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When there is a stochastic disruption of the integrals of motion of a system, the corresponding quantum
numbers disappear. The energy spectrum of the system becomes quasirandom. In the present paper, the
quantization rules and the distribution of distances between pairs of adjacent levels are studied for this
case. The probability for the appearance of very closely spaced levels is governed by a critical index
which is expressed in terms of the Kolmogorov entropy for the given system (i.e., in terms of the growth
rate for the instability of the classical trajectories in the corresponding phase space). Various physical
situations are discussed in which a random spectral structure can arise. The capabilities of a
quasiclassical analysis in the case of a stochastic disruption of the integrals of motion are discussed.
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INTRODUCTION

There is now a huge literature on the nucleation of
stochastic properties in classical dynamic systems with
few degrees of freedom. In contrast, work on this
question for quantum systems is only beginning. The
interest in this question stems from not only practical
applications and new phenomena but also the need to
develop a special quantum-mechanical description of
systems which exhibit a stochastic instability. The
present review will be restricted to that part of the
problem which is associated with the structure of the
energy spectrum, i.e., the quantization rules. The pur-
pose here is to review systematically the results which
have been established in various branches of physics
and to draw attention to these results.

An approach which has long been used in a variety of

physical problems is to transform from a determinate
description of certain properties of the system to a
statistical description of these properties in cases in
which small changes in parameters lead to such pro-
nounced changes in these properties that a detailed de-
scription of these properties would become meaning-
less. The idea of introducing a statistical description
of the energy spectrum of a complicated system can be
credited to Wigner, Landau, and Smorodinskii, who
studied excited states of heavy nuclei. These ideas are
formally embodied in the theories of Wigner, Porter
and Rosenzweig, and Dyson. In these papers, a certain
hypothesis is introduced regarding the nature of the
statistical ensemble of energy levels of the system.
This approach sidesteps at least two questions of fund-
amental importance: When and why should a statistical
description of the spectrum of the system arise? Re-
search over the past decade has not only answered
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these questions but has also led to important changes in
the theoretical analysis of the characteristics of the
level distribution. At the same time, it has become
possible to extend substantially the class of physical
objects in which a statistical spectral structure should
arise under certain conditions. To review this re-
search is the purpose of the present paper.

1. ORIGINS OF THE PROBLEM

Our problem arose at the intersection of several di-
rections in research on the spectral properties of very
complicated systems. We shall specify below what is
meant by a "complicated" system or a "complicated"
spectrum of a system, but no matter how hard we try
to complicate the spectral structure it is not a simple
matter to imagine which fundamental characteristics of
the motion of the system should be associated with the
spectral structure. Perhaps for this reason it would be
useful to examine those logical ideas which underlie the
theory of the energy spectrum of "complicated" quan-
tum systems.

(a) Einstein's comment

We should begin the historical review of the question
with Einstein's 1917 paper1 on quasiclassical quantiza-
tion rules.

The quantization rules (the Bohr-Sommerfeld rules)

~§Pidgi^nlh (i = l, 2, . . . ,Λί), ( l )

where Μ is the number of degrees of freedom, were
known at the time. Einstein found the rules in (1) to be
unsatisfactory because they were applicable only if the
variables in the system could be completely separated,
since only in this case was it possible to choose p i and
q( such that the expressions §pidqi would be invariants
of the motion. These expressions must be invariants,
since the quantum numbers must be integrals of mo-
tion. Since this property of separation of variables was
totally unrelated to the quantum problem proper, Ein-
stein proposed a different quantization method:

( f t=i, 2, . . . , Μ), (2)

where the contours C t will be specified below. The
Σ Μ

i=iPidQi is known to be one of the Poincare
integral invariants.2 Consequently, Sk is an invariant.
Then if there exist precisely Μ independent, single-
valued integrals of motion (i.e., if the number of such
integrals of motion is precisely equal to the number of
degrees of freedom), then the expression ^f=1p^dq( is
a total differential. A proof can be found in Einstein's
paper1 or, in more modern form, in Arnol'd's book.3

Then with a complete set of independent, single-valued
integrals of motion, the quantity Sk depends on only the
positions of the ends of the integration contour and is
independent of the shape of this contour. If we consider
only closed contours Ck, then we have Sk = Q in those
cases in which the contour Ck can be shrunk to a point.
Nonvanishing values of Sfc can be found only if the space
containing the Ck is multiply connected, and the phase
space of the system is precisely of this nature. Let us

examine the motion in this space in more detail.

If the variables can be separated, then there exist Μ
integrals of motion, as which we can choose the actions

= 1. 2 M).

In this case we have

and the equations of motion are

dH
η A dH dHk= 0 · ** =

 "ΛΤΓ
 = "37Γ = ' (k=l, 2 M).

More generally, there are Μ integrals of motion
№uF2> • • • ,Fuh b u t t n e variables cannot be separated.
In this case we can use (2) to determine Μ new inte-
grals of motion (Slt S2,..., Su) and write

F, = Ft(Slz St, . . ., SM) (i = 1, 2, . . ., M).

This transformation exists; furthermore, the variables
(Sk, θ4) are canonically conjugate pairs,3

5,, 5,.....
(3)

It follows from (3) that the motion occurs along an M-
dimensional torus with frequencies wfc. In particular,
in the case Μ = 2, the trajectory is wound around a two-
dimensional torus (Fig. 1). On this torus we can con-
struct two closed basis contours (Fig. 2), which can be
neither shrunk to a point nor reduced to each other.
We call such contours "irreducible." On an Λί-dimen-
sional torus it is possible to construct precisely Μ ir-
reducible contours Ck (k= 1, 2 , . . . ,Λί). These contours
should also be chosen for (2), so that we have Μ equa-
tions of the type

Sh (Flt F,, . . ., FM) = nkh (k = 1, 2, . . ., M), (4)

which determine the quantization rules on the action in
the case of nonseparable variables.

Einstein's quantization rules were subsequently de-
rived and refined through nonquasiclassical corrections
in papers by Keller,4 Balian and Bloch,5·6 Berry and
Mount,7 and, in most rigorous form, Maslov1' (Refs. 8
and 9). All these refinements deal with the case in
which the number of integrals of motion is equal to the
number of degrees of freedom.

Einstein concluded his paper1 with the comment that
there might be cases in which the number of integrals
of motion was less than the number of degrees of free-
dom, as, for example, in the three-body problem
(Einstein cited Poincare's results). What should the

FIG. 1. Invariant torus of a system with two degrees of free-
dom.

1 'There is an elementary derivation of quantization rule (4) in
Ref. 29.
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FIG. 2. Irreducible contours In the case of two degrees of
freedom.

quantization roles be in this case? Many years were
to pass before information was acquired on those prop-
erties of dynamic systems which were necessary for
answering this question.

(b) Stochastic violation of the integrals of motion

When we say that a trajectory in phase space is wound
around a torus, we of course mean that the torus itself
is an invariant. U a system has invariant tori, then the
incorporation of an additional interaction between dif-
ferent degrees of freedom can lead to a disruption of
the invariant tori. The Kolmogorov-Arnol'd-Moser
(KAM) theory10"12 led to the result that sufficiently
small perturbations could conserve invariant tori.

If the perturbations are large, the invariant tori are
generally disrupted, and the disruption occurs (in ap-
parently all cases) in a stochastic manner. This asser-
tion requires a rather- detailed explanation. Let us
imagine a phase volume in whieh a system can execute
a finite motion (such a volume is shown schematically
in Fig. 3). Β the initial conditions fall in certain re-
gions of the phase space (as marked by the heavy
curves in Fig. 3), then the trajectories in these regions
are closed. Correspondingly, there is a nontrivial in-
tegral of motion (for example, the area bounded by this
trajectory). Outside these regions, which are referred
to as "stability islands," the motion is random; by this
we mean that the motion has two properties: It is er-
godic and it is mixed (i.e., there is an uncoupling of the
correlations between certain variables).

