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The physical mechanisms responsible for the slowing down of energetic heavy ions by electrons in matter
are discussed for various values of the ion velocity u. The quasiclassical theory of atomic collisions,
which determines the energy loss for υ < Ζ |'3t>0, is presented (Ζ, is the atomic number of the ion; v0 is the
Bohr velocity). Oscillations of the stopping cross section with variation of the atomic numbers of the
colliding particles are discussed. Elastic scattering (with respect to the incident ion) is analyzed; it turns
out to be dominant for Ζ \'3v0<v <Z]'\. A number of semiempirical formulas for the electronic stopping
cross section are discussed.
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1. INTRODUCTION

It is well known (for example, see Ref. 1) that ener-
getic particles (ions or neutral atoms) passing through
solids lose energy as the result of collisions of two
types—collisions with electrons of the target material
(electronic stopping) and collisions with ionic cores
located at crystal-lattice sites (so-called nuclear stop-
ping). The roles of these two types of collisions in the
fate of the bombarded material are fundamentally dif-
ferent: collisions with electrons only slow down the
moving particle,1' while collisions with ionic cores can
lead to knockout of the latter from crystal-lattice sites
and thereby to the appearance of point defects.

In the region of not too high energies [ε < ε^., where
ε0 is some characteristic energy, which is different for
different (moving ion)-(target atom) pairs] the main
role in stopping of the moving particle is played by
nuclear stopping. For ε > ε,, the greater part of the
energy lost by the particle is transferred to the elec-
trons of the medium.

The stopping power of the electrons of the medium is
characterized by a stopping cross section; in the liter-
ature two different normalizations are used for it:

J.= j r .£dr. ?e = m-'Se, (1.1)

where Τ is the energy transferred, da/dTdT is the
cross section for scattering with transfer to the elec-

1>A summary of a large number of experimental and theoretical
results on the interactions of particles with the electrons of
matter is given in Ref. 2.

trons of the medium of an energy in the interval (T,
T + dT), and m2 is the mass of the target atom. The
cross section da is normalized per atom (and not per
electron) of the medium. The energy loss of the parti-
cle (per unit length) is related to the stopping cross
section by the equation

—*L = nSe, (1.2)

where η is the density of scatterers (for the normali-
zation indicated, η is the number of atoms of the me-
dium per unit volume).

In the high-energy region the stopping cross section
is given by the well known Bethe formula (see for ex-
ample Ref. 3)

(1.3)4πΖ}Ζ,«' . 2mo»

where ν is the velocity and Z\ is the atomic number of
the incident particle, Z2 is the atomic number of the
target material, and / is a quantity of the order of the
ionization energy (m is the electron mass). We see
that in this region the stopping cross section is, rough-
ly speaking, inversely proportional to the energy of the
particle.

In the low-energy region the electronic stopping in
metals was first investigated by Fermi and Teller.4

Considering the electrons of the metal as a free de-
generate Fermi gas, they obtained a linear dependence
of the electronic stopping on the particle velocity.
The Fermi-Teller formula can be written in the
form

e»a a l y F (·* M\

S« = Y» — - ^ υ, γ* = 4π —s--r-Z,. \1A1
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where vv = e2/H and aQ — K/mvt are the Bohr velocity
and Bohr radius, vF is the Fermi velocity, Z$ is the
number of collectivized electrons per target atom, and
a2 is a quantity of the order of the cross section for
scattering of the incident particle by an electron (speci-
fically, in the case discussed by Fermi and Teller of
stopping of muons the scattering was described by the
Rutherford formula and therefore α2 ~ (e2/mvF)2. Equa-
tion (1.4) describes the contribution from the collecti-
vized electrons of the metal; the region of its appli-
cability is ν « vF.

The further development of the theory of electronic
stopping is based on two models of atomic collisions:
The Firsov model5 and the model of Lindhard and co-
workers.6"10 Both models treat the atom as a classical
system; otherwise the physical considerations on which
they are based are different. For small ν the models
lead to a linear dependence of the stopping on the velo-
city:

S, = Cv, (1.5)

with different coefficients C as functions of the atomic
number and mass of the incident particle (Zu w»i) and of
the target atom (Z2, m2).

The initial variants of these models describe only the
averaged (monotonic) dependence of the coefficient C on
Ζχ and Z2; nevertheless it is clear that, as a conse-
quence of the shell structure of the atom, oscillations
of C should arise on variation of the atomic numbers of
the target1 1 '2 0 and incident particle.21"32 Sections 2 and
3 are devoted to the quasiclassical models of inelastic
scattering and their generalizations which take into ac-
count oscillations of the coefficient C.

