1C), the volume ω must be
much smaller than the size of the macromolecule, so
that it is meaningful to speak of a function η (x) corre-
sponding to a set of macrovariables.

The density n(x) can be found as follows. It is clear
from (3.6) that ψ(χ) is proportional to the probability
density for finding the end link at x. On the other hand,
the function η (χ) is proportional to the probability of
finding at χ the link Μ that is well away from the end of

the chain (M>> 1, N-M» 1), since it is precisely such
links that provide the main contribution to w(x) for
N» 1. We now introduce the quantity

7<°\M N\

i.e., the partition function for a chain with three fixed
points. By writing this function in terms of the parti-
tion functions for the chains (Ι,Αί) and (Λί,#), and
applying the result (3.6) to them, we find that

η (χ) = ψ*(χ)βχρ [ ! £ ! ] . (3.8)

The function ψ is normalized so that the coefficient in
(3.8) is equal to unity and

j η (χ) ΛΕ = ΛΓ. (3.9)

For the state with the discrete spectrum, we can also
evaluate the correlation function for the densities (1.14)
at two macroscopically different points (in different
smoothing volumes ω), and show that it goes to zero as
l/N as N~ ».5·8 This finally demonstrates that the
state with the discrete spectrum corresponds to the glo-
bular structure.

4) Configuration^ entropy. We shall now evaluate
the configurational entropy S{n} corresponding to the
macrostate with fixed smoothed density M(X). TO do
this, we write the free energy (3.7) in the form

{ « } - TS{n], (3.10)

where !?{«} is the energy of the monomers in the field
<pbd that produces the density η (x). It is clear that

E{n}= [φ(χ)η(χ) cPx (3.11)

and, therefore,

S{n)= j ( i + lnA)»(x)iPx. (3.12)

Eliminating φ from (3.12) with the aid of (3.6) and (3.8),
we have

5{η}=^β(χ)1η(ώ.)«Ρ*. (3-13)

where ψ(χ) can be expressed in terms of n(x), as fol-
lows:

An (x) = φ (χ)έφ. (3.14)

The last two formulas determine the entropy of the
macromolecule corresponding to the macrostate with
the given density w(x) whether or not this density has
been produced by the external or the self-consistent
field (field φ is not present in these two expressions).
The particular value of Λ is unimportant for S{n}.
This number only affects the normalization of the func-
tion ψ.

To establish the connection between (3.13) and the
usual expression for entropy, we consider the limiting
case in which all the monomers are localized by the
field in a small volume of size R «a. We then have

and hence (3.13)-(3.14) yield
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restrict the motion of the monomers within the limits of
the small volume, the entropy of the system differs
from the entropy of the Boltzmann gas (first term) by
the presence of the additional terms which correspond
to the factor [g(.0)]"Nl in the partition function. This
factor is due to the iV-fold return of the chain to the
same point and the fixed numeration of the monomers
in the chain.

The expression given by (3.13) will be needed later
(in subsection B).

B. Polymer globule formed by the self-consistent field

1) Equation for the equilibrium density. Consider a
polymer globule formed by the volume interaction, and
suppose that the smoothed density in this globule is
w(x). The free energy corresponding to this smoothed
density will be written in the form F{n}=E{n}-TS{n},
i.e., we shall isolate the entropy part (3.13). The quan-
tity £{w} will then describe the contribution of volume
interactions to the free energy of the system and will
play the role of the energy (although, of course, it is
not equal to the usual energy).

The equilibrium function η (χ) can be determined by
minimizing the functional F{n} under the additional
condition (3.9). Hence, the minimization equation has
the form 6F/bn = \, where λ is an undetermined La-
grange multiplier.

The variational derivative δδ/δη can be readily eval-
uated when (3.13) and (3.14) are taken into account:

*l = i n i * (3-15)
fin φ '

The Euler equation for the minimization of the function-
al F{n} then assumes the form

linked to one another:

) = μ(η(χ), Τ)-μ,Λ(η(χ), Τ), (3.17)

^ ψ ρ ( ^ ) , A-exp(—i-). (3.16)

If we now compare (3.16) with (3.4), we readily see
that 6Ε/δ{η} plays the role of the self-consistent field.
Incidentally, when an external field is present and there
is no volume interaction, E{n} assumes the form given
by (3.11) and (3.16) transforms directly into (3.4).

2) Self-consistent field. The next problem is, there-
fore, to find the self-consistent field 6Ε/δη that must
be substituted into the equation for φ instead of the ex-
ternal field φ (χ). We note that the field <p(x) is the en-
ergy that must be expended in order to bring the test
monomer from infinity to the point x. In the case of the
self-consistent field, this energy is obviously the chem-
ical potential of the monomer less the component cor-
responding to the perfect gas.

A more rigorous analysis shows that,5·8 w h e n r o « a 2 )

[we recall that r 0 is the characteristic range of the vol-
ume interaction potential u(r)], the self-consistent field
δΕ/δη can be expressed in terms of the chemical poten-
tial μ(η,Τ) of the set of broken links, i.e., a system of
monomers interacting through the potential u(r) but not

where μιά is the part of μ corresponding to the perfect
gas, i.e., Mld = r i n n . From (3.17), we have

E{n)= j / · (*(*), T)d?x, (3.18)

' μ* (Ό ι
k Τ I

! lWhenr0~a, Eq. (3.17) is not, in general, valid but it can be
used for qualitative purposes.9 We shall therefore use the
resulting equations in this case as well.

where/*(«,T)=/(w, Γ) -/ ld(w,T) is the free energy per
unit volume of the set of broken links less the compo-
nent corresponding to the perfect gas, μ* = δ/*/δη.