A more graphic interpretation of the onset of stochas-
tic conditions is usually associated with an instability of
the phase-space trajectories with respect to an arbi-
trarily small perturbation in the initial conditions. In
this instability, the distance between trajectories in-
creases exponentially over time:

D = Do exp (ftt). (5)

Because of this behavior of the trajectories, a drop-
let in the phase space (Fig. 4a) rapidly assumes a very
complicated shape (Fig. 4b) and uniformly covers the
phase space. The quantity h in Eq. (5) is called the

FIG. 4. Spreading of a phase droplet in stochastically un-
stable motion.

"Kolmogorov entropy" (more precisely, the Kolmogo-
rov entropy13'14 is an average of h over the phase space,
multiplied by a constant of the order of unity15). An
exact equation for the Kolmogorov entropy was derived
by Sinai.61 Dynamic systems exhibiting the mixing
property (i.e., ft>0) are called "K systems."2' In a
real situation, the Κ system is somewhat of an abstrac-
tion. In the typical problems which arise in physics,
there are always stability islands on which h = 0. These
islands may be arbitrarily small and may "fill" the
entire phase space in a very complicated way. Their
measure, however, may be very small in comparison
with the measure of the region of stochastic motion,
and it is in this sense that the term "stochastic system"
is used below. Ordinarily, the transition from dynamic
or .regular motion in a system to stochastic motion is
governed by the critical values of certain parameters;
most commonly, the parameter is the energy of the
system (see, for example, the review in Ref. 16). Let
us examine some examples of the onset of stochastic
conditions.

Example 1. The Ηέηοη-Heiles Model.1'' The Hamil-
tonian of a two-particle system is

+ a!iJ,—Ly>. (6)

Henon and Heiles17 have carried out a numerical analy-
sis of the motion described by Eq. (6), working in the
following manner: Points of the trajectory correspond-
ing to a certain energy H=E are noted on the (y,y)
plane with x = 0. For sufficiently small values of E,
these points are grouped in a family of closed curves
(£ = 0.0833 in Fig. 5), and this situation corresponds to
the existence of an additional integral of motion (other

FIG. 5. Phase trajec-
tories in the Henon—Heiles
model (the stable energy
region).

-as

FIG. 3. Partitioning of the phase space into stability islands
and a "stochastic sea."

*>Strictly speaking, the definition of Κ systems given by
Kolmogorov13 also includes the requirement of a certain di-
mensionality of the mixing of trajectories in different parts
of phase space. In the physics literature, however, the con-
cept of Κ systems is used in a wider sense, and it presup-
poses only the existence of a mixing of trajectories, 1. e., a
local instability of these trajectories.16
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than the energy). It £>1/12, some of the closed curves
begin to break up. Figure 6 shows the trajectories for
the case £ = 0.125. Parts of the trajectories become
stochastic, but the region of stability islands is still
quite large. With a further increase in £ , the islands
"melt," and at £ = 0.1667 nearly the entire phase volume
is in the region of stochastic motion.

Example 2. The Sinai billiard-ball system. Hopf18

has shown that the particle motion in a space with a
negative curvature exhibits mixing. Krylov generalized
this result to prove the stochastic nature of the motion
of hard spheres which collide by absolutely elastic col-
lisions.19 Sinai20·21 carried out a rigorous analysis of
billiard-ball systems. Some examples of billiard-ball
systems in which the particle motion is stochastic are
shown in Figs. 7a (for a "star-shaped" billiard table)
and 7b (for a "caterpillar-shaped" table). An originally
parallel beam of trajectories in such a system rapidly
diverges. The divergence in phase space is described
by a law which satisfies condition (5).

Example 3. Gliding electrons. The motion of elec-
trons which are "jumping" on a metal surface and
whose trajectories are twisted by a magnetic field di-
rected parallel to the metal surface is stochastic if the
surface has a negative curvature and if the electron
energy is above a certain critical value (Fig. 8; the
heavy curve is the surface, and the magnetic field is
perpendicular to the plane of the figure). This system
is analogous to the caterpillar-shaped billiard table.
The criterion for stochastic motion is 2 2

Λ>-2" — = Λο· (7)

where R is the electron gyroradius, a is the period of
the surface inhomogeneity, and b is the inhomogeneity
height (b «a). Condition (7) can be rewritten

™Λ·α»-4-=^ί, (8)E>E0

where Ε is the energy, £ 0 is the critical energy (the
boundary of the stochastic region), and Ο is the cyclo-
tron frequency.

Examples 1 and 3 lead us to some unexpected ques-
tions. Up to certain values of the energy, the quantiza-
tion of the corresponding Hamiltonians can be reduced
to certain standard systems. But how are we to quan-
tize the same Hamiltonian at energies above the critical
energy Eo? There is only a single integral of motion
remaining in this region (the energy), so that we are
immediately led back to Einstein's comment, but now
with a completely different meaning: What should we
find for the spectrum of a system in which some of the

FIG. 6. Beginning of the
stochastic disruption of
trajectories in the Henon-
Heiles model.

FIG. 7. Examples of negative-curvature billiard-ball sys-
tems, a) "Star"; b) "Caterpillar."

integrals of motion are disrupted in a stochastic man-
ner? An analogous question arises in the determination
of the oscillation spectrum of membranes or resonators
which are shaped as in Fig. 7. Since there exists an
isomorphism of trajectories for example 2, and for
examples 1 and 3 in the case3 ' £ > £ 0 , the problem for-
mulated above reduces to the problem of quantizing the
Sinai billiard-ball system.

(c) Dyson's theory

In this section we take up another question, which
developed independently of those discussed above, but
which bear directly on the problem formulated above,
as will become clear.

At a high excitation energy of a heavy nucleus, the
energy-level structure becomes distorted, and the dis-
tortion is so pronounced and irregular that a statistical
description becomes a better description of the actual
situation. In introducing this idea, Wigner23 and Landau
and Smorodinskii24 pointed out yet another fundamental
consequence of the unusual approach of treating the en-
ergy as a random variable: For levels of a given sym-
metry, the probability P(E;AE) for finding two adjacent
levels near energy £, within a separation Δ£, must
approach zero in the limit Δ £ - 0 (the "level repulsion
principle"). This principle means that, because of the
strong correlation between adjacent levels, the distri-
bution of distances between levels cannot correspond to
ordinary probability distributions, e.g., the Poisson
distribution exp(-|A2?|) or the Gaussian distribution
exp[-(A£)2].

Wigner, Porter, and Dyson derived a statistical the-
ory for the level distribution. Most of the work in this
field (through 1965) is collected in Ref. 25, and it is
analyzed in the excellent review by Porter.2 6 Just as a
certain hypothesis regarding the statistical ensemble of
states is introduced in statistical mechanics, it is hy-
pothesized in the statistical theory of the spectrum that
there is an equivalence between the distribution of lev-

FIG. 8. Trajectories of electrons which are being twisted by
a magnetic field near an inhomogeneous reflecting surface.