Until recently it was assumed (see for example Refs.
1 and 33) that proportionality of the stopping cross sec-
tion to the velocity ν is retained right up the velocities
of the atomic electrons vA~Z2/ivo, where Ζ is a. quan-
tity of the order of Ζχ or Z 2. This point of view is in-
consistent with the experimental data (see Ref. 34),
according to which the dependence of Se on ν is substan-
tially nonlinear already at considerably lower veloci-
ties.2 '

Then, in order to match the dependence Se = Cv with
Se~v'2, it is natural to assume that the corrections to
the function Se that are nonlinear in the velocity are
negative, so that in the intermediate region of veloci-
ties we have Se(v) < Cv; however, the same experi-
ments34 show that at not very high velocities Se(i>) > Cv.
The question arises of how to explain this behavior of
the Se (t>) curve. Sections 4 and 5 are devoted to this
question.

Of course, the slowing down of atoms or ions in mat-
ter (except perhaps for the single physically transparent
case of very high velocities ν»νΛ, where the material
can be discussed as a gas of electrons and nuclei not
interacting with each other, and the incident particle as
a bare nucleus) is determined by a large number of dif-

ferent physical processes; therefore the theoretical
models used turn out to be too crude to pretend to accu-
rate numerical agreement with experiment. Equally,
they cannot encompass at one time the entire range of
velocities v. Therefore for practical purposes empiri-
cal and interpolation formulas are used; we shall men-
tion some of them in Sec. 6.

A completely special situation arises in the slowing
down of ions in a crystal under conditions of channeling.
The motion of an ion in a channel obviously cannot be
reduced to a sequence of binary atomic collisions—a
large number of target atoms take part coherently in
the process. Without touching this question (which as
the result of its specific nature turns out to be outside
the logical scope of the present article), we refer the
reader to the review by Gemmel35 devoted to the subject
of channeling.

2. LINEAR DEPENDENCE OF ELECTRONIC
STOPPING ON VELOCITY

As we have already noted, at very low velocities (v
« vF) the electronic stopping in metals follows a linear
law Se = Cv [Eq. (1.4)]. On increase of the velocity the
dependence of Se on ν becomes more complicated; in
particular, oscillations of Se as a function of velocity
can arise; these reflect the band structure of the elec-
tron spectrum. A linear dependence of the stopping
cross section is again restored at ν > ΙΌ, when it is not
necessary to take into account the energy gaps between
bands.

We shall begin the analysis of electronic stopping in
this velocity region with a model extensively used in
the literature, due to Firsov.5 In this model, on colli-
sion of two atoms their electron clouds fuse into a sin-
gle electron cloud. If we introduce the deisgnation Φ
for the electron flux through the plane equidistant from
the centers of the two colliding atoms (often called the
Firsov plane), then obviously the forces acting on the
two atoms are equal:

F1 = - F 3 -= —<Dmv. (2.1)

The work W done by the force Fi will depend on the im-
pact parameter b; assuming that the velocity of the
atom does not change during the collision, we have

W (b) = — m\\ Φάΐ, (2.2)

where r is the radius vector of the moving atom.

Thus, we must first calculate the flux of electrons
J>M through the plane with coordinate x/2, using some
model for the distribution of atomic electrons (the χ
axis joins the centers of the colliding atoms). In par-
ticular, in the quasiclassical approximation, it is
necessary to calculate the quantity

Φ (χ) = -i- nudy dz, (2.3)

where η and ΰ are the density and average velocity of
the electrons. Then, using (2.2) the integrating over
all impact parameters, we obtain the stopping cross
section

2)Recently an experimental paper68 has appeared which also
confirms the nonlinear dependence of Se on ν.

Se = —2n \w (b)bdb = 2nmy \ b db \ Φ dr. (2.4)
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Firsov5 used the relation between average velocity and
density following from Fermi statistics,

If we substitute the Thomas-Fermi density distribution
for Μ for an atom with Z = ZX + Z2, then the expression
for the coefficient C can be represented in the form"

-z2). (2.6)

We note that the Firsov model (like the model of Lind-
hard and co-workers discussed below) does not take
quantum mechanical effects into account. The condition
of applicability of such models is the smallness of the
de Broglie wavelength of most of the atomic electrons
K/rnu in comparison with the size of the atom. As is
well known, the size of an atom (more precisely, the
region occupied by the greater part of the atomic elec-
trons) is λ~α<)Ζ~ι/3; for most atomic electrons H/mu
~atZ'2/3. Therefore the failure to include quantum-
mechanical effects corresponds to a failure to take into
account corrections proportional to Z'1'3. Thus, quasi-
classical models are applicable for description of heavy
atoms (for example, for uranium Z'1'3 = 0.22) and are
not applicable in the case of light atoms.

Another approach to the electronic slowing down of
ions, developed by Lindhard and co-workers,6"10 is~
based on the so-called dielectric formalism—descrip-
tion of an atom as a medium with a certain dielectric
permittivity. (Comparing the Firsov approach with this
approach, many authors speak of the former as a geo-
metrical approach, and the latter as a dynamical ap-
proach.)

