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This article describes in detail the method of the renormalization group and outlines the possibilities of
using it for the analysis of high-energy asymptotics in the framework of quantum field theory. The
renormalization group formalism is constructed for an arbitrary scheme of renormalization. The
exposition is based on the concepts of effective charge and effective mass. Principal attention is given to
the problem of deriving reliable information about the ultraviolet properties of quantized-field models on
the basis of perturbation theory calculations. A summary of the results of such calculations for a wide
variety of models is given.
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1. INTRODUCTION

The method of the renormalization group (RG) arose
25 years ago, after the development of the apparatus of
renormalization in quantum field theory (QFT). It was
pointed out1 that the transformations of multiplicative
renormalizations of quantized fields and coupling con-
stants form a group, with observable quantities (ma-
trix elements of the S matrix) as invariants under these
transformations. It was also discovered2'4 that this
property of QFT (renormalization invariance) imposes
definite restrictions on the form of the dependence of
quantized-field Green's functions (GF) on their argu-
ments, which in a number of cases make it possible to
find some characteristics of this dependence (as a rule,
the asymptotic form of the Green's functions for large
momenta). Effectively, the application of the RG
method corresponds to the summation of the leading
asymptotic terms of infinite subclasses of Feynman
diagrams.

The RG method is now widely used both for purely
theoretical investigations in QFT (for example, for
finding the ultraviolet and infrared asymptotics of the
GF for various models, studying the problems of dyna-
mic symmetry breaking, and so on) and also for study-
ing the high-energy behavior of various physical pro-
cesses, such as deep inelastic lepton-hadron interac-
tions and electron-positron annihilation in hadrons, and
so on. A modification of the RG method developed by
Wilson has been used with success in statistical phy-
sics to describe critical phenomena (phase transitions).5·6

Apparently the best known formula associated with the
term "renormalization group" is the expression for the
effective charge in the leading-logarithm approximation,

(1.1)»(£.*)•
For a<0 (the situation of the so-called "zero of charge")
g has an unphysical pole, and the corresponding quan-
tum-field model is not internally consistent. If, on the
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other hand, a>0 ("asymptotic freedom"), then as the
momentum increases the effective coupling constant g
goes monotonically to zero, i.e., the interaction van-
ishes at small distances. This allows the use of asymp-
totically free models for the description of lepton-ha-
dron processes with large momentum transfer.

The expression (1.1) for the effective charge is at
present the basis of most of the applications of the RG
in physics. Besides this, the RG method is a consis-
tent scheme for the calculation of corrections to this
formula. In the case of the zero of charge will the
higher corrections be able somehow to straighten out
the situation, and in the case of asymptotic freedom
will they give further useful information about high-
energy asymptotic behaviors, and improve the agree-
ment between theory and experiment? To a consider-
able extent, our survey is devoted to a detailed analysis
of these questions.

The basis of all quantized-field applications of the RG
are the renormalization-group equations. In the litera-
ture there are somewhat different ways of writing the
equations of the RG, largely due to the variety of possi-
ble schemes of renormalization in QFT. Owing to the
property of renormalization invariance of quantum-field
models, all renormalization schemes, like the different
"versions" of the equations of the RG, are equivalent to
each other and lead in the end to identical results.
Therefore in the first part of this paper (chapters 2-6)
we present what we believe is the most economical
procedure for deriving the main relations of the RG,
which enables us to treat all of the renormalization
schemes from a unified point of view and includes all
known versions of the RG as special cases. Special
attention is also given to a comparison of the forms of
the RG equations in different schemes of renormaliza-
tion. We also examine in detail the passage to the
ultraviolet asymptotic limit.

The second part (Chapters 7-9) is devoted to applica-
tions of the RG method in problems of high-energy phy-
sics. It contains a summary of the results of specific
calculations of asymptotic properties of Green's func-
tions made up to the present time. All of the results
now in the literature on one-charge models are pre-
sented; among the many-charge theories those are
considered which are most characteristic and interest-
ing from the RG point of view. In Chapter 9 a brief
review is given of applications of the RG to the analysis
of a number of physical processes at large momenta.

As can be seen from the title of our article, we have
not undertaken to describe the entire gamut of applica-
tions of the RG method to problems of particle physics.
Therefore many extremely interesting examples of the
use of the renormalization group which do not relate to
the problem of high-energy asymptotics are not men-
tioned.

2. VARIOUS TYPES OF RENORMALIZATION
PROCEDURES

In QFT giving the Lagrangian does not completely
specify the quantitative properties of the corresponding
system of fields. The set of parameters appearing in

the Lagrangian (the masses mi of the original fields and
the coupling constants gj are not sufficient for the
numerical description of transition probabilities,
masses of physical particles, and so on.

The cause of this peculiar situation lies in the pre-
sence of ultraviolet divergences (we shall not consider
at this point more delicate questions associated with
spontaneous symmetry breaking or degeneracy of the
vacuum). In the process of "reworking" and elimin-
ating these divergences new parameters arise, some
of which (such as cut-off momenta) disappear after the
auxiliary regularization is removed, and some (for
example, points of subtraction) remain and appear in
the divergence-free final results of perturbation theory
(PT) calculations. Therefore, in prescribing a Lagran-
gian for a QFT model we are essentially fixing only
qualitative features of the theory (types of particles,
selection rules, topology of diagrams, symmetry prop-
erties). To obtain quantitative results it is necessary
to stipulate, in addition to the Lagrangian, a recipe for
eliminating infinities.

Appropriate rules can be formulated unambiguously4

and contain the above-mentioned arbitrary parameters
zu . . . , zN ={z}, which, at the end of the calculations,
will appear in the expressions for the matrix elements
of the S matrix

»* = o*({p}, {*>, {m}, {*}); 1.2.1)

here {/>} is the set of momenta of particles involved in
the given process.

It is well known that in renormalizable theories (i.e.,
in cases when N, the number of arbitrary parameters
2,, is finite) the matrix elements Ji actually depend not
on {g}, {m}, and {z} separately, but on certain combina-
tions of them g ^ g , m, z) and m „„„(#, m, z)

«It =Tti({p), {Sphys), {mphyS}). (2.2)

Therefore the arbitrariness in the parameters {z} does
not affect the values^, since a change of these para-
meters

W (2.3)

can always be compensated for by a change of the para-
meters of the Lagrangian (a renormalization)

?'}. Μ (2.4)

so that in the final results {#,„„} and {»*„„„} are un-
changed. The numerical values of the "physical" con-
stants {#,!,„} and {wphTe} are determined from experi-
ment. A knowledge of the explicit form of the function
J( now gives an unambiguous recipe for calculating the
matrix elements in the given (renormalized) model.

The transformations (2.3) of the parameters {z} and
the corresponding transformations (2.4) of the charges
and masses form a group,1 which is called the group of
renormalizations or the renormalization group (RG).
The basis of the construction of the entire RG apparatus
is the fact that, as we have stated, J( is actually inde-
pendent of {z}.

As we shall show, the invariance of the theory under
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transformations of the RG can be used successfully in
the study of the behavior of certain quantum-field quan-
tities under a uniform scale transformation of all mo-
menta. For these purposes it is sufficient (and con-
venient) to separate out from the entire set of para-
meters {z} (whose number is determined by the number
of different field structures in the original Lagrangian)
a one-parameter family, thus making the renormaliza-
tion scheme more specific. The corresponding para-
meter of the dimension of mass is retained as a sup-
plementary argument (in actual fact a fictitious one) in
all the expressions and is called the renormalizing
parameter. Different schemes of renormalization,
i.e., different recipes for selecting a one-parameter
family from {z}, are equivalent in the sense of the cal-
culation of physical quantities, since they can be re-
duced to each other by the transformation (2.3).

We shall give examples of the most widely used re-
normalization schemes.

a) S u b t r a c t i o n scheme

A renormalization procedure which is very widely
used and convenient for practical calculation of matrix
elements and probabilities is based on the subtraction
of divergent integrals. One first introduces an auxiliary
parameter, which regularizes (i.e., makes finite) the
integrals over the internal momenta of Feynman dia-
grams. This parameter may be a cut-off momentum
Λ or the mass Μ of a Pauli-Villars auxiliary field (or
a dimensional-regularization parameter: see follow-
ing section). From the regularized integrals one sub-
tracts their values (in general, the first few terms of
the Taylor's series) at certain fixed momenta pi=p'i.
Then one removes the auxiliary regularization (i.e.,
goes to the limit Λ — », Μ — °°, or ε — 0). In the result-
ing final expressions there is still a dependence on the
points of subtraction {/>}.

A virtue of this method is that it is physically intui-
tive, since in a number of cases the momenta at which
the subtractions are done can be chosen so that one can
use for {§·} and {m} the values of the charges and masses
known from experiment. We note that in the usual
formulation of the RG on the basis of the subtraction
scheme4 no mass renormalization at all is included
among the transformations of the RG. This is achieved
by imposing additional restrictions on the subtraction
procedure and leads to some simplifications of the
equations of the RG.

In order to have the possibility of working with a sin-
gle renormalization parameter (a point of subtraction,
commonly denoted by λ2), we must set p\ = pl\

i. The
coefficients p, are fixed and characterize the concrete
choice of renormalization procedure.

b) D i m e n s i o n a l r e n o r m a l i z a t i o n s c h e m e

In recent years a scheme for removing divergences
based on dimensional regularization (see the review
article, Ref. 8) has become very popular. This regu-
larization involves changing in the formulas for inte-
gration over the virtual momenta from the natural phy-
sical dimensionality n = 4 to w = 4 - 2ε, where ε is a

small parameter giving the deviation of the dimension-
ality η from its normal value. Then, for ε~0, all the
integrals are finite, and the divergences appear as
poles in the variable ε (of types 1/ε, l/ε2, etc.).