-0.5

3'Strictly speaking, this isomorphism exists within an error
corresponding to the effect of the stability islands.
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els Ek and eigenvalues \ of the ensemble of random
matrices of a certain symmetry (we shall refer to this
hypothesis below as the "\—E equivalence hypothesis").
Wigner23 and Porter and Rosenzweig26 dealt with a
Gaussian ensemble of random matrices. The work in
this field was completed formally by Dyson,27 who
treated ensembles of random matrices—orthogonal,
unitary, and simplicial. The basic result of that re-
search was the following equation for the probability
distribution for the distances Δ£ between adjacent lev-
els in the part of the spectrum near energies £ :

Ρ (Ε; ΔΕ) = A \ Δ£ |» exp [—Β (Δ£)Ί . (9)

Here A and Β are certain functions which vary slowly
with £, and the critical index α is 1, 2, or 4, depend-
ing on the type of symmetry of the system. Wigner's
theory leads to an equation similar to (9), but with
slightly different values of A and B. In the limit ΔΕ
— 0 we have

Ρ (Ε; Δ£) ~ I &E (10)

and this structure of Ρ is the most important aspect of
the situation, since it determines the level repulsion
law.

Admittedly, the λ-£ equivalence hypothesis is not
obvious. The basic argument for this hypothesis stems
from the circumstance that the eigenvalue distribution
of the ensemble of random matrices is characterized by
a "repulsion," i.e., by the same property as should be
exhibited by the level distribution. However, there is
a fundamental question which remains unresolved: Just
which properties of the interactions in the system
should lead to the random spectral structure? It is
pertinent to note here that at the time Wigner's and
Dyson's papers were appearing the concept of the
"complexity" of an interaction was at an extremely
naive level. In particular, it was assumed that this was
a characteristic property of systems having many de-
grees of freedom. It is now clear (see below) that the
spectrum of a system may exhibit statistical properties
even if there are only two (I) degrees of freedom. Con-
sequently, there are at least two questions which arise
in connection with the hypothesis of λ-£ equivalence:

1. How can the function Ρ(£;Δ£) be derived from
first principles, i.e., from the equations of motion, and
how do we determine whether distributions of the type
in (9) and (10) actually exist?

2. Does the critical index α in the repulsion law
actually depend on only the symmetry of the system?
(Is it independent of the particular properties of the
system?)

(d) Disordered systems

To answer the first of these questions, we must at
least know those physical factors which can lead to a
random distribution of levels. During the period of
Wigner's and Dyson's work, the lack of information on
these factors was dealt with by introducing the concept
(also somewhat vague) of the existence of an "interac-
tion black box." In this situation it was natural to turn
to a system for which certain quantities have a known

random distribution. The first attempt of this type was
made by Pokrovskii28 for a one-dimensional disordered
system.

The Hamiltonian of the disordered system,

*--s-+r<*>.

contains the potential V(x) which is some random pro-
cess. For example, it may be

where xh have a Poisson distribution. One of the central
problems in research on disordered systems is that of
determining the density of states62"84 p(£). The distri-
bution of distances between levels Ρ(β;ΔΕ) is a more
subtle characteristic, and in the one-dimensional case
with 70>0 Pogrovskii found

£)«exp[-^], (11)

i.e., an exponential level repulsion law. This result is
meaningful only for sufficiently high energies. At high
values of E, the random potential V(x) is a perturba-
tion, so that the energy spectrum should be similar to
the unperturbed spectrum [with the maximum (infinite)
repulsion] in which the adjacent levels are separated by
a distance ~\/L QL is the dimension of the system).
Molchanov has derived the distribution of level separa-
tions for the same system, but for small· values of E.

Let us assume that Δ£ is the distance between adja-
cent levels near the energy E. Then there exists a
limit

lim (Ζ,ΔΕ).

L-o»

Molchanov's result reduces to

Ρ {Ε; L ΔΕ > δ) α exp [-ρ (Ε) 61,
which corresponds to a Poisson level distribution. The
absence of repulsion at low energies can be understood
on the basis of the following qualitative considerations,
which are also credited to Molchanov.

In the one-dimensional case, the entire energy spec-
trum of a disordered system is a point spectrum, and
the states are localized. Lif shits62 and Mott63 began the
discussion of these properties of the spectrum, and
rigorous proof was first found in Ref. 66. It follows
from the localization of states that the wave functions
of the states fall off exponentially in the limits87

x~ ±°o. It follows further that all the states have a cer-
tain localization region Axr in space. Here it is impor-
tant to note that the localization property is a property
exhibited by all states (with a unit probability). At
small values of £,

Δ ζ -

while we have Ax~ ·*> in the limit £ - 0 . The character-
istic width of the potential well in which the state is
localized is thus large at small values of £ and corre-
sponds to an improbable fluctuation of the potential V(x)
during which a large "hole" of width ~ A* is formed.62

The effective shape of the corresponding potential was
found in Ref. 65. The appearance of two such holes with
only a small separation along the χ axis is improbable,
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so that the regions in which the levels are localized are
relatively far apart along the χ axis and essentially do
not overlap. It follows that there is no interaction be-
tween localized states at small values of E, so that
there is no repulsion.

The nature of the level distribution in disordered two-
dimensional and three-dimensional systems and the
case of intermediate energies in one-dimensional sys-
tems are clearly interesting problems, which have not
yet been solved, but even with the information available
we can see that the relationship between the resulting
distribution and an equation like (9) is too weak. In
comparison with (9), the level repulsion in a one-di-
mensional disordered system is too weak at low ener-
gies and too strong at high energies. This conclusion is
not surprising, since the dynamic properties of a one-
dimensional system are fundamentally different from
those of a system of strongly interacting particles.

2. SPECTRAL STRUCTURE UPON A VIOLATION OF
THE INTEGRALS OF MOTION

(a) Formulation of the response

The preceding chapter contains most of the informa-
tion required not only to understand the formulation of
the problem but also to resolve it. An equation for
P(E;AE) in the stochastic region was derived by Zas-
lavskii and Filonenko22 for the gliding-electron model
for two asymptotic regions: Δ £ « ε and Δ £ » ε , where
ε is the average distance between levels. It was later
shown9 that a universal equation holds in the limit
AE-0.

Let us assume E> Eo and that the energy integral is
the only single-valued integral of motion; all the other
integrals are stochastically violated. Then the level
repulsion law becomes29

P(E; Δ£)~ const-|Δ£|°' (Δ£·«ε), (12)

where all the constants are function of E, and h = h(E)
has the same meaning as in Eq. (5). In other words,
this is the Kolmogorov entropy or the effective growth
rate for the instability of the trajectories in phase
space. The law in (12) has the same structure (i.e., a
power-law variation with \&E\) as the distribution in
the Dyson theory, (10), but the critical index here is
governed by the value of h, which characterizes the
properties of the local instability of the system.4'

Equation (12) determines the distribution of distances
between levels in the case ΔΕ « ε . A distribution was
derived in Ref. 22 for the opposite limit, Δ £ » ε [see
Example 3 in section 2 (a)]:

P(E; &E) α exp[— const· (-^-)2J ,

i.e., a Gaussian law. This equation was derived on the
basis of quite general considerations, so it, like Eq.
(12), is presumably a universal equation for the case of
a stochastic disruption of the integrals of motion.

4'According to (5), the quantity h corresponds to the growth
rate for the local instability and can easily be estimated in
order of magnitude for real systems by linearizing die equa-
tion of motion.16

Equation (12) will be derived in the following section;
here we will examine in more detail the general struc-
ture of the level distribution.

(b) Characteristics of the spectral structure

Since the nature of the quantization and the energy-
level distribution itself are strongly affected by the
properties of the trajectories of the classical particles,
we are led to the concept30 of a classification of levels
in various series. Each series of levels is associated
with a certain class of classical trajectories. The dif-
ferent series of levels may overlap each other in a very
complicated manner, so that even if it is possible to
determine all the series of the energy spectrum it may
be a rather complicated problem to arrange the levels
in order of increasing energy.

