Study of slow molecular motions by stable-radical EPR

N. N. Korst and L. |. Antsiferova

Institute of Chemical Physics, Academy of Sciences of the USSR, Chernogolovka, Moscow Province

Usp. Fiz. Nauk 126, 67-99 (September 1978)

A review is given of theoretical papers devoted to the calculation of EPR spectra of stable radicals in the
range of slow molecular motions not accessible to analysis by perturbation theory. Modulation of

anisotropic magnetic interactions of the spin of an unpaired electron by random rotations of its carrier is
assumed to be the principal relaxation mechanism in viscous media and at low concentrations of the
radicals. Molecular reorientations are modeled by various random processes of the Markov type. A

method is described for obtaining the basic relaxation equation for the spin density matrix which is
known as the random path method or the method of the stochastic Liouville equation. A method is
described for solving relaxation equations which is common for different models of rotation. Approximate
methods for solving such equations are discussed. Results are given of the comparison of calculations
with observed spectra which permit conclusions to be drawn concerning the nature and intensity of

molecular motions.

PACS numbers: 76.30.Rn

CONTENTS
1. Introduction. . . ... e e e e e et 761
2. The spin Hamiltonian. . .. ... ... . . it 762
3. Relaxation theory and the shape of the paramagnetic resonanceline. .. ...................... 763
a. Shape of EPR line. Definition .. ... . ... . i i it 763
b. Relaxation equations . ... .. c.oiu it i i i e e 764
1. The Bloch-Redfield equation .. ... ... .. ... .. . i i i, 764
2. Slow rotations . . .. ..t i i e 764
3. Rotational diffusion. . ... ... .. i e 765
c. Formulation of a general method for derivation of relaxation equations .. ................. 766
4. Use of the random path method in calculating the EPR. spectra of stable radicals . . ............. 767
a. Some radical-reorientation models . . .. ... .. i i e 767
b. Methods of solving the relaxation equations. . .. ... ... .. ......iuiii ittt 768
1. The adiabatic approximation ... ... ... .....ututteeriiiniiiaiiiiieaaan e, 768
2. General method for solution of relaxation equations. .. ............oovviiiiieinnn. 768
¢. Characteristic parameters of spectra as functions of correlation time of rotations .. .......... 770
d. Influence of nature of radical-reorientation process on shape of EPR spectra ............... 771
1. Isotropic-rotation models. Comparison with experiment. ............................ 771
2. Anisotropic-rotation models. Comparison with experiment .......................... 773
3. Nature of the rotations of the radical as a function of its relative dimensions ............. 774
e. Temperature dependence of rotation correlationtime . .................. ... .iiiiian. 774
5. Nonlinear-responsemethod . ......... . ... . . i e 774
77

References. . .. ...ttt iiiaaaannn e

1. INTRODUCTION

Electron paramagnetic resonance (EPR) is used to
study the whole gamut of condensed media containing
either intrinsic paramagnetic centers, or, more often,
paramagnetic centers injected into the system from the
outside as spin tags and probes. (Free paramagnetic
centers are known as probes and centers covalently
bound to molecules of the medium under study are
called tags.)

The intensive development of the method during the
past decade has resulted in large part from progress in
the chemistry and physics of stable free radicals,
which have come into wide-spread use as tags and
probes. The shapes of the EPR spectra of radicals
carry information not only on their electron-spin prop-
erties, but also on their motion. By measuring the
rotational and translational mobilities of the radicals
with the aid of EPR techniques, we can obtain infer-
ences as to the structure and dynamics of liquids, or-
ganic and liquid crystals, polymeric systems, and the
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like. The use of spin tags and probes in molecular
biology makes it possible to obtain information on the
structure, microrelief, and conformational dynamics
of proteins, enzymes, membranes, and other bio-
molecules.

The fundamentals of a general theory of magnetic
relaxation were developed by Bloch'™, Redfield!, and
others®™®, Freed and Fraenkel® were among the first
to report investigations of the shapes of the EPR spec-
tra of free-radicals. The monographs of Ref.?!! pre-
sent a detailed exposition of the Bloch-Redfield theory.
In this theory, the interaction of the spins with all other
degrees of freedom of the system (spin-lattice interac-
tion) is required as a weak perturbation. Calculation
of the relaxation parameters by perturbation theory
methods limits the application of the Bloch-Redfield
equations to sufficiently rapid random motions of the
spin carriers under the action of the thermal motion
of surrounding molecules.

12~26

The comparatively recent papers , which devel-
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oped methods for calculation of magnetic resonance
spectra, place no limitations on the magnitude of the
spin-lattice interaction. It was these advances in the
theory that stimulated the rapid and productive devel-
opment of the spin-probe and spin-tag methods in mol-
ecular biology and made it possible to interpret the
EPR spectra of slowly rotating radicals in high-vis-
cosity liquids, polymers, and biomolecular sys-
tems?""%2,

As we set forth below the principles of the new method
as applied to thetheory of EPRline shapes of stable rad-
icals, we shall consider only situations in which the
radical concentration in the medium is quite low (107
cm™) and the interaction between the spins of differ-
ent radicals can be neglected (magnetically dilute solu-
tions). Thus, calculation of the EPR spectra is based
on analysis of a single radical molecule in motion under
the influence of its environment. Under these condi-
tions, the basic relaxation mechanism is assumed to be
modulation of the anisotropic magnetic interactions of
the radical by its random rotations. If the random re-
orientation process is characterized by the correlation
time 7 of the rotations and the anisotropic part of the
magnetic interactions of the radical is denoted by o
(frequency units), the condition for validity of the Bloch-
Redfield theory!™ will be written as

ot 1. (1.1)
It signifies that the characteristic frequency o of the
spin-lattice interaction must be much smaller than the
frequency of reorientation v = 7! of the radical mol-
ecule.

Leaving aside the thoroughly understood range of
rapid rotations, we shall include in the review only
those theoretical studies that contain calculations and
procedures for analysis of EPR spectra in the range
of slow molecular rotations (o7 =21).

Since stable nitroxyl radicals (NR) are used in the
overwhelming majority of studies, we shall present the
theory in application to these radicals.