Lifshits and Grosberg42 have shown how (3.17) is mod-
ified when the solvent molecules are explicitly taken in-
to account. We shall not consider this point here and
will merely note that the net result is that μ* is re-
placed by μ*,,, which is a complicated and nonmonotonic
function of temperature. However, the overall struc-
ture of the equations remains the same (see Sec. 1).

3) The complete set of equations for a globule. Sub-
stituting (3.17) in (3.16), we obtain

(3.19)

The functions η and φ are related through (3.14). Taking
(3.19) into account, we have

ra = i|;2exp (-y-j. (3.20)

Equations (3.19) and (3.20) taken together with the
normalization condition (3.9) form the complete set of
two equations and one additional condition for the deter-
mination of the two unknown functions η and φ are the
unknown number Λ.

The equilibrium free energy of the globule is

F=E-TS= \ []·-Τη\η (ίϊ-)]ίΡΐ= - TN In Λ - j p* d>x.

(3.21)
In this equation, in which (3.19) has been taken into ac-
count, p*(n,T)=p(n,T) -plA(n,T) is the pressure of the
set of broken links minus the perfect-gas component

Equation (3.19) is a nonlinear integral equation with a
difference kernel [see (3.4)]. It is substantially simpli-
fied when the characteristic length over which there is
a change in density in the system is large in compari-
son with a. Using the spherical symmetry of g together
with (1.5)-(1.6), we obtain

rt-ji(y)[tWryV*T2ly)4T... v~ ^ ^

In this case, therefore, the operator # in (3.19) can be
replaced by 1 +α2Δ, so that the equation becomes a
second-order nonlinear differential equation.

C. Solution of equations for a large polymer globule

We shall now consider a method of solving (3.19)-
(3.20) for the most important case of a large globule,
i.e., a globule whose size R is much greater than a.
Whenro~a (see Fig. 3), this condition is always satis-
fied for N»\, whereas, f o r r 0 « a (see Fig. la), the
above inequality is valid provided the somewhat strong-
er condition N»a3/v is satisfied (we recall that w~rj).

1) Nature of density distribution. It is clear that the
equilibrium structure of the globule will consist of a
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dense nucleus surrounded by a region of decreasing
density which tends to zero at infinity (Fig. 4). When
| x | - °°, the density can either continuously decrease
over distances ~R0 (Fig. 4a) or it may remain practi-
cally constant within the globule and then sharply fall
on its surface (the characteristic length for this reduc-
tion is Ι <<:Λ0; see Fig. 4b). We shall now consider
which of these two cases occurs in reality.

We begin by considering the expression for S{n} given
by (3.13). Since the density varies smoothly in the sys-
tem, we may subst i tuteg-Ί+α 2 in (3.13). Using the
same replacement in (3.14), where we can substitute
simply £ - 1 , and eliminating ψ from (3.13)-(3.14), we
obtain

- a» t cPx. (3.23)

It follows that, if the density varies as shown in Fig. 4a,
we have S—Na 2 /R 2 —N l ' 3 (nf i 3 ) 2 ' 3 , where «0 is of the
order of the monomer number density in the globule.
H, on the other hand, « varies as shown in Fig. 4b, we
have S—N/IR ~ -Ν2ΐ\ι\ΐ3α2/1. In both cases, S is pro-
portional to Ν to a power less than unity.

At the same time, the functional E{n} [see (1.18)] is
proportional to N, and this means that the leading ap-
proximation to the free energy for a long enough chain
is

f {«} = Ε {η} — TS {η} » Ε {η} = j / * (n) d*x. (3.24)

Since this functional is local and does not contain deriv-
atives, its minimum under the condition given by (3.9)
will correspond to the step function shown in Fig. 4b.
This function will be "smeared out" because of the neg-
lect of the entropy terms in (3.24).

The density profile of a large globule is thus seen to
take the form of the "smeared out" step function shown
in Fig. 4b.

2. Volume approximation. To achieve a rough de-
scription of the structure of the globule, we may intro-
duce the volume approximation in which the density pro-
file is replaced by the sharp step function, i.e., we neg-
lect the surface entropy terms. The density n0 in the
globule in this approximation corresponds to the mini-
mum of (3.24), i.e., to the minimum of

(Bo) (3.25)

where Vo is the volume of the globule. Minimization
yields the following condition for n0:

P*(BO) = 0. (3-26)

This condition is then used to determine the density at
the center of the large globule. The free energy of this
globule can be obtained from (3.21):

F = - TN In Λ = Λ' μ*. (η0). (3 · 2 7 )

- ι Ι

1
Re r Po r

a b

FIG. 4. Possible density profiles for a globule.

Condition (3.26) can also be written in the form

0 = - p* (η.) = /· (n.) - ηομ» (Β.) = j [μ· (η) - μ* (η,)] dn. (3.28)
ο

The geometric interpretation of this condition is that
the shaded areas in Fig. 5 are equal when this condition
is satisfied. The free energy per particle corresponds
to the intercept cut by the horizontal line on the ordi-
nate axis.

3. Surface effects. If we do not neglect the entropy
term in the free energy, we have to consider the ques-
tion as to what is the density profile near the surface of
the globule, i.e., we have to examine the smoothing out
of the step function.