If a structureless particle with charge Zte is slowed
down in a uniform medium, then we have for the stop-
ping cross section per electron of the medium in the
Born approximation, as is well known (see for example
Ref. 36),

s;= — -δ(ω — k v ) , (2.7)

where c(k, ω) is the dielectric permittivity and ne is
the density of electrons of the medium. This expres-
sion is applicable also in the case of a medium with a
slowly varying electron density ne (r) (X»tt/mv, where
λ is the characteristic length of inhomogeneity and ν is
the average velocity of the electrons of the medium);
in this case it leads to a dependence of S^ not only on
velocity but also on the coordinates, Sg = S'e(v, τ). Ad-
ding the contributions of individual electrons, we ob-
tain

Sc(i>) = \ d*rSc(v, r)n«(r) (2.8)

(the integration is carried out over the volume occupied
by one atom of the target material).

Equations (2.7) and (2.8) can be used directly for de-

3)The expression for the coefficient y can hardly be considered
reliable for accurate numerical calculations. In particular,
the values of Se calculated from Eq. (2.6) for uranium ions
for ν < 6· 108 cm/sec, according to Ref. 34, exceed the mea-
sured values. This remark applies equally to Eq. (2.9).

scription of the slowing down of moving nuclei in ma-
terial with large Z2. In fact, in this case λ »K/mv,
which permits the atom to be discussed as a weakly in-
homogeneous electron plasma with some specified elec-
tron distribution n(r), for example, a Thomas-Fermi
distribution (Lindhard, Scharff, and Winther8'").

A deficiency of this approach is the difficulty of gen-
eralization to the case in which the incident particle is
not a bare nucleus, but retains all or part of its elec-
trons. Crudely speaking, for such a generalization it
is necessary from certain additional considerations to
change Eq. (2.8) (in the direction of symmetrization
in the atomic numbers Ζχ and Z2). The most frequently
used of the expressions in the literature obtained in this
way, for analysis of experiments the formula is that of
Lindhard and Scharff,

Ψ Ι ν2/3 ι rj2 ύ \ — 3/2 /η Λ ν

'2(Z1 + Z2 ) , (2.9)

which was published in Ref. 7 without derivation.

Thus, the quasiclassical approaches of Firsov and of
Lindhard and co-workers express the stopping cross
section Se(v) in terms of the density of atomic elec-
trons n(r); of course, there is still freedom in the
choice of n(r). In the initial variants of these models
the Thomas-Fermi distribution was used as n(r),
which provided the possibility of tracing the averaged
Z-dependence of the stopping cross section. Recent
studies have utilized Hartree-Fock distributions, which
permit study of a more detailed effect—the oscillations
of the cross section with change of Zx and Z2 (in this
connection, see the following section). Finally, to ob-
tain simple analytic formulas use is made of model
potentials simpler than the Thomas-Fermi potential,
for example, the potential87

V(r) = ̂ -<f(r), φ(Γ) = [^(β'/'-.-1) + 1Γ1 (2.10)

(Η and rs are functions of atomic number).

In concluding this section we call attention to that fact
that for ν > v<, the incident particle is with a high proba-
bility stripped of its outer electrons; however, for
heavy atoms for ν<Ζΐ'3νΛ the greater part of the elec-
trons remain in a bound state. Loss of the outer elec-
trons should greatly affect any peripheral processes
(for example, processes in which a large role is played
by the size of the atom; see Sec. 4). In the deep in-
elastic process considered here, in which all atomic
electrons play comparable roles, the loss of Z* outer
electrons makes a small contribution proportional to

3. OSCILLATIONS OF STOPPING CROSS SECTIONS
WITH CHANGE OF ATOMIC NUMBER

The quasiclassical approach to atomic collisions,
which permits expression of the stopping cross sec-
tions in terms of the characteristics of the atom is a
continuous medium [in the last analysis in terms of the
density of the electron cloud w(r)], for all its simplicity
and physical clarity, has two important deficiencies.
First, the applicability of this approach is limited to
large Z; in the best case the small parameter of the
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quasiclassical case turns out to be (Ζχ + Z2)'1/3. Sec-

ond, inclusion of effects due to the shell structure of

the atom, which is beyond the scope of the first quasi-

classical approximation, greatly complicates all for-

mulas, to the detriment of clarity. Nevertheless, the

description of one of these effects—oscillations of Se

with change of Ζχ and Z2—is physically no less interest-

ing than the description of the monotonic (averaged)

dependence of S, on atomic number.

Of the two natural directions of generalization of the

quasiclassical model, toward inclusion of Z-oscilla-

tions and toward lower values of Z, the former is sub-

stantially more attractive for most authors: oscilla-

tions in the background of a monotonic Z-dependence

are clearly distinguished in analysis of experiments,

which facilitates the experimental verification of this or

that model. Therefore it is not surprising that most

studies generalizing the quasiclassical model are de-

voted to study of oscillations of the electronic stopping

cross section on change of atomic number.