2. THE SPIN HAMILTONIAN

Progress in the use of nitroxyl radicals as spin tags
and probes has been due to their unique properties:
high stability and the possibility of varying their chem-
ical structure in accordance with the particular objec-
tive with practically no change in their paramagnetic
properties. The latter are determined by the para-
magnetic fragment >N-*0, which is common to all
NR (Fig. 1a). It is essential that the stability of NR
does not rest on delocalization of the unpaired electron
over the bonds. The unpaired electron is concentrated

&
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FIG. 1. a) Radical fragment of nitroxyl radical; b) system of
principal axes of the g and A tensors. The £ axis is perpendic-
ular to the plane of the drawing.
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on the N-°"0O group. The nucleus of the most abundant
O!% isotope does not have a magnetic moment, i.e.,
there is no hyperfine interaction with the oxygen nu-
cleus. Therefore the unpaired NR electron interacts
effectively only with the N nucleus, and the weak hy-
perfine interaction with the protons is responsible for
the unresolved hyperfine structure of the spectrum.

If we disregard the weak spin interactions with the
molecules of the environment, which may influence the
unresolved hyperfine structure of the spectrum, the
radical in a magnetically dilute medium is an isolated
spin system." In this case, the spin Hamiltonian is ob-
tained by averaging the total Hamiltonian of the mol-
ecule over one of its orbital states (usually the ground
state). The effectiveness of this approximation depends
on how many times greater is the distance between or-
bital energy levels compared to the distance between
spin sublevels. References!'®!!3¢ give more details as
to the possibility of using the spin-Hamiltonian concept,
and as to its calculation.

The spin Hamiltonian of a nitroxyl radical in an ex-
ternal magnetic field H has the form!!

=Y (BHegoarSor+IaduaSer—hyaHolo +hyh(1)S); (2.1)

o, o’ =x, U,z
here g,, and A,,. are the components of the Zeeman
and hyperfine (HFI) interaction tensors, S and I are the
electron and nuclear spin operators, g is the Bohr
magneton, and y, and y are the gyromagnetic ratios of
the nucleus and electron, respectively.

The last term in the Hamiltonian describes the weak
resultant interaction of the unpaired electron with the
stochastic magnetic fields h(#) created by the surround-
ing medium (induced, for example, by nearby protons).
The influence of h(f) on the unresolved hyperfine struc-
ture of the spectrum (HFS) will henceforth be taken into
account by applying an imaginary increment to the EPR
spectrum. Thus the last term in the Hamiltonian (2.1)
can be dropped. Since the relaxation broadening of the
hyperfine structure of the spectrum (see, for example,
Ref. %®) is much greater than the Zeeman nuclear fre-
quency in the range of slow molecular motions {(¢7 > 1),
the third term in (2.1) can also be discarded.

It has been shown that the principal axes of the ten-
sors gand A very nearly coincide for NR?%. Then the
Hamiltonian (2.1) without the omitted terms can be
writfén as follows in a principal-axis coordinate sys-
tem rigidly bound to the radical (see Fig. 1b):

X = BlereHeSt + gnoHlnSn + gy HSt) + AuLeSy +Annl S o + Ay [15:.(2.2)

It is convenient to choose the z axis of the laboratory
system in the direction of the constant external magnet-
ic field H. Then in sufficiently strong fields (such that
the condition g8H7/%)? > 1 is satisfied) we may discard
the terms of the Hamiltonian that are nonsecular in S,,
i.e., terms that do not commute with S,.'%%" As a
result, the spin Hamiltonian assumes in the laboratory
system the form

H = (g.BH + Ayl + Azy1y+Azz[z) Sz (2-3)

whereg,, and A,, (@=x,9y,2) are the tensor compon-
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ents in this system. The orientation of the system of
principal axes of the magnetic-interaction tensors rel-
ative to the laboratory system is usually described by
the Euler angles 2=(¢,8,¥). We find the dependence
of g., and A,, on these angles by carrying out the ne-
cessary transformations required by conversion to the
new coordinate system. Introducing the operators

It = =+ il,), (2.4)

[
we can represent the Hamiltonian (2.3) in the form

H Q)= 1S, [a(Q) +ay (D I —a(Q T — e, (D ITY, (2.5)

where the coefficients a, ay, and a,y, which are linearly
related to the principal values of the interaction ten-
sors, take the forms

a (- B

- %— {Dlu%)u (Q) Ag
1 D@+ DR ()] Bg.} + 38,

L H2.8)

. T . aa, €
@@ AP @3 ) TP, @ 40P, @) 5k, )
A.L .

‘3 . A 1 2 . @ A
a@-Y2 pe )2 75 DL @+ D8, @)+
here

1 ‘ 1
g=g(gu+gmtex) Ag=gu—8 Agi=5(gx—gm)h

(2.7
1 1
A=5(Ag+ Am+Aw), AA=Ag—A, B4, =5 (Ag—Am)

D& (%) are generalized spherical functions and 6 is the
relaxation width, which is governed by the stochastic
field h(z#).

The monograph of Ref. 38 gives a rather complete list
of calculated and observed values of the hyperfine and
Zeeman interaction tensor components for a number of
nitroxyl radicals. Certain minor differences between
the values of the magnetic-interaction constants for the
various radicals are determined primarily by the elec-
tronic state and by the geometry of the paramagnetic
fragment >N-"0, which vary from radical to radical.
Below we present the principal values of the magnetic
interaction tensors of the di-tert-butylnitroxyl rad-
ical®;

gee = 2.0088 == 0.0003,
&nn == 2.0061 +- 0.0003,
g = 2.0027 + 0.0003,

Ay =31 £05G.

A=Ay, =52+£05G,
} (2.8)

The axial symmetry of the A-tensor for most NRY
greatly simplifies the angular dependence of the Ham~
iltonian (2.5).

It is seen from expressions (2.6) that the spin Hamil-
tonian and, consequently, the position of any energy
level, depend on the orientation of the radical. Since
the radical participates in the thermal motion of the
molecules, its orientation, i.e., the angles 2, vary
randomly in time,

The shape of the resonance signal depends both on the

Dy ibertini and Griffith® found improved values of the HFI- and
g-tensor components of the di-tert-butylnitroxyl radical and
showed that the A-tensor is not axially symmetric. Thus,
neglecting A4, in formulas (2.6), it is more correct to speak
of the axially symmetric approximation.
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anisotropy of the magnetic interactions (4, Ag,B,,0,)
and on the intensity of the disordered rotations which
the radical undergoes. As we noted above, the rate of
these reorientations of the molecules is usually char-
acterized by the correlation time 7 of the rotational
motions (whose value depends on the temperature of the
medium). It follows from (2.5) and (2.6) that the an-
isotropy of the magnetic interaction of the unpaired
electron is characterized by the following parameter,
which is expressed in frequency units:

Ag BH A AAl}
’ [ ’ A [} *

AgpH
Lt (2.9)

0=max{

For NR in the three-centimeter wavelength band that
is normally used (H=3300 Oe), it amounts to 4.5- 10%
sec™'. Therefore, the Bloch-Redfield condition (1.1)
is not satisfied for these radicals at 7>10° sec.

