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A review is presented of the theory of optical properties of cholesteric liquid crystals (CLC). The
diffraction nature of the unusual optical properties of CLC is exhibited in the simplest and most easily
visualizable kinematic approximation of diffraction theory. A quantitative description of the optical
properties is given based on the exact solution of Maxwell equations for light propagated along the
optical axis of CLC and within the framework of the dynamic diffraction theory for an arbitrary
direction of propagation. Considerable attention is devoted to the manifestation of the connection
between the structural and optical properties of the CLC observed when light is propagated at an angle
to the optical axis of the CLC and when the CLC structure is distorted by an external field.
Investigations of the optical properties of absorbing CLC reveal that suppression of light absorption in
the selective reflection band is analogous in its nature to the well-known Borrmann effect in x-ray
diffraction. Different approaches to the optics of imperfect CLC which frequently most nearly correspond
to the conditions of actual experiments are described. A theory of the optical properties of chiral smectic
crystals is presented. This theory, on the whole, is analogous to that for CLC, but it predicts a number
of qualitative differences in the optics of chiral smectic crystals. The theory and special features of the
Vavilov-Cherenkov radiation in CLC is briefly presented. A comparison is made of the theoretical results
with the experimental data and the most promising directions for theoretical and experimental research
are indicated.
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1. INTRODUCTION

The recent steady interest in liquid crystals is due to
the very interesting physics of the liquid-crystalline
state,1"9 to their role in biological systems,10'11 and
last but not least, to the broad potentialities of their
varied applications. Among these applications, pri-
marily the unusual optical properties of liquid crystals
are employed, and in particular, the possibility of con-
trolling these properties by small perturbations (elec-
tric, magnetic, mechanical, etc.).12"14 Three varieties
of liquid crystals are known: nematic (NLC), smectic
(SLC) and cholesteric (CLC). Among these, the cho-
lesteric liquid crystals possess the most remarkable
and varied optical properties.5"15"20

•This review is concerned with the optics of choles-
teric and in part the chiral phase of smectic, liquid
crystals. Up to now a large number of experimental
and theoretical studies has been published on this
topic, and advances have been able to be made not only
in qualitative understanding of the unusual optical
properties of CLCs, but also in describing them quan-
titatively. At least as regards perfect specimens of
CLCs, the problem in theoretical description of the
optical properties is no longer that of revealing the
physical nature of the observed phenomena, but of
choosing which of the developed theoretical approaches
best corresponds to the situation under study. Never-
theless, in spite of marked progress, it is rather
complicated to get a global view of the subject (especial-
ly for those beginning to interest themselves in this
problem). The reason for this is that the optics of
CLCs is presented too sketchily in the monographs and
reviews of general type,1"20 while the numerous original
articles are devoted to special problems and often
duplicate one another, which also does not always
foster clarity in gaining acquaintance with the topic.
Yet undoubtedly, the problems of the optics of CLCs
merit an independent presentation, since a unique sit-
uation is realized among the CLCs for wavelengths of
the optical range in which light is diffracted by the
complicated spatial structure of the CLCs. In es-
sence the special and unusual character of the optical
properties of CLCs proves to involve diffractive light
scattering.

This article aims to present from a unitary outlook
the state of the theory of the optical properties of
cholesteric liquid crystals and to compare its conclu-
sions with the results of experimental studies. It
seems to us that an acquaintance with the achievements
and problems of the optics of CLCs can be useful not
only to specialists on liquid crystals, but also to a
broader set of persons interested in problems of co-
herent interaction of various types of radiation with
crystals.

CLCs possess remarkable optical properties.5'15"20

They selectively reflect light of a definite polarization
and definite wavelength. Thus, for example, when a
ray is incident on a CLC along the optic axis, light
of one circular polarization in a relatively narrow
range of wavelengths is reflected from "the crystal,
while light of the other (orthogonal) circular polariza-

tion penetrates into the crystal without being reflected.
The color of a CLC depends on the angle at which the
crystal is viewed. In thin layers the observed rotation
of the plane of polarization of light is as much as sev-
eral thousand degrees per millimeter. This cannot be
explained by the natural optical activity of the mole-
cules. Imposing external fields (electric, magnetic,
etc.) or changing the temperature, alters the wave-
length of light at which the described anomalous optical
properties are manifested.

The nature of the optical peculiarities of a CLC
proves to involve its structure, which for monocrystal-
line layers is that shown in Fig. 1. The long axes of the
molecules forming the CLC, which are depicted in
Fig. 1 by oval dots, are oriented in the same way in
any plane perpendicular to the optic axis (z axis), but
without long-range order in the arrangement of the
centers of gravity of the molecules. The orientation
of the axes of the molecules as a function of the coor-
dinates varies according to the law

Φ«--^-. (l.D

Here φ (ζ) is the rotation angle of the axis of the mole-
cule in the plane. The quantity p is called the period
or pitch of the cholesteric helix. In a distance p along
the ζ axis, the axes of the molecules rotate by an
angle of 2w. A characteristic value of p for most CLCs
amounts to several hundred or thousand Angstroms,
though CLCs are found with larger values of p.

The pattern depicted above of the structure of CLCs
is idealized. In particular, the orientations of mole-
cules at a fixed value of ζ can differ slightly from one
another, while Eq. (1.1) describes the 2-dependence of
the mean orientation of the molecules. The direction of
the mean orientation of the molecules is commonly
described by the unit vector n, which it called the di-
rector. The degree of order of the molecules is char-
acterized by the order parameter3'5

S = -i-(3<cos*e>-i). (1.2)

Here (cos2fl) is the mean square of the cosine of the
deviation angle of the long axes of the molecules from
the direction η of the director. Thus Eq. (1.1) de-
scribes the spatial variation of the orientation of the
director. When S *1, the latter coincides only on the

FIG. 1. Schematic drawing of the structure of a cholesteric
licpiid crystal (below) and the corresponding dependence on the
coordinates of the orientation of the principal axes of the
dielectric permittivity tensor (above).3
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average with the orientation of the axes of the mole-
cules.

A cholesteric phase (or, as is commonly said, a
cholesteric mesophase) can exist for organic compounds
that have elongated molecules without mirror sym-
metry (chiral). Typical representatives of these
compounds are the derivatives of cholesterol. Thence
arose the name of cholesteric crystals. A choles-
teric phase usually exists over a certain temperature
range directly from the melting point of the ordinary
crystalline phase up to a higher temperature that cor-
responds to the cholesteric liquid transition. Usually
the pitch of the cholesteric helix declines with in-
creasing temperature, though the opposite trend in the
pitch can occur in some cases. A certain particular
compound can also have a smectic and a cholesteric
phase.3 '5 In these cases the smectic phase precedes
the cholesteric. That is, a smectic liquid crystal first
arises on melting of the crystal, and then a phase tran-
sition to a CLC occurs with increasing temperature.

The amount of twist of a cholesteric phase is very
small on a molecular scale (a/p ~ 10' 2 - 10'3, where a
is the characteristic dimension of the molecules). This
stems from the smallness of the deviation of the sym-
metry properties of the molecules from mirror sym-
metry. A detailed presentation of the physics of a
cholesteric mesophase lies outside the scope of this
article, and it can be found, for example, in some re-
cently published books.5"13

The nature of the anomalous optical properties of
CLCs (such as the selective reflection of light of a
certain polarization and wavelength, the unique high
rotation of the plane of polarization of light in thin
layers, the dependence of the color of the specimen
on the temperature and also on the angle of observa-
tion, etc.) has been understood in general terms for a
rather long time, already in the thirties, following the
work of Oseen.21'22 The physical cause of the stated
"anomalies" in the optical properties of CLCs is the
diffraction of light by their spatially periodic struc-
ture (cholesteric helix), whose period usually lies in
the region of the optical wavelength range. This ex-
plains naturally the variation with temperature (or
with imposition of an external field) of the wave-
length range in which the optical anomalies are ob-
served. Actually, the pitch p of the cholesteric helix
is altered by the stated agents, and this leads to the
observable consequences. However, in spite of the
fact that the dlffractive nature of the optical anomalies
of CLCs has occasioned no doubt, a number of im-
portant quantitative characteristics and qualitative ef-
fects that are manifested in the optics of CLCs have
only recently found an adequate theoretical descrip-
tion.

The most natural way to describe the optical proper-
ties of CLCs consists of solving the Maxwell equations
(with an appropriate assignment of boundary conditions),
in which the dielectric properties of the CLCs are
described by the coordinate-dependent dielectric-con-
stant tensor £(r).5 The coordinate-dependence of the
tensor t consists in the point-to-point variation of the

orientation of the principal axes of the tensor, the
local direction of which is determined by the orienta-
tion of the molecules of the CLC at the given point.

For a perfect cholesteric structure e(r) has the form

( e + e6cost« ±ei5sinii 0\
ifciSsimz e—eficosiz 0 I.

0 0 e, /
(1.3)

Here the ζ axis lies along the optic axis, we have τ
= 4π//>, ρ is the pitch of the cholesteric helix, e t and
ε2 =ε3 are the principal values of the dielectric-
constant tensor, ε = (ε% + ε2)/2, and δ = (ε,, - ε2)/(ει. + ε^.
As we see from (1.3), the period of variation of the di-
electric properties of the CLC is half the pitch. The
two signs in (1.3) correspond to the two geometric
possibilities: plus to a right-hand and minus to a left-
hand cholesteric helix.

The difficulty in solving the problem formulated above
is determined by the complicated form of the tensor ε.
However, on the whole we should state that currently
a complete physical understanding of the unusual optical
properties of CLCs has been attained. Yet the choice
of a method of optical theoretical description of an ex-
periment is determined by its specific conditions and
required accuracy. In line with the fact that the anom-
alies in the optical properties of CLCs are directly
manifested in Vavilov-Cerenkov radiation, this review
also presents the theory of coherent emission by fast
charged particles in CLCs.

2. KINEMATICAL TREATMENT

Many of the above-listed anomalies in the optical
properties of CLCs follow from an elementary, so-,
called kinematical, treatment of the diffraction of light
by the periodic structure of a CLC. The corresponding
approach is applicable in the case of low intensity of
the scattered beam as compared with the incident beam,
and has been well developed and widely applied in de-
scribing scattering by crystals of x-rays and of thermal
neutrons,2 3 '2 4 while its results admit a clear physical
interpretation. Hence we shall start the description of
the optical properties of CLCs with the kinematical
approximation.

a) The scattering cross-section

For the sake of concreteness, we shall treat the
transmission and reflection of light for the case of a
so-called plane structure, i.e., a monocrystalline
specimen of a CLC in the form of a plane-parallel
plate with its optic axis (z axis) perpendicular to the
surface (Fig. 2). In order to simplify the treatment,
we shall not take into account here reflection of light
at the boundaries that is due simply to the differing
values of the refractive index inside and outside the
specimen.

In the kinematical approximation, the light-scatter-
ing cross-section of a CLC is described by the follow-
ing expression (see, e.g., Refs. 5 and 25):

e0; k,, e,)

(ef5io)eip[(lko-k,)r]dr (2.1)
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FIG. 2. Geometry of scattering by a plane structure of a CLC.
The optic axis of the CLC (z axis) is perpendicular to the sur-
face of the specimen.

Here k,,, k u e0, and e l are the wave vectors and polar-
ization vectors of the incident and scattered waves,
while we integrate over the volume of the specimen.
Let us employ a Fourier expansion for £(r) of (1.3):

E,exp(im). (2.2)

Here we have

ε,=ο when|<l>i-( ΐ ο ο\ . / ι τι ο\

Ο β Ο Ι . «ι = »ίι = ·^-Ι Τ ί - 1 Ο Ι ,
Ο Ο ε 3 / \ Ο Ο 0/

Also, τ is the reciprocal-lattice vector of the CLC
(T = (Z/ |Z1 )4TT/£). From (2.1) and (2.2) we obtain
dc(k0, c0; k,, e,)

(4^r)2|e*iE>ol!| j (2.3)

In the limit of infinite specimen dimension, the
integtal in (2.3) proves to be proportional to the delta
function 6(k,, — 1 ^ + S T ) , and the scattering cross-section
acquires the form that is well known from the theory
of x-ray and neutron scattering.2 3·2 4 In particular, the
scattering directions are determined by the purely
kinematical relationship known as the Bragg condition,
which tells nothing about the intensity and polarization
properties of the scattering:

k.-k^n, |k,| = |ko| or .ϊ.ιθ--£. (2.4)

Here 26 is the scattering angle (see Fig. 2), and
λ =2irc/a>·/¥ is the wavelength of the light. We note,
strictly speaking, that we should employ in Eqs.
(2.1)-(2.4) the values of the wave vectors and polari-
zation vectors inside the specimen. In particular, we
have kj =kj = (ω/c)2 ε, while the directions of the wave
vectors in the specimen and outside it are related by
the ordinary laws of refraction.

However, the dependence of the intensity and polar-
ization characteristics of the scattering on the struc-
tural details of the specimen is governed by the
structure factor

c 0 ; k , , (2.5)

The quantity F is an analog of the x-ray structure
amplitude23 and in a CLC it differs from zero only for
the first order of diffractive reflection (s = 1).