A common feature of all these studies is the attempt

to retain physical clarity (even to the detriment of theo-

retical correctness). The most extreme manifestation

of this tendency is in the semiempirical formulas of

Refs. 38 and 39.

In generalizing the model based on the dielectric for-

malism, the authors proceed from Eq. (2.7), substitu-

ting into it the electron density n{r) calculated by means

of Slater or Hartree wave functions. It is clear that the

Z-oscillations of such n(r) distributions will automati-

cally lead to a nonmonotonic dependence of Se on Z2.

It remains an unanswered question whether or not oscil-

lating terms of the same order are lost in representing

the stopping cross section in the form (2.7). This, to-

gether with the difficulty in taking into account oscilla-

tions of Se on change of Zu is apparently the reason for

the relatively small number of papers generalizing the

dielectric formalism model.40"43'20

A very simple means of introducing oscillations into

the Firsov model is used in Ref. 44, whose authors

proceed from the expression (2.10) for the atomic poten-

tial. Oscillations of the screening radius rs and of the

parameter Η with change of Ζ naturally lead to oscilla-

tions of the stopping cross section; the simplicity of

the electron distribution used permits closed and easily

interpreted analytic expressions to be obtained. The

approach of Ref. 45 is somewhat more complicated:

the authors start from Eqs. (2.3) and (2.5), substituting

the Hartree electron distribution function for n(r).

We call attention to that fact that generalization of the
Firsov formula involves considerably greater arbitrari-
ness than the generalization of Eq. (2.7). In fact, as
long as we are interested in the averaged Z-dependence
it is natural to describe the electron distribution in the
fused electron clouds by the Thomas-Fermi function
for Z-Zx +Z2. However, in the description of the os-
cillations of Se there are no general physical or experi-
mental reasons to assume that this quantity depends
only on the sum Ζχ + Ζ2 or any other previously known
combination of Ζχ and Z2. Therefore most authors

to

FIG. 1. Dependence of electronic stopping cross section In
carbon on Zj (Ref. 46). ·—experiment,27 x—theory (Ref. 46).
The ion velocity is 1.38· 108 cm/sec.

attempt to introduce oscillations into the Firsov model

not at the level of the density n{r), but at an earlier

level—for the flux Φ which enters into Eq. (2.4).

The main difficulty arising in this procedure is due

to the quantum mechanical generalization of the expres-

sion (2.3) for the flux of electrons through the Firsov

plane. Most authors follow Cheshire et al. , 4 e who pos-

tulated the following expression for the quantity Φ en-

tering into (2.4):

(3.1)

here the indices i and j enumerate the wave functions φ

of the electrons of the moving atom (i) and the target

atom (j), and therefore the quantities | ψ, | 2 , \φί |
2 de-

scribe the contributions of the individual electrons to

the function n(r) (on the assumption that the electron

shells are not deformed in the collision). The quanti-

ties M( and uj are chosen in the form

«i = l/7h. "j-]^~^i, (3.2)

where ε ί ; zs are the average values in the states i and j

of the kinetic energy operator e=-(ft2/2m)A.

References 46-49 (see also Refs. 50 and 51) are de-

voted to the description of Z- oscillations of the stopping

cross section in a Firsov model generalized in this

way; one of these studies succeeds in carrying out the

calculation analytically.47

As an illustration of the results obtained in this way,

we present a comparison of the theoretical46 and ex-

perimental27 dependences of Se on Ζχ (see the figure).

The plot is taken from Ref. 46.

Of course, from the point of view of theoretical cor-

rectness the generalization presented above for the

Firsov model has the same deficiencies as the general-

ized model of Lindhard and co-workers: it is far from

obvious that Eq. (3.1) actually determines the quantum-

mechanical flux through the Firsov plane.

The generalization of the Firsov model based on a
correct quantum-mechanical determination of the flux
is due to Brice.52 Following this work, we introduce
a wave function Ψ,(Γ) of an electron crossing the Firsov
plane in a definite direction. Separating from the wave
function of the atomic electron φ(τ) the harmonics with
kx > ko, we have

(3.3)ψ+ (k) = J "τρ (k) θ ( f t x —

where Kk^/m is the velocity of the Firsov plane and
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(3.4)

Knowing the functions ψΛτ), we can find the contribu-
tion Φ' of an individual electron to the quantity Φ:

φ = — & r j r ( ψ ί ^ - * + - ^ - ) + 2*bi*+i2]<*y<fa. (3.5)

The first two terms in the integrand describe the quan-
tum-mechanical flux through the stationary plane; the
last term is due to the additional flux arising from mo-
tion of the Firsov plane.