3. RELAXATION THEORY AND THE SHAPE OF THE
PARAMAGNETIC RESONANCE LINE

a) Shape of EPR line. Definition

The coefficient of absorption « (w) of the energy of an
alternating magnetic field of frequency w and the shape
of the resonance signal J(w) are related by J (w)
= d(w)/w?. In the approximation of linear response to
a weak radio-frequency field, the shape of the EPR is
expressed”?® in terms of the Fourier transform of the
relaxation function G, (#):

+oo
J (@)= o Re S G.x (t) et dt. (3.1)
The relaxation function G,,(t) is the autocorrelation
function of the transverse (relative to the constant mag-
netic field H) component M_(¢) of the specimen’s mag-
netic moment:

Gon ()= L)

p(M3) (3.2)

where M, is the operator for the x-component of the
spin-system magnetic moment and the brackets (...)
indicate averaging over the molecular motion.

We note that the relaxation function (3.2) can be re-
placed in formula (3.1) by the approximate form

G (1) o SRS 0O (3.3)
In fact, the operator M, has the form
Mx = ﬂ (gxxSx + gxySv + gusz) (3 .4)

in the laboratory system. The diagonal g-tensor ele-
ment g,, is of the order of g (2.7), while the off-diago-
nal elements are of the order of Ag. Therefore the
second and third terms in (3.4) are smaller than the
first by a factor g/Ag~10? and can be dropped. It has
been shown’’ that the off-diagonal elements make a
significant contribution to (M,(#)) only in the range of
strong resonance-line narrowing (g8H7/%#<<1). Thus,
we can use the expression

Foo
I (@)==Re | Sp(S. (S tn)e-tetar

—ao
+oo

=77 Re | Sp(S_(S: (1) +Su(S-(eN}e-ratat,
° (3.5)
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where S, =S, £4S, can be used for the resonance-line
shape J (w) over practically the entire range of cor-
relation times except for the range of very rapid
rotations (7<107! sec).

b) Relaxation equations

To calculate the spectrum J(w) (3.5) it is necessary
to find the time dependence (S,(¢)}. The Heisenberg
equation for the operator S,(¢) (and similarly for the
spin density matrix) has the form

dS:‘(!) = % [ (Q(2)), S+ ()],

(3.6)

where the Q(f) are random functions of time because of
the random motion of the radical in the liquid. The un-
known values of (S,(f)) can be found by solving Eq. (3.8)
for an arbitrary §2(¢) dependence and averaging the re-
sulting solutions over the distribution of a random
process that models the reorientations of the radical.
But it is obvious that this is generally impossible.
There is another way. It is based on derivation of equa-~
tions for S,(#) (or the spin density matrix) that have al-
ready been averaged over the stochastic motion Q(z).
For this purpose, it is necessary to use, in addition to
(3.6), a mathematical description of the random process
chosen to model the reorientation of the radical.

1. The Bloch-Redfield equation. If the relaxation
time of the spin system is much larger than the correla-
tion time of the molecular motion, an equation for the
averaged value of S,(#) can be obtained by introducing
a “coarse-grained” time whose unit interval is differ-
entially small for the variation of the spin variables and
large enough so that all quantities can be averaged on it
over the molecular motion. Then condition (1.1) is
satisfied and equations for the spin density matrix are
derived within the framework of the Bloch-Redfield
theory (similarly, they could be obtained for an arbi-
trary spin operator of the spin system under study).
The Redfield equation? has the form

oo (3.7)
where a and g8 are the indices of the spin states, KE is
the part of the spin Hamiltonian that includes only the
spin operators and the external field and does not depend
on the molecular coordinates, i.e., the “lattice” co-
ordinates [for the Hamiltonian (2.5), for example, this
is gBHS,+ AS,1,], and R,,.se is the relaxation matrix,
the elements of which do not depend on time, since we
are concerned with weak alternating fields. In the sim-
plest cases, this matrix is determined by the two re-
laxation times T, and T, that were introduced by Bloch*!
into the macroscopic equations. Equation (3.7), unlike
(3.6), no longer contains the lattice variables in ex-
plicit form. Lattice information is present only in the
elements of the relaxation matrix R, which is the
Fourier transform of the correlation functions of the
variables that enter into the spin-lattice interaction.

By the definition that follows from the t:heory,4 calcu-
lation of the matrix is based on use of perturbation
theory for the spin-lattice interaction. In the Hamil-
tonian (2.5), this interaction is described by the part
that depends on the orientation angles of the radical. In
this case, inequality (1.1) is the condition for smallness

= —i[E, plaa’ + RuupsPeps
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FIG. 2. Spectra of nitroxyl radical—(a) theoretical and (b) ob-
served in glycerine at various temperatures.¥®

of this interaction. In the range of values of 7 that sat-
isfy this inequality (rapid rotations), the theoretical
spectra obtained with Eq. (3.7) consist of well-resolved
hyperfine-structure lines separated by a distance 4, in
agreement with the experimental facts®,

2. Slow votations. As we noted above, the range of
slow rotations (07 = 1), where the spectrum becomes
much more complicated (see Fig. 2), is of considerable
interest. The most general derivation of the relaxation
equations, which does not limit 7 or state a specific
form of the random process describing the reorienta-
tions of the radical, was presented in the original pap-
ers of Refs. 19-22 and in the collection of Ref. 42. We
shall present an intuitive derivation of these equations
for certain particular cases of random processes and
then generalize the result to an arbitrary process of
the Markov type®.

We consider first the case in which the random pro-
cess that models the motion of the radical reduces to
the following. Let the radical be able to assume only
a finite number of orientations Q,, Q,, ..., 2y, and let
it be for a certain time in some definite orientation &,,
after which it instantly changes its position, assuming
another orientation £, from the given discrete set. To
describe this random process, it is necessary to spec-
ify two sets of quantities: firstly, the average life-
times in each orientation, 7(2,), j=1,..., N(T"(Q,) has
the meaning of the probability that the orientation £,
will change to any other orientation during a unit time),
and, secondly, the probability of transition p(Q2,8,)
from some orientation , to an orientation £,, if it is
known that a transition has taken place. It follows
from the definition that

N
g’ P2 =1. (3.8)

For a stationary process, T(Q,) and P(ﬂ,n,,) do not de-
pend on time.

