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We analyze the mechanisms that cause the motion of objects suspended in inhomogeneously heated gases.
We treat two limiting cases: a) a highly rarefied gas in which the mean free path Λ of the gas molecules
is large in comparison with the characteristic dimension R of the object, and b) a weakly rarefied gas
that satisfies the condition A<R. In both cases we assume that the characteristic scale of the
temperature inhomogeneities in the gas obeys L>X. The case of a weakly rarefied gas is of very great
interest, primarily from the standpoint of studying the state of a gas near a gas-solid phase boundary in
the Knudsen layer. The greater part of the review is devoted to this problem: we treat the methodology
of obtaining the boundary conditions for hydrogasdynamics with slip, and present in detail a scheme for
calculating the kinetic coefficients that generalizes the Chapman-Enskog method to the case in which the
state of the gas inside the Knudsen layers plays a substantial role, and we discuss the problem of the
applicability of the thermodynamics of irreversible processes to problems of this type and demonstrate the
efficacy of its methods. In addition, we modify the well-known method of half-range expansions on the
basis of some physical assumptions and express some ideas on the principles of construction of the
system of moment equations in the kinetic theory of gases. We also propose a scheme of experiment for
testing the validity of the presented concepts.
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CONTENTS

Introduction 813
1. Thermophoresis in highly rarefied gases (small objects) 814

a) The "dusty gas" model 814
b) The model of free-molecular flow 815

2. Thermophoresis in weakly rarefied gases 816
a) Boundary conditions 816
b) Velocity of thermophoresis 817

3. Kinetic coefficients 818
a) On some integral relationships 818
b) Nonisothermal Poiseuille flow in a planar channel 819

4. Boundary problems of the kinetic theory and the thermodynamics of irreversible
processes 821
a) On the entropy production in a bounded volume of gas 821
b) The velocity of thermophoresis 822
c) Determination of the coefficient of thermal slip of a gas 823

Conclusion 824
Bibliography 824

INTRODUCTION

The phenomenon that we shall discuss below was dis-
covered experimentally more than one hundred years
ago. Its essence is the following. Let one put a foreign
body (for simplicity we shall treat this body henceforth
as being a sphere of radius R) into a gas in which a
small temperature gradient is maintained by external
heat sources. Then, in spite of the absence of external
forces, the object will go into motion with a steady vel-
ocity proportional· to the temperature gradient in the
same direction as the heat flux arising from the heat
conductivity of the gas. It has been rather easy since
the creation of the kinetic theory of gases to explain and
calculate this effect for objects of small dimensions (R
« λ, where λ is the mean free path of the molecules of
the gas). One would calculate the momentum imparted
to the object by the molecules incident from the side of
hotter gas, which proved greater than the total momen-
tum of the "cold" molecules. Matters are far more

complicated in the case of an object of large dimen-
sions, or as is equivalent, of a weakly rarefied gas,
i.e., when R »\. Within the scope of classical hydro-
dynamics, the velocity of motion of an object placed in
an inhomogeneously heated gas proves to differ from
zero only in the presence of external forces. A nonzero
result was first obtained by Epstein.1 Upon imposing
boundary conditions on the surface of an object in a gas
flow, he took account of the effect discovered by Reyn-
olds2 of thermal slip (creep). This study initiated the
development of hydrogasdynamics involving slip, in
which the classical condition of "attachment" of the gas
to the surface of the object is replaced by the conditions
of slip and discontinuity. Thus, the condition of pro-
portionality of the velocity to the local tangential tem-
perature gradient was assumed to hold for the tangential
component of the velocity of the gas at the surface of the
object in the gas flow. The proportionality coefficient,
which is called the thermal slip coefficient, cannot of
course be calculated within the framework of hydrogas-
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dynamics itself. It must be found either by experiment
or from independent theoretical treatment. Maxwell3

undertook the first attempt at calculating a thermal slip
coefficient on the basis of the just-created kinetic the-
ory of gases.

Subsequently, during a rather prolonged period, prin-
cipal attention was paid to studying transport processes
in the volume of the gas far from the surfaces bounding
the gas. Here substantial advances were made in devel-
oping methods for solving the problems of the kinetic
theory.

Interest in the boundary conditions of the kinetic the-
ory increased greatly in connection with the invention of
aircraft for the upper layers of the Earth's atmosphere,
and also with the intensive development of vacuum tech-
nique and the demands of chemical technology. It be-
came necessary to generalize the kinetic theory to the
case in which not only the collisions of the gas mole-
cules with one another play an essential role in the phe-
nomenon, but also their interaction with the surface
bounding the gas.

At about this time results were already known of ex-
periments to measure the velocity of thermophoresis of
aerosols. They showed that Epstein's formula gives a
depressed value of the velocity of thermophoresis, that
it does not reveal its dependence on the nature of the in-
teraction of the gas molecules with the surface of the
object, and that it agrees poorly with experiment for ob-
jects of high heat conductivity. This sharp contradiction
with experiment stimulated further theoretical study of
the phenomenon of thermophoresis.

A contribution of no small importance to the construc-
tion of a theory of thermophoresis of large objects was
made by using the methods of the thermodynamics of ir-
reversible processes CTIP). They were first applied to
studying thermophoresis in Refs. 4-6. Subsequently
boundary conditions for hydrogasdynamics with slip
were formulated7 on the basis of concepts of TIP. Also
an algorithm8 was proposed that enables one to elimin-
ate ambiguity in calculating the kinetic coefficients for
boundary problems that arise in applying methods of
polynomial expansions. Simultaneously the applicability
of TIP to problems in which the properties of the gas
inside the Knudsen layers plays an essential role was
demonstrated8 within the framework of the kinetic the-
ory of gases. We give below a calculation of the veloc-
ity of thermophoresis, not only within the framework of
hydrogasdynamics with slip, but also on the basis of
TIP. Undoubtedly, the agreement of the results ob-
tained by these two methods enhances the degree of faith
in the procedure of the calculations, and also indicates
the correctness of the formulation of the problem itself.

As for the experimental material, the literature main-
ly offers data of measurements performed on aero-
sols.8"1 9·4 2 These systems are rather complicated in
practice, and their properties depend strongly on the
method of preparation and the parameters of the source
material. Therefore the scatter in the results and er-
rors of measurement are considerable. Moreover, ex-
periments have not yet been performed in the range of

Knudsen numbers in which one can reliably compare
them with the results of theoretical calculations.

We should stress that all of the arguments presented
below hold at sufficiently small values of the tempera-
ture gradient VT, when the characteristic scale L of
the inhomogeneity is large in comparison with the mean
free path λ of the gas molecules.