Using the wave function of the Is state of a hydrogen-
like atom (with charge Ze) as φ,

Ψ(Γ) = —τ=-\ — ) exp/ —\ /a e>\

Brice obtained the following expression for the contri-
bution of one electron to the stopping cross section:

where ξ is a function of the velocity (which goes to
unity at ν = 0),

21+74*
24(H-*)»

+ d + i o , ) - « 2 ^ ; (3.8)

For ν «ZVQ this formula leads to a linear dependence
of the energy loss on velocity; here the proportionality
coefficient differs (not only numerically, but also in
the Z-dependence) from both the Firsov coefficient and
the Linhard coefficient. In this sense the Brice model,
which uses a rigorous quantum-mechanical determina-
tion of the flux density and the very simple wave func-
tion (3.6) for the atomic electrons, can be considered
an attempt (the only one known to us) to generalize the
quasiclassical models to small Z.

4. STOPPING BY A FREE FERMI GAS

Having considered electronic stopping of heavy ions
in the region of low velocities where the stopping cross
section is linear in the ion velocity, let us turn to ana-
lysis of stopping at high velocities. We note first of
all that the initial formulas of both quasiclassical mod-
els (2.4) and (2.7) contain ν only in odd powers. This
can easily be seen by observing that Φ, Res(fe,kv), and
kvlmc(fe,kv) are even functions of the velocity (more
precisely, of the ratio υ/νA, where vA~Z* SVQ is the
average velocity of the atomic electrons). Equations
(2.7) and (3.8) lead to a similar dependence of S, on ν
(in the case of a hydrogen-like atom vA~Zv$). Never-
theless, there are no physical reasons to assume that
significantly higher corrections (proportional to vz but
not v*) are lacking in the expression for Se. We reach
the conclusion that the terms that are quadratic in
velocity in the stopping cross section have been lost at
an earlier stage and cannot be extracted from the for-
mulas of Sees. 2 and 3.

In this connection it is interesting to trace the tran-
sition in the simplest model from the dependence Se~v
at low velocities to Se ~vl at higher velocities. As such
a model we shall consider the stopping of a particle by
a free electron Fermi gas. This problem is a general-
ization of the work of Fermi and Teller4 to the case of
particle velocities that are not small in comparison

with the Fermi velocity.4'

Of course, on taking into account the identity of the
scatterer particles (in particular, in the problem of
stopping by a Fermi system at ν « vF), the energy loss
of the incident particle is not expressed in terms of
the sum of stopping cross sections for each scatterer.
As before we shall use the concept of the (effective)
stopping cross section, determining it by means of Eq.
(1.2) (In Eq. (1.4) above we had just this quantity in
mind.)

The particle energy loss per unit path in a Fermi gas
is determined by the obvious relation

ftp \P )\ aWn^n' uTn, yiaif=

where ρ and p' are the momenta of an electron of the
medium before and after the scattering, nF is the Fer-
mi distribution function, and dwt.v· is the probability
of scattering of the electron into an element of phase
space dTf,.

We shall dwell first on the case of slow particles
(v < vF) and short-range forces (Λ < Κ/τη,ν^ where R
is the range of the forces, vr is the relative velocity of
the colliding particles, and mr is the reduced mass,
which in the case of the heavy particles of interest here
coincides with the electron mass). In this case, ac-
cording to the well-known Bethe formula (see for ex-
ample Ref. 3), the elastic-scattering cross section is
isotropic and does not depend on the velocity:

do' = a'2 do, (4.2)

where da' is the differential scattering cross section
for one scatterer (electron) and a' is the corresponding
scattering length. Converting from cross sections to
transition probabilities, we have, in accordance with
Eqs. (1.2) and (4.1),

(4.3)

(as in Ref. 4, we set vF > ν > mvF/nti).

If, like Fermi and Teller, we proceed from an un-
screened Coulomb potential and consequently from the
Rutherford scattering cross section, instead of (4.3) we
obtain1

S'e = 2na*amvvFf ^ -f-J, / (x) = x"4 In x . (4.4)

If we take into account that vF ~vo and a' ~a0, we see
that Eqs. (4.3) and (4.4) differ only by a factor of the
order of unity. We note that in a real metal R ~K/mvF;
therefore we have a case intermediate between Ruther-
ford scattering and scattering by a short-range poten-
tial. We shall not give the corresponding awkward
expressions, which differ from (4.3) and (4.4) only by
a factor of order unity.

In the case of fast particles (u > vF), assuming the
potential to be short-range, we obtain from (4.1) and
(1.2)

4 'To explain the slowing down of very slow ions In a metal it
has been necessary to generalize the results of Fermi and
Teller4 in another direction—inclusion of Fermi-liquid ef-
fects in the system of conduction electrons.5 2
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ί A c\

&e = inazmv2. \1Λ)
We see that the linear dependence of the stopping cross
section on the velocity of the particle is replaced for
ν > v, by a quadratic dependence.