If we consider a time interval Af so small that no more
than one reorientation can take place during it, the ratio
Af/T(R,) gives the dimensionless probability that the or-
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ientation Q; will change during time Af. A condition for
smallness of Af is the inequality

(3.9)

Let the radical be in orientation , at time ¢ and let the
value of the Hamiltonian that corresponds to this or-
ientation be #{Q,). We use S,(Q,,?) to denote the oper-
ator S,{#) of the radical in position £,. On the basis of
Eq. (3.6), we now find the changes of S,(,,¢) during

a time Af small enough to satisfy condition (3.9) and
the inequality

Aton. () € 1,

where w,, is any of the allowed frequencies of the Ham-
iltonian #{Q,). If the radical, having had orientation

Q, at time ¢, retains it throughout the time interval a{f,
the equation

AL T Q) §=12,..N.

(3.10)

dS. (Qn, ¢

L ) %[97.{ (@), S+ (R, )] (3.11)

and condition (3.10) indicate that the value of S,(%,, #)
at time { + Af equals

St (@, t4+ A= {84 @, )+ 15 (), S+ @ D] MH(1— i)

(3.12a)
If at time ¢ the radical was in some other orientation
Q,, it will change to orientation §, during Af with a
probability p(2,2,)At/7(2,). As a result of the transi-
tion of the radical to orientation &, from any other or-
ientation ©; with the corresponding value of the spin
operator §,(£,, #) there arises another possibility for
variation of S,(R;, #) in time:

P(Q2;Q%)

T (3.12b)

' S (@, t AN =3

S+ (Q;, t) At.

Summing (3.12a) and (3.12b) and retaining only terms
of the first order in A¢, we find the total change of
S,(€,, t) during the time Af:

84 (R, t+88)— 84 (@, 1)

i 8, Q. P (2,9)
= {10 @), S+ (@, 1] — 255 +~Ef. a5 @ B} at.
j#l

(3.13)
Dividing both sides of this equation by Af and letting
At -0, we finally obtain the following system of equa-
tions for S,(R2,, )2

ds, Q. ¢ i S, (Qn, t P (2,%%)
Beln D — 1168 @)y S+ (@, ] =250 4 % S+ @ ),
x
k=1,2, ..., N,

(3.14)
The initial conditions for §,(R,, ¢) are determined by the
probability 2, of finding the radical in orientation &,

at time ¢{=0. They will obviously have the form
S+ (Q,0) = FpSs. (3.15)

The averaged value (S,(#)) over the given random pro-
cess is found as follows:

N
(S+ () :.21 S (@, 1). (3.16)

DThis derivation of the equation is a generalization of Kubo’s
derivation.!
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An equation similar to (3.14) for the density matrix was
derived by Johnson,*® who used it to take chemical ex-
change into account in solving some nuclear magnetic
resonance (NMR) problems®¢,

From (3.14) we can pass to an equation that pertains
to the more general case of continuous distribution of
the possible orientations. Letting N -, we introduce
the quantities defined by the following relations:

Sie@e

lim =
sp.0 A8

=1(QQ), (3.17)
where E,p(ﬂ’ﬂ,) is the sum of the probabilities of trans-
ition from ' to orientations £, that fall in the range
Q,Q+AQ, and, similarly,

2 S+ (in t)

lim -
290 aQ

=8,(2, t). (3.18)
The function f{Q2'Q) has the meaning of the transition
probability density, and the behavior of the radical is
now described by the following model: for a certain
average time 7(R’), the radical “lives” in a state with
orientation £’ and then with probability f(2'Q)/7(R")
abruptly changes to a new orientation 2. As a result

of this limit transition we obtain an integrodifferential
equation for S,(, #):

da5:(Q, 8 i
at -

-— T IQ —-— , ,
166 @, 5@ 0 — 2G04 [ LER 5. @, nag.

(3.19)

The initial condition for (3.19) follows from (3.16) and
contains, instead of the probability #, the probability
density () = ggg(z‘ﬂ,mm as follows:

(3.20)

and, finally, the average value (S,(¢)) over the reorien-
tation process equals

S:(,00=8 @8,

(. () = S 5.@. tyde. (3.21)

We note that the equations for the spin density matrix
that are derived in this way differ from (3.14) and
(3.19) only in the sign of the commutator.

3) Rotational diffusion. The random process des-
cribed at the end of the preceding section also includes
continuous rotational diffusion as a particular case.

In this case, f(Q2'Q) resembles a § function centered
near , and Eq. (3.19) reduces to a differential equa-
tion of the Fokker-Planck type (see, for example, Ref.
47).

Let us make certain simplifying assumptions. First,
we assume that 7(R) does not depend on : 7(Q)=r.
Secondly, we assume that the transition probability
density f(Q2'?) depends only on the rotation angle ¢ that
translates the orientation Q' to  (and does not depend
on Q' and Q): f(Q'Q) =f(e). By definition, the absolute
value |e| equals the rotation angle, and the direction
of ¢ coincides with that of the axis of rotation. Now
the integral term in Eq. (3.19) can be represented in the
form

(3.22)

Here Q' should be understood to represent only the or-

Lir@s@, nae.
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ientations that give the orientation  after the rotation
€. The random process becomes a diffusion process
under two assumptions regarding f(g):*** 1) fle) =f(-¢)
and 2) all moments of f(g) higher than the second can be
neglected.

Let us assume that S,(®, #) as a function of Q can be
expanded in a Taylor series; then on transition from
Q' to R it is transformed in accordance with the form-

ula®

5. (&, ty=exp (D)5, (@, 1), (3.23)

where the J (e =x,y,2) are the operators of infinites-
imally small rotations and coincide with the angular-
momentum operators (£=1). Substituting (3.23) into
(3.19) after modifying the latter in accordance with
(3.22), we find

el 21 @, 5o @ 11— 22D 1 L (1 (o) exp (12575, (@, 1) ave.

(3.24)

Expanding exp(ie .7) in powers of £, and retaining series
terms up to and including the second powers, we ob-
tain

B LD — 1156 @), 51 @, D]~ TaDasTs5, (2, 1), (3.25)
where
Dgp= -511— S d®eeqesf (2). (3.26)

The aggregate of the D, is the radical’s rotational-
diffusion tensor, and the last term in (3.25) takes into
account the influence of the rotational diffusion on the
behavior of the spin system. The quantity S,(2, #) has
the meaning of the spin operator averaged over the
rotational-diffusion process. However, this is not a
complete averaging, since this quantity retains the
dependence on the values §2 of the spin orientation at
time . According to (3.21), we obtain the fully aver-
aged value of the spin operator (S,(#)) by integrating
5.(, t) over all orientations £2.