Dimensional renormalization is a quite definite pro-
cedure of subtracting regularized integrals, consisting
of subtracting only the poles in the variable ε (i.e., only
the terms singular in ε in the expansion of the regular-
ized integral in a Laurent series). This means that the
counterterms (if we describe the subtraction by means
of introduction of counterterms in the Lagrangian) in
the scheme of dimensional renormalization are pro-
ducts of series in negative powers of ε and appropriate
operators

[ Σ π "««*>. M ) l 11 «Μ*).
1-1 i

The coefficients a, are determined uniquely if we re-
quire that in the expressions after the subtraction the
limit 0 can be taken, i.e., that the regularization can be
removed.

The renormalization parameter in this scheme is a
parameter of the dimensions of mass, denoted by μ,
which assures the dimensionlessness of the regulariza-
tion process and is introduced into the Lagrangian in
multiplicative combinations with coupling constants of
the type 2 \

Its economy is a virtue of this dimensional renormal-
ization scheme (only one new parameter), as are also
the preservation of symmetry properties and the sim-
plicity of the technique of calculation. Moreover, this
scheme belongs to the category of "massless" schemes,
i.e., those in which the counterterms for renormaliza-
tion of the wave functions and the dimensionless coup-
ling constants do not depend on the masses,9 i.e., a{

~ai({g})· T n e f i rst example of a "massless" renor-
malization scheme was proposed by Weinberg.10 It
was shown in Ref. 11 that such renormalization schemes
can be constructed on the basis of any regularization.

c) Cut-off s c h e m e

This historically first and intuitively natural scheme
of renormalization, based on an ultraviolet cut-off, has
two main versions: The "Feynman cut-off," in which the
the free propagator is modified in the following way,

and a cutting off of the momentum integrals over the
radial variable (after the "Wick rotation" of the axes
of integration to get a Euclidean metric) at an upper
limit Λ. After regularizing in this way one can, in-
stead of eliminating the cut-off parameter Λ from the
theory by subtractions, give to it the meaning of a
renormalization parameter. To do this one must dis-
card from the renormalized integrals all quadratic di-
vergences (those proportional to Λ2), and also all terms
containing factors of the form (Λ2)"",Ν>0 (which cor-
responds to using expressions that are asymptotic, in
the sense Λ2 — «). This procedure leads to yet an-
other "massless" renormalization scheme which, des-
pite some shortcomings, such as the absence of gauge
invariance, is useful in scalar theories, since it makes
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the calculations remarkably simple.

If QFT still other renormalization schemes have
found application (for example, so-called analytical re-
normalization), but we shall not need them in what fol-
lows and shall not discuss them.

3. MULTIPLICATIVE RENORMALIZATION OF
GREEN'S FUNCTIONS

An important part is played in QFT by Green's func-
tions (GF) (complete propagators) and by strong-coup-
ling vertex functions. We shall be concerned here only
with Green's functions that have been "made dimension-
less" (i.e., scalar dimensionless factors with indepen-
dent Lorentz and other structures, into which the ori-
ginal Green's functions are decomposed), and shall de-
note them by

(for propagators we shall sometimes use the special
notation d), where μ2 is the renormalization parameter.
We agree to normalize GF so that the contribution to
them from the corresponding Born diagrams will be
equal to unity (in the cases we shall need this can al-
ways be done). Then

r({_-£i}, {2=1}, {0})=l. (3.1)

It must be emphasized here that by the coupling con-
stants {g} we mean either the coefficients of products
of field operators in the interaction Lagrangian, or the
squares of these coefficients, if they are the actual
parameters of the perturbation theory expansion. For
example, in quantum electrodynamics the coupling con-
stant g is the square of the electronic charge, e2.

In renormalizable theories the dimensions of coup-
ling constants in mass units can be larger than or equal
to zero. From the point of view of the RG, dimension-
less constants are decidedly different from the dimen-
sional ones, and for the latter the renormalization is
very similar in structure to that for masses. Owing to
this we do not put dimensional constants in a special
category, but consider them together with the masses;
then all of the {g} are assumed to be dimensionless,
which allows a simplification of the exposition with
practically no loss in generality.

A transformation of the RG, i.e., replacement of μ
with μ', accompanied by a suitable change (2.4) of the
charges and masses, leads4 to multiplication of the
Green's function Γ by a real factor Zr independent of
the momenta

(,3.2)

The quantities {g"}> {W1> and Zr are uniquely deter-
mined, depend on the set of arguments ( μ ^ , μ 2 , ! 2 }
and can be calculated with perturbation theory (PT).
We note that in the scheme of dimensional renormali-
zation (and in general in "massless" schemes) ZT and
{g'} do not depend on the masses and can be expressed
in terms of only μ'2/μ2 and {g}.

The relation (3.2), which expresses the multiplicative
nature of the renormalization of the GF, is the basis of
the construction of the entire formalism of RGequations.
Usually this is done with the use of auxiliary objects
ξ,, called invariant charges and defined as the product
of the charge g and the corresponding vertex function
Tf, multiplied also by the square root of the complete
propagator for each external line at this vertex,

(3.3)

It can be shown4 that this quantity does not change under
transformations of the RG,

Therefore the RG equations for the invariant charges
are simpler than those for the GF; they are solved in
short order and used for the further analysis of the
model. Here, however, we shall present another possi-
ble approach to the construction of the RG formalism.
The auxiliary objects used are not the invariant charges,
but other quantities; these are the effective charges
and effective masses, which characterize the renorm-
alization of charges and masses under transformations
of the RG.

Since at present several different renormalization
schemes are widely used in QFT, it is of considerable
interest to carry out a comparative analysis of them
from the point of view of the RG. For this purpose we
need a formula connecting the GF of different schemes

(3.5)
It is important to emphasize that the transition from
one scheme to another, which is a special case of the
general transformation (2.3), (2.4), involves not only
the change μ - μ, {g} -{#}, {m}-{m\ in the arguments of
the GF, but also a change in the form of the function
itself, since a major difference between Eqs. (3.2) and
(3.5) is that in the latter the quantities f and Γ on the
right and left sides are different functions of their res-
pective arguments.

We shall illustrate the renormalization properties of
the Green's function with the example of a scalar field
with the Lagrangian

^ - ^ . υ .β)

Let us consider the four-terminal GF Γ4. The first
two terms of its expansion in g correspond to the dia-
grams of Fig. 1 and are of the form

(3.7)

FIG. 1.
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where

« = (Pi + Pi)', « = (Pi + P,)2, « = (Pi + Pi)2,

and the function / i s represented by the logarithmically
diverging integral

(3.8)l f £*
n« J (t«-m")J(Pl+p,-t)«-iil«l·

We shall carry out the calculation of the integral (3.8),
and so of the function Γ4, in three different renormali-
zation schemes.

a) Cut-off s c h e m e

Making a Wick rotation of the axes of integration and
changing to Euclidean momenta, fe = (feO)k)-fee = (k,tfeo)»
we cut off the integral over ke at some upper limit Λ:

Α),. 1_ f d ^

" ' it 1<Λ ( * ' + m ! ) I ( P l + p * ~

and, applying formulas of integration from Ref. 13, we
get

/ «( t ) = /(_! i.) + lnj£. + l l (3.9)

where the function

J(z)= j
ο

is real for ζ «4. Substitution of Eq. (3.9) in Eq. (3.7)
gives an expression for rJA>,

Γ(.Λ) = 1+Ι[^(^)+^(^)+^(ΐ)+31η^] (3.10)

(e is the base of natural logarithms), from which it is
seen that a change Λ —Λ' of the renormalization para-
meter is equivalent to this order in g to multiplying
TjA> by a factor Z4

A>

As for the renormalization of the mass and the charge,
because to first order in g there is no correction to the
propagator, the mass is not renormalized

ra'=ro+<)(«*), (3.12)

and to determine g' we can use the property (3.4) of
invariance of ξ,, which in our approximation is

g = ?'Z4 + O (g°), (3.13)

from which we have

(3-14)

b) Subtract ion s c h e m e

In this scheme the integrals /, regularized in any way
(for example, by means of a cut-off) are subtracted at
points s=pt\

2,t = pt\
2,u = paX.2

(The choice of the subtraction points is restricted by
the requirement that the counter-terms must be real, so
that ρλ2 «4w2.) Substituting this expression in Eq. (3.7)
we get

(3.15)
From this we get the expression for the renormalization
constant Z\X) corresponding to the change λ-*λ',

The form of g is clear from Eq. (3.13). A characteris-
tic feature of this scheme is that Z\X) (and consequently
also g') depends on the coefficients {p}, which fix the
points of subtraction.

c) D i m e n s i o n a l r e n o r m a l i z a t i o n s c h e m e

For the dimensionally regularized integral

A»), v i O O l f d4-2cA-

we use formulas given in Ref. 14 to get

After subtracting the term l/ε which is singular in ε
and taking the limit ε ~* 0, we get the renormalized ex-
pression for/'"':

which gives

•£]. (3.17)

From this, making the change μ — μ' in/< u ), we find

Ζ») = ! _ * ! „ £ . , (3.18)

S — &\ η (3.19)

In the approximation considered the functions Γ4 in all
three schemes have the same dependence on the mo-
menta, given by the function J(z), and differ from each
other only by additive constants. In this approximation
the connection between g and the physical coupling con-
stant gj^i is also simple in form. For example, if we
define gvta, as the value of ξ, that corresponds to the
symmetric point s = « = <=4mV3, i.e., set by definition

^ . = ?(i)r<i'(S = « = i = 4m»), (3.20)

then inserting the expressions (3.10), (3.15), and (,3.17)
in Eq. (3.20), and solving for gu> we get

(3.21)

In higher orders in g the Green's functions of various
schemes will show differences also in the momentum
dependence. In fact, in diagrams that have a number of
closed loops and therefore require an equal number of
additional integrations over internal momenta, the dif-
ferences by a constant that arise in the first integration
will as a result of the other integrations inevitably be
converted into differences by a function of the momenta.
However, according to the relation (3.5) this discre-
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pancy between the GF of the various renormalization
schemes can be completely compensated by redefinition
of the charges and masses and multiplication by a com-
mon momentum-independent factor Z.