It will be convenient to introduce the parametrically
defined function ν(ψ):

ν(φ)-»βχρ[μ (^Γ )], η = ψν. (3.29)

Equation (3.19) can then be written in the simple form

gi|) = Λν (ψ) (3.30)

where we have used the fact that μ 1 ά=Τ1η«.

We note that, since A » a , the problem of evaluating
the density profile is essentially one-dimensional. We
now introduce the radial coordinate χ (xr = 0 for Λ =RJ
and replace jr by 1 + <a2d2/dx2). Equation (3.30) then as-
sumes the form

2 < * * * (3.31)

This can be integrated easily, and the result is

*(x) *

1 α j [2 |(Λν(ψ)-ψ)<ίψ]-"2<ίψ. (3.32)

It is readily verified that this result does, in fact, lead
to the simple density profile shown in Fig. 4b. In par-
ticular, as Λ Γ - ± « , we obtain the simple exponential
asymptotic behavior

ψ (*) !*-+,»« const-exp(-Ai), * + = (Λ-1)1 (3.33)

By virtue of (3.27), the free energy of the globule,
including the surface terms (3.21), can be written in
the form

F = #μ* (B0, Τ) - Jp* (η) d>x (3.34)

since />* =0 at the center of the globule, the last term
in (3.34) is proportional to the surface area of the glo-
bule, i.e., it is a kind of entropy surface tension. If
we use σ(Γ) to represent the corresponding surface ten-
sion, we have

/·= Λ'μ* («ο, Τ) + 4π/?5σ (Τ), β gg)

Ν

"ο

WK 1 >
£ Z k S n _ , T O 7 7 7 . J /

L
FIG. 5. Graphical determination of the density «o and free en-
ergy of a large globule in file volume approximation.
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and, since the problem is essentially one-dimensional,
we have

σ ( 7 - ) = - ρ* (η (χ), T)dx. (3.36)

It is now a relatively simple matter to calculate σ(Γ)
from the solution (3.32) of the problem of the structure
of the surface. The result is

-.aT

2 J ν(ψ)ίψ-νφ

0 [2 (ψ. >„) }' ν(ψ)*|:-ψ ;] •

(3.37)

and this gives σ explicitly in terms of the thermody-
namic functions of the equivalent broken-link system.
Simple estimates show that σ~αΤ/ν~ (Τ/α2)α3/ν.

D. Other results for globular and similar structures

In this section, we shall give a brief review of other
results obtained as a result of studies of polymer glo-
bules and other systems for which equations analogous
to (3.19)-(3.20) are obtained.

1) If the temperature Τ is less than the critical tem-
perature Τα for phase separation in the system of
broken links, there is a range of densities correspond-
ing to absolutely unstable states of the system. It is
natural to expect that the density in the globule never
assumes values corresponding to this interval, i.e.,
the globule must take the form of a peculiar two-phase
system with a sharply defined boundary between the
core and the envelope.6 We then have the problem of
the additional boundary conditions that must be satis-
fied on the separation boundary. It turns out that these
additional conditions are: a) continuity of chemical po-
tential μ(η,Τ) across the boundary,6 and b) continuity
of the local pressure p(n, T) across the boundary.8 We
note that the suggestion made by Lifshits and Grosberg6

that the function p is not continuous across the boundary
has turned out to be incorrect. An analysis of the
structure of a globule with a density discontinuity has
been given in previous papers.6 '8

2) It is occasionally useful to consider the situation—
at first sight extremely exotic—where the range of the
potential ro~v1/3 in the chain is so small (or a is so
large) that not only ν «a3 but also

i _ < J _ < c l (3.38)

For T<Ta, this kind of chain can form the so-called
small globule,6 the core of which occupies the volume
Vo« a3 and is separated from the envelope by a sharp
boundary.

The small globule is an advantageous formation be-
cause, firstly, the various effects connected with the
polymer nature of the chain are then well defined and
are, in fact, the leading effects (and not the secondary,
surface effects as in the large globule). Secondly, the
mathematical description of small globules is much
simpler. This means that, whenever some particular
effect is examined, it is best to begin with the case of
the small globule which frequently turns out to be suffi-
cient to achieve a qualitative understanding of the gen-

eral case as well. Examples of this can be found in the
literature.6·4 3"4 5

The above device has been used4 3·4 4 to investigate the
interaction between a globule and a foreign solid parti-
cle. This may be regarded as a very approximate mod-
el of an enzyme-substrate complex.

Here, we shall confine our attention to a brief analy-
sis of the structure of an isolated small globule. The
decisive point is that the density and the ψ-function may
be looked upon as constants within the confines of the
small core of the globule, and equal to their boundary
values n. and tp_.

In view of the above boundary conditions, the two
boundary densities w. and n. may be regarded as known
functions of temperature because they are equal to the
densities of the coexisting phases of the system of
broken links in equilibrium.

H, for simplicity, we neglect the volume interaction
outside the core of the globule, we immediately obtain
n+ = 4>l, n_ = tl>J>_ (so that φ. and φ^ are also known),
whereas, outside the core, we have Μ01]ί(χ) = ψ^11,(χ).

The basic equation (3.19) can be easily rewritten in
the form of a linear equation for φοιιν and this eventual-
ly yields

il'out (x) — — ^ ^ ^ \ e x P ( — ikx) dk. \ο,οσ/

(2π)3 J -*~£k

To determine the constants Vo and Λ, we must use the
normalization conditions and Ψοι11(0) = !/>+. The final re-
sults can be easily shown to be

NQ (A) = n,« a .