1. THERMOPHORESIS IN HIGHLY RAREFIED GASES
(SMALL OBJECTS)

Two approaches have been developed for calculating
the velocity of motion of small objects in an inhomogen-
eously heated gas.20 One of them is based on viewing
the system of "gas + small objects suspended in i t" as a
binary mixture of gases. As we know, a separation of
components occurs in a binary gas mixture when acted
on by a temperature gradient. This same effect occurs
also in the studied system: inhomogeneous heating
leads to relative motion of the gas proper and the ob-
jects suspended in it. This model has been applied
widely in studying the flow of gases through porous ob-
jects2 1"2 5 and the evolution of nonequilibrium aerosol
systems.2*"30 It is sometimes given the name dusty-gas
model in foreign literature.

The second approach consists in direct calculation of
the impulse imparted to the object by the molecules of
the gas surrounding it upon colliding with its surface
and subsequent reflection. The established velocity of
motion of the object is found by equating the total im-
pulse to zero. 2 0 · 3 1

a) The "dusty-gas" model

The chief merit of the dust-gas model consists in its
undoubted simplicity, which primarily involves the fact
that one can apply the already available results obtained
in the kinetic theory of gas mixtures for solving the
posed problem. Actually, the velocity of motion of a
small object with respect to the center of mass of a set
of gas molecules under the acting of a temperature
gradient coincides, within the scope of the treated mod-
el, with the velocity of thermal-diffusion separation of
the components of a mixture. It is equal to 3 2 · 3 3

Here ηχ and ^ are respectively the number of small ob-
objects and the number of gas molecules per unit vol-
ume, n=n1+n2,D

(Ty is the "thermal-diffusion" coeffici-
ent in the studied binary system, and To is a certain
mean temperature. For the calculations, D(T) must be
fixed by the laws of interaction of the gas molecules
with one another and with the surface of the object. We
can neglect the mutual collisions of the objects suspend-
ed in the gas.

Let us first treat the case in which all the collisions
obey the law of collision of elastic spheres. Here we
allow for the fact that the masses of the objects and
their dimensions are large in comparison with the cor-
responding characteristics of the gas molecules (yet we
recall that R « λ), while their number per unit volume
is small. Then after obvious transformations of the
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known expressions,32·33 we arrive at the following form-
ula for the velocity of motion of a small sphere with re-
spect to the center of mass of the gas

*'—τΐ-τΓ' ( 1 ' 2 )

Here η is the dynamic viscosity of the gas, and ρ is its
density. Thus the velocity of thermophoresis in a high-
ly rarefied gas does not depend on the dimensions of the
object, and is inversely proportional to the gas pres-
sure. Mason and Chapman26 have tried to account for
the dependence of the velocity of thermophoresis on the
type of gas-surface interaction within the framework of
this model. Upon treating scattering according to Lam-
bert's law in addition to elastic interaction, they ar-
rived at Eq. (1.2) in both cases. It is more complicated
to generalize this method to the case of other models of
interaction of the gas molecules with the surface of the
object. It is more convenient to do this by a different
method, namely, the model that has been applied involv-
ing free-molecular flow.

b) The model of free-molecular flow

The model of free-molecular flow of a gas around a
small object is based on the obvious idea that the state
of the gas is weakly perturbed by the presence of the
small object in it. Actually, if the dimensions of the
object are small in comparison with the mean free path
of the gas molecules, then the probability is also small
that a gas molecule that has been reflected from the ob-
ject upon colliding with it will again suffer such a colli-
sion. On the other hand, when the characteristic scale
of the temperature inhomogeneity of the gas is large in
comparison with the mean free path of the molecules,
then the distribution function of the molecules at a large
enough distance from the object can be found by expand-
ing a function satisfying the Boltzmann equation in the
small parameter x/L.

The distribution function / + (r, v) of the reflected mol-
ecules is determined by the nature of their interaction
with the surface of the object. Let us restrict the treat-
ment to monatomic gases while not treating nonlinear
effects involving adsorption of gases on the surface of
the object. Then, in the steady-state case (in which we
can treat the scattering of gas molecules by the surface
as practically instantaneous), we can write the proba-
bility that a molecule having the initial velocity v' will
have after collision with the surface of the object a vel-
ocity lying in a volume element dv of velocity space
near the velocity ν of the form W(v'-v)dv. The opera-
tor W(v'~v) must be nonnegative, and moreover must
satisfy the normalization condition

f W(v'-»-v)dv = l.

The integration is performed here over the half-space
in which the projection of the velocity of the molecules
on the direction of the normal drawn out trail from the
object is positive. The distribution function of the re-
flected molecules must satisfy the condition of non-pen-
etration:

The scattering kernel W depends on the nature of the
atoms of the gas and on the surface, and also on the
temperature of the surface and the type of treatment
that is has had. Here any scattering kernel must satis-
fy the principle of detailed balancing:34

| (v'n) | W(v'^v)exp( —

(1.3)

The condition of nonnegativity, the normalization condi-
tion, and the principle of detailed balancing are the
three fundamental relationships that determine the form
of the scattering kernel admissible as a mathematical
model of scattering of gas molecules by the surface of a
phase boundary. Until recently only four very simple
models were known35 (and their linear combinations)
that didn't violate these limitations:

1) specular reflection:

W (v' -» v) = δ {ν' — ν + 2n (vn)}

[6{x) is the Dirac delta function];

(1.4)

2) total backscattering:

W(v'-> ν) = δ (ν + ν'); (1.5)

3) diffuse reflection with complete accommodation:

4) elastic scattering (without changing the modulus of
the velocity) following the cosine (Lambert's) law:

JF(V'-*T) = - L £ 5 U ( Y - V ' ) . (1.7)

Maxwell3 combined Eqs. (1.4) and (1.6) into a single-
parameter family of models

(νη)Γ(ν) | (v'n) |/(v') W(v'-»-v)dv'.

(1.8)

Here ε is the fraction of diffusely reflected molecules.
More flexible models have been proposed in Refs. 36-
39, though we shall spend no time on them.

Specular reflection and total backscattering are ra-
ther hypothetical models. People often employ the lat-
ter for describing highly roughened surfaces. Scatter-
ing with complete accommodation is the approximation
closest to reality, especially if the gas molecules are
temporarily captured by the surface. Apparently elastic
scattering by the cosine law is realized with a moder-
ately rough surface if its atoms are heavy in compari-
son with those of the gas and if capture doesn't occur
upon interaction.