4. EFFECTIVE CHARGE AND EFFECTIVE MASS

A direct consequence of the multiplicative nature of
the renormalization of the GF and the coupling con-
stants is the functional equations of the RG, which can
be derived from the relation (3.2). In a number of
cases these equations can be analyzed in general form,
and their solution can also be written in functional
form.4'15 This formulation, however, is equivalent to
the solutions of the differential equations of the RG,
which can be derived and analyzed more simply. For
this reason we shall not consider the functional equa-
tions of the RG and will adopt a scheme of exposition
based on the differential equations.

To start with, we confine ourselves to the case of a
model with a single dimensionless coupling constant g
and a single mass m. The relation (3.2) takes the form

(4.1)

Differentiating this with respect to μ'2 and then setting
μ' = μ, we get an equation for Γ:

and in the subtraction scheme

(4.2)

where the so-called renormalization-group functions
β, ym, and >f are the logarithmic derivatives with res-
pect to μ'2, taken at the point μ'= μ, of g', In»?'2, and
ZT, respectively, and

In the subtraction scheme Eq. (4.2) is known as Ovsy-
annikov's equation.15 In the literature Eq. (4.2) is also
often called the Callan-Symanzik equation (on this point
see the end of Chapter 6).

The functions β, ym and yr play an exceptionally im-
portant part in the apparatus of the RG. Their explicit
calculation is the fundamental problem that arises in the
renormalization group approach to the investigation of
QFT models. Effective methods for finding the first
few terms of the PT series for the RG functions are
described in the literature.16"19

In the example of the φ* model which we have con-
sidered the RG functions can be calculated very simply
in the lowest (one-loop) approximation. Carrying out
according to Eq. (4.3) the differentiation with respect
to the primed renormalization parameter in the explicit
expressions for ZA and g', we get in the cut-off and
dimensional renormalization schemes

- f [3-

(4.5)
We note the explicit dependence of the RG functions of
this scheme on the coefficients {p}. In the approximation
considered ym = 0 for all schemes, this being a conse-
quence of Eq. (3.12). In the subtraction scheme rm = 0
in all orders vcig, since here, as already stated, the
mass is not included among the transformations of the
RG.4

As can be seen from Eq. (4.4), the RG functions of the
cut-off and dimensional renormalization schemes turned
out to be independent of the mass to the order consi-
dered. This property follows from the "masslessness"
of these schemes and can be proved for an arbitrary
order of PT. 9 · 1 1

Now, regarding the RG functions as known (in practice
this means that they have been calculated to some par-
ticular approximation), let us find the expression for
the GF, which satisfies Eq. (4.1), or equivalently is the
solution of the RG differential equation (4.2). For this
we first derive in explicit form the dependence of g',
m', and Zr on μ' and the other arguments (μ, m, and
g). We introduce the following notations:

μ'2/μ2 = ί,

(4.6)

The functions g and y are called the effective charge
and effective mass and describe the renormalization of
g and m under the renormalization group change μ-* μ'.
From Eq. (4.6) we have the normalization relations for
g and}*

g (1, y, g) - g, y (1, y, g) = y. (4.7)

Let us now derive the differential equation which
g(t,y,g) satisfies. Represent the RG transformation
μ— μ" as a succession of transformations μ— μ' — μ".
This makesg-g'-g" =g(t',y',g'), where f = μ"2/μ'2.
Consequently

g' = g(t', y (t, y, g), ϊ (t. v, «•)) = * ( « ' , v, g)· (4.8)

We rewrite the relation (4.3a) in the notation (4.6)

Q — 1 ι . Λ V

Differentiating Eq. (4.8) with respect to lnf' at the point
V -1 and using Eq. (4.9), we get

Vr=— 1-τΛ (4.4)

ί - 5 Γ ί ( ί . ! Λ ί ) = β ( ί ( ί . 0 . * ) . g{t,y,g)).

In a similar way we derive the equation for y,

t-^lnyd, y, g)=-ym(y(t,y, g), g(t,y,g))-i,

and that for Zr,

(4.10)

(4.11)
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. if. g) = Ϊ Γ (if (*> y> g)< g (t, if.

with the normalization condition

Zr (1, if, g) = 1.

From these relations we find

(4.12)

(4.13)

(4.14)

Substituting Eqs. (4.6) and (4.14) in (4.1) and denoting
-PVu-'2 by Xu we get the solution of the RG equation
(4.2) in the form

r ({**}. v, g)

= r ({*}. * (*,». e)< e(U y, g)) exp [ - j -^ Vr (y («. if, g), i («, if,*))].

(4.15)
This relation for the GF Γ, in which its RG properties
are fully taken into account, describes the effect of a
simultaneous scale transformation of all momentum
arguments of Γ,{χ}-{χί}. The explicit form of y and g
must be determined from the system (4.10), (4.11) on the
the basis of available information about β and ym. Some
qualitative characteristics of such systems have been
studied in the literature,2 0 but their exact solution re-
quires a knowledge of the RG functions in all orders of
PT. In actual situations we know only the first few
terms of the relevant expansions. Whether (and how) it
is possible to get reliable information about any prop-
erties of the full RG on the basis of these few terms—
this is the main question in which we shall be interested
throughout this paper.

Let us now return to the φ* model. In the one-loop
approximation the system of equations for g and y is
[with the expression (4.4) used for β]

vF2. t-i-lny=—i. (4.16)

Solving Eq. (4.16) and considering the normalizat ion
(4.7), we get

£•=•?-. (4.17)

Equation (4.17) for g denonstrates a typical and very
important characteristic of the RG approach; the ex-
pressions that are obtained contain contributions of all
orders in the coupling constant. This is due to the fact
that in any finite order ing the GF does not have the
required RG properties (multiplicative renormalization).
Therefore the solution of the RG equations on the basis
of the functions 0, ym, and y r , as calculated to a given
order of PT, is equivalent to summing an infinite series
of contributions from diagrams with an arbitrary number
of closed loops. In other words, we have gone beyond
the ordinary PT ordered in powers of g, and have in
effect regrouped and partially summed its terms, to a
new PT in the effective charge g.

This analysis of the RG structure of GF can be gen-
eralized to the case of several charges and masses,
and can also be extended to the situation in which there

are gauge fields in the theory. There then appear addi-
tional effective quantities corresponding to the new
coupling constants, masses, and gauge parameters, but
the structure of the fundamental relations (4.10), (4.11),
and (4.15) is completely preserved. We shall write out
the many-charge relations in explicit form in connection
with our treatment of the ultraviolet asymptotics of GF.

It is interesting to note that in the subtraction scheme
the effective chargeg(t,y,g) for t>0 is identical with
the invariant charge ξ, defined by Eq. (3.3). For t« 0
the charge g, unlike ξΓ, is a as rule not defined, since
the requirement that the counterterms be Hermitean
makes the ratio μ' 2 /μ 2 =ί positive. In the other re-
normalization schemes the charges g and ξ, are unequal.

5. ULTRAVIOLET ASYMPTOTICS OF GREEN'S
FUNCTIONS

The final equation of the preceding section, Eq. (4.15),
can be used successfully for the analysis of the ultra-
violet asymptotics of a number of QFT models.
Since the relation (4.15) describes the effect of a ho-
mogeneous transformation of all the momentum argu-
ments of the GF (the possibility of using the RG method
to study momentum dependences of another kind, for
example the asymptotics of the amplitudes for processes
on the mass shell, will be discussed in Chapter 9), we
can from the very beginning regard the GF as a function
of a single momentum argument p2, and to which all the
p2 are proportional, P2 = pj>2. The coefficients {p}
specify the asymptotic conditions and are involved (im-
plicitly) in the determination of the corresponding GF.
In particular, in the subtraction scheme the renor-
malization functions depend on the choice of these co-
efficients.

It is natural to expect that in the ultraviolet limit,
i.e., for \p2\/m2~ °°, the dependence of the GF on the
masses will be unimportant. Let us consider first the
case in which the renormalization parameter is large
in comparison with the mass, μ2»τη2. Since in each
order of PT the passage to the limit ra2- 0 is regular,21

in the region \ρ2\, μ2»τη2 the mass arguments y=m2/
μ2 and y in (4.15) can be taken equal to zero. The re-
lation (4.15) then becomes

Γ (if, y) = r(i, g(t,
1

- j -ipYriytu, g))], (5.1)

where we regard χ as fixed, f — + °°, and the two-argu-
ment function Γ(*,#) = Γ(*,0,#) is the GF of themassless
theory.