Let us now see which features of the actual scatter-
ing of fast ions (v > i>0) by electrons are reflected by the
model discussed. For this purpose we shall break
down the electrons of the incident particle and the
target atom into two groups—electrons of the outer
shells (outer electrons) and electrons of the inner
shells (inner electrons, electrons of the ionic core).
The stopping of the ion obviously receives contributions
from scattering of the ionic core of the moving particle
by both the ionic core and the outer electrons of the
target atom. (In regard to the outer electrons of the
moving ion—in the case when the ion still retains
them—, their interaction with the target material for
ν > va is more likely to lead to charge exchange of the
ion than to its slowing down.)

Equation (4.2) for the scattering of slow particles by
a short-range potential is applicable to collisions be-
tween electrons and neutral atoms for ν < z\nvo. Leav-
ing aside for a minute the question of up to what values
of uncompensated charge Z*e the ion can be treated as
a neutral atom, we see that the necessary condition for
applicability of Eq. (4.5) is the inequality v<z\/3vl).

We shall therefore limit ourselves to the region of
velocities ι>0 < ν < z\nvo. Here if Z^ ~Z2, then (even
outside this region, up to ν ~ζ\%ν^ we can apply the
quasiclassical model of atomic collisions to the ionic
cores of both colliding particles, using the expressions
(1.5) and (2.6) [or (2.9)] for the contribution of the cores
to the stopping cross section.

If there were a sharp boundary between the binding
energies of the outer electrons of an atom (Ip) and the
inner electrons (/c), then, by choosing a velocity in the
interval -Jlp/m « ν « ν'Ic/m, we could directly apply Eq.
(4.5) to the analysis of the contribution of the outer
electrons. Adding the contributions of the inner and
outer electrons to the stopping cross section, we obtain

Se^Cv+ina'zZ^mv2, (4.6)

where Z* is the number of outer electrons. Of course,
there is no distinct boundary between the outer and in-
ner electrons; therefore Z\ must be considered a
phenomenological parameter which increases with in-
creasing velocity. Equation (4.6) has been used for
analysis of experiments34'5* in Ref. 55.

In concluding this section we shall evalute the condi-
tions under which collisions of electrons with an ion do
not differ greatly from collisions with a neutral atom.
For this purpose let us compare the scattering length
a' for scattering by an electron of a neutral atom with
the length a'c for scattering by an electron of an uncom-
pensated charge Z*e moving in a medium. These quan-
tities, as is well known, have the form

(4.7)

(4.8)

where η is the density of atomic electrons, θ is the
scattering angle in the c.m.s., and rs is the charge-
screening radius due to the medium {rs~a0). Taking
into account that r5 ~Z?ndh, we see that a!c < a' if

(4.9)

Thus, the condition Z\ < z\'3 is sufficient that we need
not take into account the distinction between an ion and
a neutral atom for all values of its velocity.

5. NONLINEAR DEPENDENCE OF ENERGY LOSS

ON VELOCITY

The contribution of elastic scattering (with respect to
the incident atom) by free electrons, discussed in the
preceding section, is in principle not difficult to cal-
culate for all velocity values if we know the structure
of the incident particle, described by its elastic form
factor. Knowledge of the elastic form factors (deter-
mined experimentally, for example from scattering
of electrons by atoms, or calculated theoretically, for
example by the Hartree-Fock method or on the basis
of the Thomas-Fermi model) permits tracing the de-
pendence of the stopping cross section on the ion velo-
city up to ν ~Z\nvQ. For further increase of the velo-
city, a knowledge of the elastic form factors turns out
to be insufficient, since with increase of the velocity
there are opened an increasing number of inelastic
channels which contribute to the slowing down of the
ion (channels not involving charge exchange). For ν
»Z\'3vo it is possible to carry out a summation of the
contributions of all these channels, which leads to the
Bethe formula (1.3).

For a target with large Z2 this approach would not
permit going beyond a qualitative description of the
slowing down of ions, since the electrons of a heavy
material for ν < Z2

/3VQ cannot in any way be considered
a free-electron gas. The situation is different in the
case of a target with low Z2 and consequently a low
total-ionization energy I2. For such a target there can
exist a velocity region

in which the model of elastic collisions between free
electrons and a particle having an internal structure
adequately describes the electronic stopping of a heavy
ion.

Thus, we shall discuss the electronic stopping of a
heavy ion in a light material in the velocity range (5.1).
Using the well known expression for the elastic-scat-
tering differential cross section (see for example Ref.
3),

TJL·», (5.2)

we obtain

where f(q) is the atomic form factor, which is connect-
ed with the electron distribution in the atom by the re-
lation

(q) = J cPrn (r) exp (—iqr). (5.4)
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It is well known that for Rq» 1 (R is the size of the
scattering system), we have/fa) — 0. We see that for
v»Z\nvt the expression (5.3) behaves like the exact
expression (1.3), which takes into account the contribu-
tion of the inelastic channels in addition to elastic scat-
tering, provided that we ignore the factor under the
logarithm sign.