.VI' (A) = I ' o (« . — «+),

where Ρ and Q are uniquely determined by g:

The equilibrium free energy turns out to be

F = NT IP (A) — In Λ].

(3.40)

(3.41)

(3.42)

The functions Ρ and Q have been tabulated for the
Gaussian core, and graphs of them can be found in a
previous paper.8

3) The structure of a polymer globule formed by
hydrogen-type bonds saturated in pairs was examined in
an earlier paper.7 It was found that, when the excluded
volume of the monomer was small enough, the monom-
ers were capable of forming bonds that were both rela-
tively rare in the chain and bonds that were sufficiently
strong, and the polymer chain formed a globule of vol-
ume a3, for which the density profile could be evaluated
exactly, i.e., one could find the exact solution of the
corresponding nonlinear integral equation (3.19). Fur-
ther details can be found in Ref. 7 (Sec. 2).

4) When equations such as (3.4) or (3.19) do not have
a discrete spectrum, the inclusion of only the largest
eigenvalue in the partition function (3.3) is not enough.
When this is so, we can look upon Ν in (3.2) as a con-
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tinuously varying quantity, and easily find the equation
forZ:

J|- + Z = exp( —*f-)gZ. (3.43)

Here, instead of the external field <p(x), we have sub-
stituted the self-consistent field μ*[η(χ)]. If the density
profile η (χ) is a continuous function, we can substitute
g- 1+α2Δ in (3.43) and this gives

|§-=α*ΔΖ-[ΐ-βχρ(--!£-)]ζ. (3.44)

This equation was used by Edwards24 for the self-con-
sistent solution of the excluded volume problem (Sec. 2,
Subsection C, para. 1). The density in the coil is then
small and μ*α2ηΒΤ, where B~v is the second virial
coefficient for the interaction between the monomers in
a good solvent. Equation (3.44) then assumes the form

| | r = a2AZ -2«BZ. (3.45)

This is the Edwards equation.24 We note, however,
that, as shown in Sec. 2, the self-consistent solution of
the excluded volume problem cannot lead to an exact
result.

5) The globular structure formed by a compressive
external field has been examined5 for a chain without
volume interaction, and in the general case.4 5

In the case of the ideal chain, interesting results have
been obtained for the case of an extended and deep po-
tential well <p(x). In this case, φ(χ) is identical with
the quantum-mechanical wave function for a particle of
mass K2/2T in the field φ (χ). This enables us to calcu-
late the pressure exerted by the chain on the surround-
ing walls for a spherical well of both infinite5 and finite8

depth, and to analyze the pressure distribution over the
surface of a nonspherical potential well.46

In the presence of repulsive volume interactions, the
structure of the system for Nv « V, when all the mo-
nomers lie within the well V, is very different from the
case where Nv » V, when the well contains only a rela-
tively small number of monomers.45

6) An important example of the problem of a polymer
chain in a compressive external potential field is that of
the adsorption of a polymer on an attractive surface.
The external field φ (χ) then consists of the impenetra-
ble surface and a potential well localized on it. Equa-
tion (3.4) (usually with £ - 1+a2) is well known in ad-
sorption theory8·2 7·4 7·4 8 (see also the references in
Refs. 27 and 48).

We note particularly the paper by de Gennes.48 This
not only provides a review and a simple derivation of
the results of the self-consistent field theory as applied
to the adsorption problem, but also gives a qualitative
discussion of the scaling corrections which must be
taken into account because of the presence of developed
fluctuations in a broad adsorption layer (in the case of
weak adsorption48).

7) Problems that are particularly close to the theory
of globules arise in the analysis of separation bound-
aries between immiscible polymer materials in a block,
and also the phase separation boundary in a polymer
solution. The theory of such inhomogeneous polymer

systems has been substantially advanced in recent
years, mainly as a result of the work of He If and
et αί. 4 9 · 5 0 " 5 3

It is clear that the polymer macromolecules in such
systems are located in the inhomogeneous self-consis-
tent field of the other macromolecules, so that we have
equations such as (3.19). As a rule, such systems are
weakly fluctuating, so that correlations between the
ends of the chain are split, and ψ is independent of N.

Since problems on separation boundaries are one-di-
mensional, the substitution £ - 1+ <p2d2/dx2) is made in
(3.19). Helfand et aL5 0"5 3 have treated, essentially, the
solution of this type of equation. An analysis of the re-
sults is given in Ref. 49.

8) Another important example of the application of
equations of the same type is the theory of block copol-
ymers of the form A -A -... -A -B -B -... -B, the
block components of which are immiscible.4β·54~5β The
block components will tend toward phase separation and
this will be impeded by the presence of chemical val-
ence bonds between A and B. The result is the appear-
ance of a microdomain structure with one-, two-, or
three-dimensional periodicity, depending on the rela-
tive length of the two blocks.49

It is clear that the theory describing this microdo-
main structure must operate with equations such as
(3.19). Periodic boundary conditions54 are imposed on
these equations and this substantially modifies the na-
ture of their solution. We shall not go into the details
of this interesting problem, the theory of which is not,
in our opinion, anywhere near completion. Readers
interested in specific derivations and preliminary re-
sults are referred to the literature.54"58

4. THEORY OF THE COIL-GLOBULE TRANSITION

A. Formulation of the problem

The theories of the globular and coil states were dis-
cussed in the preceding chapters independently of each
other. In this chapter, we consider the theory of the
coil-globular transition in the homopolymeric macro-
molecule.