Equation (2.4) explains the dependence of the color
of a CLC on the angle of observation and also the
change in color of the specimen upon a temperature
change of the CLC. The different angle* θ of observa-
tion correspond to different wavelengths diffractively

reflected by the crystal, i.e., different colors. In
particular, at normal incidence light with the wave-
length λ =p undergoes diffractive reflection. In Fig. 3
the case of normal incidence corresponds to the situa-
tion in which k0 and kt lie in opposite directions. That
is, the selective reflection of light at normal incidence
is simply a special case of diffractive reflection. The
variation with temperature of the color of a CLC is
also explained by Eq. (2.4), and it simply corresponds
to a change in the wavelength of light diffracted by the
CLC caused by the temperature-dependence of the
pitch ρ of the cholesteric helix.

b) Polarization characteristics

Equation (2.3) also explains the dependence on polar-
ization of reflection and transmission of light in a CLC.
Let us choose as one of the polarization vectors the
unit vector σ in the direction perpendicular to the
kokl plane and write the polarization vectors e0 and ex

in the form

e0 = σ cos <z0 + ijt0 sin ct0, e t = σ cos % -r int sin o .̂ (2.6)

Here the vectors σ, JT0 and k0 (<J, i l t and kt) form a
right-handed triplet. Here Eq. (2.5) acquires the form

F(k0, e0; k,, <Ί)=—~- ( (cosa0 ± sina0 s
(2.7)

Upon obtaining the extrema of Eq. (2.7) with respect
to a0, we find that the CLC diffractively scatters el-
liptically polarized light for which the parameter
ao= ad/0 in (2.6) depends on the angle Θ and is given
by the expression

otf = + arctK(sin6). (2.8)

The orthogonal polarization o£ =Tarctan(l/sin6) does
not interact with the CLC. The polarization of the scat-
tered wave also depends on the angle of incidence and
corresponds to the parameter ax = ad/1 = ad/0. That
is, it is also determined by Eq. (2.8).

Thus the kinematical approach explains also the
selective reflection and transmission of differently
polarized waves and their dependence on the angle of
incidence. In the special case of normal incidence
(Θ = Ώ/2), circularly polarized light is selectively scat-
tered in a CLC; left circularly polarized light in the
case of a left-hand cholesteric helix and right circu-
larly polarized light in the case of a right-hand helix.

The kinematical approximation that we have presented
here gives a clear physical picture of the nature of the
peculiarities of the optics of CLCs and a number of re-
lationships useful for describing experiments. How-
ever, a quantitative description of experiment based

FIG. 3. Illustration of the diffractive nature of the selective
scattering of ligit in a CLC: the Bragg condition with oblique
(a) and normal (6) incidence of light on the specimen.
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on it can be made only in situations when the dimen-
sions of the regions that scatter light coherently are
small, so that we can neglect the attenuation of the
light by scattering within a coherently scattering re-
gion. This situation is realized either in very thin
perfect specimens [(L6/p)« 1, where L is the thick-
ness of the specimen] or in polycrystalline CLC spec-
imens having small dimensions of the individual crys-
tallites.

At large crystal thicknesses at which multiple Bragg
scattering processes begin to play an appreciable role,
the kinematical approximation is not suited for quanti-
tative description of experiments nor even for explain-
ing a number of qualitative effects, e.g., the higher
orders of diffractive reflection, the rotation of the
plane of polarization of light, etc.

Taking single scattering into account does not suffice
to explain the cited phenomena, and we need a more
rigorous treatment of the interaction of light with the
CLC. The following sections will present the results
that fall outside the scope of the kinematical approx-
imation.

3. THE CASE OF NORMAL INCIDENCE

As we have noted above, the solutions of the Maxwell
equations in a CLC are extremely complicated in the
general case. Therefore we shall begin the presenta-
tion of results that fall outside the kinematical approx-
imation with the simplest case of propagation of light
along the optic axis of a CLC. This case is of great
interest, both with respect to the wealth of experi-
mental studies concerned with it, and because an ex-
act solution is known for it. Moreover, the analysis
of the solutions conducted for this case proves useful
for studying and understanding the solutions in the
general case.

a) Eigenwaves

Following the studies of Oseen,21'22 De Vries,26 and
Kats,27 let us derive the solution of the Maxwell equa-
tions in a CLC having the dielectric permittivity of
(1.3). For a wave propagating along the optic axis,
the equations assume the form

d-%
dt"-

(3.1)

Here the ζ axis lies along the optic axis, and § is the
electric field vector in the medium, which in this case
is perpendicular to the ζ axis. We shall seek the field
in the crystal in the form of a superposition of two
plane waves:

S = n+£+exp[i (β + -|-) ζ — *ωί] + nJ?.exp[i (β— y) ζ — ίωί] .(3.2)

Here n± = (a±ino)/\/2 are the circular-polarization
vectors, and ω is the frequency of the light. That is,
we are seeking the solution in the form of Bloch waves,
as the periodicity of the CLC requires. We get the
following system of equations for the amplitudes Et

and E. from (3.1) and (3.2):

(3.3)

Here we have Κ2 = ω2 ε/c2. The system (3.3) has non-
zero solutions when its determinant vanishes, i.e.,

[ ν , 2 - ( β + | ) 2 ] [ κ ί _ ( β - | ) 2 ] _ κ 4 6 2 = ο. (3.4)

We get from (3.4) an expression defining β as a func-
tion of the frequency of the wave, the period of the
helix, and the anisotropy parameter δ:

2, 3, 4. (3.5)

Figure 4 shows the numbering of the solutions for
β] in (3.5) and their frequency-dependence. The four
solutions (3.5) of Eq. (3.4) define four possible (for a
given frequency ω) superpositions of the waves of (3.2)
(we shall call them the eigensolutions). Each has its
own ratio of the amplitudes £, and E.:

Equations (3.2), (3.5), and (3.6) imply that the two
eigensolutions 1 and 4 [which correspond to the plus
sign under the radical in (3.5)] correspond to waves
that interact weakly with the CLC and which propagate
respectively along the ζ axis and in the opposite direc-
tion. The other two eigensolutions 2 and 3, which cor-
respond to the minus sign under the radical, each
amount to a superposition of two waves that interact
strongly with the CLC and which propagate along the ζ
axis and in the opposite direction. Here the wave
propagated along ζ is represented more strongly in one
of the solutions, and that propagated in the negative
direction of ζ in the other. The waves Et and E. in
the eigensolutions prove to be circularly polarized
in a direction opposite to the screw sense of the cho-
lesteric helix for the "weakly interacting solutions"
and in a direction matching that of the helix for the
"strongly interacting" solutions. The solutions 2 and 3
of Eq. (3.4) become imaginary near the Bragg frequency
ωΒ = TC/2 /E, in the frequency range o>B/Vl +δ< ω<ωΒ/
VI - δ. Waves of the corresponding circular polariza-
tion cannot propagate in the crystal (i.e., there is a
"forbidden band"; see Fig. 4). For the solutions in the
forbidden band we find that | E./Et\\t3 = 1. As we shall
see below, the selective reflection of light correspond-
ing to Bragg diffractive scattering occurs in this range
(see Fig. 5 below).

We stress that, when light propagates along the optic
axis, only light having a circular polarization matching
the screw sense of the cholesteric helix will undergo
diffractive reflection. Here reflection in the higher

FIG. 4. Frequency dependence of the roots of the dispersion
equation when light propagates along the axis of the CLC.
Solid curve—Re βί ; dotted curve—Im β}.

67 Sov. Phys. Usp. 22(2), Feb. 1979 Belyakovef a/. 67



FIG. 5. Reflection coefficient of light in diffraction of circu-
larly-polarized light with normal incidence for different spec-
imen thicknesses. l—L6/p»l (thick specimen), 2—L6/p
~ 1 , 3—L6/p«X (thin specimen).

orders that correspond to kx - k,, =ST with s *2 is
absent. The latter statement reflects the fact that the
parameter β, in the obtained exact solution proves to
be imaginary in a single frequency range near ωΒ.

b) Solution of the boundary problem

In order to find the amplitudes of the wave reflected
by the CLC and of that transmitted through the spec-
imen, we must determine which of the four solutions
of the system (3.3) are excited by the wave incident on
the crystal. This is done by using the boundary condi-
tions that are imposed on both sides of the liquid-
crystal plate (see Fig. 2). For the case of normal
incidence these conditions consist of the requirement
that the electric field ψ and the magnetic field Η
= (ic/ω) curl W are continuous at the boundaries of the
crystal.

Let the wave £ * =(£Jn» +Ei.n.)eli*<3"at) be incident
on the crystal, where κ 0 is the wave vector in the
medium surrounding the crystal, and Ei and E*. are the
amplitudes of the right- and left-polarized components
in the incident wave. The general solution of Eq. (3.1)
for the field in the crystal has the form

4
3 ι ,\ — imt ^* /ι- \ / UPi+(v2)]2 - i[p ( — lT/2)lr. /O rj\
e l l , '/ = * 2j (*+'i \ n + e ~vC/n-e )· \O«I /

We seek the amplitudes of the reflected and trans-
mitted waves in the form

"~* r —Hit Ζ + ωί> <St t I '( f\ /O Q\
U = (E+n_~|~ £_n+) e » * = (jE.|.n+-J- £_o_) e · . \Λ ·ο/

Here El and Ei (£1 and Ei) are the amplitudes of the
dextro- (and levo^) polarized components. Employing
the continuity of S and Η at the boundaries of the
crystal, we obtain the following expression for El:

"11 "U «II

"21 «21 "IS

«» I Ei

Hi \ 0

•Jo
0

(3.9)

Here we have au, = βι + (τ/2) + κ0, a2j = ξ,(/3, - (T/2) + H0),
α3]=ζ)(β1 + (τ/2)~ν.ο), ο4, = ξ ίε;(^-(τ/2)-Η0), and
«a = ξ/& " (τ/2) - Η 0), where $ = exp{i[ft - (τ/2)]!,} is
the thickness of the crystal, and the letter D denotes
the determinant outlined by the dotted lines in (3.9).
Expressions for the remaining amplitudes of the cir-
cular waves in (3.8) are also given by Eq. (3.9) by re-
placing in it the fifth row of the determinant. In order

to derive Er., we must replace the components asj

of the fifth row by β} + (τ/2) - κ0; in order to get Ei,
replace a^ by ^(-fy - (τ/2) -κ0); in order to get E*.,
replace a^ by ξ,£;(-0, + (τ/2) - κ0).

In addition to diffractive reflection, the expressions
(3.8) and (3.9) take into account reflection by the
boundaries of the CLC. A detailed analysis of the ef-
fect of reflection at the boundaries has been made in
Refs. 28-30. At normal incidence, the reflection from
the boundaries can prove substantial either in very
thin specimens or far from the region of selective re-
flection. However, to take reflections into account
quantitatively actually requires numerical calculations.

If we neglect the reflection from the boundaries,
which is usually not very substantial, and allow for
the fact that usually δ so.l for CLCs, then we get
from (3.9) the simpler expressions that will be analy-
zed below.

c) The reflection coefficient

Upon solving the boundary problem in this manner
(while treating the cholesteric helix as being right-
handed for the sake of concreteness), we see that a
levopolarized wave "excites" in the crystal only solu-
tion 1 or 4 (depending on the side of the crystal on
which it is incident), and the latter penetrates the CLC
without undergoing selective reflection. A dextro-
polarized wave near the frequency ωΒ excites in the
crystal the two eigenwaves 2 and 3. It undergoes re-
flection from the crystal, and the squared ratio of the
amplitude of the reflected wave El to that of the incident
wave Ei is given by the following expression:

Here we have β% = χ2 + (TV4) —

We note that the selective reflection by the CLC of
dextropolarized light leads to right-circular polariza-
tion also in the reflected wave, whereas the circular
polarization reverses sign upon reflection from ordi-
nary materials (i.e., in nondiffractive reflection).

Let us examine Eq. (3.10) in greater detail. In the
frequency range ωΒ/νΐ + δ<ω<ωΒ/νΐ- δ (i.e., when
| κ2 - τ2/4| < κ2δ), the quantity ^ becomes imaginary.
Hence sinftL in (3.10) transforms into i sinh| /%| L. At
a great enough thickness of the crystal such that L»p/
6v, we have sinh| /33| L » 1, and hence Λ.» 1. That is,
total selective reflection of right-circularly polarized
light occurs (Fig. 5). The frequency width of the re-
flection region is Δω = ωΒ/νΊ-δ - ωΒ/νΊ + δ= δωΒ. That
is, it is determined by the anisotropy of the dielectric
permittivity δ. Outside the region of selective reflec-
tion, the intensity of the reflected light does not decline
smoothly as the frequency leaves the region of strong
reflection, but according to (3.10), it oscillates.
These oscillations stem from the diffraction of light
in the limited volume, and do not involve reflection
from the boundaries. Usually these oscillations are
not observed experimentally owing to imperfection
of the specimens.