In the case of not very high velocities of the moving
particle, v<z\'*vlt, we have Λ<? < 1; here

Zi-/(i)=4«aj«iIrnr> + Z1·. (5.5)

In this case [at least, MZ\<z\%; see the inequality
(4.9)] there is isotropic scattering in a short-range
potential with the scattering length (4.7), characterized
by the stopping cross section (4.5). Since r*~Zl2/*c%,
the stopping cross sections of different atoms in the
same material for not very high velocities should be
related as Z\n [in the case υ »z\nva these cross sec-
tions are related, according to Eq. (1.3), as Z{].

In Refs. 34 and 54, experiments are described on the
slowing down or bromine ions in carbon at a velocity
ν = 15 · l(f cm/sec, which fits satisfactorily into the
interval (5.1). Substituting the Hartree-Fock form fac-
tor of the bromine atom (see for example Ref. 56) into
(5.3) and integrating, we find, in complete agreement
with experiment, Q, = 50 keV-cm2/Vg.

At lower velocities Eq. (5.3) is more suitable as a
convenient language for interpretation of experimental
results than it Is for their numerical explanation. In
this case we can assume only part of the electrons of
the target material to be free; this can be taken into
account by replacing Z2 in Eq. (5.3) by some function of
velocity Z\{v). A corresponding analysis of the experi-
ments of Refs. 34 and 54 is given in Ref. 57.

Equation (5.3) permits comparison of the stopping
cross sections for different ions in the same material
even in the case when the condition ν > Sh/m is not
satisfied. In fact, the empirical parameter Z* char-
acterizing the target material cancels in comparison
of the stopping cross sections for different ions; there-
fore the cross sections should be proportional to the
integrals entering into Eq. (5.3).

It is especially simple to carry out this comparison
for ν < Zivt, when the stopping cross sections are
determined by Eqs. (4.5) and (4.7) and consequently
are related as Z\n. For example, for ions of uranium,
iodine, and bromine we have

Sc (U) :Se (I) : Sc (Br) = 20.4 : 14.1 : 10.7. (5.6)

Unfortunately the inequality ν < z\'% on the one hand and
the requirement of dominance of elastic scattering Se

> Cv, on the other, limit the region of applicability and
the accuracy of relations such as (5.6). Nevertheless,
as can be judged on the basis of the experiments of
Refs. 34 and 54, for ν = 6 · 10* cm/sec the relation (5.6)
is satisfied with good accuracy.

6. SEMIEMPIRICAL FORMULAS

As we have already remarked, a large number of
different physical processes contribute to the electronic

slowing down of heavy ions. Therefore theoretical
models, however correct they may be from the point of
view of theoretical physics, cannot encompass all as-
pects of the phenomenon and therefore can hardly pre-
tend to accurate numerical agreement with experiment
or to give reliable quantitative predictions. Neverthe-
less, in the analysis of experimental data one can note
a number of empirical regularities5' which turn out to'.'
be very useful for practical calculations.**·39·52·5*""

As an illustration of the approaches used for the phys-
ical interpretation of such regularities, we present the
derivation of the three-parameter Brice formula.52 The
author starts with Eq. (3.7), which takes into account
the contribution of quantum effects in the Firsov model.
In this model, as we have seen, an electron crossing
the Firsov plane in the direction from atom Λ to atom
Β changes its affiliation, transferring its entire energy
to atom B. Since at high velocities of the colliding
atoms the electron does not succeed in transferring its
entire energy, Brice introduces into the stopping cross
section a cutoff factor

'•M-O + i·?)"]-1· (6-1)
where a and η are empirical parameters. It is then
proposed to consider the quantity Ζ in Eq. (3.7), for
S'e as an empirical parameter. As a result, adding the
contributions of the individual electrons, we arrive at
the formula52

5,(i;) = (Z1 + Z2)5;/c(l.), (6.2)

which satisfactorily fits the experimental stopping cross
sections for a number of pairs (Z1,Z2).

Another widely used approach is based on the concept
of effective charge. (This concept, in particular, was
already used in Niels Bohr's 1948 monograph.67) The
physical considerations on which this approach is based
can be made clear as follows.

In the Born approximation the differential cross sec-
tion da for scattering of an ion is easily related to the
differential cross section da0 for a "standard" process
(as which we have chosen the scattering of a hydrogen
atom in the Is state) in the same material with identical
transfers of momentum Kq and energy Κω. We obtain

(6.3)

where Ψ is some function of q and ω which character-
izes the ion being scattered. Substituting this relation
into (1.1), we find

(6.4)
do "·

The quantities ω and q are functions of the relative
velocity ν and the c.m.s scattering angle θ; we can
therefore write here *5*(», θ).