Percival31 suggested the name "regular spectrum" for
those levels which correspond to nominally periodic
motions of the classical particle, while those levels
corresponding to the stochastic motion would constitute
the "irregular spectrum." For the classical trajecto-
ries corresponding to Fig. 3, for example, it is possi-
ble to distinguish one series corresponding to an ir-
regular spectrum and three series of regular compo-
nents, which correspond to motion on different stability
islands.

Since the subject of the present review is the irregu-
lar series of the energy spectrum, we should take spe-
cial note of the relationship between the level statistics
and an ensemble in ordinary statistical physics. The
level system of an irregular spectrum cannot be the
same representative of an ensemble as, for example,
any state of a many-body system. This circumstance
was pointed out by Dyson.27 The exact description is
discarded, not for the system of levels, but for a sys-
tem in which the nature of the interactions is very com-
plicated and whose spectrum is to be determined. We
shall see below that excited molecules constitute a sys-
tem of this type and that an exact determination of the
states of such a system is just as meaningless as the
determination of the coordinates of a large number of
particles. The energy spectrum of excited molecules is
a subtle characteristic of a system, and a probabilistic
description of the states of a system automatically leads
to the appearance of probabilistic properties in the
spectrum. For example, for the star-shaped billiard
table in Fig. 7a, a statistical ensemble might be formed
by stars with a small scatter in geometric characteris-
tics. The general nature of the trajectories in such
systems is independent of the detailed properties of this
scatter, so that the spectral structure is also indepen-
dent of this scatter. Then each particular star geome-
try can serve as a representative of an ensemble which
generates a certain system of levels. This method of
introducing a representative of an ensemble of levels
corresponds precisely to a real physical situation, al-
though it is apparently not the only possible method.
For example, in the excitation of molecules or nuclei,
an ensemble may be formed as the result of a small
spread of the excited states of different molecules or
nuclei.
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3. PROBABILITY FOR THE APPEARANCE OF
CLOSELY SPACED LEVELS

(a) Assumptions

In this section we shall determine the probability
Ρ(Ε;ΔΕ) for the appearance of a level with an energy
Ε + ΔΕ in the interval dE if we know that there is an
eigenstate with an energy Ε in the interval dE. We
shall be interested in the asymptotic behavior in the
limit Δ Ε - 0. This problem was solved in Ref. 22 for
the case of gliding electrons through the use of the
quasiclassical asymptotic behavior for the wave func-
tions. It was shown in Ref. 19 that the results of Ref.
22 are much more general in nature. The derivation
below basically follows Ref. 29.

Let us specify some general conditions under which
P(E;AE) is determined. We shall assume below that
all the integrals of motion are stochastically violated,
except for the energy interval. In other words, the
system is isomorphic with the Sinai billiard system.
Furthermore, we assume for simplicity that the sto-
chastic trajectories cover the region of motion in a
fairly uniform manner (the distribution function is ap-
proximately constant). For the star-shaped or cater-
pillar-shaped billiard tables, this assumption means,
for example, that there are many .arcs with a_large_
curvature. Finally,, we are interested only, in the
quasiclassical asymptotic behavior, for very large
eigenenergies Ε (the energy levels are numbered in
order of increasing eigenvalue E).

(b) Quantization rules

The direct method for analyzing the energy eigen-
values Ek involves a determination of the response func-
tion g(E), given by

£(£)=} dqG (?,?,£)- 2 Τ=Εζ< ( 1 3 )

where G(q",q',E) is the Green's function of the station-
ary Schrodinger equation, and q represents the set of
coordinates. In the quasiclassical approximation, G is

G (?", ?', E) - A exp {i [-i· S (?*, ?', Ε) + ψ]}", (14)

where the action S is given by

S(q", ?', dqiPl(q, E), (15)

and the factor A and the phase φ can be determined.
Since A and φ are slowly varying functions of the coor-
dinates and make small corrections to the quantization
rules, we shall restrict this discussion to the approxi-
mation in which ψ and the change in A are negligible.
This assumption is always valid in the limit # - 0 .

We can simplify Eq. (13) by using the condition S/K
» 1 and making use of the fact that there is a rapidly
oscillating function in the integral in (13). The condi-
tion for an extremum of Siq,q,E) is

dS(q, q, E) r
L

dS(q\ q' • E) dS (q", q', £) 1
q\ i)q\ J

(J = l, 2 M),

points, respectively, of the trajectory. The equality of
these momenta means that at the extremum the action
S(e,q,E) is

where the integration is carried out over a closed con-
tour in phase space which passes through the point q on
the surface corresponding to the point E. It follows
that g(E) can be written as

Lst(q)], (16)

where Αλ is some new constant.

Since the trajectories of a classical particle consti-
tute a random process, it is meaningless to speak in
terms of closed trajectories with a measure of zero.
We shall instead discuss trajectories which emerge
from a small volume ΔΓ of phase space and which re-
turn to the same volume. This procedure corresponds
to a "coarsening" operation similar to that used in sta-
tistical mechanics. Then in (16) we make the substitu-
tion

exp<
Ο(ΔΓ)

(17)

where the sum .is over all the contours <?(ΔΓ) which
begin and end in the coarsening volume AT. Since the
particle distribution function is homogeneous, the right
side of (17) is independent of q, so that (16) can be re-
written as

exp(-i-5.), (18)

where V is the volume. The set of trajectories which
emerge from ΔΓ and which return to ΔΓ consists of (a)
those trajectories which leave ΔΓ and which return to
ΔΓ after a certain time, (b) those trajectories which
execute two such cycles, etc., up to an infinite number
of cycles. We denote by

5 < m >
Μ

= 2 j
i-lCjn(4r>

(19)

the action in the m-th cycle, along the contours Οη(ΔΓ).
Then (18) can be rewritten as

C,(4D

2

x exp (±I

2 exp(J-(S )}

(20)
Here the factor μ, whose dimensions correspond to the
reciprocal of an action, is proportional to the density of
these cyclic trajectories in phase space. It is chosen to
satisfy the normalization condition

Σ 1 = (m = i, 2, oo).

where p\ and/>f are the momenta at the initial and final

By virtue of the law of large numbers, the set of all the
cyclic trajectories, for example, ^(ΔΓ), is no differ-
ent from any set Cm(AT); i.e., all the beams of trajec-
tories Cm(AT) for an arbitrary m-th cycle are equiva-
lent to each other in the statistical sense. Then Eq.
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(20) can be rewritten as

-jHF Σ « Ρ [ 4 «"> (*)]*<«). (21)
Ο,(ΔΓ)

where we have introduced the normalized response
function g=g/A1V for convenience. It follows from (21)
that the poles of the response function are determined
from

U3T Σ e x P OμΔΓ (22)

Equation (22) gives us new quantization rules in the
quasiclassical limit for the case in which all the inte-
grals of motion except the energy are stochastically
violated. To study this equation we shall make use of
more-detailed information on the action S(1>(£) of a
particle which has executed a single closed cycle, and
we shall also be somewhat more specific about the
coarsening operation.