In the case of thin crystals (L «ρ/ΐ>ν) we have
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(3.11)

That is, the intensity of the reflected light is propor-
tional to δ2, while the reflection curve is greatly
broadened (see Fig. 5). This result can also be derived
from the formula (2.3) of the kinematical approxima-
tion. Figure 5 also shows the intermediate case L~p/
πδ. At the characteristic values of p ~ 6000 Α, δ ~ 0.02,
we have/>/jr6~10 μια. That is, both limiting cases of
L \p/nb can be realized experimentally. For the polar-
ization n t, the intensity of the wave | E*t\

2 transmitted
by the crystal and the transmission coefficient Tt are
determined by the expression

τ ~ (3.12)

Experimentally it is often convenient to measure the
difference between the transmission coefficients of the
two circular polarizations, i.e., the circular dichroism
D = (T. - Tt)/{T. +TJ, where T. is the transmission
coefficient for the polarization n_. The expression for
D for nonabsorbing crystals can be written in the form

n __ t — 7V x>6°- s in ' β (3.13)

As the presented formulas imply, in a nonabsorbing
CLC the circular dichroism and its frequency-de-
pendence stem from diffraction of light and are de-
termined by the structural parameters of the CLC and
do not involve directly the intrinsic dichroism of the
molecules. However, for light frequencies in the re-
gion of an absorption band of the molecules, the effect
of the intrinsic dichroism of the molecules can be
quite substantial and is treated in the section on
absorbing CLCs.

d) Rotation of the plane of polarization

The rotation of the plane of polarization in the medium
arises from the difference of phase velocities of the
waves having right- and left-hand circular polariza-
tion. Owing to its diffractive nature, the rotation of
the plane of polarization in a CLC in the region of se-
lective reflection proves incomparably larger than the
"intrinsic rotation," which arises simply from the
optical activity of the molecules of the CLC, and it
has a number of qualitative peculiarities.

One of them involves the fact that the right cir-
cularly polarized wave is strongly attenuated in the
CLC by diffractive reflection. Hence the light trans-
mitted by the crystal varies in polarization, and has an
elliptical rather than linear polarization that depends
on the thickness of the specimen. In this connection we
should speak of the rotation, say, of the major axis of
the ellipse of polarization. The ratio of the axes of the
ellipse of polarization in the wave transmitted through
the specimen is fully determined by the following ex-
pression (under the condition that the light incident on
the crystal is linearly polarized):

b = (3.14)

Here Tt is given by (3.12).

Another peculiarity is manifested in the fact that the

rotation of the plane of polarization depends very
strongly on the frequency, even far from absorption
bands, and the direction of rotation proves to be
different on different sides of the Bragg frequency ωΒ.
For the frequency ωΒ itself the rotation of the plane
of polarization vanishes. This frequency-dependence
of the magnitude and sign of the rotation has a simple,
natural explanation. Of the two eigenwaves that cor-
respond to the circular polarization that is diffracted
by the structure of the CLC and which are represented
in the expansion (3.7), one has a smaller phase velocity
than the wave not diffracted by the CLC, while the
other has a greater velocity. Depending on the sign of
the frequency detuning of the incident wave with respect
to ωΒ in the crystal, either the "slow" or the "fast"
diffracted wave is mainly excited. This leads to the
observed frequency-dependence of the magnitude and
sign of the rotation. And finally, let us mention another
unusual property that distinguishes a CLC from ordi-
nary gyrotropic media: the angle of rotation of the
plane of polarization (or more exactly, the axis of the
ellipse of polarization) depends nonlinearly on the
thickness of the specimen.

We find from the solution of the boundary problem
that the amplitude of the wave emerging from the
crystal is given by the following expression (the in-
cident wave is linearly polarized):

K ; ! _ K i | 8 i n P | t } . (3.15)

Here ft and & are defined in (3.5).

The phase difference of the two terms in (3.15) de-
termines the angle of rotation φ of the plane of polar-
ization:

(3.16)

The expression (3.16) is simplified for crystals of
great thickness:

(3.17)

Figure 6 shows the frequency dependences of the ro-
tation of the plane of polarization as described by Eqs.
(3.16) and (3.17). Far from the region of selective re-
flection, Eqs. (3.16) and (3.17) go over into the well-
known formula of De Vries26:

9>A

FIG. 6. Frequency dependence of the rotation angle of the
plane of polarization for specimens of varying thicknesses.
Curve 1— for L6/p » 1 , 2— for L6/p =1, 3—for L6/p =0.5;
the curves are drawn for δ » 0.1.
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τ(4κ·—τ
(3.18)

The formula of De Vries has the defect that ψ/L
approaches ± <*> in the region of selective reflection,
which does not happen in the exact expression (3.16).

β) Rotation of the plane of polarization in thin layers

Whenever the reflection from the crystal is not too
great (and it is precisely these crystals that are usually
employed for observing rotation), an approximate ex-
pression is obtained from (3.16) that functions well both
in the region of selective reflection and far from it:

sm2Bst π (3.19)

For cruder calculations we can assume that
- (τ/2) and derive from (3.19) a quite simple expres-
sion:

τ(4κ2 — τ2)
x*6*sin(2x—τ) ί

2τ'2(2κ—τ)2/-
(3.20)

The first term in (3.20) coincides with the expression
of De Vries (3.18); the second term in (3.20) is sub-
stantial only in the region of selective reflection, as
•n.- τ/2. On the whole they give the correct variation
of the rotation angle for all frequencies. Quantitatively
the expressions (3.19) and (3.20) differ little from the
exact expression (3.16) when the thickness of the speci-
men is small such that L<p/vt>. Actually one can apply
Eqs. (3.19) and (3.20) when the rotation angle is re-
stricted by φ<1. We note again that Eqs. (3.16),
(3.19) and (3.20) yield a nonlinear relationship between
the rotation angle φ and the thickness L in the region
of selective reflection. Thus, at small L near the
maxima of rotation (see Fig. 6), we have φ ~ L2, while
near the frequency that corresponds to change of sign
of the rotation, we have φ ~L3.

f) The limit λ «: ρ
In this case only the waves 1 and 3 (or 2 and 4) are

excited in the crystal, depending on the direction of
propagation of the incident wave. We obtain from the
formulas (3.9) the following expression for the ampli-
tude of the transmitted wave (3.8):

(3.21)

Here we have t = 1/V1+(* 26VT 2 ). The rotation angle ψ
varies nonlinearly with the thickness of the crystal and
it generally depends on the direction of the initial
polarization.

Two cases can occur under the adopted restrictions
on H. If *.«τ/δ, then Eq. (3.21) yields (3.18), and
then the angle of rotation does not depend on the initial
polarization.

In the limiting case κ»τ/δ, i.e., at very short wave-
lengths, the results depend on the orientation of the
molecules at the surface of the CLC. In the general
case Eq. (3.21) implies that linearly polarized incident
light yields elliptically polarized light at the exit. If

the plane of polarization of the incident light is parallel
(or perpendicular) to the orientation of the CLC mole-
cules at the entrance surface, then the emerging light
is linearly polarized and its plane of polarization is
also parallel (or perpendicular) to the orientation of the
molecules at the exit surface. Thus the plane of polar-
ization seems to "track" the orientation of the mole-
cules of the CLC and the angle ψ is determined by the
number of turns of the cholesteric helix, i.e., ψ = 2irL/
p. For optical wavelengths, the relationship * » τ / δ
can be realized in mixtures of dextro- and levorotatory
CLCs,31 and also in twisted nematic twist-cells;5·13 this
case was first studied by Mauguin.32

We have studied above the optical properties of CLCs
for the propagation of light along the axis of the
helix21·22·26·27 (see also Refs. 33-38 and 146, in which
an exact solution in a magnetic field was found). In a
number of studies by Chandrasekhar and other
authors,39"41 this same problem has been solved by
approximate methods. The results obtained by the
approximate methods were close to the exact results
for small δ.8·42

The case of normal incidence of light on a CLC has
been studied in detail experimentally. The results of
the experimental studies agree well with the theoretical
conclusions.

In Refs. 40 and 43-51 reflection of light from a CLC
and circular dichroism were studied. The results of
these studies confirm the diffractive nature of the re-
flection and the circular dichroism in a CLC. In par-
ticular, this is implied by the observed dependence of
the reflection and the dichroism on the frequency of the
light and the thickness of the specimen46·47·50 (Fig. 5);
In Fig. 7a we see also the theoretically implied diffrac-
tive beating of the reflection coefficient with the fre-
quency at the edges of the reflection curve.

The rotation of the plane of polarization in a CLC has
been studied in a large number of investigations, both
in the region of selective reflection43·44·46'49·53"55 and

FIG. 7. Calculated and measured values of the optical rotatory
dispersion and reflectivity for a specimen of cholesteryl cln-
namate 3-μηι (a) and 1-μτη (6) thick.46 1—theory; 2—ex-
periment for optical rotatory dispersion; 3—experiment for
reflectivity.

70 Sov. Phys. Usp. 22(2), Feb. 1979
Belyakov et al. 70



outside this region5 6 '6 2 (see Fig. 7). The results of the
measurements agree well with the theory, and as Sonin
and his coauthors have shown,54 they can be used to
determine the parameters of a CLC and their tempera-
ture dependences.

The above-noted nonlinear dependence of the rotation
of the plane of polarization on the thickness of the
specimen is distinctly manifested experimentally (cf.
Figs. 7a, b).

We note also that the circular dichroism and the
rotation of the plane of polarization, which are mea-
sured experimentally as independent quantities, are
linked by dispersion relations.6 3 '6 4 This means that a
knowledge throughout the entire frequency interval
of one of the quantities allows us in principle to
determine the other one. Therefore it seems useful
to employ these relations for testing the consistency
of measurements of the rotation and the circular
dichroism. In this connection the as yet unstudied
problem of the dispersion relations under conditions
of optical activity of a diffractive nature would be
interesting to study theoretically and experimentally.

4. OBLIQUE INCIDENCE OF LIGHT

This case is more complicated to analyze since an
exact solution of Maxwell's equations is not known
here. Hence a number of studies have performed a
general analysis of the structure and properties of the
solutions.2 1 '2 2·6 5"6 7 However, numerical methods68"71

have been employed to get solutions for concrete values
of the parameters of the problem. Yet the existence of
a small parameter (the anisotropy δ of the dielectric
properties) allows one to develop a rather accurate
approximate theory.2 7 '7 2"7 4

It has been shown that the case of oblique incidence
of light manifests qualitative differences in the optics
of CLCs. Higher orders of reflection exist at fre-
quencies that are multiples of the Bragg frequency.
The first-order reflection is also substantially changed:
a region of reflection of light of any polarization ap-
pears, and the polarization properties of the solutions
become complicated. The physical source of these
peculiarities is that one must take into account the
double refraction of light in describing the propagation
of light at an angle to the axis of the helix, in addition
to the diffractive scattering of light with the polariza-
tion defined by (2.8). In particular, the birefringence
exerts an effect on the polarization characteristics of
the solutions. The existence of diffractive scattering
of any polarization leads to a more complicated pat-
tern of the diffraction of light by a CLC in the case of
oblique incidence than at normal incidence.

The results obtained by the approximate meth-
ods 2 7 ' 7 2" 7 4 are essentially analogous and they agree
with the results of the general analysis. Yet they
differ from them in greater simplicity, and they yield
an analytic description of the problem. Hence we shall
present below the case of oblique incidence, mainly
following Refs. 72-74, which have applied the methods
of the dynamical theory of diffraction75"77 to describe

the optical properties of CLCs.

a) System of dynamical equations

The equation for the electric field vector in the case
of arbitrary direction of propagation of light in a CLC
has the form

- β·ϊ -•
e-jj5-= — c2rotrot8.

Here t is given by Eq. (1.3).

(4.1)

Owing to the periodicity of the CLC, the solution of
Eq. (4.1) has the form of Bloch waves:

8(r, —ωί) 2 E,exp(fm). (4.2)

Upon substituting (4.2) into (4.1), we get a homogeneous
system of equations for determining Ea:

(4.3)

Here we have ks =k o +sr, while the ta have been de-
fined in (2.2). The general properties of Eq. (4.1) have
been analyzed by Dreher and Meier,67 who showed by
using the theorem of Floquet (see Ref. 78) that four
values of k^ exist for a fixed frequency and angle of
incidence in the crystal at which Eq. (4.1) has a non-
trivial solution of the form (4.2).

Application of numerical methods for solving the
system (4.3)68 allows one to get its solution to any
degree of accuracy. However, it is more convenient
to have an analytical expression for analyzing the
properties of the solutions. Hence we shall use below
in solving (4.3) the two-wave approximation of the dy-
namical theory of diffraction that is well known from
the electrodynamics of periodic media and x-ray
diffraction.75"77'79 This approximation employs the fact
that only two amplitudes Eo and Ea have a large value
in the system (4.3) when the Bragg condition (2.4) is
satisfied. They are of the order of the amplitude of
the wave incident on the crystal, while the others are
smaller by at least a factor of δ.

b) First-order diffractive reflection

Let us examine the first-order reflection, s = l . Let
us isolate from the system (4.3) the two vector equa-
tions for the waves Eo and El having the wave vectors

(4.4)

The accuracy of the approximation employed has al-
lowed us to neglect in (4.4) the small departure from
transverseness of the waves Eo and E l f which is of the
order of δ, and to consider Eo and Ex to be respectively
orthogonal to k0 and kj.

In order to solve the system (4.4), it is convenient to
reduce it to the form that is usually employed in the
dynamical theory of diffraction77:
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( 4 ' 5 )

Here Ε? and Ef are the σ- and π-components of the
amplitudes of Eo and E u and

is the mean value of the wave vector of the wave
propagating in the CLC at an angle of π/2 - β to the
optic axis.