In a case that occurs often, the rotational-diffusion
tensor is spherically symmetric, Dgz=D6,q and Eq.
(3.25) assumes the form

@9 _ L1t @), 5 (2, 01+ DVESL (@, 1), (3.27)

where V?, is the Laplace operator. In general form,
Eq. (3.25) describes the spin relaxation of a radical
in anisotropic rotation. Anisotropy of rotation arises
as a result of nonsphericity of the molecule®!**? or
because of anisotropy of the medium®®. In the most
general case, the anisotropic diffusion describes

the rotation of a nonspherical molecule in an aniso-
tropic medium.

¢) Formulation of a general method for derivation
of relaxation equations

The relaxation equations (3.14), (3.19), and (3.25)
derived above are conveniently represented in the
general form

M:%[&[ ), 5o (@, 1)] — LoS4 (R, £). (3.28)

dt
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The last term in the equation, which contains the oper-
ator L, takes into account the influence of lattice-co-
ordinate motion on the spin system. The specific form
of this operator is determined by the type of random
process that models the lattice motion. Namely,

ro- = [ 458

a2}, (3.29a)

if the radical can assume all orientations from a con-
tinuous set and change its orientation through an ar-
bitrary angle during an infinitesimally short time;

Lo=J40Dopds (3.29b)
in the case of rotational diffusion; and, finally,
—P(Q2)/1(Q,) when j#k,
La= ), =] T ) e T (3.29¢)

if the orientations that the radical can assume form a
set of discrete values.

We note that Eq. 3.28) differs from the original
equation {3.6) in that its Hamiltonian does not depend
on the time. It is easily shown that the operator L,
determines the time variation of the probability density
#(Q, t) that the radical will have orientation Q at time
t:

2RO~ Lo @ 1), (3.30)

The correspondence shown here between Eq. (3.30)
for the probability density and Eq. (3.28) can be gen-
eralized to the case of an arbitrary Markov process,®
and the method for derivation of the relaxation equations
can be formulated as follows.

If the distribution function of the random Markov pro-
cess that describes the molecular motion is described
by an equation that can be written in the form (3.30),
the relaxation equation for the incompletely averaged
spin operator S,(R, #) has the form (3.28) or, similarly,
the equation for the partial density matrix p(®, #* of
the spin system can be written in the form

D L 158(Q), 0 (2, )] —Lap (2, ). (3.31)

The method developed is based on two assumptions.
The first and strongest is that we ignore the effect of
the spin system on the dynamics of the lattice. Second-
ly, in studying the influence of the lattice on the spin
system, we assume that its dynamics is described with
the aid of classical mechanics, since the motion of its
coordinates is described with the aid of the random-
path concept.

1t follows from the first assumption that the quantum
of energy #iw transferred from the spin system to the
lattice must be small, fiw <kT.% In fact, since we are
discussing a situation in which the characteristic re-
laxation times of the spin and lattice coordinates are
comparable, it is difficult to imagine how a sufficiently

3)The value {p(t), which is fully averaged over the molecular
motion, is related to p(Q, t) by {p(¢) = fp( Q, t)dQ.

OThis inequality is practically always satisfied under NMR and
EPR conditions. For example, the quantum energy does not
exceed 1°K under ordinary EPR experimental conditions
{H~16° G).
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large quantum %w =k7T would not disturb (at least lo-
cally) the state of the lattice, and how this, in turn,
would not affect the spin system. However, the final
answer to the question as to how necessary the condi-
tion Aw < kT is in order to be able to neglect the effect
of the spin-system on the lattice can evidently be ob-
tained only from a microscopic analysis. The paper
by Bukhbinder, Kessel’ and Khazanovich,* in which an
equation similar to (3.31) was derived from a micro-
scopic analysis of the lattice degrees of freedom, is
interesting from this standpoint. This equation was
derived on the assumptions that the condition Aw <<kT
is satisfied, quasiclassical description of the “slow”
lattice coordinates is admissable, and the correlation
times of the velocities of the slow motions are small
enough so that a coordinate description of the lattice
motion is admissible. This demonstrated the suffic-
iency of 7iw <ET for derivation of Eq. (3.31), although
the necessity of this condition was not proven.

The method discussed here for description of relaxa-
tion processes in spin systems bound to the lattice is
based on the concept of integration over the paths (the
Wiener integral®). Actually, a paramagnetic particle
(radical, ion, molecule with magnetic nuclei) is acted
upon not only by the external field, but also by the in-
ternal magnetic fields created by the molecular sur-
rounding and by intermolecular interaction. The mag-
netic interaction depends both on the orientation of the
particular magnetic-moment carrier in the external
magnetic field and on its position relative to the sur-
rounding molecules. Therefore the internal fields de-
pend on the configurational coordinates of the para-
magnetic particle, and, as a result of its motion, the
particle’s magnetic moment becomes a functional of
its path. But since we observe the total magnetic mo-
ment of all molecules in an experiment, its evolution
is determined by the entire set of molecular paths. As-
suming statistical motion of the particle in the liquid,
we choose an appropriate random process as a model
of its motion. Averaging over the realizations of the
random process is equivalent to integrating over the
random paths.

Therefore the spin-relaxation description procedure
based on Egs. (3.31) might be called the random-path
method. This method is sometimes referred to in the
literature as the method of the stochastic Liouville
equation. This name reflects the fact that the ordinary
Liouville operator in Eq. (3.31) for the spin density
matrix, the operator that describes fully the time var-
iation of all coordinates and momenta of the lattice, is
replaced by an operator that describes the stochastic
nature of the magnetic molecule’s motion. Therefore
an approximate description of the molecular motion
is used in this method, but its influence on the spin
variables of the particle is taken into account exactly.

4. USE OF THE RANDOM-PATH METHOD IN
CALCULATING THE EPR SPECTRA OF STABLE
RADICALS

Use of the basic equation (3.31) for analysis of EPR
spectra is most effective in the range of slow molecu-
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lar motions (072 1), which is inaccessible to theoretical
analysis on the basis of the Bloch-Redfield equations.