Upon assigning a scattering model, it is easy to find
the momentum of the molecules reflected from the sur-
face of the sphere. When summed with the momentum
of the incident molecules and integrated over the sur-
face of the sphere, it determines the overall force of
action of the gas on the object immersed in it. This
force proves to be the same for the cases of specular
reflection and total backscattering. A different value is
obtained for the other two models. As for the velocity
of thermophoresis, specular reflection, backscattering,
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and cosine-law scattering all lead to the same value of
the velocity, while the velocity proves to be smaller by
a factor of 1 + (»/8) for diffuse reflection with complete
accommodation. This result can be conveniently writ-
ten as the following formula [cf. (1.2)]:

(1.9)3 η Vr
"411 + (IB/8)) ρ Τ, •

2. THERMOPHORESIS IN WEAKLY RAREFIED GASES

If the size of an object suspended in the gas is not
vanishingly small in comparison with the mean free path
of the gas molecules, then this object appreciably per-
turbs the flux of the molecules incident on its surface.
Hence the approach developed in the last chapter for
calculating the velocity of thermophoresis in such cases
proves inapplicable. One can construct a theory that ac-
counts for the weak | ~R/\ | perturbation of the stated
flux of molecules by the object. Such studies have been
published;84'85 however, their results differ even qual-
itatively.

There is a possibility of constructing a method of suc-
cessive approximations in the other limiting case in
which the size of the object appreciably exceeds that of
the mean free path. This involves hydrogasdynamics
with slip. As we have mentioned, the velocity of ther-
mophoresis of large objects was first calculated in such
a formulation by Epstein,1 who obtained the following
expression for v r:

*r = — 4 J
vr (2.1)

Here κ, and x̂  are respectively the heat conductivity of
the object and of the gas. Essentially, Eq. (2.1) differs
from (1.9) only in the factor (1 + |κ,/χ^Γ1, which stems
from the effect of the object on the temperature distri-
bution in the gas. It is precisely the presence of this
factor that sharply diminishes the theoretical value of
v r for highly heat-conductive objects of large dimen-
sions, which is not observed experimentally. This dis-
crepancy with experiment stimulated Brock40"42 to seek
a refinement of the Epstein approach along the line of
accounting for terms of the order of the Knudsen num-
ber Kn=x/R in the boundary conditions that were omit-
ted in Ref. 1. An analogous method was employed also
in Refs. 43-46, and here they refined the values of the
numerical coefficients at the same time.

Along with this, a methodology was developed and re-
fined for calculating the velocity of thermophoresis
based on thermodynamics of irreversible process--

e s 43.45,4β However, we should note that, in spite of the
progress attained, the results of calculation obtained by
the direct and the thermodynamic routes still differed
from one another. Analysis shows that the main reason
for this discrepancy consists in the fact that not all of
the terms of the first order in the Knudsen number were
taken into account in formulating the boundary condi-
tions within the framework of hydrogasdynamics with
slip, but only part of them. Studies47'50 later appeared
where the writers wrote out the series in the boundary
conditions containing powers of Kn up to the fifth. Yet
without sufficient grounds they omitted certain terms
that were linear in Kn.

In line with what we've said, we do not consider it
superfluous to describe in detail the method of deriving
correct boundary conditions and the scheme of solution
of the posed problem in the approximation that is linear
inKn.

a) Boundary conditions

Let an inhomogeneously heated gas flow around a sur-
face of arbitrary shape. Far from this surface the gas
is described by the equations of hydrogasdynamics. Let
us restrict the treatment to the Navier-Stokes approxi-
mation. At any arbitrarily small Knudsen number,
there is a region near the phase boundary where the
equations of hydrogasdynamics are inapplicable. In this
region the state of the gas is described by solving the
Boltzmann equation with the true kinetic boundary condi-
tions, which transform into the Navier-Stokes approxi-
mation as we go away from the boundary, which approx-
imation is obtained with certain fictive macroscopic
boundary conditions. Our problem consists in formulat-
ing these boundary conditions precisely. An analogous
situation occurs in the problem of heat propagation, dif-
fusion, etc.

Let us write the true velocity of the gas in the form

U = V + V<Kn>.

Here ν is the velocity that satisfies the equations of hy-
drogasdynamics in the Navier-Stokes approximation if
the latter are assumed to hold up to the phase boundary,
and V<KB) is the correction to the velocity that arises
when we account for the state of the gas in the Knudsen
layer. At a sufficient distance from the boundary sur-
face, we have v<Kn)—0, and u«v. If adsorption or de-
sorption of molecules does not occur at the surface of
the condensed phase, and the surface is impenetrable to
the gas molecules, then the normal component of the
true velocity u at the surface Σ must vanish. The equa-
tion of continuity for u and ν implies that the correction

v<Kn) a i s o satisfies the same equation. Upon integrating
the latter along the normal to the surface and allowing
for the fact that v ( K n ) vanishes at an infinite distance
from the phase boundary, we get a boundary condition
for the normal component of the velocity of the form

"»l*=-fwii""· (2·2)
Here the symbol I(

T

m) denotes the density of the tangenti-
al flux of mass localized in the Knudsen layer, integrat-
ed over the normal to the phase-boundary surface:

(2.3)

Analogously, upon denoting the density of the tangenti-
al flux of energy localized in the Knudsen layer by the
symbol VT

e) and introducing the stress tensor ρμν =ρδμν

+ σβν, we have the following boundary condition for the
heat fluxes normal to the phase boundary:

<<„> - / f f i + ( Η (2.4)

The subscripts e and i relate the respective quantities
to the gas and to the condensed phase.

In order to obtain the rest of the boundary conditions,
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as well as the relationships that express the connection
between the fluxes I·."1' and I·."' and the macrocharacter-
istics of the gas, let us turn to the ideas of thermody-
namics of irreversible processes (TIP). As will be
shown below, the sought expressions have the form of
linear relationships between certain "fluxes" and
"forces" calculated at the phase boundary. We know
from the textbooks on TIP that a correct formulation of
these relationships requires primarily finding the en-
tropy production of the system. In our case the prob-
lem is the entropy production at the phase boundary.
We can calculate it by integrating the difference of the
normal fluxes of entropy in the gas and in the condensed
phase over the phase-boundary surface Σ. This method
was first proposed in Ref. 51. It has been subsequently
extended to the case of liquids and multicomponent gas
mixtures,52·53 as well as rarefied gases.49·50 This meth-
od allows one to account for the effects at the gas-con-
densed phase boundary in most general form.

In order to calculate the flux of entropy in the gas, we
shall write the expressions for the fluxes of heat and
momentum for sufficiently low velocities and tempera-
ture gradients in the form

7,μ = — Ke(-^r- +"5-y--j5r-), (2.5)

σμν = —2ηνμ (ι\, + ·̂ -/?ν) ' (2.6)

Here we have retained certain terms that correspond to
the approximation of Barnett (see Ref. 32). We take
ν μ · α, to mean the combination

w . f l , = ±(JU!i.4-iHi)_±6iivi?!L (2.7)

The numerical coefficient 2/5 is calculated in the sing-
le-polynomial approximation by the Chapman-Enskog
method for monatomic gases.