(c) Stochastic instability in phase space

In all the billiard-ball examples in Figs. 7 and 8, the
particle trajectory can be characterized by a discrete
time transformation T, which determines the relation-
ship between the dynamic variables after (or before)
two consecutive collisions of the particle with the walls.
This relationship can be written as

(Pn+ Τ (ρη, ?„)

or

Pn+1 = U (Pn, in)', ? n + 1 = /, (Pn, ?„),

where/! and/2 are certain functions which are defined
such that Τ preserves the measure (the corresponding
phase volume). In general, it is useful to single out the
rapidly changing variables. Then we can assert that
this system is Λ Κ system, i.e., that if there is a local
(stochastic) instability in the sense of (5) in the phase
space, then there always exists at least one variable
along which there is a rapid mixing. Furthermore, it
is precisely the instability with respect to small per-
turbations of this variable which makes the system a if
system. 15>16·32 Let us illustrate this assertion in the
example of gliding electrons (Fig. 8). We denote by xn

the coordinate of the particle upon the w-th collision
with the surface, while <pn is the angle made by the tra-
jectory with the χ axis at the point of the w-th collision.
We further assume that the surface arcs have a chord
α and a height b «a. Then the transformation Γ is22

+2 —
(23)

where the braces denote the fractional part of the argu-
ment, ξπ = {χπ/α}, and X(|) is a function which is deter-
mined by the shape of the surface arc and which is
normalized to satisfy the condition max X~ 1 (in the
case ε « 1 , this function is generally a parabola). It
can be seen from (23) that the quantity ξ is a rapidly
changing variable and the condition for a local insta-
bility of this variable is

(24)

[inequality (7) follows from (24) in the case X'~l]. We
now assume that δξ0 is the perturbation of the initial
condition | 0 . Then

or

ί""6ξ0) h = In K. (25)

In the general (multidimensional) case, the relationship
between the Kolmogorov entropy and the trajectory ex-
tension coefficient if may differ from (25) (Refs. 61, 15,
13, and 33), but h will remain proportional to lnif. The
initial perturbation δξ0 thus grows exponentially over
time until δξ» reaches a value ~1 at the time No. This
time is given by

_ l n ( l / [ < & ! ) _ 1 ,_ i ( 2 6 )

After the time defined by (26), two trajectories whose
initial conditions differ by a small amount δξ0 diverge
to the extent that they become statistically independent.

This situation is a general situation in the sense that
in systems which stochastically violated integrals of
motion it is possible to determine the growth rate of the
local instability, lnif, and use it to write the time No

over which a small perturbation of the initial condition
leads to a statistical independence of trajectories. This
comment will be amplified in more detailed in the fol-
lowing section.

A stochastic instability of trajectories in phase space
distinguishes a set of random trajectories from the set
of periodic trajectories in the derivation of the quantiz-
ation rules. Specifically, the quasiclassical approxi-
mation in (14) for the Green's function is determined
for a narrow beam of trajectories which lie near a cer-
tain (basis) classical trajectory. It would be meaning-
less to choose a periodic trajectory as the basis tra-
jectory, since those trajectories which lie in a small
neighborhood of it will experience a stochastic insta-
bility and will diverge exponentially rapidly.

(d) Level distribution

Let us analyze the quantization rule in (22). We first
note that the region ΔΓ is assumed to be quite small
(it may be smaller than %). Just how small ΔΓ is can
be determined on the basis of the following considera-
tions. As ΔΓ becomes smaller, there is an increase in
τ Δ Γ , which is the time required for the return to ΔΓ.
The time τ Δ Γ must be large in comparison with the re-
laxation time of the particle distribution function. In
this case the substitution in (17) leads to only a slight
coarsening of the trajectory, without substantially af-
fecting its stochastic properties. In other words, all
trajectories which enter Ο(ΔΓ) are concentrated near
some "average" trajectory, which differs only very
slightly from the "typical" stochastic trajectory of the
particle. Then condition (22) can be replaced by

exPMs4 r(E)l = l, (27)

795 Sov. Phys. Usp. 22(10), Oct. 1979 G. M. Zaslavskii 795



where S^CE) is the action of a particle which has un-
dergone one "approximate" cycle. The concept of an
approximate cycle is introduced in such a manner that
if a phase sphere of volume ΔΓ is placed at the end of
the particle's trajectory, then the beginning of the tra-
jectory should fall within this sphere.

We denote by P(E) the probability that a level with
energy £ is an eigenlevel. Then it follows from (27)
that

P(E*= 2 pm(E), (28)

that pm{E) is the probabiUty that S(£) takes on the value
2nmK where m is an integer. Since the trajectory is
long (since ΔΓ is small), we can use the law of large
numbers. Then a plot of />m(£) against m would reveal
a sharp peak (Fig. 9) at some value m o ( £ ) » 1 . Then it
follows by definition that this peak corresponds to the
trajectory for which the action is

We call the trajectory with the action S A r the "typical
trajectory" for the level £ .

We now assume that the energy E+AE corresponds
to the level nearest £ . After similar arguments, we
find the following for the typical trajectory with the
energy £ + Δ Ε : - - - -

- _ L - - - - - ' /S-v

where the integer1 is not very different from m0. The
basic consequence of (29) and (30) is

i.e., the difference between the action values for the
two typical trajectories corresponding to two adjacent
levels, separated by AE, cannot be less than 2nK. A
further study shows that the asymptotic behavior of
Ρ(Ε;ΔΕ) in the Umit Δ £ - 0 can be found from this in-
equality. The shape of the trajectory varies with £ as
a parameter. We fix the typical trajectory correspond-
ing to energy £ , and we perturb the parameter £ on
this trajectory by a small amount AE. The typical tra-
jectory corresponds to a certain (typical) cycle time
τ Α Γ , so that the following question arises: How are we
to obtain a finite change in the action, >2itK, over a
finite time interval for an arbitrarily small perturba-
tion of the parameter of the trajectory ( Δ Ε - 0)? This
would clearly be impossible in the case of stable tra-
jectories. In particular, it can already be seen why
level repulsion should be stronger in the stable case
(i.e., when there exists a complete set of integrals of
motion) than in the unstable case. Furthermore, as the
instability of the trajectory with respect to small per-
turbations of its parameters becomes stronger the level

repulsion will become weaker.

In Section 3 c we mentioned that in the case of a sto-
chastic instability one of the variables (ξ) changes very
substantially between two successive collisions of a
particle with the wall of the billiard table. This fact
can be seen, for example, from the typical equations
in (23). The extension parameter Κ is a function of the
energy [the gyroradius R in Eq. (23) is a function of the
energy], so that a perturbation of £ by an amount ΔΕ
leads to a perturbation of the initial condition by an
amount

dK(E) (32)

as can be seen from Eq. (23). We now note that the ac-
tion on a trajectory with an energy E + AE can never
differ by a nonvanishing amount >2irK from the action on
the trajectory with energy £ , provided that these tra-
jectories do not become statistically independent. Over
time intervals shorter than the scale time for the sto-
chastic instability, the change in the action due to the
perturbation i s small, and inequality (31) cannot be sat-
isfied in the limit Δ £ - 0. On the other hand, the action
values for statistically independent trajectories may
differ by an arbitrary amount with a nonvanishing prob-
ability.

According to (26) and ($2), the dimensionless time -
(the number of collisions with the billiard-table walls)
over which an energy perturbation AE leads to statisti-
cally independent trajectories is

*· - ( l n

mo(E) m

FIG. 9. Distribution of the probabilities for various values of
the action for a random trajectory.

+ l n afar) TiZZ { w )
(33)

For a typical trajectory with energy £ , on the other
hand, there exist a typical time and thus a typical num-
ber of collisions N=N{E). According to (33), the quan-
tity No increases in the limit Δ £ - 0, while N(E) does
not change. Then at sufficiently small values of AE the
following inequality always holds:

JV0 > N. (34)

A trajectory with an energy E+AE can thus become
statistically independent of a trajectory with an energy
£ if the particle with the energy £ + AE undergoes No

collisions, where No is very large in comparison with
N, which corresponds to the maximum of the distribu-
tion P(N) of the number of collisions over the stochas-
tic trajectory. The probability PftJ, however, is the
probability for a very rare fluctuation, so that

f (JV0) <x exp (-const Λ'ο). (35)

Since the appearance of ^No collisions on a trajectory
with an energy £ + Δ£ implies that inequality (31) can
be satisfied with a nonzero probability, then we have
P(E;A£)ccP(Ag Or, according to (35),

Ρ (Ε; AE) <χ exp (—const JV0). (36)

Substitution of (33) into (36) leads to the response

Ρ (Ε; ΔΕ) oc \\E |™«·νι» *№> = | Δ£ |οοη·ι/ΐι(«>, βη)

which is given in (12). The constant ("const") in (37)
can depend on £ and is independent of AE, within a
smaller error. To calculate this constant we need not
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only methods that are more rigorous than those de-
scribed here but also a more detailed model. The re-
sult found in Ref. 22 for the case of gliding electrons is
const «1/2.