Upon equating the determinant of the system (4.5) to
zero, we obtain the condition for its solvability in a
form analogous to (3.4):

q* — (2Δ! + 2m" — l)q* + Δ* — (2m» + 1)Δ» + 2m'A — 0. ( 4 . 6 )

Here we have introduced the following notation:
kf--k|____ _ cos2 6

x»6(l+sin26) ·

2x'-k; (4.7)

c) Eigensolutions

The relationships (4.6) and (4.7) define the region of
values of the wave vectors k0 and kL compatible with the
Bragg condition (2.4) that satisfy the Maxwell equa-
tions. These regions form in k-space the so-called
dispersion surfaces.75'76"79 Without stopping to analyze
the dispersion surfaces, below we shall give directly
the solutions that satisfy the boundary conditions.

In the case in which the optic axis is perpendicular
to the surface of the CLC, the parameter Δ is associ-
ated with the deviation of the angle of incidence or the
wavelength of the light from the values defined by the
Bragg condition (2.4). It can be represented in the form

, _ 2(2xainO — τ) sinO ΙΛ Q\

In particular, for a fixed angle 6, we have Δ
= 4(ω -ωΒ) sin2e/w6(l + sin

2e), where WB=TC/
2 sin0VE(l - (δ/2) cos2Θ). For a fixed frequency ω, we
have A=2(0-0B)sin2flB/6(l+sin2flB), where sin0B = T/
2x.

The quantity q, which is determined from Eq. (4.6),
describes the change in the wave vector caused by dif-
fraction and is analogous to β in (3.4).

Since Eq. (4.6) is biquadratic, we can easily find its
roots qt(j = 1,2,3,4) that correspond to the eigensolu-
tions Ea, and E u of the systems (4.4) and (4.5), and
hence find the solutions of Eq. (4.1):

Here we have

Ε%. = - i sin QB (Δ + m + q,) [(Δ-q,)'-m«l.

(4.9)

(4.10)

(4.11)

Eq. (4.11) has been derived by employing the boundary
conditions on the wave vectors (continuity of their
tangential components) for the case where the surface
of the specimen is perpendicular to the optic axis of
the CLC. In (4.11) κ0 is the wave vector of the wave
incident on the CLC while outside the specimen and n
is the normal to the surface of the crystal.

The eigensolutions (4.9) amount to superposition of
two waves having the wave vectors k0/ and ku, which
are generally elliptically polarized. The general solu-
tion of Eq. (4.1) is a superposition of the eigensolu-
tions of (4.9):

, t). (4.12)

Here the coefficients Cj are determined from boundary
conditions analogous to the case of normal incidence.
Having found § (r, t) in the crystal, we can easily also
find the waves emerging from the crystal, reflected
and transmitted. Under the assumption that the reflec-
tion at the boundaries arising from the refractive-
index difference is small, a solution of this problem
has been given in Ref. 73 (see also Ref. 77). Here we
shall merely discuss the obtained results.

If the crystal is thin enough (L«/>/6), then naturally
we get results that coincide with the kinematical ap-
proximation. Namely, only the wave having the polar-
ization defined by (2.8) is reflected, and the reflected
wave has the same polarization.

d) Thick crystals

For thick crystals (L»p/5), the solution of the
boundary problem is simplified in comparison with the
case L~p/b. This is because in this case only the
eigensolutions that correspond to attenuation of the
wave as it propagates into the interior of the crystal
have nonzero coefficients in the superposition (4.12).
The attenuation of the eigensolutions (for real t) arises
from diffractive scattering, and it corresponds to the
existence of nonzero imaginary components in the ex-
pressions (4.11) for k,, and kt in certain ranges of
values of the parameter Δ. The latter implies the
existence in k-space of bands forbidden for propagat-
ing waves. In turn this leads to the appearance of
bands of diffractive reflection.87'68·72'73 The boundaries
of these bands are most simply determined from
Eq. (4.6).

As Eq. (4.6) implies, we can distinguish three dif-
ferent cases in the reflection of light from a CLC,
depending on the deviation (in angle of incidence or
frequency) from the Bragg condition (2.4), i.e., de-
pending on the parameter Δ of (4.8):

1) If Δ has a value such that all solutions qs of Eq.
(4.6) are real, then the wave vectors (4.11) of all the
solutions of (4.9) are also real. These waves pass
through the crystal without attenuation, and the reflec-
tion coefficient in this region is small.

2) Another characteristic case involves values of Δ
for which two solutions qli2 are imaginary (differing
only in sign), while the other two q3ii are real. We see
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from (4.9) that in this case one of the eigenwaves (say,
W j) decays exponentially into the interior of the crys-
tal, while the other ($2) increases. Here a wave inci-
dent on the crystal with an elliptical polarization cor-
responding to E 0 l is totally reflected, while the wave
with orthogonal polarization excites in the crystal the
nondecaying waves & 3 and W 4 and contributes very
weakly to the reflection. For this region of Δ values
the reflection coefficient for unpolarized light is
practically 1/2.

3) There is another region of values of the param-
eter Δ in which all four roots q} are complex (complex
conjugates in pairs). In this region light of any polar-
ization is practically completely reflected, and the
reflection coefficient for unpolarized light is unity.

The polarization properties of reflection in CLCs
are described in greater detail in Ref. 73. As has
been shown,67·68·72·73 the angular (frequency) regions
of selective reflection of a particular polarization and
of reflection of light of any polarization can either
adjoin one another or be separated by regions of weak
reflection. Figure 8 illustrates qualitatively the nature
of the reflection of unpolarized light. The reflection
coefficient 1/2 corresponds to the region of reflection
of one polarization state, which varies along the reflec-
tion curve; the value unity corresponds to the region
of reflection of any polarization. At small angles of
reflection Θ, the regions of total and selective reflec-
tion may be not adjoining one another, and be separated
by intervals of very weak reflection. In particular, this
is implied by Fig. 9, which shows the structure of the
reflection bands as derived from (4.6) as a function of
the wavelength and the angle of incidence on the crys-
tal. 7 2 · 7 3 We see that at normal incidence (6 = 90°) the
width of the region of reflection of light of any polar-
ization vanishes, in agreement with the results of the
exact solution.

The above-presented analytical description agrees
with the results of numerical calculations and experi- ·
mental studies of the optical characteristics of CLCs
with oblique incidence. Berreman and Scheffer89'71

(Fig. 10) have demonstrated the agreement of numer-
ical calculations with the results of optical measure-
ments on cholesteric-nematic mixtures. In particular,
attention is called to the appearance of the higher
orders of reflection with oblique incidence of light.

1.0

as as

\
Ο 4« Δβ Ι Δα Ο

a b c

FIG. 8. Qualitative form of the reflection coefficients for un-
polarized light as a function of the deviation in frequency (or
angle) from the Bragg condition. Depending on the angle of
Incidence Θ, there are: (a) one (90° > θ S 32°), (*) two (32°
Ζ Θ7ι 25°), or (c) three (25°& θ>0) regions of selective reflec-
tion.

β, degrees

FIG. 9. Regions of dlffractlve reflection as a function of the
angle of Incidence of light on a CLC. The parameter Δ (see
(4.8) characterizes the deviation from the Bragg condition.
The single hatching shows the regions of selective reflection
of one polarization, and the double hatching the region of re-
flection of any polarization.

e) Higher orders of reflection

Let us examine another feature of the case of oblique
incidence—the existence of higher orders of reflection,
i.e., the existence of diffractive reflection in CLCs not
only for s = 1 in Eq. (2.4), but also for s > 1. At a fixed
angle of incidence, the higher orders are manifested
in the existence of diffractive reflection of light, not
only in the frequency region of ωΒ, but also in the
regions s u s , where s is the order of reflection.

The higher orders of reflection were first obtained
theoretically, bv a numerical solution of Maxwell's
equations,68"71 while they were also observed experi-
mentally in Refs. 69-71.

As we have noted, reflection at frequencies that are
multiples of ωΒ is absent at normal incidence. At
oblique incidence, as the results of the kinematical
approximation show, direct scattering of light with
change of the wave vector by ST also cannot occur if
s > 1, since the corresponding harmonics are absent
in the Fourier expansion (2.2) of the tensor t. How-
ever, if we use the dynamical theory of diffraction, in
particular Eq. (4.3), we can not only show that the
higher orders of reflection exist at oblique incidence,
but can analyze their dependence on s. Here it turns
out that the "strength" of diffractive reflection rapidly
declines with increasing order s of reflection.

In spite of the fact that there is no direct scattering

0.4

«.Λ

Ζ =2.74!
f-iJff

U IS IS

FIG. 10. Measured (a) and calculated (6) frequency- and
polarization-dependences In the first and second orders of re-
flection for a two-component cholesterlc specimen.70 RTVQlaa)
Is the reflection coefficient for π(σ) polarization Into ττ(σ) po-
larization; the angle of Incidence Is 45°; the specimen thick-
ness Is L = 11.47 /an; we have£//> =15; and ε,. Is the dielectric
permittivity of the medium outside the specimen.
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of the waves Eo and E, nevertheless such scattering
proves possible via the intermediate waves E u . . . ,
E i . 1 . 7 4 In order to describe these processes, we must
keep in the system (4.3) at least s +1 equations con-
taining the amplitudes of the intermediate waves.
These amplitudes E x , . . . , Es.l are smaller by at least
a factor of δ than Eo and E5. We can eliminate them
from (4.3) by expressing them in terms of Eo and Es.
Consequently we get a system of equations for Eo and
E s that is analogous to (4.4), but with -Fsetl substituted
for έ*!, where we have

follows:

A6g

Just as the quantity 5 does in the first order of reflec-
tion, now it is FS5 that determines the characteristic
intervals of angles (or frequencies) of diffractive re-
flection, which prove to be of the order of δ*. That is,
they decline rapidly with increasing s. We should also
note that one needs a rather thick crystal (L~p/6Fa)
to observe reflections of the sth order, and actually
one can speak of observing them only at not too large s.

Figure 11 shows the frequency-dependence of the re-
flection coefficient for unpolarized light for the second
order of reflection.74 The two side maxima are sepa-
rated from the central one by distances of ±(a>6/4)cot26;
θ is the angle of incidence on the crystal. The width
of the σ-maximum is Δω» = ωδ2 cos20/4 sin40. In it,
light with linear σ-polarization is also reflected as
σ-polarized light. In the ir-maximum, ττ-polarized
light is reflected as ττ-polarized; its width is Δω,
= (o>62/4)cot2e. In the central maximum, light of any
polarization is reflected. Here σ-polarization gives
π-polarization on reflection, and vice versa. The
width of this maximum is Ator = (o)62/4)cos2e/sin30.
If the thickness L of the crystal is small, the maxima
in Fig. 11 are broadened (as shown by the dotted line)
and they become poorly marked (as we can also see in
Fig. 10).

One can also observe the same pattern of three max-
ima upon varying the angle of incidence at constant
frequency. The second order of reflection occurs near
the Bragg angle ΘΒ =arcsin(T/w), while the angular
widths of the σ-, π-, and T-maxima are determined as

es

FIG. 11. Calculated frequency dependence of the reflection
coefficient Λ for unpolarized light in the second order.74 σ—
σ-polarization is reflected; T—total reflection of any polar-
ization, ir—7r-polarization is reflected (solid curve—for a
thick specimen; dotted—for a thin one).

Δ θ π ΔΘΓ 1 ο /Λ ι Λ\
«-τ = -; β ta ο. l^.ATXJ

ΔωΠ Δω^ ω

No detailed experimental study of reflection of the
second and higher orders has yet been made (apart
from Refs. 69-71).

Studies of higher-order reflections (in particular,
second-order) might be useful for studying cholesteric
crystals having large helix periods for which the first
order lies in the infrared frequency range. We note
that the Bragg angles are small in these crystals. This
simplifies observation of the higher-order reflections.
Actually, as we see from the above-presented formu-
las, in this case the frequency widths, and hence also
the angular widths, of the reflection regions are in-
creased (and also the thickness of crystal needed for
effective observation is diminished).

5. OPTICS OF CHOLESTERIC LIQUID CRYSTALS
IN AN EXTERNAL FIELD

In connection with the widespread application of
liquid crystals in electro(magneto)optic devices, it is
of substantial interest to study the effect of external
fields on the optical properties of CLCs. This effect is
based on the anisotropy of the local dielectric (mag-
netic) susceptibility of CLCs. This gives rise to
forces that distort the structure of the CLC upon ap-
plication of the external field. And in turn the change
in structural properties is reflected in the optical
characteristics of the CLCs.

The manifestations of the action of external fields on
the structure (and hence also on the optical properties)
are highly varied. They depend on the relationship
between the susceptibilities χ,, along the long axis of
the molecules and χ± in the transverse direction, the
orientation of the applied field, and the geometry of
the experiment (the dimensions of the optical cell, the
original configuration of the CLC, etc.5'13·80). For
example, when Xx>Xn, a field parallel to the optic axis
exerts a stabilizing influence on the structure of the
CLC: an imperfect or even a polycrystalline specimen
of a CLC can be converted by an external field into a
plane configuration. IfXj.<Xn, then, as de Gennes81

and Meyer82 have shown, the cholesteric helix becomes
distorted in a field perpendicular to the optic axis, and
its pitch p increases with increasing field, while com-
plete untwisting of the helix occurs when a certain
critical field is reached.