This problem arose historically in connection with the
denaturation of a protein globule. It is well known that
this is a rapid cooperative transition with a well defined
heat effect. The question was whether this cooperative
denaturation was a feature of the highly specific struc-
ture of the protein globule or whether the rapid coil-
globule transition could be observed in any, including
the homopolymeric, macromolecule. This formulation
of the problem attracted considerable attention to the
coil-globule transition and considerable literature is
now devoted to it.

We recall that the definitions of coil and globule, and
the terminology used to describe the phase transition in
a finite system, are given in Subsection C of Sec. 1.

We start by stating the basic assumptions of the theo-
ry of the coil-globule transition. In the last section,
we investigated the structure of a polymeric globule and
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found its configurational free energy F. It is easily
seen that this free energy was expressed as an incre-
ment on the free energy of an ideal coil without volume
interactions. Consequently, the coil-globule transition
point can be found directly from the condition .F = 0.3)

The transition width can be estimated as follows.
According to the foregoing theory, the globular state
corresponds to the splitting of correlations in (3.1). It
is readily seen that the condition for the segregation of
the main term (3.6) of the bilinear series is |-F|» T.
This means that the higher eigenfunctions which modify
the fluctuation state must be included in the region | .F |
s T. The width of this region is, in fact, the transition
width ΔΓ:

F(TC) = 0, | F (Tc - AT) ΛΤ. (4.1)

Β. Coil-globule transition in a long chain

1) Volume approximation. We begin by considering
the volume approximation in which, according to (3.27),
we have ίΓ=ΛΓμ*(«0). Consequently, in this approxima-
tion, the transition temperature can be determined from
the condition μ*(«0, Tc) = 0.

The most realistic form of the function μ*(η,Τ) is
shown in Fig. 5 (the alternative graph is shown in Fig.
9 and will be discussed in Subsection D). The transition
temperature Tc can be determined graphically from the
condition that the horizontal cutting line coincides with
the abscissa axis. It is clear from Fig. 5 that, as
Τ— Τc, the density n0 in the globule tends to zero. This
enables us to use the following virial expansions for the
thermodynamic functions near X :

μ* « 2ηΤΒ (Τ) + 3n*TC (T), (4.2)

ρ* χ η*ΤΒ (Τ) + 2n3TC (Τ),

and hence achieve a universal description of the transi-
tion in terms of the second and third virial coefficients
for the interaction between monomers, Β and C.4 )

The expansions given by (4.2) readily yield explicit
formulas in the volume approximation. The core dens-
ity is given by

Β
"STT

the free energy of the globule by

p = NTB°-

and, according to (3.27),

(4.3)

(4.4)

(4.5)

3 'This condition will still be satisfied even when volume inter-
actions are present in the coil at the point of transition be-
cause F is proportional to Ν and the difference between the
free energies of two coils is proportional to N" (ct< 1) since
the monomer number density in the coil is small.

4Of course, these virial coefficients must be renormalized be-
cause the monomers are linked in a chain, so that we must
write B* and C* but the asterisks will be omitted in this sec-
tion for simplicity. The renormalization of the virial coeffi-
cients in the theory of polymeric globules is discussed in
Ref. 8.

All this also readily yields the radius of the globule:
Λ = (3ΛΓ/4ΤΓΜΟ)1/3.

It is clear that F = 0 when Β = 0. Thus, in the volume
approximation, the coil-globule transition temperature
Tc coincides with the Θ point. The coefficients Β and C
can be written in the following form near the Θ point:

We now see that F~ - τ 2 , i.e., in the volume approxima-
tion, the coil-globule transition is a second-order phase
transition.

2) Inclusion of surface terms. The above analysis
does not, however, take into account surface effects
which are very important near the transition point. As
a matter of fact, as Γ - Θ , Eq. (4.5) shows that Λ - 1,
i.e., the width ~α/(Λ _ 1) 1 / 2 of the surface layer in-
creases [see (3.33)]. The formula given by (3.37) also
predicts that, when Τ approaches Θ,

«*|£. (4.7)

Consequently, the total free energy (3.35) becomes

(4.9)

The point Tc is the coil-globule transition point because
F(Tc) = 0. We note that it is precisely at the point Tc

that the radius R of the globule and the thickness of the
surface layer α/(Λ _ 1) 1 / 2 become equal to within an
order of magnitude. This means that the negative vol-
ume and positive surface parts of the free energy be-
come equal at this point. As indicated by the volume
approximation, the transition point tends to the Θ point
as iV— °o, and TC— 0.

We shall now use (4.1) to determine the transition
width. It is readily seen that

Δ71'

AsN~<v, it is clear that Δ Γ - 0 . Consequently, accord-
ing to Subsection C of Sec. 1, the coil-globule transition
is a phase transition. When C1/ 2 « a3, we have ΔΓ « (Θ
- Tc): the transition occurs at the point Tc and the nar-
row transition region is clearly separate from the β
point. When C1/2~a3, the transition smears out and in-
cludes the Θ point.