Equation (37) has a simple physical interpretation.
As Κ increases, the exponent in (37) decreases, and
the level repulsion becomes weaker. In the limit K— »,
the probability P(E;AE) becomes independent of Δ£,
and the repulsion disappears. The reason is that, as Κ
increases, the trajectories become stochastic more
rapidly; i.e., the local instability becomes stronger,
and the correlation between the eigenvalues is weak-
ened. In the limit in which the time required for the
trajectories to become stochastic approaches zero
(fC~ «), the level correlation vanishes.

(e) Analysis of experimental data; critical exponents

The first experimental data on the analysis of the dis-
tribution of level separations were obtained by Gurevich
and Pevzner34 from data on the nuclei In1 1 3, In1 1 5, Cs1 3 3,
Tb159, Ho1 6 5, Tm169, Hi177, Hi1 7 9, T a " \ U235, and U238.
They found the histogram shown in Fig. 10, which
clearly exhibits level repulsion (the quantity plotted
along the abscissa is ΔΕ/(Δ£), while the number of
cases is plotted along the ordinate). An analogous
curve was reported by Porter and Rosenzweig35 for a
group of elements in the osmium region (Hf, Ta, W,
Re, Os, and Ir; Fig. 11, where the curve is the Wigner
distribution) for the electronic levels of excited neutral
atoms. A statistical level distribution should arise
here because of the strong spin-orbit interaction, which
violates the quantum numbers L and S. Data on the
statistics of atomic levels are also given in Refs. 36
and 37. In Figs. 10 and 11 we see excellent confirma-
tion of the level repulsion principle. This characteris-
tic of the distribution, however, is too coarse for our
purposes. Finer characteristics are the critical expo-
nent α in Eq. (10) and the exponent β in the expression

According to (37),

*(£) h(E) - l = o — 1 .

It follows that β becomes negative in all cases or at
least beginning at certain values of Ε (since h increases
with increasing E), and we have άΡ(Ε;ΔΕ)/άΔΕ- <χ> in
the limit AE— 0. This behavior of the distribution
Ρ{Ε;ΔΕ) near AE = 0 is not found in the Wigner-Dyson

/ 2 3
ΔΕ/<ΔΕ>

$1.0
8

0.5

FIG. 11. Histogram of the distribution of distances between
levels according to the data of Ref. 35.

distribution, since in it the values are

α =- 1, 2, 4, ρ = 0, 1, 3 > 0 .

It is not a simple matter to determine the critical ex-
ponents α and β experimentally, but we can determine
the actual level repulsion law and the reasons for it.
Although the behavior of the histograms in Figs. 10 and
11 implies β*0,1,3, we cannot draw any definite con-
clusions5> because of the relatively large error of these
histograms near Δ£ = 0.

4. SOME APPLICATIONS

The structure of an irregular spectrum has now at-
tracted the interest of many investigators and is the
subject of a lively discussion in the literature (see,
for example, the reviews of the quasiclassical quantiz-
ation rules7·3 8; papers on the spectra of excited mole-
cules39"41 and the motion of an electron in an anisotrop-
ic field42'43; and papers dealing with the structure of the
wave function44). Let us examine some of these ques-
tions in more detail.

(a) Gliding electrons

The problem of electrons which are gliding along the
surface of a metal in a magnetic field has been studied
in several papers45"47 in connection with the problem of
surface electronic levels of metals. The periodic nega-
tive-curvature corrugation of the surface (Fig. 7b) in-
troduced in Ref. 22 could approximate the periodic
crystalline structure of a metal. The resulting irregu-
larity of the surface-electron spectrum should be mani-
fested in the following manner: When a weak external
field at a low frequency ω is imposed on the surface
electrons, they should absorb energy intensely if ω is
equal to the separation of adjacent surface levels. The
number of such transitions, however, must be propor-
tional to Ρ(£;ΔΕ=Κω), so that the intensity of the ab-

FIG. 10. Histogram of the distribution of distances between
levels according to the data of Ref. 34.

5)While this paper was being prepared for publication,
McDonald and Kaufman76 published a numerical analysis of
the oscillation spectrum for a "stadium-shaped" billiard sys-
tem. The motion of the particles in such a system exhibits
mixing, as was shown by Bunimovich.68 The distribution of
the distances between levels found in Ref. 76 exhibits a clearly-
expressed repulsion, in accordance with the theory in Chap-
ter 3. Shown for comparison in Ref. 76 is the distribution of
distances between levels in the ease of the integrable prob-
lem of the oscillations of a circular disk, in which there is
no repulsion. G. Casati has graciously furnished informa-
tion on analogous numerical results for the stadium-shaped
billiard system.
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sorption of energy from the external field should be,
according to (37),

/ ( ω ) oc ω<:°η»ι/1η K.

Since the stochastic behavior appears in the spectrum,
[according to (8)] only if the magnetic field is below a
certain critical level, a decrease in the magnetic field
should be accompanied by a sharp change in the fre-
quency characteristic of the absorption line.

(b) Excited molecules

Highly excited molecules or molecules in a predisso-
ciation state constitute one of the best applications of
the theory of the statistical level distribution, whereby
this theory can be used to solve several fundamental
questions. On the one hand, the structure of the vibra-
tional spectra of the molecules is strongly affected by
the number of integrals of motion of the given molecule.
On the other hand, the rate of monomolecular reactions
is essentially determined by the internal states of the
molecules, especially in cases in which the internal
relaxation time of the molecules is comparable with the
scale times for the interaction or excitation of the mol-
ecules. These circumstances were understood a long
time ago,40·48 and they have received extensive study,
primarily through numerical calculations by Rice
et aZ.40·41 More attention has been drawn to the spectra
of excited molecules recently because of the collision-
less dissociation of molecules which occurs when a
molecule is subjected to an intense laser pulse. Al-
though the treatment in the first papers on excited mol-
ecules was somewhat simple, Oxtoby and Rice41 cor-
rectly noted the relationship between the spectral prop-
erties of the molecule and whether there was a stochas-
tic instability in the molecule. Pomphrey's numerical
calculations74 for the Henon-Heiles model in (6) showed
that strong fluctuations appear in the distances between
the quantum energy levels at the transition from the
region of regular motion to the region of stochastic
motion.

We can go through some very simple arguments to
illustrate the spectral changes in the case of intense
excitation of molecules.29 Krylov has shown19 that a
gas of particles which collide as hard spheres exhibits
mixing properties if

2a 1, (39)

where a is the sphere radius, and R is the characteris-
tic distance between the centers of the spheres. In a
more general case, a could be understood as the char-
acteristic dimension of the scattering potential, for
example, of an atom in a molecule. Then the quantity
R, which again determines the distance between the
centers of the interacting regions, is a function of the
energy of the molecule. From experiment we know that
the quantity R =R (£) increases with increasing energy
of the molecules. This fact means that condition (39)
can be used to determine the critical energy Em

R (£„) « 2a,

at which all (or some) of the integrals of motion disap-
pear, except for the energy integral. The stable case

corresponds to the inequality Κ < 1 or R < la, i.e., a
"closed packing" of spheres of interaction. In this case
we know that it is possible to introduce a self-consis-
tent potential, and we arrive at a single-particle prob-
lem (the independent-particle model in nuclear theory)
which is well defined (with all the necessary quantum
numbers). Condition (39), in contrast, corresponds to
the inequality R>2a. The system becomes "loose,"
and it is in this case that the statistical level distribu-
tion should arise.