In what follows the argument χ will as a rule be set
equal to 1, which corresponds to the case of spacelike
momenta. To study asymptotics in the timelike region
one must use the formula (5.1) with#<0.

Returning to the general case of the asymptotics of
T(t,y,g) for i-°° and arbitrary fixed y, we use a "mass-
less" renormalization scheme. Then, because the RG
functions (4.3) are independent of the mass, the effective
charge, determined from

(5.2)
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does not contain the argument y at all, and for t — °°
Eq. (4.15) goes over into (5.1) if

y (', y, g) - 0.

The relation (5.2) is satisfied under the condition that
the right side of Eq. (4.11) is less than zero for t~ <*>,
i.e., if

lim ym (y (<, y, g), ? (i, y, g)) < 1. (5.4)

This is certainly true in the subtraction scheme, where
ym = 0, and in asymptotically free theories (see below),
in which the effective charge g, which is the parameter
on the left side of the inequality (5.4), goes to zero for
large t. In other cases PT calculations are not sufficient
to test the inequality (5.3). Nevertheless, we shall
assume that Eq. (5.4) is correct, possibly thereby
limiting the applicability of the formulas now to be
derived.

In other schemes (not"massless")the renormalization
functions depend on y, and the result of this is that the
asymptotic of T(t,y,g) is not the same as T(t,0,g). We
can, however, find the connection between these func-
tions inexplicit form, since, transferring the RG trans-
formation μ from the region μ2~τη2 into the region
μ2»»!2, we thus make y go to zero. This procedure
and its consequences are described in detail in Chapter
6. The conclusion we reach is as follows: The asymp-
totic expressions for the Green's function are identical
to those obtained in the massless theory up to correc-
tions ~y (so-called mass corrections). If the inequality
(5.4) is strictly satisfied, these corrections fall off
according to a power law as t increases. Calculation
of the mass corrections is a separate problem, with
which we shall not deal in this article.

Thus we are to take the relations (5.1) and (5.2) as the
basis for our further arguments. The RG functions
|3(g-) and yvig) that appear in them are often called the
Gel-Mann-Low function and the anomalous dimension,
respectively. As can be seen from Eq. (5.1), the anal-
ysis of the asymptotics of the GE T(t,g) requires infor-
mation about the behavior of the effective charge g(t,g)
for f — <*>, which is completely determined by the func-
tion

Let us consider some characteristic possibilities for
the ultraviolet behavior of g(t,g) and T(t,g) (a more
detailed exposition is given in Ref. 4). It is convenient
to write Eq. (5.2) in integral form

Τ1 η ί (5.5)

In renormalizable theories the expansion of 0(u) in
power series in u begins with the second power of u.
We first assume that the first coefficient of this series
is positive, i.e.,

(5.3) g

This means that on some interval (0, δ) the function
0(κ) is positive. Let g be in this interval, and suppose
that the integral (5.5) diverges at its upper limit for
g=go<QO· For this to be so, the function /3(«) must have
a zero of at least the first order at the point u=g0. This
situation is shown qualitatively in Fig. 2, a. From Eq.
(5.5) we can conclude that g(t,g) -g0. This sort of be-
havior of the effective charge g corresponds to a finite
renormalization of the charge, and the pointy, is called
an ultraviolet-stable point. As can be seen from Eq.
(5.1), the asymptotics of the GF has a power-law form

If the integral (5.5) diverges only at an infinite value
of the upper limit, then g(t,g)^«>, i.e., an infinite
renormalization of the charge occurs, while if the
integral (5.5) converges iorg—°°,

αο
du

a pole of the effective charge appears at the point
tOtg(t<»g) =°° (a situation well known under the name
"zero of charge", see Ref. 22), which indicates that
the model in question is internally inconsistent.

In the calculation of the function /3(«)[Eq. ρ.6)] with
the first few terms of the PT series, two of these pos-
sibilities may be realized: A "zero of charge" [for
example, if we use only the first term, cf. Eq. (4.7)
for the φ4 model], and a finite renormalization, if /3(M),

in this case a polynomial of finite degree, has a zero
at u =g0 Φ 0. However, in either of these situations we
cannot draw any reliable conclusions from PT about the
asymptotics of T(t,g), since, first, to find the quantity
g0 it is necessary to include all orders in the coupling
constant, and second, in the case of (5.6) the effective
charge g(t,g) itself increases as f —°° and therefore can-
not serve as a parameter of the expansion in Eq. (5.1).
In other words, for t — <*> there is a departure from the
weak-coupling region and PT in terms of the effective
charge cannot be applied.

The picture is entirely different when

β (u) ----. -bu* - Ο (u3), b > 0 (5.7)

(Fig. 2,b). A range of values of Μ near zero, 0<«<6,
can always be found such that the first term on the right
side of Eq. (5.6) dominates. Setting /3(M) = -6K2 in Eq.
(5.5), we get the effective charge in the form

1 — tig in t

i.e., g{t,g)~\/(bltd)~ator f-°°. This sort of asymp-

p(m
g

β (it) = au* + O (u»), e > 0. (5.6) FIG. 2.
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totic behavior of g{t,g) is known as asymptotic freedom
(AF).23 AS we shall show, AF is typical for nonabelian
gauge theories.

An analysis of the neglected terms in the right mem-
ber of Eq. (5.7) shows, on the assumptiong< δ, that

Inln ί (5.8)

In renormalizable theories the expansion of yr(g) in
series ing is of the form Yr(g) = cg + 0(g2), and it fol-
lows from Eq. (5.1) that

(5.9)

It can be seen from Eqs. (5.8) and (5.9) that in models
with AF (and only in them, i.e., only if the first term
of the expansion of $(g) in g is negative) one can use
PT in the high-energy limit, since there the effective
charge is a small parameter for an "improved" per-
turbation theory and the asymptotics of the GF are
governed by the first terms of the PT for the RG func-
tions fi(g) and yT(g).

As is well known, in a massless theory the GF T(t,g)
can be expanded in a double series in g and In/

It can be shown4 that by expanding the right side of Eq.
(5.1) in an analogous series with functions β, y r , and
T(X,g) calculated in the one-loop approximation we get
the correct coefficients of g" ln"f for all n. Inclusion of
two-loop contributions allows determination also of the
coefficients οί^ΐη"" 1 *, and so on. This means that
starting from the JV-loop expressions for the RG func-
tions and for T(l,g) we have the possibility of using the
RG method to sum all the leading logarithmic terms of
PT (of the type of g" ln"t) and also the Ν - 1 lower degrees
in the logarithms, down to gn(latY"''*1. However, only
in the case of AF, Eq. (5.7), is such a summation really
useful, since in that case it leads to an improved PT
with a new small parameter, the effective charge g.

In studying the ultraviolet asymptotics of specific
models of QFT we have to deal repeatedly with many-
charge theories. Therefore we give here the main RG
formulas for that case. All of the changes in the RG
equations that are required in going from one to many
charges can be seen already from the example of a two-
charge model. We shall confine ourselves to a dis-
cussion of such a theory, with coupling constants g and
h.

In the two-charge case Eq. (5.2) is replaced b y a sys-
tem of equations for two effective charges g and h:

g(i,g,h)=g.

Α),
(5.10)

By using the fact that Γ, the Green's function, is dimen-
sionless, we can write the differential equation for it
in the form

[*•£•-β, (*. * ) - £ - β*(ί. V) -Jr+vrdr. A)]

(here x = -p2/μ2), and its solution is

?, A)=o

t

Γ (it, g, h) = Γ (*, g, h) exp [ - j ^ vr (i (", g, A), h(u,g,h))].

(5.11)
The investigation of the asymptotics of the GF requires

primarily an analysis of the system (5.10). Since in the
right sides of these equations the argument t does not
appear explicitly, the solution can be represented in the
phase plane of the effective charges g and h (for two
charges; for more than two, in a phase space) by curves
which show the motion of the point ig, h) as t varies. In
particular, a finite renormalization corresponds to the
existence on the phase plane of an ultraviolet-stable
point (go,ho) to which the phase curves converge,

g(t,g,h)- 'iff. A)——»A0<oo. (5.12)

In the case of AF the origin of coordinates is a stable
point,

.0, • 0 .

6. CONVERSION FORMULAS

Let us now explain how important the dependence of
the ultraviolet asymptotics of the GF on the renor-
malization scheme used is. To do this we first find the
explicit connection between the RG functions of the dif-
ferent schemes. The change Γ - f of the GF on going
to a different renormalization scheme is described by
Eq. (3.5), which in the high-energy limit of aone-charge
theory takes the form

( 6 Λ )

Setting β = μ and using the notations

we get a relation connecting the GF's of different
schemes:

Γ (*. g)=F (g) Γ (χ, q (?)). (6.2)

Differentiating Eq. (6.2) with respect to χ and using
the RG equation

(6.3)

and the analogous equation for f (with the changes
j3-/3,y r-y r), we find the required connection between
the RG functions14·24

(6.4)

1 ] M M . ( 6 # 5 )

We call Eqs. (6.4 and 6.5) conversion formulas.

Because of the fact that there is no dependence on the
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renormalization scheme in the lowest (Born) approxi-
mation, the expansions of q{g) and p(g) in power series
in g are of the form

i(g) = e + o(g»), ρ (g) = ι + ο(g).