It is in this range that the shape of the EPR spectra
is most “sensitive” to variation of the parameter 7,
which characterizes the rate of the molecular motion.
This was confirmed by the very first calculations of
spectra that were performed by various auth-
org!6-18:3558,57 hy the random-path method. The result-
ing theoretical spectra of stable radicals®**-*® and
triplet molecules (ions)!® duplicate the basic features
of the experimentally observed lines and correctly re-
flect the changes in the experimental spectra with
temperature as the parameter 7 is varied (see, for
example, Fig. 2). By comparing calculated and ex-
perimental spectra, we can estimate the mobility of
the radicals in the temperature range in which 7 varies
in the range 10°-10"" sec.

The form and methods of solution of the relaxation
equations (3.29) and (3.31) are determined by the form
of the operator Ly, which describes the variation of
the coordinates responsible for relaxation. However,
the Bloch-Redfield equations imply that in the range of
rapid rotations the relaxational widths of the Lorentz
spectral components depend only on the parameter of
the model that characterizes the intensity of the ro-
tations and not on the specifics of the reorientation pro-
cess. It has been shown®0?%242 that the shape of the
calculated EPR lines begins to depend noticeably on
the model of radical motion in the range o7~1. There-
fore detailed comparison of the calculated with the ex-
perimental spectra and analysis of the results of com-
parison over the entire range of variation of the ob-
served lines with temperature could, in principle,
provide the answer to the question as to which radical-
motion model can be used to best advantage in a given
medium. The studies of Refs. % %5 were devoted to
the solution of this problem.

Before turning to an exposition of the principal con-
tent of these studies and of the methods developed for
solving the relaxation equations, let us consider some
models of random radical motions which after
comparison with experimental data were discussed in
the papers cited above as being competitive.

a) Some radical-reorientation modeis

The three models that will be discussed under this
heading describe random rotations of a spherically
symmetric molecule in an isotropic medium.

The Debye rotational diffusion model {A) assumes con-
tinuous variation of the variables 2. The relaxation
equation (3.27) with the operator DA?, corresponds to
this model.

The simplest variant of the model in which the or-
ientations change abruptly was proposed by Korst. %
This is the model of uncorrelated jumps (B), which
assumes that the molecule has some fixed orientation
Q' during an average time 7,; it then changes it in-
stantaneously by a (jump) to a new orientation £, with
jumps through various angles being equiprobable, i.e.,
there is no correlation between the two successive
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orientation values Q' and Q. The relaxation equation
corresponding to this model is derived from the gen-
eral form (3.19) by putting 7(8) = 7, (the molecule exists
for the same time on the average in any given orienta-
tion) and A(Q'RQ) =1/87° (the model assumes any orienta-
tion with equal probability irrespective of the preced-
ing orientation):

15 @), 81@ 01 —2L0 4 Lo (5, (0.

Te

£:.0.0 (4.1)

The model that has come to be known as the free-
diffusion model (C)?® assumes that the molecule rotates
freely (executes inertial motion) during the average
time between two successive orientation changes by
jumps. A mathematical description of this model will
be discussed somewhat later.

Below we shall set forth a general approach to the
solution of the relaxation equations. It is based on
expansion of the solution in eigenfunctions of the oper-
ator L.

The eigenfunctions of the random-rotation operator
[see, for example, (3.29a) with 7(Q) = 7] are general-
ized spherical functions DY’ (2)* . This means that

LoD () = Epy m, nDR 2 (), 4.2)

where E; , ., are eigenvalues of the operator Ly. If
the rotation is isotropic, the values of E, ,, , depend
only on the index I: E, , . =E,.

The eigenvalues of the operator DV [model (A)] are

determined by the formula
EP=t(+1)D. (4.2a)

It is easily verified that the operator LJf of the uncor-
related-jump model (see (4.1))

Lg:%(l—ﬁ%j ... @) (4.3)
has eigenvalues of the form
EP=1;'(1—8)). (4.2b)

These molecular-reorientation models (A and B) are
Markov-type processes. If we treat the changes in

the position of the particle in diffusion phenomena or
Brownian motion as a Markov process, this means that
we do not take into account the inertia of the particle
and it is sufficient to introduce only angular coordinates
to describe its random rotations. Model C includes

in the analysis inertial motion of the particle between
two successive collisions with surrounding molecules.
This model cannot be described in terms of a Markov
process in coordinate space. This situation can be
corrected by going over to Markov processes in the
phase space of the particle. Use of the Fokker-Planck
equation in the space of angular velocities and orienta-
tion coordinates® is an example of this approach to the
description of rotational diffusion in EPR problems.

Goldman et al.,’® who used the free-diffusion model
(C) in calculating EPR spectra, specified this model
formally by a set of eigenvalues:

Ef= i+ D

_ e 4.2¢
TV ILId 1) Dy ( )
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This mathematical formulation of the model is based
on a rough estimation of the linewidth Aw, ~ E,,% which
is defined by the Fourier transform of the correlation
function of the Legendre polynominals P;[cos6(f)]. In
calculating Aw,;, Goldman et ql. 58 proceeded from the
model discussed by Sack,®’ which takes particle inertia
into account in a rough approximation. Later, Bruno
and Freed® analyzed these approximations and showed
on a simple example of a spectrum without hyperfine
structure, calculated in the approximation of model
(4.2c), that this approximation results, fortunately in
an insignificant deviation from the spectra stemming
from the model of Fixman,®! which takes inertial ef-
fects into account correctly.

b) Methods of solving the relaxation equations

1) The adiabatic approximation. Several authors!é-1?

have used the adiabatic approximation in solving the
relaxation equations. Let us briefly describe this
method of solution as it applies to the situation des-
cribed by the Hamiltonian (2.5).

We represent the Hamiltonian (2.5) in the form

H Q) = 8.H; (Q), (4.4)
where
FHr (N =rhla(Q)+a, (@)1, —a (Q) If —aqy(Q) Il—l]- (4.5)

Let ¢ ,(Q) be the eigenvalues of the Hamiltonian %(ﬂ)
(j assumes 27+ 1 values). Instead of the Hamiltonian
(4.4), we substitute Hamiltonians of the form

H; Q) = hS*w; (Q),

into Eq. (3.29), with w Q) =¢,(2)/%. We obtain the
equations
(4.6)

= [iw; () — La) 5P (@, 1),

P
SR i=1,2, ..., @+1).