Apparently the simplest consequence of a disruption
of the integrals of motion for highly excited molecules
is that the absorption spectra should be anomalous at
low frequencies. The spectrum can easily be deter-
mined on the basis of the same considerations as in
section 4a for gliding electrons, i.e., the intensity of
the field absorption at the frequency ω should behave as
in (38).

(c) Predissociation state in the formation of
molecular bonds

In the formation of molecular bonds, in particular,
the hydrogen bond, a predissociation state arises. A
study of the infrared spectra during the formation of
the bond reveals a pronounced broadening. A quantum-
mechanical theory for the corresponding- line width was
first derived by Stepanov.49 This theory was subse-
quently developed by Stepanov and many other investi-
gators (see, for example, the analysis in Refs. 50 and
51). Until now, however, the line widths predicted by
the theory have been almost two orders of magnitude
(1) smaller than the observed width for the hydrogen
bond.

It is interesting to consider the following hypothesis:
As the atomic groups forming the molecule approach
each other, a perturbation acting on a hydrogen ion in
one of the groups disrupts its integrals of motion (or,
equivalently, disrupts the quantum numbers which de-
termine the motion of the hydrogen ion). A stochastic
instability arises for the hydrogen ion and leads to the
anomalous width of the corresponding vibrational spec-
tra. The stochastic instability is one of the strongest
of the known dynamic instabilities16 and can lead to
anomalously pronounced broadening of the vibrational
lines. In this connection it is interesting to note that a
stochastic instability in a two-particle system with an
exponential interaction potential (similar to the Morse
potential) was studied by Casati and Ford92 in connec-
tion with problems of a different type. The resulting
picture in the phase plane is similar to Figs. 5 and 6.
It can thus definitely be asserted that there is a sto-
chastic instability of the hydrogen bond when the dis-
tance between the groups forming the molecule is less
than a certain critical value.

(d) Stochastic violation of a bound state of atoms
with a field5 3

The Hamiltonian describing the bound states of two-
level atoms with a field (in the Dicke model)
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Η r = δωΛ (R+c + R.c*), Ηατ = ha>A (R+c* + R_c);

A =

(40)

where c* and c are the photon creation and annihilation
operators, rv((u=z,+,-) are the energy spin compo-
nents of atom i, Rv=2j*ulrvft ω is the field frequency
(assumed equal to the frequency of the atomic transi-
tion), Λ is the dimensionless constant of the interac-
tion of the atoms and the field, ρ is the density of
atoms, and μ is their dipole moment. The Hamiltonian
component Hr describes the resonant interaction and
satisfies the commutation relation

[ff0, Hr) = 0. (41)

The nonresonant part, Har, is usually ignored. In this
case, two conservation laws follow from (40) and (41):

[ff, Ho] = 0, IH, Hr]=0. (42)

These laws can be used to express the energy of the
system as a function of two quantum numbers. This
problem has been studied by many investigators, and
questions associated with the spectrum in the resonant
approximation (Har= 0) are discussed in detail in the
review by Stenholm.54

The total Hamiltonian in (41) leads to the following
system of equations in the semiclassical approximation:

jS + a)2g = i-(02Am1

=--i-o>2Ai? 1/ r 2 - m 2 - - ^ - .

(43)

where ft is the dimensionless field, m is the trans-
verse projection of the energy spin per atom, and r is
a constant of the motion (the "cooperation number").
The energy integral of system (43) is

«—=|~Aim.

The quantity

corresponds to the difference between the populations
of the atomic levels, while

is the number of photons per atom. System (43) was
studied in Ref. 53, where it was shown that in the case
Λ<1 the system remains basically stable. As before,
two integrals of motion remain, corresponding to two
quantum numbers. In the case Λ> 1, however, the sit-
uation is markedly different. The trajectories become
stochastic and nearly fill the phase space. In other
words, in the case of an interaction with Λ> l in a
closed system consisting of an atom and a field, a
statistical level distribution should arise. Figure 12
shows an example of a disrupted trajectory in the in,y)
plane (£ = 1, Λ = 1.8). In the case HaT = 0, we have

η + y = const,

according to (42), and the straight line in Fig. 12 cor-
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Stochastic trajectory filling the phase space (for theFIG. 12.
system consisting of atoms and a radiation field).

responds to this conservation law. Figure 13, also
plotted from the data of Ref. 53, shows the distance D
as a function of the dimensionless time τ = ωί for two
very nearly equal initial conditions: curve 1) Λ = 0.9,
•E = l; 2) Λ = 3 , £ = 1 . This figure demonstrates the evo-
lution of the local instability. From the figure we can
immediately determine the instability growth rate and
the associated line width y. In the case Λ = 3 (curve 2
in Fig. 13), we find y~0.5o> (cf. the comment regarding
the line width in Section 4c.

We wish to emphasize a feature which distinguishes
this system from those discussed above: The stochas-
tic disruption of the quantum numbers occurs along the
interaction-constant scale, rather than along the energy
scale.

The question discussed in this section may be related
to the problem of multiple production of particles. The
condition for the occurrence of a stochastic situation in
the collision of particles at very high energies has been
discussed by Chernavskii55 and Feinberg.56

(e) Is it possible to hear the shape of a drum?

This question is usually understood as having the fol-
lowing meaning: Can the shape of a resonator be deter-
mined from its spectral characteristics? The answer
is known to be no,3 since quite different resonator
shapes may produce identical spectra.

The appearance of a stochastic component in the
eigenvalue spectrum in the quantization of Κ systems
leads to another explanation for the negative answer to
this question: Two isomorphic Κ systems have an iden-
tical spectrum (identical in the statistical sense) but
may have wildly different shapes.

FIG. 13. Evolution of a local instability in a system consist-
ing of atoms and a radiation field.
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5. SPECTRUM OF QUASIENERGY LEVELS

When a periodic perturbation acts on quantum sys-
tem, we can introduce the concept of quasienergy, as
the concept of quasimomentum is introduced, as was
first shown by Zel'dovich.69·70 Let us assume that the
Hamiltonian

Η = Ho (p, x) + V (*, t)

has the periodic property

V (x, t + T) = V (x, t).

Then the wave functions can be chosen such that

α is a dimensionless nonlinearity parameter, given by

ψ (χ, ί + Τ) = «<·/»> (χ, ί),

where W is the "quasienergy." States with a certain
quasienergy play the same role in the time-dependent
case as states with a definite energy play in the steady-
state case. In the classical theory, however, periodic
perturbations can lead to a stochastic motion if the per-
turbation is strong enough. The result is a stochastic
disruption of the energy integral (the only integral).
What should happen to the quasienergy spectrum if the
corresponding classical Hamiltonian describes motion
with mixing in the case 8 = 0? At present we have no
answer to this question. The information which is
available and the difficulties which arise in this prob-
lem are so interesting that we will discuss them sepa-
rately.

(a) Mappings for quantum systems

Atypical example, and the most convenient example
for constructing discrete mappings, is a nonlinear os-
cillator which is acted on by a periodic train of δ-func-
tion pulses:

V(x, δ(ί-ηΓ)·

We write

tpn = ψ (χ, t = nT + 0),

i.e., the wave function immediately after the w-th pulse.
It is not difficult to derive the recurrence relation71·72

7>n. (45)

We thus have

and the determination of the quasienergies reduces to
the determination of the eigenvalues of the mapping fq.