From this and Eqs. (6.4) and (6.5) it follows that in a
given order ing the conversion from fi{g) to β^) and
from yT{g) to yT{g) requires knowledge of the conver-
sion functions q{g) and p(g) only in lower orders.
Therefore in the one-loop approximation the RG of all
schemes are identical.

It is curious that the equality fi(g)=f!(g) holds (in a
one-charge theory) also in the two-loop approximation.25

In fact, substituting the first terms of the series

q (g) = g +

β (g) ••= « g a

Pfe) = V
bf + eg1 +
V + eg* +

in Eq. (6.4) and equating the coefficients of g2, g3, and
g*, we get

α = a, b = b, c = c — aA' -τ- aB — bA. (6.6)

The difference between the functions β and β begins
only in the three-loop approximation. This gives a
reflection of the fact that for given β^) and J3(gO the
function q{g) is determined only up to an arbitrary con-
stant, since from Eq. (6.4) we have the relation

Ψ (? (?)) = ψ (g) + const, (6.7)

where φ and φ are indefinite integrals of the form

An analysis of the conversion formulas from the point
of view of PT series, such as we have made for Eq.
(6.4), shows that generally speaking the difference
between the RG functions of different schemes begins at
the level of two loops. This is the case also for the
functions β in many-charge theories, and for the func-
tions y r , for an arbitrary number of coupling constants.
Many-charge conversion formulas are given explicitly
in Ref. 24.

We now discuss some consequences of these formulas.
As was remarked earlier, the values of observable
quantities (matrix elements of the S matrix), as cal-
culated in QFT, are independent of which renormali-
zation scheme is used. It can be seen from Eq. (6.2)
that the same statement is also true for the GF up to a
common factor p{g). In fact, if we drop this factor,
we find that f differs from Γ only by the replacement
of the argument g by q (g). But this is precisely the
sort of renormalization of the coupling constant that
accompanies a change to a different renormalization
scheme. Taking this redefinition of the charge into
account, we see that the dependence of the GF on χ
(i.e., on the momentum) is just the same in both cases.

To illustrate this general proposition let us examine
in more detail an expansion of the type of Eq. (5.9) in

asymptotically free theories. We put the relation (5.1)
in the form

duv (6.8)

and Eq. (5.5) in the form lnt = 4>(g(t,g))-ip(g). We take
as a new expansion parameter L the quantity L = lni + φ
+ >Hg). In the literature the parameter L is often written
in the form 1η(£2/Λ2) to emphasize the logarithmic nat-
ure of the dependence of L on the momentum. In this
form the quantity Λ2(μ2,^), having taken into itself the
entire dependence on μ and g, is the single parameter
of the theory. In view of the fact that according to Eq.
(4.8) the effective charge does not change under RG
transformations μ - μ',g~g'(v'2/V-2,g), the parameter
L is also an invariant of the RG. Solving the equation
L = $(g) iorg, we get

= χ+
tin/,

— I T - + -&• + ° [ -nr) •

Substituting Eq. (6.9) in (6.8), we find

(6.9)

(6.10)

where/ is some function; the numbers a and .A are cal-
culated from PT in the one-loop approximation, and
b, d, B, and C, in the two-loop approximation, and so
on.

Do the coefficients of the expansion (6.10) change in
the transition to a different renormalization scheme?
Let us write Eq. (6.10) in the form T(t,g)=f(g)$(L).
Then, according to Eqs. (6.2) and (6.7),

Φ (i) = Φ (In t + ψ (g)) = Φ (In t + ψ (q (g))) = $(/, + const).

Consequently, the only effect of a change of the re-
normalization scheme [not counting a change of the
common factor f(g)] is a shift of the parameter by a
constant. [We note that the definition of L from the very
beginning allowed this amount of arbitrariness, since
4>(g) is an indefinite integral.] The numerical value of
this constant (we denote it by Δ) can be found by com-
paring C and C:

In order to fix the determination of L unambiguously
[and thus fix all of the coefficients in the expansion
(6.10)] we can, for example, require that C = C = 0. By
imposing this kind of condition, we assure that all of
the coefficients in Eq. (6.10) are independent of the re-
normalization scheme.

The index r r(^o) o f the power law asymptotic is also
independent of the renormalization scheme in theories
with a finite renormalized charge. In fact, suppose
fi(go) = 0. Then according to Eq. (6.4) in a different
scheme Mgo) = 0, where £O= q(g0) (provided only that the
quantity dq(g)/dgl=g is finite), and it follows from Eq.
(6.5) that the stated relation ΎΑ§Ο)=ΎΑ^Ο) holds. It is
true, however, only in the complete theory, and is
violated in any finite order of PT, since to find the
quantity vr(g0) one must take into account all orders
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in g. By breaking off the PT series, we get only an
approximation for Yr(g0), for which the approximate
expressions for yT(g0) in different renormalization
schemes are not necessarily equal.

In concluding this chapter we apply the conversion
formulas to study the ultraviolet asymptotics of the
GF r(z,y,g) in the case y #0. As was shown in Chapter
5, to do this we must convert from the value μ2~»η2 of
the renormalization parameter to a value μ'2»ηι2. By
Eq. (3.2)

a)Spinor e l e c t r o d y n a m i c s (usual ly ca l led
quantum e l e c t r o d y n a m i c s ) :

Γ (*.„,,)-Γ (•=£,£.,

This equation, being true for arbitrary p2 and μ'2,
holds also in the asymptotic region |̂ >21, μ'2 »m 2 .
Taking account of Eq. (5.3), we have

=z.0(J£.£,?)r(^,ο, ,;,(£,£.,)),
(6.11)

where we take the ratio m2/μ2 =y as fixed, and the as-
ymptotic functions Γω, Zu, and g'm are obtained from
Γ, ZT, and g' by discarding all terms that go to zero in
the limit |/>2|/m2-«> or, correspondingly, μ'2/»!2-00.
There then remains in the function Τa(x,y,g) only a
logarithmic dependence on the momentum. Comparing
Eqs. (6.11) and (6.1), we conclude that the conversion
from rn(#,y,g), y=const#0to Γ(*,0,#) is analogous
to that from one renormalization scheme to another.
Consequently, the ultraviolet asymptotics oi T(x,y,g)
is given, as in the case of r(x,0,g), by Eq. (5.1), but
now with different RG functions β(y,g) and yT(y,g),
which are connected with β{g) = β(0,g) and yr(g) =ΎΓΦ>8)
by the conversion formulas of the type of Eqs. (6.4),
(6.5).

Written in differential form, the RG equation for Γ ω

[i-i-βθ,, ί)·£-+7Γ(y,g)]T.c(x, u,g) = 0 (6.12)

in the subtraction scheme with y -1 is exactly the same
as the asymptotic form of the well known Callan-Syman-
zik equation.26 The correspondence between the RG
equation (4.2) and the Callan-Symanzik equation has been
studied in papers by Lowenstein7 and Collins27. The ex-
tension of the arguments of these papers27 to the case of
an arbitrary renormalization scheme leads to the con-
clusion that the difference between these two types of
RG equations is entirely due to the dependence of the
RG functions on masses. In "massless" schemes these
equations are identical. For precisely this reason the
logarithmic asymptotics of T(x,y,g) and Γ(χ,0,#) coin-
cide, as was shown in Chapter 5.

7. ONE-CHARGE MODELS

In this chapter we present a list of the results so far
obtained on the ultraviolet asymptotics of one-charge
quantum field models, i.e., the results of calculations
of the corresponding Gell-Mann-Low functions, and
discuss their consequences.

Calculations of β(α) in the subtraction scheme have been
carried to the three-loop approximation28

P - M < « > = - £ + & + £ ( 4 E < 3 ) - . £ ) . (7.D

where ζ is the Riemann zeta function. Substituting this
expression in Eq. (5.5) we see that the integral on the
right side of (5.5) converges when the upper limit is in-
finite, i.e., the situation is qualitatively not different
from that of the one-loop approximation; as before a
"zero of the charge" occurs.

However, the reliability of this conclusion may be put
in question, if only by a very simple argument.4 Start-
ing from Eq. (7.1), let us expand the function ί/β(α)
in a series in a, and take into account only the first
three terms,

3π 3 Ί 155
(7.2)

Substitution of this result into Eq. (5.5) does not lead to
a "zero of the charge", but to an infinite renormaliza-
tion. This illustration gives another indication of the
inadequacy of PT alone for the analysis of the high-en-
ergy picture in QFT models that do not have the prop-
erty of asymptotic freedom.

It is curious to compare the result (7.1) with the ex-
pression for the function β(\,α) from the Callan-Sym-
anzik equation and the function βΛΐΛ(α) calculated in the
dimensional renormalization scheme. In the first case
the conversion formula is

(7.3)

and the conversion function q (a) can be expressed in
terms of the complete photon propagator,

q (a) = ad a c(l. 1, a).

and in the three-loop approximation is given by30

(7.4)

from which, using Eq. (7.3), we get (3(1, a):

Ρ ί1 ·") = τετ+"£?~ w i? ·
For /3dlm(a) we get the following expression:

a / \ a * a S 31 a * iT R\

PdimW^-^ + xn—^ig·-rr. I'·»/
We note that £(3) has disappeared from Eqs. (7.4) and
(7.5) and also that the sign of the a* term is opposite to
that in (7.1).

b) The s c a l a r model with q u a r t i c i n t e r -
act ion

·£ == ~7y υ μ^^μψ Ti—ff i' · \ ' . " /

has been the most completely studied case because of
the relative simplicity of the calculations. The calcu-
lations with PT have been carried out to the four-loop
approximation.17*19·31 In the subtraction scheme the

(7.7a)

function /3(^) i s 1 9

P,ubt(g) = 4 ? 2 - •£•
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where the last two coefficients are calculated approxi-
mately. In the cut-off scheme the calculations can be
done analytically,18

« Ι.δίτ2 —2.8.V + 20.8V-216.09^.