Upon writing the expression for the entropy produc-
tion per unit volume of gas by using (2.5) and (2.6), em-
ploying the equation of entropy balance, and restricting
the treatment to the case in which only heat fluxes occur
inside the condensed phase, we get the entropy produc-
tion at the phase boundary in the form

(2.8)

Now we can write the linear relationships between the
"fluxes" and the "thermodynamic forces" taken at the
phase boundary. Let us choose as the "fluxes" the ex-
pressions

(2.9)

Then the "forces" take on the form

(2.10)

Hence we have
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(2.11)

(2.12)

According to the Onsager principle we have Lu =Lki.
Equations (2.11) and (2.12) for jfe = l express two more
boundary conditions, while Eq. (2.12) for k =2 or 3 re-
lates the fluxes I(

T

e) and I*.™' with the bulk characteris-
tics of the gas.

b) Velocity of thermophoresis

The problem of determining the velocity of thermo-
phoresis consists in calculating the relative velocity of
the gas and of the object embedded in it when a small,
constant temperature gradient is maintained at a large
enough distance from the latter. The procedure of cal-
culation consists in determining the temperature field
in the vicinity of the object and the gas-velocity field
caused by its inhomogeneous heating, and equating to
zero the total force with which the gas acts on the ob-
ject. The temperature distribution in the gas and the
condensed phase is found by solving the Laplace equa-
tion, while the velocity and pressure fields in the gas
are found from the Navier-Stokes and continuity equa-
tions. The integration constants are determined by us-
ing the boundary conditions written above.

Let us introduce the notation

(2.13)

= ( • § —

Upon restricting the treatment to terms proportional to
powers of the Knudsen number no higher than the first,
we get the boundary conditions in the form

krs Τη" IT i f ~ IT Cm K n σ'β

Te - Τ ι = — £ C, Kn 4 (

(2.14)
Elementary calculations lead to the formula for the vel-
ocity of thermophoresis:

(2.15)

When Kn=0, Eq. (2.15) formally coincides with the
Epstein formula (2.1). As we have pointed out above,
the Epstein formula agrees poorly with experiment, es-
pecially for objects of high heat conductivity. Equation
(2.15) implies (see also Refs. 40-46, 50) that when κ,
»κβ, the velocity of thermophoresis does not depend on
the ratio of the heat conductivities of the object and of
the gas. At least qualitatively, experiment9"19 reveals
this specific behavior of highly heat-conductive objects
in a temperature-gradient field.

Equation (2.15) implies another interesting result:
when
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the velocity of thermophoresis of highly heat-conductive
objects must change sign (negative thermophoresis).
This effect was not predicted in Refs. 40, 44, and 45.
Brock42 first pointed out the possibility of negative
thermophoresis. Dwyer47 has obtained a similar result.
Vestner et αί.49"50 and Sone and Aoki54 also note it. Ex-
perimentally the phenomenon of negative thermophores-
is has not yet been observed in explicit form, so that
the problem of its existence remains open.

3. KINETIC COEFFICIENTS

The coefficients of viscous (isothermal) slip Cm, and
thermal slip kTS, the temperature jump C f, etc., can
be calculated only within the framework of the kinetic
theory of gases. An analogous situation exists in the
problem of adjusting the equations of hydrogasdynamics
by establishing the connections between the fluxes of
matter, momentum and energy and the density, mass
velocity and temperature. Yet a substantial distinction
consists in the fact that here one should account for the
collisions of the molecules with the boundary surface as
well as for those with one another.

Maxwell3 first solved such a problem. He noted the
discontinuous nature of the distribution function of the
gas molecules near the surface of objects bounding a
gas, and he obtained a solution upon postulating that the
molecules incident on the surface have a distribution
that doesn't differ from the bulk distribution up to the
very wall, while the reflected molecules are in equilib-
rium with the wall. In this model the thickness of the
Knudsen layer, where the gas molecules gradually
change their distribution, is taken to be zero. Never-
theless, even within the framework of this crude model,
Maxwell obtained a rather good estimate of the coeffic-
ients of thermal and viscous slip. These calculations
were subsequently refined.55'β1 We should note that,
apart from the direct calculation of the stated coeffici-
ents, the structure of the Knudsen layer itself is of
great interest. Possibilities have currently arisen of
not only theoretical, but also experimental study of this
structure . β 2 · β 3

The first attempt at theoretical analysis of the phe-
nomena occurring in the layer of thickness of the order
of the mean free path of the gas molecules near the sur-
face of a solid was apparently the study of Gross
et aZ.,84·65 where the method of half-range expansions
proposed by Yvon88 was applied to solving the Couette
problem. Its essence amounts to the following. Let the
small deviation of the distribution function from the
Maxwellian value be a function of the distance from the
phase boundary. Let us expand it in a series in certain
polynomials in the velocity, similarly to what is done,
e.g., in the Chapman-Enskog method. However, we as-
sume the coefficients of the expansion to be functions of
the distance from the boundary. It turns out that the
method of half-range expansions in any approximation
gives better results that the usual method of polynomial
expansions (full range) in an approximation that is twice
as high. However, the cost of this improvement is com-

plication of the system of equations.

However, it is physically obvious that the correction
to the equilibrium distribution determined by solving
the boundary problem must acquire a symmetrical form
with increasing distance from the boundary that is the
same for molecules of both types. Under the condition
that the external perturbation is small, we can require
that this correction coincidences with the Chapman-Enskog
distribution at a great enough distance from the bound-
ary. On the one hand, this approach, which was pro-
posed in Ref. 67 and was then developed in Refs. 68 and
69, permitted one to determine the form of the approxi-
mation of the distribution function, and on the other
hand, to point out certain important connections between
the coefficients of the expansion. The latter allowed
them to simplify the system of equations substantially
for determining these coefficients. Let us start with
establishing these connections.

a) On some integral relationships

Let us seek the solution of the steady-state Boltzmann
equation

in the form

/ = /"" (1 + Φ).

(3.1)

(3.2)

Here we have φ « 1. We shall assume that a good
enough approximation of the function <£(c, χ) can be rep-
resented in the form of the series

(3.3)

Here the P ( (c) are certain polynomials in the velocity
of the molecule. The superscripts + and - refer res-
pectively to molecules having cx>0 and cx< 0. (The χ
axis lies along the normal to the boundary surface in-
side the gas.) Thus we have

<p(c, ΐ) = 2-

where
+ (3.4)

sign ex = \Cx\

Let us substitute (3.4) in Eq. (3.1), multiply by the poly-
nomial Pfc(c), and integrate over the velocities. The
moments of the Boltzmann collision integral that arise
on the right-hand side of the system of equations ob-
tained in this way (the recent literature71 has termed
them the integral brackets)

Za*={P,(c), />t(c)]— 4r j f<»P,{c)I[Ph(c)]ic (3.5)

constitute the object of study of this section.