Using a well known mathematical relation (the theo-
rem of the mean), we rewrite (6.4) in the form

i«, (6.5)

S)Semfempirical tables of electronic (and also nuclear) stopping
cross sections can be found in Ref. 58.
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where Si0 is the stopping cross section in the case of
the hydrogen atom,

5 e o =j» M ^do, (6.6)

and θ1 is some angle (which is, of course, different for
different Zx).

Thus, the stopping cross section can be represented
in the form

Se (ν) = (Ζ,γ (v))'SM (v),

where y is a function of the velocity and the atomic
number Ζχ. The quantity Ζχγ{ν)β is called the effective
charge.

If we limit ourselves to inclusion of only elastic scat-
tering (which according to Sec. 5 is dominant in the
velocity range Ζχ%υ$ <ν< z\'3Vi), then the function Ψ is
expressed in terms of the elastic form factor/(?):

Ψ = (ΐ-Ζι7(?))2· (6.8)

From this we obtain for the effective charge57

(6.9)

(we have substituted the form factor of the Is state of
the hydrogen atom in explicit form for a^q » 1 , which
corresponds to υ » va).

In principle the function Φ, and consequently the ef-
fective charge, is determined by the contribution of
both the elastic channel and all inelastic channels
(which do not lead to charge exchange). Therefore it
is desirable not to calculate the function y from theo-
retical considerations, but to consider it as empirical.

Any reasonable parametrization of the function y(v)
must reflect the fact that for v»vA the electrons of the
moving particle do not take part in its slowing down;
therefore for ν »νΑ y(v) — 1. Most authors express
y(v) in the form

(6.10)

where Ct and νχ are constants.

As q~Q, as is well known, the form factor of a neu-
tral atom vanishes; therefore we can choose C1 = l and
consider only the quantity νχ as an empirical constant.
In this way we arrive at the formula of Pierce and
Blann62:

(6.11)

where t»0 is the Bohr velocity.

A somewhat different parametrization is used by
Brown and Moak34:

γ = 1 — 1. (6.12)

It must be kept in mind that the usefulness of the ef-
fective-charge concept is related to the possibility of
representing the differential scattering cross sections
in the form of a product of two factors, one of which
depends only on the properties of the incident ion, and
the other—only on the properties of the medium. This
factorization exists in the Born approximation, the
region of applicability of which is limited by the re-

quirement (ei/Kv)[Zx—f{q)]< 1 (q is the characteristic
momentum transfer). In addition, factorization exists
at high velocities, when the electrons of the medium
can be considered free. Therefore for heavy ions (in
the case of a heavy target material, where the electrons
of the latter cannot be considered free) the usefulness
of the effective-charge concept is destroyed for ν
< z[/svo and is again restored for ν > ZI^VQ.

(6.7) 7. CONCLUSIONS

1. In the low-energy region the electronic cross sec-
tion for slowing down of heavy ions is proportional to
the velocity:

(7.1)

where ε is the energy of the ion, εο= (l/2)mHi>o = 24.97
keV is the energy corresponding to the Bohr velocity,
and χ is a numerical coefficient (mH is the proton
mass).

2. Simple and frequently used theoretical models
give the following values for the coefficient χ:

the Firsov model5:

(7.2).4Γ1/2, η φ = 6.95;

the Lindhard-Scharff model7:

312 Αϊ'Αϊ"-, η ι = 25.13. (7.3)

(A is the atomic weight). These models determine the
averaged (monotonic) dependence of the stopping cross
section on Zx and Z2.

The literature contains generalizations of these mod-
els which also permit the tracing of the oscillations of
the coefficient x, with change of atomic number.

3. Strictly speaking, the region of applicability of
Eq. (7.1) is limited on the low side by the Bohr velo-
city i>0 and consequently by the energy εο per nucleon.

The upper limit of the region of applicability of this
formula for heavy ions is the energy ει ~2ι/ 5ε0 per nu-
cleon. With further increase of the ion energy the
stopping cross section rises more rapidly than zin,
reaches a maximum, and begins to fall off according
to the well known Bethe law: Qe ~ ε"1 Ιηε.

4. A comparatively clear physical picture of elec-
tronic stopping in the energy region ε > ει exists for the
case of heavy ions moving in a light material (see Sec.
5). For heavy ions in a heavy material it is possible to
take into account accurately only one of the scattering
channels and to explain only qualitatively the experi-
mentally observed rise of the stopping cross section at
ε~ει.

5. In the literature there are a number of semiem-
pirical formulas which are in good agreement with ex-
periment [for example, Eqs. (6.2), (6.9), and (6.10)].
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