The examples given above correspond to situations
in which surface effects are inessential. However, in
thin cholesteric layers (optical cells), one cannot
neglect surface effects, whereby the behavior of the
CLC in the field becomes complicated and is determined
by the competition of the surface and the "field"
forces. Thus, for example, whenxx<Xn, application
to a plane configuration of a field parallel to the optic
axis of the CLC gives rise to two-dimensional deforma-
tions of the structure of the CLC that depend on the
thickness of the specimen.83 In speaking of the effect
of a field on the optical properties, we have not
specified whether this field is electric or magnetic,
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since every magnetooptic phenomenon has its electro-
optic analog. Yet we should bear in mind that a fully
analogy between electro- and magnetooptic phenomena
exists only when the electric fields do not give rise to
currents in the CLC (see the recent reviews of Blinov
and Belyaev13·80). Electrooptic phenomena that involve
flow of currents, e.g., dynamic light scattering, lack
magnetic analogs.

a) Structure and dielectric properties of cholesteric
liquid crystals in a field

We shall treat below the optical properties of a CLC
having a positive magnetic or electric anisotropy
(Xn >Xx) is a field perpendicular to its optic axis. As
has been shown in Refs. 81 and 82, for this direction
of the external field, the rotation angle of the molecules
in (1.1) ceases to be a linear function of the coordinate
z. The function <p(z) is transformed into the elliptic
amplitude of Jacobi, and correspondingly the sin<p and
cos<p in the formulas (1.3) for the tensor t(z) are re-
placed by the elliptic sine and cosine.84 Consequently
all the harmonics are present in the Fourier expan-
sion of the tensor t(z):

8 w = 2 β">βχρ ( —
4nUz (5.1)

Here pF = (2/vfK(k)E(k) is the pitch of the helix in the
external field F; K(k) and E(k) are the complete el-
liptic integrals84; and their modulus k is found from the
equation k/E(k)=F/Fc, where F is the external field,
and Fc = (w2//>)Vfe22/(xn -χ±) is the value of the critical
field (magnetic or electric) that completely untwists the
cholesteric helix; k22 is the torsional elastic constant.
The Fourier components of ts prove to be:

(5.2)
ο
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Ο 0 0

where we have
K(k)-E{k)

P o ~ k*K(k)

„. 1 - η "

- 2 , P.= ;

K(k) =SL].
(5.3)

b) System of dynamical equations

One cannot solve exactly the wave equation (3.1) with
the dielectric permittivity (5.1), even in the case of
normal incidence. Some special solutions have been
obtained85"87 by numerical methods. As above, we shall
treat here the optics of the CLC in the external field on
the basis of the two-wave approximation of dynamical
diffraction theory,87·88 which allows us to obtain analytic
expressions. Although this approach also permits us to
treat the case of arbitrary angle of incidence of the
light on the crystal,88 we shall restrict the treatment
here to presenting only the case of normal incidence,
since here the external field alters the optical proper-
ties of the CLC most radically. In particular, the ex-
istence of all the Fourier components in the expansion
of t gives rise to the higher orders of reflection even

with normal incidence.

The equations of the dynamical theory of diffraction
in the presence of an external field have a form anal-
ogous to (4.4):

(5.4)

Here t 0 and t±< are defined in (5.2). We obtain from the
condition for solvability of the system (5.4) for the
case of normal incidence a secular equation analogous
to (4.6):

Here we have

Thus the case of normal incidence in the presence of
a field proves to resemble that of oblique incidence of
light on a CLC in the absence of a field. Hence the
analysis of the properties of selective reflection in the
field is analogous to that conducted in Chap. 4.

In contrast to the case of normal incidence of light
on a CLC undistorted by a field, the polarization
characteristics of the scattering in the field prove to
depend on the thickness of the specimen.

c) Reflection from thick crystals

Let us first treat the reflection of different orders
from thick crystals. Upon application of the field, the
region of selective first-order reflection of a circularly
polarization state is shifted in frequency in line with
the changed period of the helix.81·82 A region of total
reflection of light of any polarization appears in the
middle of the region of selective reflection, and here
each circularly-polarized component is transformed
into itself upon reflection. We should note that the
assertion of the circularity of the selectively reflected
polarization is approximate, and breaks down at fields
close to critical. At fields close to Fc, the region of
first-order reflection breaks down into three peaks and
the reflection pattern becomes similar to reflection in
higher orders (see below). Calculation shows that the
splitting of the reflection region occurs at a field of
F 2 0.98.F,.. For F s 0.98Fc, the dependence on F of the
total widths Δα>3 of the region of selective reflection
and ΑωΓ of the region of reflection of light of any polar-
ization are given by the expressions

(5.6)

(5.7)F-Pi).

Curve 1 in Fig. 12 shows the relationship (5.7). The
centers of the regions lie at the frequency u>a =2irc/

In the first order for F2Q.98Fe and in the second
and higher orders at all values of F, diffractive re-
flection is realized in three independent frequency
ranges.

In the frequency ranges
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FIG. 12. Field dependence of the frequency intervals of se-
lective reflection with normal incidence of light on a CLC.88

Curves 1 and 2 give the width of the regions of total reflection
in the first and second orders, respectively, and curve 3 the
width of the regions of selective reflection of one polarization
in tile second order (the dotted curves correspond to the loga-
rithmic scale).

(5.8)

(5.9)t-^- < -γ (I/PS+P;2+P»)

(here Δω = ω — sa)B), only a wave having an elliptical
polarization depending on Δω is reflected. It is de-
termined by the corresponding eigensolution of the
system (5.4). For the third and higher orders, the
polarizations that undergo selective reflection are close
to linear. They are directed along the field for the
frequency range (5.8) and perpendicular to the field for
the range (5.9). The frequency width of the regions
(5.8) and (5.9) is the same, while its relation to F for
the second order is shown by curve 3 in Fig. 12.

A wave having any polarization is reflected in the
following frequency range that lies between the ranges
of (5.8) and (5.9):

~Ύ{
Pi Vvl-Λ \ „ Αω „ δ

Po
Δω 5 /
ω < 2

Ρ; ι/ρ'—pi)
Ρο Ι

(5.10)

The dependence of the width of this region on F for the
second order is depicted by curve 2 in Fig. 12. In the
third and higher orders in the region (5.10), a wave
polarized along the field yields upon reflection a wave
polarized perpendicular to the field, and vice versa
(see Sec. 4e).

At low fields the frequency ranges (5.8)-(5.10) be-
have as {F/FCY*~2. Thus the width of the second-order
reflection region is proportional to (F/Fcf. That is,
it is more sensitive to small fields than, e.g., the
change in the period of the cholesteric helix, which in
small fields is of the order of (F/Fc)*. When F* Fc

the spatial periodicity of the orientation of the mole-
cules in the CLC vanishes, and there is no diffractive
reflection.

We note that, in order that the reflection coefficient
in the sth order should be close to unity, i.e., that we
can consider the crystal to be thick, the thickness L
of the crystal must satisfy the relationship

Here (Δω/ω), is the frequency range characteristic
of the given order s, as determined by Eqs. (5.6)-

(5.10).

We have assumed in deriving the expressions (5.8)
and (5.10) that the linear birefringence induced by the
field is larger than the circular birefringence in the
undistorted CLC,87 i.e.,

*P.> (5.12)

Evidently in weak enough fields we have po~(F/Fcf and
the inequality (5.12) breaks down. Hence, strictly
speaking, the performed analysis is valid for strong
enough fields that satisfy the condition (5.12).
Second-order reflection of light from a CLC distorted
by an external (electric) field has been observed ex-
perimentally89 in the case of propagation of light along
the axis of the helix.

6. ABSORBING CHOLESTERIC LIQUID CRYSTALS

Thus far we have assumed that light is not absorbed
in the CLC. Actually such absorption occurs and can
be quite significant near the absorption bands of the
molecules of the CLC or of specially introduced ma-
terials (e.g., dyes). The helical structure of the CLC
influences the nature of the light absorption and can
alter it radically to the point of almost complete sup-
pression of absorption.

As we know, absorption of light gives rise to an
imaginary component in the dielectric permittivity
tensor t. Hence, in treating the optics of absorbing
CLCs, we can use the expressions given above in
Sees. 1-4, with the difference that fclf t^, and t3

(the principal values of the tensor ε) are now complex
quantities. For example, if in the studied frequency
range in the spectrum of the molecules of the CLC sev-
eral absorption bands exist that are linearly polarized
at angles ψ, to the long axis of the molecules, then the
imaginary components of ε = (et + ^)/2 and εα = ει~ ε2

are given by the following expressions6·90:

i
4 (l—-f-sinHj)

(6.1)

Here the quantity r), is proportional to the corresponding
oscillator strength, and S is the order parameter
[cf. (1.2)].

a) Suppression of absorption

First let us examine the effect of absorption on the
optical characteristics in the region of selective re-
flection.8·91"93 As usual, the effect of absorption on the
reflection of light from a CLC is manifested in a
decreased reflection coefficient. However, in view
of the fact that reflection in a CLC is diffractive in
nature, the absorption of light in the region of selec-
tive reflection, and correspondingly the decline in the
reflection coefficient, can be substantially reduced.
Suppression of absorption under diffraction conditions
is well known for x-rays,75·76 as well as for Mossbauer
y-quanta94 and neutrons,95 and is called the Borrmann
effect. This problem has been treated for CLCs
for the case of normal incidence92 and for an arbitrary
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angle of incidence of the light.93 It has been shown92·93

that absorption can be completely suppressed in a
crystal with absorption oscillators directed along the
long axis of the molecules (i.e., for Im^ * 0, Ime 2

=Ime3 =0) in the case of ideal order of the molecules
(S = 1). This means that the intensity of the wave re-
flected by a thick crystal at a certain polarization and
angle of incidence is equal to the incident intensity
(Fig. 13).

For example, in this case with normal incidence of
light, complete suppression of absorption and conver-
sion of the reflection coefficient to unity are attained
at the frequency ω = ωΒ V2e2/(Ree1 + e2) when circularly
polarized light is being diffracted. We can directly
convince ourselves of this by using Eqs. (3.5), (3.6),
and (3.10).

The physical cause of the decreased absorption con-
sists of the fact that the electric field vector in the
wave superposition of (4.12) that arises in the crystal
is directed at each point of the CLC perpendicular to
the long axes of the molecules, and hence to the ab-
sorption oscillators. Such waves do not undergo ab-
sorption. Complete suppression is not attained for real
crystals, while the peak of the reflection curve (see
Fig. 13) does not reach unity, and depends strongly on
the order parameter S.

The suppression of absorption is also manifested in
circular dichroism. Thus, by using Eqs. (3.13) and
(3.15) for thick absorbing CLCs, we can represent the
expression for the value of the circular dichroism D
in the form

B = th[-i-LIm(P,-P1)]. (6.2)

Here /3t and ^ are defined by Eq. (3.5).

When I m e » | δ | , the expression (6.2) goes over into

D_ th [ V?L I m 8 ( R e ' e» — l m * e») — V I m f ° R e "a I ( 6 3 )
Ι «τ γ ' - M J m ' i J ' V ' '

Here we have y =2[l-(wB/w)2]Ree.

Equation (6.3) implies that the quantity D changes sign
as a function of the frequency. The change of sign of
D implies that the region of diffractive reflection man-

10

0.5 0.5

4r-

FIG. 13. Qualitative variation of the reflection coefficient Κ
for thick absorbing CLCs at oblique incidence, (a) Reflection
of light with the polarization that undergoes suppressed ab-
sorption; (b) the polarization that does not undergo sup-
pressed absorption. Curves 1—3 are respectively for values
of the order parameter of S =1, 0.9, and 0.7; dotted curve—
in the absence of absorption.

ifests not only suppressed absorption but also an in-
crease in comparison with the mean absorption.

Suppression of light absorption and frequency-de-
pendence of the dichroism have been experimentally
observed in Ref. 96 dealing with the change in intensity
of a ray transmitted through a CLC in the selective-
reflection region.

b) Rotation of the plane of polarization

The existence of anisotropic absorption also strongly
alters the frequency dependence of the angle of rota-
tion of the plane of polarization. While a nonabsorbing
crystal in the selective reflection region rotates in
practically the same manner both to the right and to
the left (see Fig. 7), an absorbing crystal rotates
preferentially in one direction.92'93 This change in
the nature of the rotation of the plane of polarization
in an absorbing CLC arises from the fact that now the
"slow" and the "fast" diffracted waves represented in
the expansion (3.7) undergo substantially differing
absorptions in the CLC. Consequently one of the waves
proves to be suppressed in the CLC, and thus asym-
metry arises in the curve of the rotation of the polar-
ization, or else a change in sign of the rotation is
completely lacking.

Just as in nonabsorbing CLCs, the rotation angle of
the plane of polarization of the light is determined by
the phase difference of the terms in the expression
(3.15), in which we must now allow for the complex
nature of ε.

Under the same assumptions that we made in deriving
(6.3), we find the following expression for the rotation
angle of the plane of polarization:

, Re(P, — β3) — τ x°-L y (Re' ea — Im' e a ) + 4 Im β Im e a Re ta iR Λ \
* = L 2 ST ( b V

P'igure 14 shows the form of the relationships described
by Eq. (6.4).