(7.7b)

The correspondence between the coefficients of g·4 and
g5 in Eqs. (7.7a) and (7.7b) has been checked with the
conversion formula (6.4).

We also give the result for /3(#) found (in collabora-
tion with D. I. Kazakov) in the dimensional re normali-
zation scheme:

- [ 60ζ (5) - 9ζ (4) + 39ζ (3) + - ^ - ] g*

(7.7c)

Unlike Eq. (7.1), these results from PT have an al-
ternating sign of the coefficients; also they increase
rapidly. [Because of this, breaking off the series for
β(g) at different powers of g leads alternately to the
"zero of charge" situation and to finite renormalization.]
Here there is a reflection of the fact that asymptotically
the coefficients βη of the expansion

β(<?)=Σ (-<?)" β»

contain a factorial for large n. For example, in the
subtraction scheme

^ ( 7 · 8 )

Equation (7.8) was derived by the method of steepest
descent from the functional integral.32 It shows that the
power series for |3(^) has no region of convergence,
being an asymptotic series. A detailed analysis33 shows
that partial sums of this series, such as Eqs. (7.7),
can provide a basis for numerical calculations of the
function $(g) in the range of values 0<g-<0.1, in which
β^) rises monotonically like a quadratic parabola and
differs only slightly from the one-loop approximation
(3/2)g2. At the same time the exact coefficients
βπ(η = 2,3,4,5) differ considerably from the values of
βπ given by the large-« approximation, so that a syn-
thesis of the PT data with the asymptotic information
(7.8) is not a simple problem. Despite various ef-
forts in this direction,33·34 there are no convincing re-
sults so far. It is not excluded that to obtain reliable
information about the behavior of /3(̂ ·) for g % 1 will re-
quire methods not based on PT, i.e., strong-coupling
methods.

The model (7.6) becomes asymptotically free35 if we
change the sign of the coupling constant, g — —g,

g > 0 , (7.9)

since then

β- (g) = - β (-*

where the function β^) is given by Eqs. (7.7). Accord-
ingly, the coefficients in the series for β.{g) keep the
same sign, and β.(g) itself is negative, which indeed

corresponds to the case of AF.

However, the classical Hamiltonian of the model (7.9)
has no lower bound, and a doubt arises as to the exis-
tence of a lowest state in the quantum case. An analy-
sis based on the concept of the continuous integral and
a functional steepest-descent method38 shows that the
GF of the model (7.9) has an imaginary part in the re-
gion g >0, which is proportional to exp(-l/g-) and cor-
responds to a tunnel-effect transition from the state of
the free-field vacuum, which ceases to be the lowest
state when there is an interaction g >0. Accordingly,
the model (7.9) is internally inconsistent.

c) The model with a cubic non l inear i ty

in s i x - d i m e n s i o n a l s p a c e - t i m e ,

*tnt = -£-<&„ ( 7 · 1 0 )

is another simple renormalizable model with the di-
mensionless coupling constant g2. Calculations have
been done in the two-loop approximation,37'38

p , , , _ 3 e' 125 ? (7 11)

The model (7.10) possesses asymptotic freedom. The
questions of its freedom from contradictions and of the
existence of a vacuum state are, however, as yet unset-
tled.

d)A s c a l a r model in t h r e e - d i m e n s i o n a l
space -t ime

«rnt =--£-<&,· (7.12)

Calculations in the two-loop approximation give37

(7.13)11) I?" „ . .

= -a- J,. — '4.4 (8n)'

The change of sign g — —g, as in the φ* model, changes
the zero-of charge situation to asymptotic freedom, but
again the problem of the absence of a lowest state in the
theory arises.

e ) Y a n g - M i l l s f i e l d i n t e r a c t i n g wi th f e r -
m i ο η s . We pass to a consideration of nonabelian
gauge theories.39 In these, as a rule, AF is realized.
It is this that explains the present interest in nonabelian
models and the widespread belief that they will be the
basis of a future theory of strong interactions.

Let us consider the model of a nonabelian gauge field
(Yang-Mills field) interacting with fermions. (If the
gauge group G is identified with the "color" group and
the fermions transform according to its fundamental
representation, this model is known as quantum chro-
modynamics,40 or the model of interaction between
"colored" quarks and gluons.) The Lagrangian is of
the form

(7.14)

where

the η are fictitious scalar fields (Faddeev-Popov
"ghosts"), α is a gauge parameter, and/"60 are the
structure constants of the gauge group. The index A
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= 1,2, ...Νf distinguishes types of fermions, and the
index i or j, the "colors." The gauge group G is char-
acterized by the value of the Casimir operator C2(G),

fabcjdbc = Ct (G) b<">,

and the matrices A" of the fermion representation R,
which satisfy the commutation relations [Ra,Rb~\=ifal":Rc

i

by the numbers C{R) and T(R):

R°R" = C (J?) /, Sp (R'R*) = Τ (R) 6°\

where / is the identity matrix. In these notations, the
Gell-Mann-Low function of the model (7.14) is, in the
two-loop approximation,41·42

(7.15)

If the fermions transform according to the fundamental
representation of the group SU (ATC) (quantum chromody-
namics with Nc colors), then, since in this case

the expressions for A and Β are:

(7.16)

From Eqs. (7.15) and (7.16) it can be seen that this mo-
del is asymptotically free both in the case of a pure
Yang-Mills field (Nf = 0) and also if the number of ferm-
ion multiplets is not too large [NfT(R) <(11/4)C2(G)].
This fact is very important from the point of view of
physics, since it assures the possibility of constructing
models with fermions possessing AF. We note also that
the coefficients A and Β increase linearly with increas-
ing Nf, with Β passing through zero and becoming pos-
itive earlier than A. Therefore for any gauge group
there are values of Nf for which A is small and negative
and Β is positive. Under these conditions the curve of
the function &(g*) is of the form shown in Fig. 3. From
this figure and Eq. (5.5) we see that the point g2 =g2

0is
infrared-stable, i.e., the effective charge gz(t,g2) goes
to g% for i - 0. In calculating the values of the anomal-
ous dimensionalities yr(g%) at this point one can use the
small quantity A as expansion parameter.41 A virtue of
this method is that the coefficients of powers of this
parameter found from PT are independent of the renor-
malization scheme used.

f) S u p e r s y m m e t r i c gauge m o d e l s . The
s i mp l e s t model of t h i s c l a s s has the
L a n g r a n g i a n 4 3

(7.17)

β?) ψ " - 4

FIG. 3.
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Owing to the high degree of symmetry (gauge + super-
symmetry) in this model, it has been possible to con-
nect by means of one constant g a large number of
fields of different types: The Yang-Mills field, a Ma-
j or ana (i.e., charge-conjugation invariant) spinor λ",
and Ν multiplets made up of a scalar A"it a pseudo-
scalar BJ, and a Majorana spinor ψ?. The fields λ"
transform according to the adjoint representation of
the gauge group G, which gives the expression for the
covariant derivative

SliX" = dnX
a + gfa'"Bb

iX', (7.18)

and the fields A", B", and ψ", according to a represen-
tation R.

and analogous formulas for B" and φ".

A calculation of β{g^) for the model (7.17), carried
out in the two-loop approximation,44 gave the following
result:

Β = ltNT {R)C (R) + 2NT (R)C,(G)-QC\(G).
(7.19)

The expression (7.19) differs from the result (7.15) for
the previous model by an interesting feature. Namely,
it is easy to find a representation R for which the coef-
ficient A is zero. For example, let R be the adjoint re-
presentation of the group SU(NC). Then C2{G)=C(R)
= T(R)=NcandA=Nc{N-3), B = 6N^(N-1).

Setting N = 3, we get .4=0, B = 12N2

C; i.e., in the low-
est approximation there is no charge renormalization.

An analysis of the two-loop diagrams for the model
(7.17) shows44 that for the coefficient Β to go to zero
along with A, the contribution of the Yukawa interaction
in the expressions (7.19) must be doubled. It turned
out45 that this is just what happens in a different super-
symmetric gauge model which was proposed in Ref. 46

, yr,B\) λ1 + ^-

(7.20)
The gauge group of this model is the group SU(NC), with
the fields (λ, A, and B) transforming according to its
adjoint representation, so that the covariant derivatives
of these fields are all constructed according to Eq.
(7.18). Besides this, the model (7.20) is SU(4) super-
symmetric and contains three multiplets of fields A
and Β [the fields ψ and λ shown in Eq. (7.17) are com-
bined in λ£]. The indices run through the following val-
ues:

a, b, c = l , . . . , Λ ' ? — 1 , A-, l=-A, . . . , 4, i, j ' = l , 2, 3 .

The six four-rowed square matrices a1, a* satisfy the
relations

[a\ a'}+ = [<x\ β']_ - 0.