If υ is the characteristic volume of the monomer, we
have the following order of magnitude expressions for
the usual potentials (see Fig. 2): b~v, C~v2, i.e.,
C1/2/a3~v/a3. Consequently, the above dependence of
the nature of the transition on the quantity C1/2/a3 is
really determined by whether ν « a3 (see Fig. la) or
v~a3 (see Fig. 3). The formulas given by (4.9) and
(4.10) can be written in the following form in terms of
υ and a3:

(—V AT-

It is clear from (4.8) that the character of the transi-
tion is somewhat unusual. When 1 » | T | » T C , F is pro-
portional to r 2 and the system behaves in a way charac-
teristic of a second-order phase transition, namely,
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the density (4.3) gradually decreases and the globule
spreads out (R increases). However, within the minis-
cule region near the transition point, | τ | _ TC « TC and
the behavior of the system changes. In this region,5'
we have F~-(TC- T)a3/C1/2TC. This type of dependence
on Tc - Τ is typical for first-order transitions but, in
fact, we have a second-order transition because the
coefficient in front of Tc - Τ is proportional to N1/2 and
not to N, i.e., the heat of the transition per monomer

tends to zero as N— «>.

The density in the globule at the transition point is

i.e., the dependence on Ν is such that the globule dens-
ity falls to a value of the order of the coil density at
the transition point. On the other hand, the binary vol-
ume interaction parameter ζ in a coil at the transition
point is 2~.W1/2.B/a3~C1/Vs/2~ (v/a3)1'2 « 1. Conse-
quently, for the case ν « a3 which we are discussing
(see footnote 5), the coil can be looked upon as Gaus-
sian at the transition point with density nc~a'3N~il2.
The relative change in the density during the transition

i s

(4.13)

It follows that, as N~ », the density increases only by
a finite factor at the transition point, and the number of
contacts made is relatively small. Further reduction
in the temperature is accompanied by a gradual in-
crease in the density of the globule, tending to close
packing: η ~ l/v (for which the entire free solvent is
displaced from the globule).

Even when v~a3, Eq. (4.12) and extrapolation of the
above transition characteristics obtained for ν « a3

show that a gradual transition from the globular to the
coil state occurs in this case in the region around the
θ point of width ΑΤ~θ/Ν1/2. This transition can be
naturally identified with a second-order transition.

Figure 6 shows the mean densities for ν «a3 and
v~a3 as functions of temperature. The reason for the
difference between these two cases is essentially that
the free energy has two minima in the space of the
macrovariables when ν « a3, and the probability func-
tion for the system is "pumped through" from one min-
imum into the other during the transition. On the other
hand, when v~as, there is only one such minimum, and
the minimum is gradually displaced from the globular
to the coil region during the transition. In accordance
with the terminology described in Subsection C, the
coil-globule transition for υ «a3 is a first-order tran-
sition, whereas the transition corresponding to v~a3

is a second-order transition.

3) Coil-globule transition in the persistent model.

5 'This form of the free energy Is meaningful only if I f | » Τ In
this region since, otherwise, we would have to take into ac-
count the contribution of coil states. The necessary condition
in this case is a 3 » C 1 / 2 of v«a3, which we shall assume un-
less stated to the contrary.

FIG. 6. Temperature dependence of mean density within the
limits of a macroniolecule in the region of the coil-globule
transition: 1— ν «a3, 2— v~a3.

We have seen in Sec. 2 that, because the monomer num-
ber density within the coil is small, its properties are
universal, i.e., results obtained for the standard model
can easily be converted to the results for any other
model, including the persistent model. Formally, this
was ensured by the fact that the macroscopic charac-
teristics of the polymer coil depended only on the single
parameter Β connected with the volume interactions.

Conversely, the monomer number density in the poly-
mer globule, considered in Sec. 3, is not in general
small, so that the results obtained in that section are
valid only within the framework of the standard model.

We shall show in this section that the globule density
becomes very small near the transition point, so that
it is natural to expect a degree of universality, i.e.,
model independence, for the coil-globule phase transi-
tion picture as well. However, in this case, universal-
ity involves two parameters connected with the volume
interaction, which correspond to Β and C in the stand-
ard model.

It was pointed out in Subsection Β of Sec. 2 that the
second virial coefficient for the interaction between
cylinders of thickness d and length I (B~dl2r) could be
taken as an estimate for Β in the persistent model. It
is natural to suppose that the third virial coefficient for
the interaction between such cylinders can be taken as
an estimate for C. This yields C~d3l3ln(l/d) (see Ref.
57). These expressions for Β and C must then be sub-
stituted in all the formulas of this subsection to esti-
mate the characteristics of the coil-globule transition
in the persistent model.6' In particular, it is readily
seen that the transition picture for ν «a3 corresponds
to p = l/d»l (stiff chain) in the persistent model; v~a3

corresponds top~l (flexible chain).

4) Conclusions.

a) When ν « a3, or when the chain is stiff, the coil
globule transition is a rapid first-order phase transi-
tion with a finite density change (4.13), which lies just
below the θ point (4.10). However, in some ways, this
transition is close to a second-order transition, for
example, the heat of transition (4.11) is small.

b) When v~a3, or in the case of a flexible chain, the
coil-globule transition is similar to a gradual second-
order phase transition extending throughout the Θ re-
gion.