Now instead of the system of coupled equations that
arises from (3.28) when the Hamiltonian (4.4) is used,
we solve a system 2/+1 independent equations (4.6).
We then find the unknown S,(R2, ¢} as the sum of the
partial values SY(@, ¢#):

5. (@, =3, 89, ). 4.7

This substitution is legitimate only for rather slow mol-
ecular motions, ¢7> 1, when the characteristic fre-
quencies of variation w,(Q) in the variation of Q are
much smaller than the difference w,— w,. Therefore
the error introduced by the adiabatic approximation
becomes smaller the slower is the motion of the mol-
ecules. In the limiting case of completely “frozen”
motions, the solution (4.7) is the exact solution of
system (4.6). The physical content of the adiabatic
approximation consists of the fact that the transitions
between sublevels of the hyperfine interaction that are
induced by the molecular motion can be neglected.

2) General method for solution of relaxation equations.
The operators S, and S. appear in expression (3.5) for
the line shape. The only nonzero matrix elements
(+| S,l -) of the operator S, corresponds to the electron
spin transition —1/2 -1/2, Similarly, the element
(-=]8.]+) corresponds to the electron-spin transition
from the state 1/2 to the state —1/2.
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Since only terms secular in S, have been left in the
spin Hamiltonian (2.5), the relaxation equations for the
operator functions S,(R,f) and S.(Q, #) are independent.
However, the matrix elements S,(2,#) (and similarly for
5.(82, 1)} that correspond to various initial and final
nuclear-spin states are related to one another, since
the Hamiltonian (2.5) contains terms with the operators
', The number of spin states with fixed electron-
spin projections and different nuclear-spin projections
is 2I+1. Therefore the number of matrix elements
[mf+ | 5,(R, ) |m,~] of the operator S,(2, # that cor-
respond to the electron-spin transition —-1/2-~1/2 and
differ in the initial m, and final m; spin states of the
nucleus is (27+ 1)2. This number determines the dim-
ension of the system of coupled equations for the ma-
trix elements §,(£2, #) that is obtained from the operator
equation (3.28). In the simplest situation, in which the
nuclear spin is 1/2 (nitroxyl radical with the rare
isotope N'® %%, Eq. (3.28) becomes a system of four
equations. We shall set forth the method of solving the
relaxation equations with this radical as an example.

We introduce the following notation for the matrix
elements of the electron-spin transition | -)~(+ | ,
which differ in the nucleus indices (m; =11/2):

u= (50 HIS@ D15, =),

u=(—5, +15:@ 0l—3, —).
PR P
W= (-1, +5.@0l3. ),

o= (g, +HI5@01-7. —).

(4.8)

We write the system of equations for the v'*’(;
=1, 2, 3, 4) obtained from the operator equation (3.28)
in matrix form:

LD 2 (@)—Lal v (@, 1) (4.9)
here the matrix £(2) has the form
a ay/2 —a_/2 —a,, /2
so-(y U4 (410
a_,/20 0 a

and the components of the vector v(2, ?) are composed
of the matrix elements v'?, ¥, v'®, and »'¥:

v (Q, £} 1
2 (Q, 1 [0

v = ("‘Eg 3) v, O)zw(o)-
0

vd) (Q, £)

(4.11)

The initial conditions for v(§2, #) follow from the def-
inition (4.8) and formula (3.20).

Applying the Laplace transformation

o

1@ 0)=5; | V(@ yemrar, (4.12)
0
to Eq. (4.9), we find
j0g(2, ) = [iZ (@) + Lol (R, 0) + 3z v (2, 0). (4.13)

We note that Sp{S.(S,(#))} in formula (3.5) can be ex-
pressed as follows in terms of the matrix elements
(4.8):
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Sp {S_(S. (&)} = S (— 18- +)v®(Q, 1) dQ = j v (Q, 1) dR.

Therefore the shape #(w) (3.5) of the resonance line
is expressed in terms of the component ¢‘(Q, w) of
the vector q(§2, w):

J (@) = Re j [g® (@, ©) + ¢ (Q, —o)] dQ. (4.14)

The elements of the matrix £(Q) [see 4.10) and (2.6)]
are expressed in terms of the generalized spherical
functions D2 (2). It is therefore natural to seek the
solution of (4.13) in the form of an expansion in terms of
the complete set of orthogonal functions D! (©), which
are eigenfunctions of the operator Lg:

q(Q, ("):l Z Cl.,m.n((‘)) stll),n(g)' (4-15)

Substituting (4.15) into Eq. (4.13) and applying relation
(4.3) and the orthogonality property

§ DR @ DR (@) dQ =P S-S (4.16)

we obtain

T @—E)Cma— 3§ D@ DL 0 (@ £@ €y,

lymyn,

= w—iﬁ. 51. (3
(4.17)
Evaluating the integrals with the aid of the relation

§ D42 o @ DG, @ DR (@ d2=8n2 (3 12 ) (h Bk (4.18)

B " my mg my/ \ny ny ny
(the expressions in parentheses are 3j symbols®), we
obtain an infinite chain of algebraic equations for the
coefficients C{!) . in the expansion (4.15), where i
labels the components of the vector C ,, ,-

Only the coefficient C(‘,,‘(’,,0 appears in the expression for
the line shape J (w) (4.14), as is easily verified by in-
tegrating the series (4.15) over the angles. Since, in
the approximation of axial symmetry of the HFI tensor,
the elements of the matrix £(Q) [see (2.6)] contain only
the functions D) (2) with m =0, £1, only the coeffic-
ients C ')  with m =0, £1 turn out to be coupled to
Cd} o by the algebraic system (4.17). Therefore the
coefficients of the series (4.15) have the structure

Ci1 (@) 8pm, o
{8 (©) 6m, o
€, (@) 8,
€3 (@) dm, -,

Cr, o (@) = (4.19)

The infinite chain of algebraic equations (4.17) for the
coefficients (4.19) is usually solved by numerical meth-
ods with the aid of computer.®’ The rate of convergence
of the series (4.15) and, consequently, the dimension
of the finite equation system that approximates the in-
finite system, depend on E,;. At a given intensity, the
series converges more rapidly for the Debye model

91t is not necessary to seek the solution of Eq. (4.13) in the
form of the expansion (4.15) for the uncorrelated-jump model.
It is much simpler to find the solution of the integral equation
derived from (4.13) with L# in the form (4.3). Owing to the
simple form of the integral operator (4.3), the equation is
reduced to a system of four algebraic equations for the
g w)(i=1,2,3,4).70%
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(4.2a) and convergence deteriorates with decreasing
parameters 1/7, and D regardless of the model.