The calculations45 showed that in this model the two-
loop contribution of the Yukawa interaction to the func-
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tion /3(g·2) twice as large as in the case of Eq. (7.17),
which makes both the first two coefficients vanish,
A =B = 0. Since in the two loop calculations practically
all of the features of the model (7.20) already appear
[the four-scalar interaction does not contribute directly
to fi(g2) in this approximation, but it must be included
to maintain the RG structure of the GF], the vanishing
of the coefficients A and Β very probably is not just a
play on numbers, but indicates that there is no charge
renormalization in this theory. However, no additional
arguments have so far been proposed in favor of this
possibility.

8. MANY-CHARGE MODELS

We begin our consideration of the many-charge case
with two models for which the Gell-Mann-Low functions
have been calculated in the two-loop approximation.
The first of these is scalar electrodynamics, i.e., the
theory of the interaction of the electromagnetic field
(Au) and a charged scalar field φ:

i — jr (<ΓΨ)2 (8.1)

This model was studied in Ref. 47 (in the one-loop ap-
proximation); two-loop calculations were carried out in
Ref. 48. We give the results (the dimensional renor-
malization scheme was used)

(8.2)
i~ 208e6).

Since in this order no dependence of ββ on h has yet ap-
peared, the second charge his not involved in the equa-
tion for the effective charge e 2. Consequently, in scal-
ar electrodynamics the effective electromagnetic coup-
ling constant shows zero-charge behavior at large mo-
menta in both the one-loop and the two-loop approxi-
mations. The associated departure from the weak-coup-
ling region makes it impossible to get reliable inform-
ation about the asymptotics of the model (8.1) on the
basis of the approximation (8.2).

Two-loop calculations have also been done for several
models of the Yukawa type, i.e., for a trilinear interac-
tion of fermions with (pseudo) scalars (the one-loop ap-
proximation for the Yukawa model was investigated in
Ref. 49). Let us consider the simplest variant of this
theory,

^ιαΐ = ί'ΨΤ5φψ-^Γφ
4· (8.3)

In the dimensional renormalization scheme the result
of the calculation of βί and βΗ is2 4 .

(8.4)
Substitution of Eq. (8.4) in the system of equations
(5.10) leads to a picture in the phase plane of the ef-
fective charges g~* and h which is shown in Fig. 4, a
(the arrows show the direction in which the momentum

V

FIG. 4.

variable t increases).

It has turned out that in this model there exists (in
the two-loop approximation) an ultraviolet-stable point
(g%,h0) at which the functions β! and βΗ go to zero,

(8.5)

•

and h0 are theAccording to Eq. (5.12) the values
high-energy limits of the effective charges g~* and h.
Using the two-loop expressions found in Ref. 24 for the
anomalous dimensionalities of the fermion and boson
propagators

13 g4

~8~145)Γ·
(8.6)

and Eqs. (5.11) and (8.5), we get power-law asymptotics
for these propagators in the form

h) h) (8.7)

However, as the previously considered φ4 model shows,
inclusion of higher orders could decidedly alter the en-
tire picture. Therefore neither the numerical values of
the exponents in Eq. (8.7) nor even the existence of an
ultraviolet-stable point can be regarded as reliably es-
tablished.

The model (8.3) has also been studied in the two-loop
approximation in Ref. 25, by the use of the method of
invariant charges, or, what is the same thing, of ef-
fective charges, in the subtraction scheme. An es-
sential feature of this scheme is that the RG functions
depend on the ratios of the external momenta, and this
was manifested not only in a change of the numerical
values of the exponents in the power-law asymptotics
of the GF, but also in a change of the number of ultra-
violet stable points in the phase plane on conversion
from set {p} of fixed ratios of the momenta to another
set. (Compare, for example, Fig. 4, a with Fig. 4, b
which is taken from Ref. 25.)

In Refs. 50, 51 the model (8.3) has been generalized
to the case of Si/(2) and SU(3) symmetries of the Yukawa
interaction, and also the possibility of the simultaneous
presence in the theory of both scalar and pseudoscalar
fields, and also Majorana spinors, has been taken into
account. The results of the calculations in the two-
loop approximation do not lead to important differences
from Eq. (8.4), and the qualitative appearance of the
phase plane is essentially he same.
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The foregoing analysis of a large number of models
has confirmed the previously stated general conclusion
that PT is inadequate [even in the case of comparatively
small numerical values of the anomalous dimensionali-
ties, as in Eq. (8.7), and a fortiori in the case of a "ze-
ro of the charge"] for the determination of the ultravio-
let properties of a theory which does not possess AF.
Proceeding to the consideration of many-charge asymp-
totocally free models, we note that the construction of
models in which all of the effective charges go to zero
for < — °° and a lowest energy state exists is not possible
in four-dimensional space-time without the introduction
of nonabelian gauge fields.52 Moreover, as is readily
shown from analysis of one-loop corrections to the pho-
ton propagator, any model that includes an Abelian gauge
field (photon) cannot be asymptotically free.

From these considerations, and also from the require-
ment that we construct models that are realistic in the
set of fields and their properties (for example, in order
to make nonabelian vector fields massive by means of
the Higgs mechanism, one must introduce scalar parti-
cles into the theory), it is natural to conduct an examin-
ation of a very general Lagrangian, containing, along
with nonabelian gauge fields also spinor and scalar
fields transforming according to arbitrary representa-
tions. This Lagrangian must have several coupling con-
stants (a gauge constant and, generally speaking, some
independent constants for Yukawa and four-scalar inter-
actions), and the main question is whether one can as-
sure that all effective charges will simultaneously go to
zero, i.e., whether one can find an asymptotically free
model of this type. This problem has been investigated
in a number of papers,1 7·5 3 considering a broad class of
gauge groups and their various representations. The
corresponding analysis of many-charge RG equations is
almost impossible to survey, since for the various
groups and representations there are different numbers
of independent types of interactions of scalar fields. To
illustrate the general relationships (they turn out to be
inherent in most of the models) we shall consider a very
simple case of a theory which includes nonabelian gauge
fields, spinor fields, and pseudoscalar fields and has
been studied in Ref. 17. The formulas of that paper can
be applied in all cases in which there is only one type of
four-scalar interaction, i.e., in particular, for the
group SU(2). Therefore we shall consider here the case
in which the gauge group in SU(2), the scalar fields
transform according to its adjoing representation, and
the spinors transform according to some representation
R,

^ ^ ° ) Ι .ο -ij+4- ( < ^ K

+ 27(/?)-2,

+ κψίΥδ (R")u Ψίφ" —g- (<p'V)2-

(8.8)
In the one-loop approximation_the system of equations
for the effective charges g2, x2, and h is of the form

(••in)»

Tt- — yh g- — ah κ 2 + &gl — ρκ'),

(8.9a)

(8.9b)

(8.9c)

where

a = -y-, γ = 12, σ =

6 = 12, p= -|-r(fl)[3C(«)-l].

The constants T(R) and C(R) can be expressed in terms
of the isospinj which characterizes the representation
R of the group SU{2):

Let us first consider the first two equations of the
system (8.9), since they arejndependent of the third
equation. The behavior of g2 and x 2 as functions of t
can be seen from the diagram of the phase plane (Fig.
5). The region in which the effective charges apgroach
zero (i.e., the region under the separatrix H 2 = kg2,
exists in the first quadrant only for k={B- C)/A>0.
This condition is satisfied for isospin j >0. We note two
features of the phase plane of Fig. 5:

a) The singular solution x2 = kg2 is asymptotically
free, but unstable, since in order to "keep on it" one
must rigorously establish that the constants are pro-
portional to each other, x2 = kg2.

_b) In the region of AF the effective Yukawa constant
x2 goes to zero more rapidly than g2 and_for f- °° be-
comes negligibly small compared with g2.

Therefore further analysis of the existence of asymp-
totic freedom of the solutions of Eqs. (8.1), including the
third order, is worth doing for two cases: 1) When x2

«g2, and 2) when x2 = kg2. Let us consider the first
case.

Equation (8.9c) takes the form

The right side of this equation is always larger than
zero; the charge h increases and AF is impossible.

It is also impossible in the case of the opposite sign
of the quartic interaction, h - -h. As we noted before,
for the purely scalar theory there would be AF, but in
the present case the originally negative charge h in-
creases with increasing t, passes through zero and in-
creases to infinity. The general pattern in the phase
plane is shown in Fig. 6.

Analysis of a large number of groups and representa-
tions5 3 has shown that the properties found here ("dying
away" of the Yukawa effective constant in comparison
with that of the gauge field and the absence of asympto-
tically free solutions) are characteristic of the majority

FIG. 5.
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FIG. 6.

of the models, except for a few, based on representa-
tions of rather high dimensionalities, for which AF is
possible. In particular, there has been no success in
using the Higgs effect to give mass to all the vector me-
sons and at the same timejareserve AF, if we don't stay
exactly on the separatrix y? = kg2 in the phase plane of
Eqs. (8.9a) and (8.9b).

Let us turn to the examination of this singular solution

κ 2 ^ kg-, /',· = (8.11)

The instability' of the solution (8.11) will be no obstacle
if we postulate that the required relation κ2 = kg2 is sat-
isfied exactly. Then for the effective charges the rela-
tion (8.11) holds for all t, and the regime of AF is
realized for this particular solution. However, we must
still assure that the charge h will go to zero. To do this
we take h =mg2, i.e., we look for an asymptotically free
singular solution of the system (8.9) for which all three
charges are proportional to each other. The coefficient
m is determined from a quadratic equation, which is ob-
tained by setting h=mg2 in Eq. (8.9c) and using (8.9a)
and (8.11). The requirement that m be positive puts no
more new restrictions than the condition k > 0 on the
choice of the representation R, since for any isospin
value j »1 a solution with m> 0 exists [and, like the solu-
tion (8.11), is unstable11].