A method of calculating integral brackets that don't
contain the symbol "sign" has been presented in detail
in the book (Ref. 31). The expressions with sign cx

(half-range integral brackets) for a simple monatomic
gas were first calculated by Wang-Chang and Uhlen-
beck.72 The calculation of even the simplest of them
proves to be a highly unwieldy matter. Numerical
methods73 have been proposed whose substantial flaw,
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in our opinion, consists in the impossibility of determin-
ing α priori the necessary accuracy of calculations.
Hence they require unwarranted large expenditures of
machine time. The arguments presented below open up
also a new pathway for estimating the necessary ac-
curacy of calculations.

Let us study the Boltzmann equation in the Chapman-
Enskog form32:

+2 (<«-W) £ Η ( 3 > 6 )

As we know, its solution in the bulk of the gas is sought
in the form of series in Sonin-Laguerre polynomials.
The method of successive approximations within the
scope of a theory that is linear in the derivatives of the
temperature and velocity consists in accounting for one,
two, etc., terms of the expansion. In the one-polynomi-
al approximation, the solution of Eq. (3.6) for any mod-
el of the interaction of the molecules has the form

Here the coefficients ax and 6X are connected by the re-
lationship

-4ax = 3ix. (3.8)

We can calculate them upon assigning a model for the
interaction of the molecules.

For convenience of further calculations, we shall in-
troduce the notation:

Pt (c) = ct sign cx,

P, (c) = cjst sign cx, P, = c, ( | - c>)

7̂ = ̂ ( 4 — ̂ ) «'№ ex-
Let us examine two-dimensional isothermal shear flow.
Equation (3.6) acquires the form

We multiply it successively by Plt P2, P 5 , and i>7, and
integrate it over velocity space. The integrals that are
obtained on the left-hand side are calculated in element-
ary fashion. In line with (3.5), we get the integral
brackets on the right-hand side. Consequently we have

~Λ~[Ρ"Ρύ' "~ΙΡ2·Ρ>]' (3.1 0)
26,

hold:

γ JlaC'34 = < ^ 4 4 t V 3Τ«^3β = = ™^4β· \**' ̂ ^ /

As the above derivation implies, Eqs. (3.12) and (3.13)
are a direct consequence of the one-polynomial expan-
sion of (3.7), and they hold for various models of the in-
termolecular interaction to some degree of accuracy.1'
Thus, for molecules that interact according to the law
~r"5, Eqs. (3.12) and (3.13) are exact. It is pertinent to
note that, as a rule, the applications of the method of
half-range expansions do not extend beyond the frame-
work of the one-polynomial expansion. Hence, in solv-
ing boundary problems of the kinetic theory by the meth-
od of half-range expansions, one should treat a violation
of Eqs. (3.12) and (3.13) as going beyond the accuracy of
the theory.β8·74 The proposed modification of the method
of half-range expansions enables the satisfaction of a
far more important physical requirement at the cost of
a certain coarsening of the numerical values of the
sought coefficients, which can easily be estimated by
comparison with the values obtained by other methods.
Namely, it enables a correct limiting transition to the
distribution function in the bulk of the gas far from
walls. Moreover, the relationships (3.12) and (3.13) de-
crease by a factor of two the number of half-range inte-
gral brackets that must be directly calculated, and also
they substantially simplify the system of equations for
finding the coefficients of the expansion (3.3). Finally,
one can use them to estimate the accuracy to which one
is reasonably limited in performing numerical calcula-
tions of the values of Lik.

(3.9) b) Nonisothermal Poiseuille flow in a planar channel

Now let us examine the one-dimensional problem of
heat conductivity. We have from (3.6)

The solution of the flow of a gas in a plane-parallel
channel of unit width when small constant longitudinal
temperature and pressure gradients are maintained in
it enables one to calculate a number of the kinetic coef-
ficients entering into (2.15). Let the length L of the
channel exceed considerably both the distance Id be-
tween the plates and the mean free path of the gas mole-
cules. Let us draw the ζ axis along the axis of the chan-
nel and the χ axis along the normal to the walls inside
the gas, while taking as the origin the symmetry axis in
the space between the plates. Here, as one can easily
show,8·55 the solution of the steady-state Boltzmann
equation (3.1) is reduced to solving the chain of equa-
tions

^ = /(/",/<«>), (3.14)

(3.15)

Upon multiplying by the polynomials P3 and Pe and inte-
grating over the velocities, we get

__ κ r η η ι _£_ η γ n r ρ ρ ι f ̂  11 ^

By comparing (3.10) and (3.11) with allowance for (3.8),
we get the equation

2
γη •-^«-ΤΫΤ*»—2*"·

 ( 3 · 1 2 )

Analogously we can show that the following relationships

etc.

Equation (3.1) is satisfied by the local Maxwell distri-
bution, whose parameters do not depend on χ. Let us
use it as a zero-order approximation to the desired sol-
ution. Equation (3.15) is suitable for arbitrary values of

"Analogously it is not hard to find the relationships that are
also satisfied by the integral when one employs more than
one polynomial in the expansion of the solution of the Boltz-
mann equation.
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the Knudsen number Knti=x/d, and its solution allows
one to determine the macrocharacteristics of the flow
at arbitrary rarefactions at any distances from the sur-
faces bounding the gas. Indeed, one can get an exact
solution of Eq. (3.15) only in certain special cases. Us-
usally, however, people resort to various types of ap-
proximate methods when treating such problems. We
shall employ here the modified method of half-range ex-
pansions of Sec. a) of Chap. 3.

Following Maxwell, we shall assume that the distribu-
tion function of the molecules near the surface of the
walls of the channel suffers a discontinuity at cx=0.
However, we shall require it to be continuous in the
bulk of the gas for Knd « 1 and to go over into the well-
known Chapman-Enskog solution. This determines the
form of approximation of the function <p(x,c):

- 4 ) a * w | . (3.16)

The functions a\(x) must satisfy the following symmetry
conditions:

and certain boundary conditions, for which we shall take
the Maxwellian conditions of (1.8):

Let us substitute the approximation (3.16) into Εq. (3.15)
and multiply successively by the polynomials
c,(l ± signc,), cxc, (1 ± signe,), c£(c2 - f)(l ± signcx), and
c,(c\- z)(l±signcj,), and integrate over the velocities.
As a result we arrive at a system of eight differential
equations for determining the function a*(x). Accounting
for Eqs. (3.12) and (3.13) allows this system to be sim-
plified, and makes it possible to get an analytic solu-
tion.8 Hence we can easily calculate the mean velocity
of the gas and the flux density of heat along the channel:

, 8 ) ] | Γ . (3.18)

Here Ft(x, ε) and Φ({χ, ε) are certain functions of the dis-
tance χ from the wall of the channel and of the momen-
tum accommodation coefficient ε. We get the following
values for the coefficients of viscous and thermal slip
from (3.17) with \x-d\»\ and from (2.14):