8)This will, naturally, yield the correct estimates but only for
the isotropic globular phase. The possibility of liquid-crys-
tal order in the globule must be considered separately.
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C. Conditions for the existence of globules in solution

The main difficulty in the experimental verification of
the coil-globule transition in homopolymer solutions is
the fact that the polymers precipitate out below the Θ
point. This results in a gain in the free energy because
of the reduction in the area of contact between the glo-
bular phase and the pure solvent (~σϋ2). However,
there is an attendant loss in the free energy associated
with the relative motion of the globules per macromole-
cule, ~Tln(no/c), where c is the mean concentration of
the monomers in solution (since N/n0 is the volume of
the globule and N/c is the volume per globule in the
solution, we find thatw,/c is the fraction of volume
occupied by globules in the solution). Consequently,
precipitation does not occur [see (4.7) and (4.3)] if

In- >*=/·•· (.£) (4.14)

In particular, precipitation at the transition point will
not occur [see (4.9)] if

|ΐ«(·^Π>^· (4-15)

It is clear that the more sharp the transition, the
smaller the parameter v/a3, the more stringent is the
condition imposed on the concentration c of the solution
which, ensures that the globules are formed and do not
precipitate. Hence, the main difficulty for the experi-
mental verification of the above transition is that the
various effects to be observed in the case of very dilute
solutions are very weak.

The formulas given by (4.9) and (4.14) define the re-
gion of existence of homopolymeric globules in solution.
Figure 7 shows the state diagram for a polymer solution
on the T,c plane. The shaded region corresponds to the
existence of globules in solution.

D. Other possible intramolecular phase transitions

1) The function μ*(η) may have several extrema at
low temperatures and these may be connected, in par-
ticular, with the presence of different phases in the
system of separate monomers.

When additional extrema are present, the equation
given by (3.26) for the density n0 in the globule may have
a number of solutions. These solutions correspond to
globules with different core densities and different free
energies, Νμ*(η(ο*) and Νμ*(η^2>). If the difference be-
tween these energies changes sign as a result of a
change in temperature, we have a first-order globule-
globule phase transition connected with a rearrangement
in the structure of the core. The situation illustrated in
Fig. 8 corresponds to the transition point.

FIG. 8. Graph of μ*(η) at the globule-globule transition tem-
perature (area I is equal to area Π, and area m is equal to
area IV).

2) Another possibility is that when the function μ*(η)
has the form shown in Fig. 9. Here, the coil-globule
transition takes place for T c > 0 , as may be seen from
the figure, and the density in the globule is very high
at the transition point (no~ l/v). The transition itself
is a rapid cooperative first-order transition. It is pos-
sible that the denaturation of a protein globule occurs
through an analogous mechanism.

3) At sufficiently low temperatures, when a density
discontinuity occurs on the surface of the globule, an-
other type of transition takes place, namely, the so-
called globule-with-fringe to globule-without -fringe
transition,6 which is a first-order transition in which
all the monomers in the chain condense into a dense
"drop" without a gaseous envelope of any kind.6

4) For a small globule (see Sec. 3, Subsection D,
para. 1), the coil-globule transition takes the form of a
rapid first-order phase transition well below the Θ
point. When the small globule appears, the density
undergoes a large discontinuity, reaching a value cor-
responding to the expulsion of the solvent.6·8

5) If the polymer chain is stiff enough, and if the
attractive forces between chain segments are strong
enough, orientational ordering in the macromolecule,
i.e., the appearance of liquid crystal structure, be-
comes possible. The conditions for the appearance of
macromolecules with orientational order, and their
properties, are outside the scope of the present review
and will be examined elsewhere.

6) The formation of a globular structure from a chain
without volume interactions under the influence of a
compressive external field was described in a previous
paper,5 where it was shown that the corresponding phase
transition was a second-order transition.

In particular, adsorption of a coil when attraction to
the surface can be reduced to a potential field is also a
second-order phase transition. On the other hand, if
the interaction between the polymer chain and the sur-
face cannot be described in terms of a potential field,
for example, the adsorption of macromolecules with
nonalternating dipole moments by a charged surface,58

FIG. 7. Simplest state diagram for a polymer solution.
Shaded region corresponds to the existence of isolated globules
in solution.

FIG. 9. Example of the function μ* in) for which the coil-
globule transition is a first-order phase transition.
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the adsorption process can also occur as a first-order
transition. We draw attention to the fact that Skvortsov
et al.59·60 have analyzed the effect of chain stiffness on
adsorption which is, in effect, outside the framework of
the standard model. It turns out that, although the
adsorption process remains a second-order phase tran-
sition as the stiffness increases, the jump in the speci-
fic heat and Tc both increase.

7) The formation of a globular structure from a chain
with a repulsive volume interaction under the influence
of an external compressive field was discussed in a
previous paper.45 It was found that the introduction of
this volume interaction affected neither the temperature
nor the type of the transition, and there was only a
change in the jump in the specific heat. In particular,
this result is valid in the case of adsorption.

8) The adsorption of globules was discussed by Gros-
berg,6 1·6 2 who constructed the state diagram on the
№,%><) plane, where <p0 is the depth of the surface po-
tential well.

E. Comparison with the results of other approaches and
with laboratory and computer experiments

As already noted, there is considerable literature de-
voted to the determination of the characteristics of the
coil-globule transition.

1) Theoretical approaches. As far as we know, the
first attempt at a theory of the coil-globule transition
is due to Ptitsyn and ISizner.63 This was subsequently
developed further by Eizner.64 A similar approach to
this problem was developed by de Gennes.39 These
papers were based on a modification of Flory's method
for the determination of the expansion coefficient a 2 ,
but allow an examination to be made of the region a.2

<1. It was concluded39·64 that, for small v/a3, a sharp
conformational transition occured below the Θ tempera-
ture, whereas, for v/a3- 1, the transition was more
gradual. This conclusion agrees with our analysis.
However, the approach adopted in Refs. 39 and 64 will
not yield more detailed information on the nature of the
transition.