Thus, a regime of AF can be achieved with unstable
singular solutions of the many-charge RG equations.54

Inclusion of higher order corrections must, in general,
distort the straight-line singular solutions.11 Then the
connection between the constants g2, κ2, h will be given
by some functions expandable in PT series; i .e., the
conditions κ2 = kg2, h =mg2 will be replaced with v?
=h(g2),h=f2(g2), where

h (<?2) = kg* + Ο Or4), /, (g2) = mf>* + Ο (g4).

In such an asymptotically free model the coefficients of
the field structures in the Lagrangian are rather com-
plicated functions (known only in the form of PT expan-
sions) of a single constant g2; i.e., we are actually deal-
ing here with a single-charge theory.

Relations between the coupling constants of the type of
Eq. (8.11) can arise in a natural way as consequences
of some symmetry of the Lagrangian.55 In fact, if sym-
metry considerations connect the coefficients of various
structures in the Lagrangian in a definite way, then
these coefficients will be renormalized in a self-consis-
tent way, so that an analogous connection will hold be-
tween the corresponding effective charges, i.e., there

will be corresponding special solutions of the RG equa-
tions. As a rule, connections imposed by symmetry
are very simple, of the type of κ =g, h =g2. There is
such a connection, for example, in the supersymmetric
model (7.17). Inclusion of higher orders of PT naturally
does not change these relations governed by symmetry.
Therefore one way to seek out new symmetries in QFT
may be to look for special solutions of the EG equations
that do not change when two-loop corrections are in-
cluded.51

The question of the existence of singular solutions has
been investigated for a broad class of gauge models,
both for the purpose of constructing asymptotically free
models capable of aspiring to describe hadron inter-
actions,1 1·5 6 and also to look for new symmetries.51 An
interesting model in this connection, based on the group
SU(2), has been considered in Ref. 11.

f «2
ft-l

-1 (°* — ls -γ- Κ)
(8.12)

where τ" are the isotopic Pauli matrices, ψ and φ are
isodoublets, and ξ is an isosinglet. The boundary of the
region of AF in this model is the singular solution h=g2

2κ2. This simple relation between the constants sug-
gests the presence of a hidden symmetry of the Lagran-
gian (8.12). Two-loop calculations, which have so far
not been undertaken with this model, might consider-
ably advance the solution of this question.

9. HIGH ENERGY ASYMPTOTIC PROPERTIES OF
PHYSICAL PROCESSES

Besides the applications to the ultraviolet properties
of the GF of quantized fields which we have considered,
the RG method has many applications to the analysis of
the high-energy asymptotics of physical processes. The
direct use of the formula (4.15) is difficult here, how-
ever, since in the amplitudes for actual processes, un-
like GF, all of their quadratic momentum arguments,
p2 a.ndp^j, cannot be made to approach infinity simul-
taneously, since some of them must stay on the mass
shell. Furthermore some of the ratios of the type of
PiPj/p], which were regarded as fixed in Eq. (4.15), now
become large and contribute to the logarithmic asymp-
totic terms. And the RG methods alone are insufficient
for the summation of such contributions, because ratios
PtPj/p2 are not affected by the scale transformations of
the RG.

The relation (4.15) is modified for such purposes as
follows:

*'). W. y. }, {-i-}. ~y,

0.1)
where D is the dimension of the amplitude F in mass
units, and {z\ denotes those arguments of F that lie on
the mass shell. The essential difference between Eqs.
(9.1) and (4.15) is that on the right side of (9.1) the mo-
mentum arguments {z/t} go to zero for t~ °°. This can
lead to the appearance of new singularities of F as a
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function of t, which manifest themselves in the PT ser-
ies as logarithms. These "low-energy" logarithms, un-
like the "ultraviolet" ones that get into F via the effec-
tive charge g, are accordingly not summable by the RG
method, which means that the method we have described
cannot be applied to the study of such amplitudes. If,
however, the "low-energy" logarithms are suppressed
and the passage to the limit 2// — 0 in the function
^(tehfeAhy, !?) i s smooth, then all of the RG apparatus
developed in the foregoing can be fully applied to the in-
vestigation of the ultraviolet asymptotics of such pro-
cesses.

Analysis of the Feynman diagrams in an arbitrary
order of PT has shown that suppression of the "low-en-
ergy" logarithms actually occurs in some processes
for a number of QFT models. Namely, it has been
proved that the RG can be applied to find the asympto-
tics of form-factors57 and amplitudes for elastic scat-
tering at fixed angles5 8 in renormalizable theories with-
out vector fields. In vector theories, in particular in
quantum chromodynamics, the contribution of "low-en-
ergy" logarithms is not suppressed for most processes,
and here, as a rule, the RG method cannot be applied.

In one case, in the study of e+e~ annihilation into ha-
drons, application of the RG method does not encounter
the difficulties we have just now noted. In fact, the
cross section for this process (Fig. 7), is proportional
to the spectral density of the photon propagator,59

4 Μ Ϊ
10)·

i.e., it depends on only one momentum argument pz. In
particular, in nonabelian theories the asymptotic form
of the cross section for e*e" annihilation is 5 9 ' 6 0

<jtot 4n«» < 9 · 2 >
where the constant c is determined by the gauge group
and the number of quarks, and the Q( are the electric
charges of the quarks in units of the charge e of the
electron.

Here also, however, the application of the RG formu-
las that lead to Eq. (9.2) is not entirely justified, since
in using them we are ignoring threshold singularities
and cuts, which are characteristic of the photon propa-
gator for p2 > 0. The permissibility of transferring the
results established by the RG method for the asympto-
tics in the Euclidean domain/)2 <0, where the GF is
real, into the domain of timelike momenta requires
special analysis. In Ref. 61 a method is proposed for
combining RG and dispersion methods, which makes it
possible to do the analysis of e*e~ annihilation into ha-
drons without extrapolating the RG results into the re-
gion p2>0, since the RG equations are here written not

for the observable quantities themselves but for disper-
sion integrals containing them.

The application of the RG together with Wilson's
technique of operator expansions62 has had distinguished
success in describing deep inelastic lepton-hadron pro-
cesses on the basis of nonabelian gauge theories. There
is an extensive literature on this topic (see, for exam-
ple, Ref. 23). Here we do not go into the details, and
only point out the main features of the approach and
discuss the results.

The process of deep inelastic lepton-hadron scatter-
ing (Fig. 8) is characterized by the kinematic variables
Q2 = —q2 and x=Q2/2pq, which lie in the region Q2»M2,
0 « x^ 1, where M2 is the square of the hadron mass.
The cross section for the process is expressed in terms
of the structure functions 2·\(*,<?2), which are connected
by a Fourier transformation with the matrix element of
the commutator of the electromagnetic currents between
hadron states, (p\[J(x),J(0)]_\p). The momentsMn(Q2)
=j\dxx"-2F(x,Q2) satisfy the relation

Mn ((?*) = Σ 4 Κ (<?*), (9.3)
α

where in the terms of the Wilson operator expansions,62

J(*)J(0) - Σ Σ
η—0 α

(9.4)

the constant A" is connected with the matrix element of
the operatorO", A^pvl-"PVn~(p\0^ ~>ι>η\ρ), and Cn(Q2)
is the Fourier transform of the coefficient function

It was found that the behavior of the moments Mn(Q2)
at large Q2 could be studied by means of RG methods.63

With attention to the dependence of the function Cn(Q2) on
both the coupling constant g and the renormalization pa-
rameter μ, one can derive for it the RG differential
equation

whose solution can be expressed in the form, analogous
to Eq. (6.8),

8(1. S)

Cn{t, g) = (9.5)

where t=Q2/i?. In asymptotically free models the lead-
ing asymptotics of the Cn(t,g) are determined by the
lowest order of PT and according to Eq. (5.9) have the
following form64

Cn(t, (9.6)

where 6<0 and cn>0 are the one-loop coefficients of the
expansion of β(g) and yn(g) in power series in g2. Sub-
stituting this result in Eq. (9.3), we get a logarithmic
decrease of the moments Mn{Q2), i.e., a logarithmic

FIG. 8.
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breaking of Bjorken scaling [for exact scaling Mn(Q2) is

independent of Q2 for large Q2]. This behavior of Mn{Q2)

is in good agreement with experiment.65

In the literature there are results of calculations of
corrections ~g2 [i.e., of the type of Eq. (6.10)] to the
formula ^.e^determinedbothby expansion of Cn(l,g)
in series in g2^·67 and also by taking into account the
two-loop coefficient in y n(^). 6 8 t 6 9 All of these calcula-
tions have been corrected and_brought together in Refs.
67 and 69. The corrections ~g2 turn out to be rather
small [a few percent of the leading contribution (9.6)],
which again is evidence in favor of the applicability of
PT in asymptotically free theories.

We note that a logarithmic deviation from scaling can
also occur in theories with a finite renormalization of
charge,70 for example, in the model (8.8^, under the con-
dition that the scalar effective constant h approaches a
finite value for t— °°.

The writers are deeply grateful to I. F. Ginzburg,
B. V. Medvedev, A. V. Radyushkin, and I. V. Tyutin for
many fruitful discussions, and also to D. I. Kazakov,
P. P. Kulish, V. A. Matveev, and O. V. Tarasov for
helpful comments.
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