The values of the numerical coefficients depend on the
adopted model of interaction of the gas molecules. For
a hard-sphere model8 we have

(?Λ-ε)
2 0.673]} ,

(3.19)

2 2 - 4 6 ] } · (3.20)

Here we have

The values of the corresponding coefficients derived by
Maxwell3 have been separated out as the factors in
front of the brackets in (3.19) and (3.20). We see that
they amount to the limiting values of Cn and k{$ a s ε

-0(almost specular reflection). In the other limiting
case where ε = 1 (diffuse reflection), we have C m =i.l3
and fe™ = 1.19. The relation of fe<?s> to ε is rather well
approximated by a linear function throughout the range
of variation of ε. This agrees well with the results of
other calculations.55"81

We note that the thermal slip coefficient kTS that en-
ters into Εq. (2.15) differs from the corresponding val-
ue of k^s from (3.20) for a plane surface in that it de-
pends on Kn (effect of curvature of the surface on the
velocity of thermal slip). In the studied approximation
we have kTS =k(%(1 +aKn). The calculations87·88 for a
model kinetic equation respectively gave α = 1.16 and
4.06. - - - - - - - -

The term proportional to F2(x, ε) in (3.17) describes
second-order slip of the order of |~Kn^|; its study lies
outside the scope of the approximation developed here
(see Refs. 55 and 75).

Now let us examine Eq. (3.17). The first component,
which consists of three terms, describes the heat flux
in the absence of a temperature gradient. It is some-
times called the isothermal heat transport. The com-
ponent that does not depend on the coordinate (the bulk
isothermal heat transport) is obtained in Burnett's ap-
proximation by the ordinary kinetic theory of gases.32

The two other terms describe the heat flux localized in
the Knudsen layer. This component of the flux explicit-
ly contains a dependence on the law of interaction of the
gas molecules with the wall of the channel. If we aver-
age Eqs. (3.17) and (3.18) across the channel, then we
get a relationship expressing the symmetry of the kine-
tic coefficients .

2 ' 3 r 2

This is in full accord with the Onsager principle.

The second component of (3.18) also has an analogous
structure: its first term describes the heat flux in the
bulk of the gas (ordinary heat conductivity), and the
second term describes the heat transport inside the
Knudsen layer. It declines exponentially as we go away
from the wall, and at high enough pressures its contri-
bution to the heat transport along the channel becomes
arbitrarily small. Yet it is precisely the fluxes of heat
and matter localized in the Knudsen layer that deter-
mine the values of the coefficients Cg and Cv (see Eqs.
(1.5) and (1.6). Actually, let us integrate the surface
(x-dependent) components of the fluxes of (3.17) and
(3.18) over the thickness of the Knudsen layer. In line
with the definitions of ϊ<.β) and ϊ*."1', we have

1 e Γ ε / β \ 2 "l /Q 0 0 \

In closing, let us give one of the results of calculating
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the coefficient C,. People usually find it by a method
independent of the determination of the other coeffi-
cients, since Ct is associated with the energy accommo-
dation coefficient a, which differs from ε, which de-
fines the accommodation of momentum.

The value of C, obtained by solving the linearized
Boltzmann equation by the variation method for a hard-
sphere model86 has the form

(3.24)C, = 1.78^—2- (1 +0.162a).

The reader can find a detailed review of the results of
theoretical and experimental study of the temperature
jump in Refs. 76 and 77.

4. BOUNDARY PROBLEMS OF THE KINETIC THEORY
AND THE THERMODYNAMICS OF IRREVERSIBLE
PROCESSES

A somewhat independent method of treating the bound-
ary problems of the kinetic theory was first proposed in
Ref. 4. It is based on employing the concepts of the
thermodynamics of irreversible processes. It has been
subsequently applied also to solving problems of therm-
ophoresis in weakly rarefied gases, and also in a num-
ber of other problems. Its essence is the following. In-
stead of directly calculating the effect of interest to us,
one solves another problem that is, so to speak, sym-
metrical (in Onsager's sense) to that being treated.
Then one writes down the sought result in line with the
principle of symmetry of the kinetic coefficients. In ad-
dition to its purely methodological importance in allow-
ing one to control the procedure of rather unwieldy cal-
culations, this pathway is also of independent interest.
It has led to the discovery of a hitherto unknown effect
of thermal polarization of an object in a flux of rarefied
gas and has suggested the idea of designing an experi-
ment for studying the phenomenon of thermophoresis on
a completely new basis, as well as studying the nature
of the interaction of gas molecules with the surface of
solid and liquid objects.

Moreover, there are cases in which such an indirect
calculation is preferable to a direct one, since it allows
one to deal with a smaller number of polynomials in the
expansion of the distribution function in solving the kine-
tic equation. However, we note to avoid misunderstand-
ing that, just as in the direct calculation, the thermo-
dynamic method cannot dispense with the calculation of
the kinetic coefficients by solving the Boltzmann equa-
tion (see Sec. b of Chap. 3).

In spite of the evident success of this approach, state-
ments have appeared in the literature 7 8 ' 8 0 that cast
doubt on the validity of its application under conditions
in which the mean free path of the gas molecules be-
comes comparable with the characteristic dimensions of
the problem. The basis of these statements has been
the fact that the connection between the kinetic theory
and thermodynamics of irreversible processes has been
established81 only for processes that can be described
within the framework of the Navier-Stokes approxima-.
tion of the Chapman-Enskog method, which is not suit-
able for solving boundary problems.

Therefore we shall first take up the problem of the
applicability of TIP to studying phenomena in which the
essential role is played by the properties of the gas in-
side the Knudsen layers at the surface of the gas-con-
densed phase boundary and of the connection of the TIP
with the kinetic theory of gases in treating such prob-
lems.

a) On the entropy production in a bounded volume of gas

Let us treat this problem with the example of solving
the problem of nonisothermal Poiseuille flow. We turn
toEq. (3.15) and multiply both sides by φ, integrate
over the momenta of the molecules, and average over
the volume of the gas. Apart from a constant factor, we
get on the right-hand side the entropy production AS.
We employ the following expression for fm:

Here μ is the chemical potential of the gas, and we in-
troduce the following notation for the vectors of the flux
of mass density I*™' and of energy I ( e ) :

= ,« j<p/"\ dp,

Consequently, after averaging over the cross-section of
the channel we get

Here VT and νμ are the longitudinal gradients of the
temperature and of the chemical potential. I ( m ) and I ( e )

are the fluxes of mass and energy averaged over the
cross-section of the channel. Thus the entropy produc-
tion differs from the classical expression by the pres-
ence of an additional term involving the properties of
the gas inside the Knudsen layer at the walls of the
channel. Now let us consider the fact that the gas mole-
cules change their distribution upon colliding with the
walls. Hence an additional entropy production arises
here that must be added to Eq. (4.1) to obtain the total
entropy production per unit volume of the channel. We
shall proceed as follows to calculate this quantity. Let
us find the difference of entropy fluxes that are carried
by the gas molecules moving toward and away from the
wall. Molecules having the distribution /* are incident
on the surface of the wall x = d\ the distribution of the
scattered molecules i s / " . If the interaction follows a
law differing from the specular law, then these func-
tions differ substantially. The entropy flux carried to
the wall by the gas molecules is3 3