Now let us study the propagation of light along the
axis of the helix for frequencies ω outside the region
of selective reflection. It turns out that here circular
dichroism and optical rotatory dispersion are observed
at frequencies corresponding to the absorption bands
of the molecules.9 0·8 1·9 7"1 0 3 These are related to the
helical structure of the CLC, and they are manifested
even in the absence of intrinsic optical activity of
the molecules. The observed circular dichroism and

FIG. 14. Qualitative frequency dependence of the angle of ro-
tation of the plane of polarization for different values of ab-
sorption In a CLC. 1—Re εα >Im εβ ; 2—Re εβ <Im εο ; 3—
Re ε0 =Im Za.
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optical rotatory dispersion are determined by the
characteristics (in particular, the polarization) of the
absorption bands (which enter into the theory in terms
of t). Outside the region of selective absorption, they
are described by Eqs. (6.2) and (6.4) for any thickness
L of the crystal and for an arbitrary value of Imt.

A detailed treatment of the optical activity and di-
chroism of CLCs outside the region of selective
reflection can be found in Ref. 91. In this case the
validity of Eqs. (6.2)-(6.4) has been tested experi-
mentally in Ref. 90. Here it was shown that the cir-
cular dichroism spectra of CLCs actually are de-
termined by the linear dichroism spectrum of the mole-
cules forming the CLC. We should note, as we see
from (6.3), that the circular dichroism of CLCs occurs,
in particular, even with isotropic absorption of the
molecules (Imee = 0,Ime# 0). Thus, one can draw con-
clusions regarding the structure of the molecules and
of the CLC from the measured circular-dichroism
spectra.

In Refs. 48 and 49, the circular dichroism and the
optical rotatory dispersion of CLCs have been mea-
sured near the long-wavelength edge of an electronic
absorption band. However, a complete theoretical
interpretation of these results has not yet been
obtained.

7. IMPERFECT CHOLESTERIC LIQUID CRYSTALS

The ideal cholesteric structure shown in Fig. 2 is
rather hard to obtain in thick specimens. The so-
called focal-conic configuration, 1,2, 5 in which the
local orientation of the optic axis of the CLC differs
at different points, is usually produced in the isotropic
liquid-CLC transition, and the crystal scatters light in
all directions. Hence one is often dealing with nonideal
CLCs in experimental situations.

The plane configuration (up to thicknesses of 100-
200 jjm) is obtained by applying external fields to a
CLC13'80 or by mechanical action during the prepara-
tion of the specimens.1"2·16'18 One can also orient the
axis of a CLC parallel to the surface in thin films by
coating the plates with surface-active substances.

As we shall see, the imperfect structure of a CLC,
and consequently, the lack of coherence in light scat-
tered by individual crystallites of the CLC, is man-
ifested in the intensity and polarization characteristics
of the scattering. The fundamental manifestation of
imperfection of a CLC in the polarization properties
of scattering proves to be depolarization of the scat-
tered light (for a perfect structure the scattered light
is completely polarized). Imperfect crystals also show
a dependence on the thickness of the specimen differing
from ideal ones of the polarization characteristics of
the light scattered and transmitted by the CLC.

The physical cause of the stated differences is quite
understandable. The relationship of the polarization of
the light to the thickness stems from the birefringence
of the CLC. The birefringence causes the polarization
of the direct wave to vary as it penetrates into the in-
terior of the specimen. Analogous changes occur in the

polarization of the scattered wave as it propagates in
the specimen. Consequently the polarization of the
scattered wave emerging from the specimen proves to
depend on the point at which the scattering event oc-
curred, while on the whole the polarization charac-
teristics show a dependence on the thickness of the
specimen. Depolarization arises from the fact that the
observed scattered radiation amounts to an incoherent
superposition of the waves scattered from the individual
regions of the CLC.

a) Thin imperfect crystals

We can apply the kinematical theory to describe
light scattering from thin imperfect specimens having
a scatter of orientation of the optic axis of the individ-
ual crystallites. On the basis of the Bragg condition
and the laws of refraction of light at the boundaries of
a CLC, Fergason15 and subsequently other authors104105

have derived formulas for this case that relate the
angles of incidence and reflection to the wavelength
corresponding to the maximum selective reflection
of light for the cases depicted in Figs. 15a and b
respectively.

^npcoS[i-arcfin(^l£L)+4-arcsin(™15>)], (7.1a)

X = »psin[-i-.rcSin(^L2i)-t-l-arcsin(iUL£!:)]. (7.1b)

Here λ is the wavelength of the light in vacua, and
η = >/Έ is the refractive index of the CLC. The more
general case in which the diffracted ray does not lie in
the plane formed by the incident ray and the normal to
the surface of the CLC has been treated in Ref. 106.

The formulas (7.1) are purely geometrical and they
tell nothing about the intensity and polarization of the
diffracted beam. As has been shown,104 study of the
dependence of the diffraction intensity on the angle
<prfor fixed φι (see Fig. 15) and on the wavelength
allow one to draw conclusions concerning the amount
of disorientation of the crystallites in the crystal. In
all cases the measurements show that the strongest
reflection occurs at φτ = φ(. That is, the specimens
consist of crystallites whose axes are mainly parallel
to the surface in the case of a focal-conic configura-
tion and perpendicular in the case of a plane con-
figuration.104-106

Now let us examine in greater detail the polariza-
tion properties of diffraction by imperfect crystals. We
shall assume below for the sake of concreteness that
the imperfection of the CLC is of a type analogous to a
mosaic single crystal, rather than a polycrystal. This

FIG. 15. Possible scattering geometries in Imperfect CLC
specimens.
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implies that the individual regions of the CLC scatter
incoherently, though their spatial orientation differs
little. Under these conditions, in line with the inco-
herence of the interference in the scattering from the
individual regions of the CLC, it is convenient to trans-
form from the equations for the amplitudes of the fields
to equations for quantities quadratic in the amplitudes.
Below we shall employ as such the polarization tensors
of the direct and the diffracted waves. The polarization
tensor/ (see, e.g., Ref. 107) differs only in normaliza-
tion from the polarization density matrix:108 its com-
ponents are quadratic in the amplitude of the field,
while Sp/ gives the intensity of the wave.

At first we shall consider that the specimen is thin
enough that we can englect the attenuation of the wave
in the specimen and that it suffices to take into account
only single diffractive scattering. Let a wave be in-
cident on the crystal that is characterized by the polar-
ization tensor / ' . When light propagates at an angle to
the optic axis, its polarization is altered by the bi-
refringence. The variation of the polarization tensor
/ 0 of the incident wave is described by the equation

%~M* (7.2)

Here we have the tensor Α5,,Β=ί'(ω/ο)[(ί0)°,δ,Β

- 5J4(60)°mJ/cos(p,;, i, k,l,m = 1, 2, while the components
of the tensor t 0 from (2.2) employed here describe the
propagation of light in the direction k,,. That is, they
are written in a system of coordinates, two of whose
axes (1 and 2) are orthogonal to the direction of propa-
gation of light, while the third coincides with this di-
rection. Also we have cos^f =kot/\ k,,|.

We get the following expression from (7.2) for the
polarization tensor / 0 at depth ζ from the surface of
the specimen:

/0(2) = eip(>z)/,0. (7.3)

The polarization tensor / t of the scattered wave is
formed by the diffraction of the incident wave by the
crystallites lying at different depths. If light undergoes
Bragg scattering at depth ζ from the wave k,, to the wave
kx, then the increment Δ/χ to/j arising from this scat-
tering is described by the expression

Here &z is the characteristic dimension of the crystal-
lite, we have C\ltm=rFilFgm,r is a coefficient that de-
pends on the mean dimensions and shapes of the crys-
tallites, and the tensor Ρ coincides with the structure
amplitude of (2.5). That is, its components are de-
termined by the relationship

Fll = f(k0, eol; k t l î f) —e'i^egi. (7.5)

In order to obtain the polarization tensor I' of the
wave scattered by the entire specimen, we must inte-
grate Eq. (7.4) over the thickness of the specimen,
taking into account the fact that the polarization tensor
Δ/Χ varies with the coordinate ζ as light propagates
from the depth ζ to the surface of the crystal according
to a law analogous to (7.2) and (7.3). Consequently the
expression for Ir acquires the form

/"•= f exp (zA1) C» eip (z>) it R (7.6)

Here the tensor A1 is determined by the expression for
A ° [see (7.2)] by employing in it the components of the
tensor t0 that describe the propagation of light in the
scattering direction. That is, they are written in a
system of coordinates, two axes of which (1 and 2) are
perpendicular to the direction of propagation of the
scattered light, while the third axis coincides with
this direction.

The polarization tensor (7.6) determines all the
characteristics of the diffracted beam, including its
polarization characteristics.107·108

Equation (7.6) implies that the polarization charac-
teristics of scattering by a mosaic crystal differ from
the case of an ideal specimen. In particular, the scat-
tered light is depolarized (even with a fully polarized
incident beam, the scattered light proves partially
polarized).

In the general case the expression (7.6) for lr proves
rather unwieldy after integration. If the incident light
is unpolarized (i.e., (/') iJt~ 6i(1), then formula (7.6) is
simplified, and yields the following expression for the
polarized density matrix of the diffracted beam
V =/7Sp/r:

r 1 r sin* 8
P"~l+sin»e· P " - 1 + Sin*e·

n sin θ cos qy(eip [ — 2ix6Z, sin' φ;/003 φ;] — 1} in rj\

Here we have cos<p£ =fcit/\ k j .

We see from (7.7) that we can neglect the nondiagonal
elements in (7.7) for a thick enough crystal (when
L» sinecos^'/κδ sirupi). Then the light emerging
from the crystal proves to be partially linearly polar-
ized along ο with the degree of polarization Ρ =cos20/
(1 +sin2fl). Thus, for small θ the light proves to be
almost fully polarized perpendicular to the axis of the
helix. We note that E4. (7.7) also holds in the case
shown in Fig. 15b.

In the above discussion we have assumed that the
light undergoes only single Bragg scattering inside
the specimen (an analogous approach has been employed
for describing diffraction of Mossbauer radiation in
mosaic crystals109·110).

b) Multiple scattering taken into account

For thick CLC specimens, multiple scattering from
the incident to the reflected wave and vice versa can
become substantial. This involves the fact that the
intensity of the diffracted wave in a thick specimen is
not small in comparison with that of the incident wave,
and we must allow for the fact that it also undergoes
diffractive scattering. We can account for the diffrac-
tive scattering of this wave (as well as the birefrin-
gence in the CLC) in the same way as we did above.
However here we must bear in mind the attenuation of
the waves in the specimen owing to diffractive scat-
tering.111

Here it turns out that the variation with the coordinate
in the specimen of the polarization tensors /„ and Ix of
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the primary and diffracted waves is described by the
equations

iz

(7.8)

The tensors A0 and A1 determine the variations in
Io and JL with the coordinate ζ arising from birefrin-
gence, and they have been introduced above in (7.2).
The tensors B°, Bl and C01, C10 determine the^ variation
in/0 and/j associated with Bragg scattering (B° and B1

owing to Loss, and C01 and C10 owing to gain of radiation
by the primary or the diffracted wave). They are ex-
pressed in terms of t±l [the structure amplitude of
(2.5)].U 1 For example, the expression for C10 is de-
finedjn (7.4), while CftJm = Ci°mV Here β", Β1, C°\
and C10 prove to be functions of the frequency of the
light incident on the crystal and they differ from zero
only when the Bragg condition (2.4) is satisfied. We
note that the equations (7.8) are analogous to the trans-
port equations employed in describing radiation in
turbid media112 and in a magnetoactive plasma.107'113

The difference consists of the fact that only Bragg
scattering and zero-angle scattering prove substantial
in the CLC case.

Similar equations are used to describe the inten-
sities of the direct and the diffracted waves in studying
diffraction of x-rays114a and neutronsll4t> by mosaic
crystals. In a CLC in the general case the equations
for the intensities (diagonal elements of the tensors^
/„ and /t) and for the nondiagonal elements of /„ and Jx

cannot be separated owing to the complex polarization
properties of the scattering and owing to birefringence,
which complicates the solution of the problem as
compared with the x-ray case.

c) Normal incidence of light

We give below the solutions of the system (7.8) in the
simplest case with normal incidence of the light on the
specimen.111 In this case the equations (7.8) as written
in the circular unit vectors n* and n_ separate into
several uncoupled systems of equations. With the
boundary conditionsI0(z =0) =1*,!^ =L)=0 taken into
account their solution has the following form for the
reflected wave:

μ<ί sh (μι)

(μ+μ^Μμί-Ι+μι (7.9)
1W

Here the indexes 1 and 2 refer respectively to the
polarizations n* and η., μ is the linear absorption co-
efficient, and μι1 is the diffractive extinction length.
The quantity μα depends sharply on the frequency,
reaching a maximum when ω = ωΒ, and vanishing out-
side the Bragg condition. The form of the frequency
dependence of μ4 is determined by the dimensions of
the crystallites and by their angular disorientation in
the specimen.111

The expressions (7.9) yield a quite natural result:
only light having the polarization n* undergoes reflec-
tion out of the entire incident beam, and the reflected
light has the same polarization. The reflection coef-

ficient for this polarization is simply the coefficient
of/^ in (7.9). If the absorption is small, so that

then we have

(7.10)

Hence we see that the reflection coefficient has an
appreciable value when tidL £ 1. Here the frequency
width of the curve for reflection from a thick nonideal
crystal is substantially elevated as compared with that
of the function μΛ.