Oono20 has shown rigorously that (R2)~N2/S is always
the case when Τ < θ as N~ °°. Saito et al.65 have shown
that Tc— θ as N— °°. All these conclusions are also
predicted by the theory given above.

Massih and Moore66 have discussed the lattice model
of a polymer chain with volume interactions in which
the chain is represented by a random walk on a "Bethe
cactus" type lattice for which an exact solution can be
obtained. It was found that a second-order phase tran-
sition existed for this model at a certain temperature.
However, this model represents the polymer chain not
in ordinary three-dimensional space but rather in an
infinite-dimensional space.67 Therefore the result ob-
tained is not related to the usual coil-globule transition.

In a recent paper, Moore67 reported an attempt to
construct a theory of the coil-globule transition which
is essentially analogous to our theory7 (see above).
However, Moore noted correctly right from the start

that the phase transition as such could occur only for
infinite Ν and did not proceed to the discussion and
classification of conformational transitions for finite N.
It seems to us that this approach is unsuitable in the
case of macromolecules in which the number of monom-
ers is not all that large (1O4-1O5). Our terminology
(see Introduction, Subsection C) seems physically more
reasonable for such systems. When applied to the coil-
globule transition, Moore's approach has led to an es-
sentially incorrect result, namely, that the coil-globule
transition is always (even for v~a3) a second-order
transition.

2) Computer experiments. We now consider the re-
sults obtained for the coil-globule transition in the lat-
tice model (Fig. lb) of the polymer chain obtained by
the Monte Carlo method on a computer.

The most complete investigation of the coil-globule
transition by this method was reported in a series of
papers by Kron et al.6*'70 This work differs from other
similar computer experiments in that a study was made
of the transition characteristics as functions of the
chain stiffness. The basic conclusion was that the coil-
globule transition occurred in stiff chains in the form
of a rapid first-order transition whereas, in flexible
chains, it took the form of a more gradual transition
that was not of the first order. These results are gen-
erally in agreement with other theoretical predictions.
However, some of the theory is insufficient for detailed
comparisons because, in many of the cases examined
on the computer,68"70 the coil-globule transition turns
out to be closely related to intramolecular orientational
ordering which is outside the framework of the standard
model. A comparison of the results of numerical ex-
periments68"70 with the theory of the intramolecular
liquid crystal phase will be given elsewhere.

Domb71 used an analysis of computer data as a basis
for the proposal that the coil-globule transition was al-
ways a first-order transition occurring at a certain
critical temperature T c<© (as N— «>). This conclusion
appears to be due to an incorrect extrapolation of com-
puter data.

Finsy et al.72 have concluded that a first-order phase
transition occurs at a temperature Tc much smaller
than θ in the case of a chain simulated on a cubic lat-
tice.

If more detailed analyses confirm this conclusion,
this will mean that the globule-globule type transition
described in para. 1 of Subsection D of this section
occurs for this type of chain.

3) Experiments with real macromolecules. As al-
ready noted, the main difficulty in experiments designed
to verify the coil-globule transition is that one has to
work with low concentrations of the polymer in solution.
The picture is distorted by polydispersion, the presence
of defects, branching, and so on. The polymers must
therefore be carefully prepared. Studies of the confor-
mation of such "pure" polymer chains below the Θ point
began only relatively recently, using the well-studied
system of polystyrene in cyclohexane.73·74 It was found74

that, when the temperature was reduced by 1.5° below
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the Θ point, the coefficient a2 of the polymer chain
(W = 4.5 X105) fell by a factor of three. This system was
also studied by Nierlich et al.,15 who used small-angle
neutron scattering. Collapse was observed at 19° below
the Θ point. Its width was ~1° and the expansion factor
of the coil at the transition point was about 0.9. The
density was found to increase linearly with temperature
below the transition point. These data are, in general,
in agreement with the above results.

Various conformational transitions in the neighbor-
hood of the θ point have frequently been reported in the
literature and are occasionally identified with the coil-
globule transition. However, in each specific case,
the reality of the alleged coil-globule transition re-
quires thorough examination and, in particular, one
must be sure that the intermolecular interaction is
small in comparison with the intramolecular interac-
tion. Analysis of such experiments is beyond the scope
of this review.

In conclusion, we may say that the present-day theo-
ry of volume interactions in polymer systems provides
a qualitatively correct description of homopolymeric
macromolecules in sufficiently simple situations, and
can be used as a basis for further more realistic ap-
proximations.

Biopolymers must be particularly noted. From the
physical point of view, their main distinguishing fea-
ture is the heterogeneity of primary structure. It fol-
lows that the theory developed for a homopolymer is
not directly applicable to biopolymers. On the other
hand, this theory may, firstly, facilitate the formula-
tion of new questions relating to biopolymers and, sec-
ondly, it may lay claim to be useful in the description
of properties that do not depend on the details of the
primary structure.

However, it is not as yet clear as to whether there
are some properties of a biomacromolecule that are
insensitive to variations in its primary structure. Bio-
logical activity itself is, of course, due precisely to the
unique primary structure which leads to an equally
unique spatial (ternary) structure. Hence, studies of
the biological functioning of macromolecules (for ex-
ample, in the course of enzyme reactions) must be
based on fundamentally new formulations of the various
questions. Lifshits and Grosberg6 have mapped out
some of the possible approaches to these problems.
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