/< s>(0)=- \ v/Miifdp.
»x>0

The flux carried away by the reflected molecules is

/<*>(«)= j v/-ln/-dp.
vx<0

Here δ is the arbitrary thickness of the layer of matter
in the wall in which the transformation of the distribu-
tion function occurs. The balance equation

div I<s> = ASW

determines the desired entropy production &SW in the
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layer δ. The total entropy production in the surface lay-
er per unit volume of gas exactly compensates the addi-
tional term inEq. (4.1), and the entropy production in
the gas acquires the classical form of a bilinear com-
bination of thermodynamic forces and fluxes. The lin-
ear relationships between the fluxes and forces also
conserve their form.21

The obtained result solves positively the problem of
the validity of applying TIP to problems in which the
properties of the gas inside the Knudsen layer play an
essential role.

Thermodynamics of irreversible processes enables
one to solve another problem of no small importance
that arises in solving the kinetic equation by the method
of polynomial expansions. The problem is that of the
ambiguous choice of velocity polynomials that must be
employed for constructing the moment equations. Al-
though this problem has already been discussed in the
literature,5 6 current practice has the choice of polynom-
ials dictated by notions of convenience and simplicity of
the calculations. Yet we shall show that the require-
ment that the distribution function found by the approxi-
mate method should satisfy the equation of entropy bal-
ance is equivalent to a certain condition determining the
choice of polynomials that is sufficient, but generally
not necessary.

In the steady-state case the equation of entropy bal-
ance is equivalent to the relationship

-o (4-2)

Naturally, the exact solution of Eq. (3.15) satisfies it.
We shall require that the solution sought, while approx-
imate, should nevertheless also satisfy (4.2). Let us
write it as a series in polynomials in the velocity of the
molecules:

φ = S«i (*) Pi (C). ( 4 · 3 )

Upon substituting the expansion (4.3) into Eq. (4.2) and
introducing the notation

we represent the local entropy production in the form

Consequently we can write the linear relationships be-
tween the "fluxes" and the "forces" a{ in the form

r ^ 1 *£> IA A \

/, = VJCuOft. (4.4)

We can easily see that the equations (4.4) amount to the
moment equations obtained from (3.15) by using the

2)We note that the derivation of the expression for the entropy
production in a channel that was proposed in Ref. 81 generally
loses validity for rarefied gases. This involves the fact that
the calculations of Ref. 81 presume the absence of an entropy
flux through the surface of the channel when the heat flux nor-
mal to the boundary surface is zero. Yet, as we see from
what we've said above, the effects of rarefaction cause an
entropy flux through the surface to occur in the presence of
any inhomogeneity in the gas.

same polynomials with which the function φ has been
approximated, while the coefficients L(k are the integral
brackets of (3.5). As we know, the latter have the prop-
erty of symmetry with respect to permutation of indi-
ces. We also know that this method of constructing the
moment equations ensures that the condition of entropy
balance will be satisfied, in contrast to the usual, form-
al method, in which one applies arbitrary polynomials
in the velocity. The approximate distribution function
found in this way determines the fluxes /, in such a way
that the proportionality coefficients relating them to the
forces a, satisfy the Onsager symmetry principle.

b) The velocity of thermophoresis

Let us employ the methods of TIP to calculate the vel-
ocity of thermophoresis. Let us fix the velocity of rela-
tive motion of the gas and the sphere and calculate the
change in temperature of the gas in the vicinity of the
sphere caused by this motion. Then, upon employing
the symmetry principle, we shall find the velocity of
thermophoresis. We should stress that the problem in
both cases is solved under the assumption that the
Reynolds number is small. Thus the vicsous heating is
small, being proportional to Re2. We note in passing
that the thermostress effects treated in Ref. 82 are also
small.

We shall begin by calculating the entropy production
&Sy in the gas when it is moving with respect to the
sphere with the small constant velocity v0, while a
small temperature gradient is maintained at a suffi-
ciently large distance from the sphere. In the system
of coordinates associated with the sphere, the equation
of entropy balance has the form

div (vo5+ Δ5.

We integrate this equation over the volume of the gas.
On the right-hand side we get the sought entropy produc-
duction &Sy. We now transform the left-hand side by
Gauss' theorem into an integral over a surface sur-
rounding the sphere. We can conveniently take as such
a surface a cylinder of large enough radius with its cen-
ter of symmetry coinciding with the center of the sphere
and its axis lying along the temperature gradient (z
axis). If we take the radius of the cylinder to be much
larger than its altitude, then integration over the sur-
face of the cylinder is reduced to integrating over its
ends, i.e.,

Upon considering the constancy of the vector of energy
flux density, we get

&.S v = - 2π j r dr [-^ Δρ + /<«> (z = H) -^ ] . (4.5)

The symbols Ap and AT denote the drop in pressure and
temperature between the ends of the cylinder at the co-
ordinates ζ =Η and z=-H. The temperature of the gas
in the vicinity of the sphere is expressed in the form

We shall use Eq. (2.5) for the heat flux density. We
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transform (4.5), while keeping the terms quadratic with
respect to the small deviation from equilibrium. After
simple calculations we get

Here F is the total force that the gas exerts on the
sphere. We can write the linear relationships between
the "fluxes" and the "forces" in the form

slip < ? > .

A F

"Ί7

V7>

(4.6)

The velocity of thermophoresis is (with reversed sign)
the value of v0 at F = 0, or

We now find the proportionality coefficient Λ12 by calcu-
lating the change in temperature of the gas caused by its
flow with respect to the sphere and by employing the
symmetry principle. When VT = 0, the second equation
of (4.6) implies that

Λ2Ι = 4πκβΓ0-ί?ί1.
r

Thus the calculation of the velocity of thermophoresis
by the thermodynamic method is reduced in the studied
formulation to determining the integration constants Β
and a from the corresponding boundary conditions for
VT = 0. Naturally, in the approximation studied they
must be written in some way that differs from (2.14).
Actually, if the condition that the velocity jump at the
phase boundary surface is proportional to the derivative
of the temperature of the gas is satisfied in the direct
calculation of the connection between the dynamical and
thermal characteristics of the gas flow, then here it
corresponds to the condition that the heat flux is pro-
portional to the pressure gradient, or more exactly, to
the derivative of the stress in the gas with respect to
the coordinates, i.e., to the second derivative of the
velocity of the gas. An account for this leads in the
studied approximation to boundary conditions of the
form

Vr = 0,

Here we have used the complete expression of (2.5) for
the heat flow in the gas, while we have used for the
stress only the term corresponding to the viscous
stresses.