For the transmitted wave we have

(7.11)

(7.12)

•Ή- ( 7 · 1 3 )

Here μτ is the mean rotatory power of the plane of
polarization associated with diffractive scattering, as
determined by the properties of the individual crystal-
lites of the specimen.111

We see from (7.11) and (7.12) that the intensity of
the transmitted wave of polarization n, is diminished
by diffractive reflection more rapidly with increasing
thickness than that of the wave of polarization n.,
which undergoes only the ordinary attenuation.

Another qualitative feature is that the transmitted
light is generally depolarized. As we can see from
(7.11)-(7.13), the degree of polarization of the trans-
mitted light is minimal for a quite definite polarization
of the incident light (this polarization depends on the
thickness of the specimen and is determined by the
condition l'n =I*22). I n t f t i s c a s e t h e emerging light is
partially linearly polarized and its degree of polariza-
tion is:

(7.14)

However, light having the circular polarizations
and n. is not depolarized.

d) The case of linearly polarized light

Let us study as an example the case of linearly polar-
ized incident light, for which the polarization tensor
has the form

Here/' is the intensity of the incident light (we recall
that we are using circular polarization vectors as the
basis).

As we have noted, the reflected light proves to be
circularly polarized, while the light transmitted through
the specimen is generally partially polarized (el-
liptically).

The angle of rotation φ of the polarization ellipse on
emergence is given by the expression

(7.16)

We see that, in contrast to ideal CLCs [see (3.16)], φ
is proportional to the thickness of the crystal.

If the absorption coefficient μ is small, so that
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μΖ,«1, then we obtain from (7.11)-(7.13) simple
expressions also for the rest of the polarization
characteristic s:

for the degree of polarization we have:

Ρ = V μίσ + 4(1 + μ,,ΙΛ" exp(-pdL) (2 + μ,,Ι)-', ( 7 . 1 7 )

for the ratio of axes of the polarization ellipse:

P(-Wi))"', (7.18)

and for the intensity of the transmitted light:

(7.19)

Figure 16 shows the thickness dependence of P, b, and
/': at small thickness we have Ρ = 1 and 6=0, since
the incident light is linearly polarized, and the effect
of the crystal is small. With increasing L, the degree
of polarization first falls (owing to multiple incoherent
scattering) and the transmitted beam becomes partially
polarized. However, with further increase in thick-
ness the degree of polarization again approaches unity,
since only the polarization n. is transmitted through
a very thick crystal. We recall that polarized light
does not undergo any depolarization at all in passing
through an ideal crystal.

We see from studying the case of normal incidence
that the circular polarizations n, and n. propagate
independently in the CLC, with only the polarization
n» being reflected. However, nonideal CLCs possess a
nondiffractive "pumping" mechanism of the polarization
n. into at (and vice versa). As a result this leads also
to selective attenuation of the light of polarization n..
A source of this pumping is, e.g., optical inhomogene-
ities of a mosaic crystal.111 We recall that selective
attenuation of the light having the undiffracted polariza-
tion has been observed by Kizel' and his associates.48'49

We note in closing this section that the optical
properties of imperfect CLCs have not yet been suf-
ficiently studied quantitatively. In addition to the
mosaic CLCs discussed above, Refs. 86, 115 have
investigated CLCs having a gradient of the ptich of
the helix.

8. CHIRAL SMECTIC LIQUID CRYSTALS

The theory presented above of the optical properties
of CLCs can be applied to chiral smectic liquid crystals
(SLC*), interest in which has recently heightened in
connection with the detection in them of ferroelectric

T,P,t

iff

0.5

FIG. 16. Dependence of the transmission coefficient Τ
= /*//', the degree of polarization Ρ, and the ratio of axes of
the polarization ellipse b in the transmitted beam on the
thickness of a mosaic specimen for linearly polarized incident
light.»1

properties.3'116 Here it turns out that on the whole their
optical properties are analogous to those of CLCs. Yet
there are certain qualitative differences caused by the
difference in structures of these varieties of liquid
crystals.

Several varieties of SLC*'s are known.5"1" Just like
other smectic crystals, SLC*'s are layered structures
consisting of monomolecular layers with the interac-
tion between the layers being weaker than the interac-
tion of molecules within a layer.117"123 The structure
of a SLC* can be represented schematically by Fig. 1,
which depicts the structure of a CLC, by raising the
long axes of the molecules therein at the same given
angle out of the planes without at the same time alter-
ing their azimuthal angle.

a) Dielectric properties of chiral smectic liquid
crystals

The differences in structure of CLCs and SLC*'s
give rise to a difference in the ζ-dependence of their
dielectric-permittivity tensors. While in a CLC the
orientation of only two principal axes of the tensor
ε(ζ) varies with ζ (the direction of the third axis
coincides with z), in a SLC* the orientation of all
three principal axes of the tensor t(z) vary with
varying z. That is, all its components vary. In agree-
ment with the structure, the periodicity of the varia-
tion of the dielectric properties of a SLC* along ζ
coincides with the pitch p of the helix (in a CLC the
corresponding period isp/2).

Naturally the optical properties of a SLC * are de-
termined by the form of the tensor t(z). Without
writing out the explicit form of t(z) in the r-represen-
tation, we shall give its Fourier expansion that is
employed below.

For a SLC * the components t, in the Fourier expan-
sion (2.2) are defined by the following relationships:

o o + i
ο ο ι
±( 1 0

1 Μ + ( 0'
e,—£;, = -j-(e1—β,<Μ»·θ—β,βίη'θ) + i —1 0

\ 0 0 0

β,=0when | « | > 3 .

(8.1)

The upper sign in (8.1) corresponds to a right-hand and
the lower to a left-hand helix.

Only the diagonal components of the tensor t0 differ
from zero:

£0)11 = &)ti—3- (e, + e,cos« θ + e, sin1 Θ),

(e»)u = ei sin1 θ + e , cos» Θ. (8.2)

Here εχ, ε^ and % are the principal values of the
dielectric permittivity tensor, while θ is the angle that
the principal axis of the tensor l(z) corresponding to
ε3 makes with the ζ axis (we assume that the axis cor-
responding to ε2 lies in the plane of the smectic layer).
Let us call attention to the fact that, in line with the
noted difference in the periodicity of the properties of
SLC*'s and CLCs, we should not assume τ = 2π//> in
the expansion (2.2) (rather than 4ti/p, as in a CLC).
We note that the Fourier expansion of (8.1) does not
take into account the periodicity of the SLC* associated
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with its layered structure. In view of the smallness of
the corresponding period, the latter can be manifested
only in x-ray scattering.

b) Second order diffractive reflection

We see from (8.1) that the second harmonic in the
Fourier expansion of t(z) for a SLC* coincides, apart
from a coefficient, with the first harmonic in the cor-
responding expansion (2.2) for a CLC. This means that
the second-order diffractive reflection in a SLC* is
qualitatively analogous to the first order in a CLC. A
quantitative analysis can be conducted by analogy with
the case of a CLC employing in the equations (4.4) the
Fourier components ε0 and ε^ from Eqs. (8.1) and
(8.2).

As analysis of the exact solution known for this case
shows, only the second order of diffractive reflection
is realized when light propagates along the optic axis
of a SLC*. In this case the optical properties of the
SLC* prove fully analogous to the properties of a CLC,
and they are described by the expression in Sec. 3,
with the substitution118:

- , -, e,+ E; cos'e + f, sine (e—e,f sin1 26
ε D y e 2 8ε,

8 by «'

8ε,
Γε, — e,cos»e — p a i n ' s , (e, —e,)»gin'26

5 I 3^

c) First order reflection

Thus, qualitative differences in the optical proper-
ties of SLC*'s as compared with CLCs can be man-
ifested (and as we shall see, they are manifested) only
for light propagating at an angle to the optic axis, and
only in the first order reflection. Hence we shall re-
strict the treatment below of the optical properties of
SLC*'s to the first order of diffractive reflection. In
this case, when we substitute ε in the form (8.1) and
(8.2) into Eq. (4.1), the system (4.4) of equations breaks
down into two independent systems:

Here E" and E' are the amplitudes of the a- and v-
polarized waves, and we have Y?0 = U?/C2, εσ = (ε0)η,
ε» = (to)u sin2(? + (£o)s3 cos2e, / = (1/4)(ε2 - ε,) sin2e cose,
and (π/2) - θ is the angle between the optic axis and the
direction of propagation of the light.

Equation (8.3) implies that a wave with σ-polarization
yields a jr-polarized wave upon diffraction and vice
versa.

The solution of each of the systems of (8.3) and of
the corresponding boundary problem is simpler than
in the case of a CLC, and it is fully analogous to the
solutions in the case of x-ray diffraction (see, e.g.,
Refs. 75-77). Hence we shall directly present the final
results, as above, for a SLC* specimen in the form of
a plane-parallel plate.

d) The boundary problem

Whenever the axis of the helix is perpendicular to the
surface of the SLC* (the Bragg case), the angular (fre-

quency) reflection regions for σ- and ir-polarizations
given by the systems (8.3) coincide. Here the polar-
ization and frequency (angular) dependences of the re-
flection coefficient are described by the expression

sin» (x,£ V AB —i'/2 V e~sin θ)

Β—Ρ COS" (X 0L V ΔΒ — i!/2 V esin θ) *
(8.4)

Here e0 and et are the polarization vectors of the di-
rect and the diffracted waves, and we have ε = (ε,, + e,)/2.
L is the thickness of the crystal, and the parameter
ΔΒ, as before, characterizes the deviation from the
Bragg condition: ΔΒ = (τ/2κ2)(2κ0 Ve -cos'6- τ). We
note that the result of summing Eq. (8.4) over the final
polarizations ex does not depend on e0, i.e., only the
polarization of the scattered wave depends on the polar-
izations of the primary wave, but not its intensity. The
middle of the reflection region lies at ΔΒ = 0, while the
boundaries are determined by the relationship ΔΒ =±1.

One can easily reveal the polarization characteristics
of the scattering by analyzing the factor | e*- ε^,,Ι2 in
(8.4). Thus it turns out that in the first order of dif-
fractive reflection from a SLC*, a right-circularly
polarized wave converts into a left-hand one and vice
versa (we recall that in normal incidence in a CLC, one
circular polarization is not reflected at all, while the
wave that interacts with the CLC retains its polarization
upon scattering). In scattering of linearly polarized
light, the scattered wave is polarized linearly, while
the angles <p0 and φι formed by the plane of polariza-
tion with the plane of scattering in the incident and
scattered waves, respectively, are coupled by the re-
lationship φχ = (JT/2) - ψ0.

Whenever the axis of the helix is parallel to the plane
of the specimen (the Laue case), the regions of re-
flections for σ- and jr-polarizations generally do not
coincide, though they can partially overlap. Here, if
we assume that L»>i0p

2cose (i.e., Bragg diffraction
rather than Raman-Nath148 diffraction is realized), we
find that the reflection coefficient depends on the polar-
ization of the incident wave, while its frequency-
angular) dependence for σ- and π-polarizations is
given by the expression

Β -(Δ, ± ^+ί» s i n ! (X°L^2vicTe+") •

Here we have

(8.5)

COS* θ 1ε,+ϊ, (1 — 5sin'θ)+ϋ 3(1 — 3 cos2 θ)],

The plus sign in (8.5) gives the reflection coefficient
for σ-polarized light, and the minus sign for ir-polar-
ized light. We note that when m =0 the reflection
zones coincide, and the polarization properties in this
case are the same as in the Bragg case. As Eq. (8.5)
implies, in the Laue case the reflection coefficient R
depends periodically on the thickness L. This is the
so-called pendulum beating that is well known in x-ray
diffraction.75"77

The analytical results given above (exact and ob-
tained within the framework of the dynamical theory
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of diffraction) agree with the results of numerical
calculations of the optical properties of SLC*'s.122

We note also that we have employed for simplicity a
restriction on the form of the tensor t(z) for the
SLC* that is justified by physical considerations (one
of the principal axes of £(2) lies in the plane of the
smectic layer). Removal of this restriction122 yields
no qualitatively new effects and introduces no funda-
mental complications in the solution of the problem.
However, we do not present the appropriate expres-
sions here owing to their unwieldiness.

We should note that the same orientation of the axes
of the molecules with respect to the optic axis as in
a SLC * (and hence analogous optical properties) can be
realized in a CLC near phase-transition points124 or
in a field parallel to the axis of the helix.82 Thus,
e.g., in a CLC placed in an external field, diffraction
of light corresponding to a periodicity of/) (rather
than^/2) has been observed.125 However, it has not
been ruled out that the periodicity observed in Ref.
125 involves a domain structure of the specimen (see,
e.g., Ref. 126).