In the classical case, pn the other hand, it is possible
to construct a mapping f for the variables (p,x) which
determine the state of the system:

(pn+1, xn+1) = t (pn, *»).

The mapping Τ for the perturbation potential in (44) has
been analyzed in many papers.15·16'32·72 Thê  nature of
the motion governed by the transformation Τ depends
on the parameter

Κ = const ·αεωΓ, (46)

where the constant is a number on the order of unity;

ω(/) is the nonlinear frequency, governed by the unper-
turbed Hamiltonian H0(p,x); and ε is the dimensionless
perturbation parameter (ε ~ U/Η^Γ). The parameter Κ
has the same meaning as in (24). In the case Κ < 1, the
motion is conditionally periodic (stable), but under the
condition

Κ = const -αεωΓ > 1 (47)

a stochastic instability occurs, causing the classical
system to become a. K system.

We now assume that condition (47) holds. What prop-
erties will the quantum system have? In other words,
if the mapping Γ corresponds to a if system, what will
the mapping T, be? This is simply a different formula-
tion of the question asked at the beginning of this sec-
tion.

The evolution of coherent states under condition (47)
was studied in Ref. 60, where it was shown that the
eigenvalues of the creation and annihilation operators
exhibit the mixing property in the quasiclassical ap-
proximation. The analysis of Ref. 60, however, holds
for only a finite time

fo4 " - (48)

where t0 is some characteristic time of the problem.
An analogous result was found in Ref. 7 through a nu-
merical analysis involving calculations of the expected
values (x) and (p). Their time evolution corresponds
to the evolution of the variables (x,p) of the equivalent
classical system for only a finite time. Here again, as
so many times before, we must examine the distinction
between the quantum and classical approaches.

(b) Two cases of wave-packet spreading

Since in quantum mechanics we are always dealing
with a wave packet rather than a separate trajectory of
a system, it i s useful to discuss the evolution in phase
space of some volume filled by classical particles. If
these particles are linear oscillators, all with identical
frequencies, then the cell which they fill in phase space
moves without any deformation of its boundaries. In
quantum mechanics, this circumstance corresponds to
the possibility of constructing a nonspreading wave
packet (a so-called coherent state). In the nonlinear
case, we have a different situation. The oscillator fre-
quencies depend on the oscillator energies, so that dif-
ferent parts of the cell in phase space move at different
velocities. As a result, there is a distortion of the cell
boundaries, as shown schematically in Fig. 14 (t2

>h
> t<). Not only is there a spreading of the phase-space
cell; we also see a steepening of its "front" and the ap-
pearance of an ambiguity in the shape of the cell bound-
ary. This picture is analogous to the steepening of the
profile of a nonlinear wave in hydrodynamics (Fig. 15,
i2>i1>i0). In quantum mechanics, this circumstance
corresponds to the absence of nonspreading coherent
states in the nonlinear case.
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FIG. 14. Spreading of a phase-space droplet of an ensemble of
non-interaction nonlinear oscillators.

This spreading of the wave packets in the nonlinear
case is a slow process. The situation is different in the
case of Κ systems, in which the spreading of the phase-
space cell and the deformation of the boundaries of this
cell occur exponentially rapidly because of mixing. In
this case, the concept of a wave beam, even a very
narrow beam (~ft), rapidly becomes meaningless. The
occurrence of a local instability renders the concept of
a quasiclassical beam indefinite over very long periods
of time. We are thus running into some fundamental
difficulties in the quasiclassical description of Κ sys-
tems.

In this connection we should discuss two numerical
results of a study carried out for systems with the po-
tential in (44) (at present, these two results are the
only ones available). As mentioned earlier, it was
shown in Ref. 61 that the observed expectation values
(x) and (p) vary with the time in accordance with the
classical theory, for sufficiently short times. It also
follows from the results of Ref. 73 that, for the same
(short) times for which the numerical analysis was
carried out, the behavior of the probability amplitude
agrees well with the data from classical dynamics.

It follows that at present we cannot use the quasiclas-
sical approach in its present form for unbounded times.
Then we immediately draw the further conclusion that
we cannot speak of a quasienergy spectrum of Κ sys-
tems, either discrete or continuous.

6. CONCLUSION

The questions discussed in this review show that we
are dealing with new phenomena, about which little is
known, either theoretically or experimentally. The
basic purpose of this review has thus been to draw at-
tention to these questions and to point out relationships
between certain problems which appear at first glance
to be unrelated. We would now like to list some other
unresolved questions.

(a) Quantization of stochastically unstable systems

The question of the energy spectrum of systems with
violated integrals of motion is a particular case of a
more general question: What are the quantum proper-
ties of such systems?

For a long time now we have been accustomed to ex-

FIG. 15. Formation of a multivalued profile of a nonlinear
wave.

pecting a rather reliable quasiclassical approximation
in the limit K- 0. In Keller's expression, this approxi-
mation consists of describing a certain method for pin-
ning some wave "flesh" onto a classical "skeleton."
These questions have now been discussed in many pap-
ers (see the reviews in Refs. 7, 9, and 57). Is the or-
dinary quasiclassical method retained for describing
systems with violated integrals of motion? There are
reasons for doubting that the answer to this question is
yes, as we shall now see.

(b) Wave functions

The first paper in which wave functions derived in the
quasiclassical approximation were subjected to a criti-
cal analysis was that by Arnol'd.58 Studying a special
example, Arnol'd raised the hypothesis that "quasi -
modes", rather than modes, exist in the quasiclassical
approximation (see also Ref. 3). The meaning here is
that as time elapses the wave function becomes pro-
gressively less similar to an oscillation (of, say, the
plane-wave type), and it spreads quite rapidly and con-
verts into a quasimode. Such functions satisfy the equa-
tion quite accurately, but they may be very different
from the eigenfunctions.

The question of the wave-function structure in the
case of a stochastically unstable Hamiltonian becomes
particularly important when we note that the possibility
that there are no modes at all in this case is not ruled
out. The reason lies in the local instability of the tra-
jectories of the particle, which leads to an automatic
spreading of the wave "flesh." This property of wave
functions was discovered in Ref. 22, and in Ref. 60 it
was shown that wave packets which are initially coher-
ent undergo an exponential spreading. The convenient
introduction of quasimodes could apparently simplify
the analysis of stochastic quantum systems.

The structure of the wave functions of the quasiclas-
sical approximation in the case of regular and irregu-
lar spectra has also been discussed by Berry.44·59

(c) Correspondence principle

A study of stochastic properties in quantum systems
shows that certain difficulties arise in the ordinary
quasiclassical approach. At this point we cannot state
whether these difficulties are fundamental or technical
in nature. On the other hand, the correspondence prin-
ciple gives us some alternatives: Either classical Κ
systems are too crude a description of reality, and
there is no such thing as stochastic behavior in the
quantum world, or we are not able to take the limit
properly in the quasiclassical case for Κ systems. The
latter possibility brings back Einstein's critical com-
ments regarding the classical limit in quantum mechan-
ics, and we would like to end this review with his
words:

"We now ask: Does quantum mechanics (with the
limitations on accuracy which follow from it) incorpo-
rate that real description of the motion of macroscopic
objects which is given by classical mechanics?"75
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For a long time now I have been able to discuss the
questions covered in this review with V. I. Arnol'd,
I. M. Lifshits, Ya. G. Sinai, and B. V. Chirikov. I re-
ceived much assistance from V. F. Shabanov in analyz-
ing the material in Section 4c. G. P. Berman, I. A.
Malkin, and L. A. Pastur made several useful com-
ments regarding the original version of the manuscript.
S. A. Molchanov drew my attention to some results re-
ported in Section la before their publication elsewhere.
To all these people I express my sincere gratitude.
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