Upon determining the integration constants from this
in the usual way, we arrive at the desired expression
for the velocity of thermophoresis with an accuracy co-
inciding with that of (2.15).

c) Determination of the coefficient of thermal slip of a gas

We can also apply the thermodynamics of irreversible
processes for determining the coefficient of thermal

For this purpose let us examine the flow of a gas in a
planar slit formed by two parallel planes at a spacing of
2d. They are brought into relative motion with the vel-
ocity ν under the action of a certain force. If we create
a temperature field with a small constant temperature
gradient VT directed along the gap, then the entropy
production per unit length of the channel can be written
in the form

d
Fv 1* ΙΛ\ V7* I A n\

ί±ύ=-ψ (" 1 1 \xJax~f2~· V*'1/
' i d '

Here F is the force per unit surface of the plate, and we
have 1<«>=1<β>- (5/2){p/pWK We shall write the linear
relationships between the fluxes ν and q = JJtV')(x)dx
and the forces F and VT in the form

, F , ,
= 2 1T7 '

t i (4.8)

Upon using the kinetic theory to calculate the heat flux
q| j, at constant temperature and for a given force F, we
can easily find L^. Then, by employing the symmetry
principle, we can find the velocity ν for F =0 and for a
given temperature gradient:

.. CilrF) vr (4.9)
v ~ F* r ·

Thus the problem of determining the velocity of relative
motion of the plates under the action of the temperature
gradient is reduced in the given formulation to calculat-
ing the isothermal heat flux along the channel in the
Couette problem from the kinetic theory.

Upon considering the equlity F = -σ Μ , we obtain the
desired velocity of relative motion of the plates:

_ t l"" (jr) dx V71

(4.10)

We note that the Couette flow is completely antisym-
metric when the values of the accommodation coefficient
at the surfaces of the two plates are identical, and that
relative motion of the plates under the action of the
temperature gradient does not arise. Now let us find
the velocity of motion of the plates with respect to the
center of mass of the gas (velocity of thermal slip).
When \/d « 1, we can neglect the overlap of the Knud-
sen layers next to the walls. Then we can write the rel-
ative velocity of the plates as the difference of the vel-
ocities of each of them with respect to the center of
mass of the gas: v=v?J-v(r£. That is, we represent
the velocity of slip in the form

\ i"

~ ~~φ r L• l ·
1

(4.11)

Here C1 is a constant that does not depend on ε, which
we can determine from the following considerations.
When the molecules are reflected from the phase bound-
ary according to a law close to specular, the gas slips
along the surfaces under the action of the temperature
gradient with the Maxwellian velocity57 (see Sec. b of
Chap. 3):

•«P-H-if· (4.12)
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Upon calculating the flux of heat and momentum in the
Couette-flow problem by the method presented in Sec. b
of Chap. 3, transforming to the limit as ε - 0 in the ex-
pression (4.11), and comparing the result with (4.12),
we find the constant Cx.

Consequently we obtain an expression for the velocity
of thermal slip that coincides with (3.17).

CONCLUSION

Without question, the theory of thermophoresis re-
quires experimental verification. However, as we have
noted above, the expreriments, which have mainly been
performed with aerosols, do not allow one to carry out
a reliable comparison with theory, owing to the unusual-
ly large scatter in the properties of the object of the
measurements and to purely experimental difficulties.
Moreover, as we see from the arguments presented
above, we need independent experiments to determine
the accommodation coefficients of the momentum and
energy of the gas molecules when they interact with the
surface of an object existing in a gas. Actually, Eq.
(1.9) implies that the velocity of thermophoresis of
small objects depends on the accommodation coefficient
ε of the momentum, whereas we see from (2.15) and
(3.19)-(3.24) that we must know both the coefficients ε
and a to calculate the velocity of thermophoresis of
large objects. Results are continually being published
in the literature from measuring the values of these pa-
rameters for different gases, materials, and states of
the surfaces of solids and liquids. Usually the employed
method consists in measuring the resistance of the gas
to flow in a tube (the Knudsen method), in viscosimetry
of a sufficiently rarefied gas (the method of A. K.
Timiryazev), and finally, in studying the viscous resis-
tance of objects in the gas (the Millikan method). The
value of the coefficient Cm is measured by these meth-
ods and then the parameter ε is calculated by Eq. (3.21).
Apparently the Millikan method is the most accurate. It
allows one to determine Cm with an error less than 3% ,15

The accommodation of energy in the interaction of a gas
with the surface of objects is measured in experiments
of a different type, namely by studying heat transport in
sufficiently rarefied gases. Experiments performed in
apparatus of various modifications have detected a
sharp dependence of the energy accommodation coeffic-
ient on the type of gas, the material of the surface, and
the nature of its treatment and degree of purity. The
experimentally determined values of a have proved to
lie in the interval 0.15-1.00.77 Unfortunately, we have
not been able to find publications giving experimental
values of ε and a for the same gas-condensed phase
pair. This deprives us of the opportunity of performing
an unambiguous comparison of the theory presented
above with experiment, at least for rather large ob-
jects.

As for small particles (or for a sufficiently rarefied
gas), the experiments and calculations performed by
various authors agree well.

As we see it, an experimental test of the theory in the
range of small Knudsen numbers requires performing
special experiments that envision the possibility of con-

trolled change of the accommodation coefficients of gas
molecules at the surface of an object by an appropriate
treatment and cleaning of the latter, and well as by the
choice of the gas.

One of the possible schemes of such an experiment
stems from the results of Sec. b of Chap. 4, where we
showed that, in line with the symmetry principle, the
motion of an object under the action of a temperature
gradient in a gas corresponds to thermal polarization of
the object as it moves in a homogeneous gas. Actually,
when Re « 1 (when we can neglect energy release owing
to friction), the temperature difference ΔΤ, of two
points of the surface of the sphere lying at opposite ends
of a diameter parallel to the velocity of the ongoing flux
can be expressed in the form

, r I, 3_\ C.

Here M is the Mach number.

This temperature difference is simply related to the
velocity of thermophoresis. Upon measuring it, one can
decide on the validity of a theory of thermophoresis
without measuring the velocity itself. This method is
also attractive in that here one can experiment with ob-
jects of rather large size. Hence the potentialities are
considerably expanded and the methodology of treatment
and monitoring of the state of the surface of the object
is simplified as compared with aerosols. Moreover, if
the validity of the theory is proved by a series of ex-
periments, then one can employ this method for experi-
mental determination of one of the accommodation coef-
ficients (the other one being known).
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