9. COHERENT RADIATION FROM FAST CHARGED
PARTICLES IN CHOLESTERIC LIQUID CRYSTALS

Above we have discussed the optical properties of
CLCs. Naturally, the complicated spatial structure of
CLCs and the consequent anisotropic and spatially in-
homogeneous dielectric properties of CLCs must also
be manifested in the coherent radiation from fast
charged particles. A number of theoretical stud-

ing relation between the direction of emission and its
frequency ω:

127-130,147 have been concerned with this problem,les

in which interesting qualitative features have been re-
vealed in Vavilov-Cerenkov radiation in CLCs. It has
turned out that in a CLC, as compared with a homo-
geneous medium, the angular distribution of the
Vavilov-Cerenkov radiation varies substantially (two
cones of Cerenkov radiation are realized). Moreover,
there exists a coherent radiation that is absent in
homogeneous media, the so-called structural Vavilov-
Oerenkov radiation.128 This radiation arises from the
spatial periodicity of the CLC, and in contrast to
Vavilov-Cerenkov radiation, it exists both at a particle
velocity ν above the phase velocity of light c^ = c/^Tz
and when ν < cvh.

We present below the problems of the theory of co-
herent radiation from charged particles in a CLC.

a) Kinematical treatment

The radiation that accompanies a uniformly moving
particle in a medium is caused by the coherent radia-
tion from the atoms of this medium polarized by the
field of the particle. An extensive literature has been
devoted to presenting this problem for media of simple
structure (see, e.g., Refs. 79, 131, 132). In a medium
of complicated structure such as a CLC, this radiation
has a number of peculiarities. We shall present its
fundamental characteristics on the basis of a kinemat-
ical treatment. When a particle is moving in a periodic
medium, the condition for coherent superposition of the
radiation from the individual atoms leads to the follow-

ω ( 1 cos Θ» 1 (9.1)

Here 6e is the angle between the velocity of the particle
and the direction of emission, φ is the angle between
the velocity of the particle and the axis of the choles-
teric helix, T = 4JT//>, and s is an integer. When s =0 we
get the well-known condition for Cerenkov radiation
cos6e=cth/v. When s *0, radiation exists only in spa-
tially periodic media, and is called structural Vavilov-
Cerenkov radiation (in the literature this radiation is
also called quasi-Cerenkov, resonance, and transition
radiation in a periodic medium). Below we shall take
up in greater detail the structural radiation in a CLC.

The relationship between the direction and frequency
for a CLC that is given by Eq. (9.1) is fully analogous
to the case of radiation in periodic media having a
scalar dielectric permittivity.132'133 However, in
CLCs, in line with the form of the tensor t{z) (2.2)
for structural radiation s in Eq. (9.1) can adopt only
values of ±1. The fundamental features of structural
radiation in a CLC are manifested in its polarization
properties.

For the sake of definiteness, we shall treat below
the motion of a particle along the optic axis of a planar
specimen of a CLC of thickness L. The field Έι of
the structural radiation is determined by solving the
equation

AEt — ̂ - E, = - curl/curl -ί-^-ί Ε..
cph ε

(9.2)

Here Eo is the field of the particle in a homogeneous
medium of dielectric permittivity ε.133 The solution of
Eq. (9.2) at large distances from the specimen has
the form

E, = [k[kG]|, ( 9 . 3 )

where

¥*·"" * •

Here R is the distance from the crystal to the point of
observation; the integration is performed over the ent
entire crystal. In the case ν <cth, the number of
photons emitted per unit solid angle and unit frequency
interval is

d-X
da da '

ωεδ- \Ί2 i + c o s 2 9 , sin5 (ai)
} sin» 52

Here we have α = (ω/ν)(1-βοο8θβ)-τ, fi=v/cstl, and
e is the charge of the particle. The last factor in (9.4)
transforms into a delta-function asI->« and deter-
mines the angular and frequency characteristics.

We can also easily find from (2.2) and (9.3) that the
radiation is elliptically polarized. Here one of the
axes of the polarization ellipse lies in the k, ν plane,
while the ratio of axes is cos0e. In particular, the
forward and backward radiation is circularly polar-
ized, while at an angle of ir/2 to the trajectory of the
particle it is linearly polarized perpendicular to the
k, ν plane. The intensity of the structural radiation is
small in comparison with the Cerenkov radiation (~δ2).
However, estimates show that this radiation is ac-
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cessible to experimental observation. Actually, for a
specimen of thickness L~ 10"2 cm, p~ ΙΟ3 Α, δ~ 10"2,
and /3~ 0.9, the number of photons emitted by one
particle amounts to Na 10*3.

In the treatment performed above, we have not ac-
counted at all for the effect of the periodicity of the
CLC on the propagation of the emitted photons. For
certain frequencies and directions of emission, the
periodicity proves to be extremely significant. Such
frequencies and directions are those for which dif-
fractive scattering of light by the structure of the CLC
occurs. The effect of periodicity on Vavilov-Cerenkov
radiation in a CLC will be further taken into account
below.

b) Vavilov-Cherenkov radiation in cholesteric liquid
crystals127·129·130

As we shall show, besides the well known cone of
Cerenkov radiation, a second cone of coherent radia-
tion is realized in a CLC that stems from diffraction
of light in the CLC. For each direction in the second,
diffractive cone, radiation is emitted at its own
frequency ωΒ, or more exactly, in the frequency
range Δω/ωΒ~δ. The radiation in the stated frequency
range for the Cerenkov and diffractive cones is not
polarized linearly as is usual in Cerenkov radiation.
Rather, in the general case it is elliptically polarized,
with polarization characteristics depending on both the
direction of emission and on the thickness of the crystal.
The ratio of intensities of the radiation in these cones
depends on the thickness of the crystal and can be of
the order of unity for thick enough crystals.

Let us study the Vavilov-Cerenkov radiation of a
particle moving uniformly in a direction that makes an
arbitrary angle with the optic axis of the CLC. We
shall assume that the velocity ν of the particle satis-
fies the condition ν > c^,. Generally, in addition to the
wave lying on the Cerenkov cone and having the wave
vector k,,, in a CLC a wave of the same frequency is
generated that is related to it by the Bragg condition.
Hence we shall seek the radiation field of the particle
(its temporal and spatial Fourier components) as a
superposition of two waves E(k0) =E0 and Ε(^) =E U

where ko lies in the region of the Cerenkov cone, and
kx =ko + T. Analogously to (4.4), we obtain from the
Maxwell equations the following system of equations:

(Dfl-kov (9.6)

(9.5)
» - = £ Ε,-0.

The radiation field in a specimen of finite dimen-
sions, which must be determined in order to find the
radiation from the crystal, amounts to a superposition
of the solutions of the system (9.5) with the solutions
of the homogeneous system (4.4), which are obtained
from (9.5) by dropping the right-hand sides. The co-
efficients in this superposition are determined from
the boundary conditions.

The frequencies ωΒ and the directions k,, and kt in
whose vicinity the two waves are emitted are deter-
mined by the conditions

When we neglect the frequency-dependence of ε, we
get from (9.6) the following relationship of ωΒ to the
direction of the vector k,, lying on the surface of the
Cerenkov cone:

(9.7)

The frequencies ωΒ defined by the relationship (9.6)
and the corresponding wave vectors k,, and kt can also
be found by using a geometric construction (Fig. 17).

The maxima of the amplitudes E( as functions of k0

in the solution of the inhomogeneous system (9.5) that
correspond to the emission maxima are reached at the
points that correspond to a minimum of the modulus
of Du which is the determinant of the matrix of sys-
tem (9.5). Solution of the boundary problem shows that
two cases are characteristic of the observed pattern of
radiation from the crystal. In one case beating occurs
(with the thickness of the crystal or the velocity of the
particle being varied) in the intensity of the waves Eo

and Ex. In the other case we have a strong dependence
of Eo and E t on the frequency in the range | v\ s 5, where
ν = (ω/ωΒ) - 1. To illustrate the statements that we have
made, we analyze below a case that allows simplifica-
tion of the general expressions.

Let us examine a situation in which a particle is
moving at an angle to the surface or a specimen of
thickness L, whose optic axis is perpendicular to the
surface, while a direction k,, lies on the surface of the
Cerenkov cone and coincides with the direction of the
optic axis of the CLC. We find for this direction by
using (9.7) that ωΒ = TCph/2, while the vector kx also
lies along the axis of the CLC, but on the side opposite
to k0. Near the obtained values of ωΒ, kg, and kx, the
dynamic system (9.5) breaks down into two independent
systems of two equations, one of which describes the
diffracted circularly polarized wave n*, while the
other describes the undiffracted one n..129 For n. the
matrix is diagonal and diffractive scattering is absent.
For n t the solution of the dynamical system taking
the boundary conditions into account can be written in
explicit form.129 The amplitudes E( depend sharply on
the frequency and they reach a minimum at ν = 0 and a
maximum at | v\~ δ/2. The intensity of the radiation
emerging from the crystal is given by the expressions

, v' - (1/2) (6/2)' 11 + (sin 2xLql2xL<,))
'o—'c V2 _ (5/2)> cos2 v.Lq

τ _ , (1/2) (6/2)' [1 - s i n 2x£g/
'> — *c v ! _ (δ/2)2 cos2 xLq (9.8)

FIG. 17. Diffraction cone of Cherenkov radiation in a CLC.
The wave vectors of the radiation In the diffraction cone k\
are defined by the condition fej =*0 + τ, where fe0 lies in the
Cherenkov cone.
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Here

•iittph cos * ο τ

is the spectral density of Cerenkov radiation in a
homogeneous specimen of thickness L, and we have
^=1/ι/2-(δ/2)2.

Thus, as the presented formulas imply, the radiation
intensity in the Cerenkov (forward) and diffracted (back-
ward) cones as a function of the frequency near ωΒ

undergoes sharp changes in the region | v\ •& 6 in con-
nection with the diffractive scattering of the polariza-
tion n,. When ΐ/»δ it approaches/, in the Cerenkov
cone and zero in the diffraction cone. As for the
polarization of the radiation, in the Cerenkov cone,
just like the intensity, it varies with the frequency,
approaching linearity when υ » δ. In the diffracted
cone the radiation has the polarization n,.

As the treatment performed above implies, the
periodicity of the crystal qualitatively alters the nature
of the Vavilov-fierenkov radiation in the neighborhood
of particular frequencies and directions. The size
of the angular and frequency regions for the cited
changes is of the order of δ (a characteristic value of
δ is "ΊΟ^-ΙΟ"2). That is, the changes, not only in
the angle-integrated but also in the differential char-
acteristics of the radiation, though small, are quite
accessible to experimental study.

10. CONCLUSION

This review has concentrated its basic attention on
the optical properties of perfect cholesteric crystals.
The stated restriction is not fortuitous—in general out-
line it reflects the state of the theory. As we have
noted, on the whole only the optical properties of
perfect CLCs are fully understood and amenable to
quantitative description. As is evident from what we
have presented, theory is ahead of experiment in this
field. Here testing a number of theoretical results ex-,
perimentally and drawing a conclusion concerning their
degree of significance for applications yet remain to be
done. As for nonideal structures, the situation is the
reverse. They are the most accessible object for
study, yet the progress of theory in describing the
corresponding optical experiments is substantially
more modest, and theory lags behind experiment.

In essence, the theoretically studied situations
(perfect and mosaic CLCs) constitute two idealized
limiting cases, while the actual situation lies between
them and can correspond to these limits only to a
greater or lesser degree. Yet the existence of theo-
retical results for only the two discussed limiting
models can already be employed to obtain quantitative
information from the experimental data, both re-
garding the structural parameters and the degree of
ideality of a CLC. One can get such information on
the degree of perfection of a specimen by comparing the
observed optical properties of the CLC (e.g., the fre-
quency widths of the regions of selective reflection or
the polarization characteristics) with the theoretical
results for the models under discussion.

Up to now primarily a particular geometry of scat-
tering (a plane configuration with the optic axis per-
pendicular to the surface) has been studied theoretically
and experimentally. It is also of interest to study the
optics of a CLC for other scattering geometries, e.g.,
specimens with optic axes not perpendicular to the
surface. Such situations can be realized through the
orienting effect of boundaries or by applying external
fields to the CLC.

In line with what we have said, it is pertinent to men-
tion again certain problems of the optics of CLCs that
have not yet been studied experimentally, as well as
problems whose theoretical development is being
stimulated by present experimental potentialities.
For perfect CLCs the case of oblique incidence has
been insufficiently studied experimentally, and in
particular, the higher orders of reflection as well as
the polarization characteristics of the scattering. Of
considerable interest are optical studies of the dy-
namics, in particular, of relaxation processes in
CLCs, investigations of the optics of absorbing CLCs,
and of the Borrmann effect manifested here (sup-
pressed absorption). A theoretical description is
lacking of representing individual defects and singular
lines (e.g., disinclinations) in CLCs. Radiation from
charged particles in CLCs has not yet been studied
at all experimentally. The optics and electrooptics of
chiral smectic liquid crystals also require further
experimental and theoretical study.

We note also the urgency of theoretical development
of problems of light scattering in CLCs for some lines
of study not touched on here: scattering and rotation
of the plane of polarization near phase transition
points,134"137·124 and nonlinear optics of CLCs.138"140

It is useful also to bear in mind that many theo-
retical results that have been obtained in CLC optics
can be used to describe the diffraction of radiation
of different types by perfect and imperfect periodic
structures (scattering of Mossbauer radiation141 and of
neutrons142 by magnetically ordered structures, and
the optics of magnetic helical structures,143"145 etc.).

We stress that the above-presented diffractive
approach to CLC optics gives an adequate and simple
physical interpretation of the discussed phenomena.
Hence we can hope that its further development will
prove useful for CLC optics, all the more in that the
quantitative results of this approach have also proved
to be practically exact in typical situations.
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