The method set forth above (which is the same for the
various models) for solving relaxation equations is
applicable in principle to a spin system of any number
of states. The system of algebraic equations for the
coefficients in the expansion (4.15) was written out in
detail in the paper of Ref. % for a radical in which the
spin of a nucleus interacting with an electron equals 1.
Figure 2 shows experimental and theoretical spectra
of such a radical as obtained for the uncorrelated-
jump model.?* Examples of spectra calculated for other
rotation models will be given in later sections.

c) Characteristic parameters of spectra as functions
of correlation time of rotations

To compare experimental and calculated EPR spec-
tra, it is helpful to find a theoretical relation between
some spectral parameters and the model parameter
characterizing the rate of rotation (calibration curves).

As we noted above, therate of reorientation of a parti-
cle is usually characterized by the rotation correlation
time 7 (see, for example, Ref. 49), The average 7,
spent by the radical in a state with a fixed orientation
in the jump model agrees by definition with the correla-
tion time 7 that figures in Redfield’s theory®. In the
continuous~diffusion model, there is no such direct
correspondence between the model parameter and cor-
relation time 7. In the limit of very rapid rotations,
when the main contribution to the width of the Lorentz
lines comes from the eigenvalue E? with I=2, the
quantity 7,=1/6D appears in the expression for the line
shape in the same way as 7. For this reason, it can
be expressed as a parameter characterizing the inten-
sity of rotations in the continuous-diffusion model,
and in a formulation without regard to model it is also
customary to define the rotation correlation time by
the formula

t=Ez .

(4.20)

The spectral parameters sensitive to variation of 7
that have been used in various studies are related in
one way or another to the shift of the outer extremums
of the derivative of an absorption line dJ(w)/dw (see
Fig. 2). For example, Kuznetsov et al. *® introduce the
parameter

K — Hy ()—Hyy (1 0) 100,

Hoy (x> 0)—Hyy (T 0) (4.21)

The quantity H,,(H.,) defines the position (in gauss) of the
outermost extremum, which corresponds to m;=1 (m,
= -1)., The strength of the constant magnetic field H

is varied in experiments at a fixed alternating-field
frequency. Therefore the extremum with m; =1 lies

in lower fields (H,; <H.,). In the range 3- 10° <7<10®
sec, the high-field extremums (m = -~1) of EPR spectra
are indistinct (see Fig. 2), so that the shift of this
extremum is measured less accurately in experi-
ments. The low-field (m;=1) extremum is sharper
throughout the entire range of 7. The normalized shift
of this extremum from its position in the limit of very
rapid rotations (7—0) (4.21) has been used®® as a spec-

770 Sov. Phys. Usp. 21(9), Sept. 1978

T TN T T T T T

8 8 X

T T T T
1

-

4

1L

Lo
w?
7,sec

a W
v iad w?

FIG. 3. Spectral parameter K vs. rotation correlation time.%

tral parameter that is convenient for measurements.
Figure 3 shows a K(7) relation calculated for the un-
correlated-jump model (4.3). %

The distance 24;, between the outermost extremums
of the absorption-line derivative dJ(w)/dw varies for
a nitroxyl radical (with N') from 24 for very rapid ro-
tations to 24,, for completely “frozen” rotations.
Therefore 24;,, which equals the “peak-to-peak ampli-
tude” of the spectrum and varies monotonically with 7,
can also be taken as a characteristic spectral para-
meter for construction of the calibration curve. Thus,
Freed et al.% introduced the dimensionless quantity

Sl ____ Hym-H,)
t  Ha(t—o)—H, (T )

1Y

(4.22)

and proposed that the theoretical S(7) relation be used
to mark experimental spectra with the parameter 7.
S(7) was calculated in the approximation of axially sy-
mmetric HFI and Zeeman-interaction tensors. The
possibility of using this approximation to compute the
S(7) calibration curve was based on the argument that
the anisotropic part of the magnetic interactions af-
fects for the most part the shape of the central com-
ponent (m =0) and has little influence on the outer ex-
tremums of the absorption-line derivative.

McCalley, Shimshick, and McConnell®® used AH,,(7)-
the shifts of the outer extremums with respect to their
positions for completely “frozen” rotations-as cal-
ibration parameters:

AH ., (v)y=H, (v c0)—H .y (7). (4.23)

The solid curves in Fig. 4 represent these parameters
as functions of 7 for a Brownian rotational-diffusion
model. McCalley ef al. used the adiabatic approxima-
tion in solving the relaxation equations.

The dashed curves in the same figure represent the

T.56eC

FIG. 4. Shifts AHy of outer extremums of nitroxyl-radical
spectrum vs. correlation time 7 in the range of slow isotropic
rotations. The dashed curves represent jumpwise Brownian
rotation, ¥ and the solid curves diffusional rotation.%®
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AH, (1) relations found by Kuznetsov et al.®® for the un-
correlated orientation-jump model.

Figures 3 and 4 show that the calibration parameters
remain practically constant as 7 varies in the range
72107 sec. The S(7) relation is also of a similar na-
ture. This makes it difficult to estimate the intensity
of radical rotation from the observed spectra in this
range. Accordingly, Mason and Freed® proposed using
the parameters W,(i =+1), which are equal to the ratios
of the widths (at half-height) of the outer extremums to
their values as 7—«. However, these parameters de-
pend strongly on the magnitude of the unresolved HFS.
In the view of these authors, use of the series of re-
lations between (W, — 1) and 7 that they computed for
various values of 6 would broaden the range of mea-
surement of 7 to 5 107% sec.

Huang and Kivelson'® proposed an original method for
selection of calibration parameters. It is based on
the formalism developed in Ref. 13 for solving the basic
relaxation equation, whence it follows that the function
J (w) can be represented in the form

5 B AT B T} (0-—~wj~—0y)
()= 2 1+{e—w;—0)’T; " T+{@—w;—0)iT; '
i

(4.24)

here i{w - w, -0, +(1/T, are the eigenvalues of the
operator defined by the right-hand side of Eq. (3.27),
and the amplitudes A, and B, are expressed in terms
of the eigenfunctions of the same operator. A theoreti-
cal investigation was carried through for the case in
which there is no hyperfine interaction and the line
shape is governed by the anisotropy of the axially sym-
metric g-factor. It was found that the line shape of
the highest-intensity spectral component is accurately
described by the first term of the sum in (4.24). Thus,
the shape of the “principal” line (or at least its ex-
tremum part, excluding the wings) can be described

by the formula

Aol + B,T3 (0 —@y— 0Ty}
1+ (0—wg—0e)2 Ty 14 (0—wy—0,)2 T, *

Jo(w)= (4 25)
Therefore the “principal” line of the spectrum is des-
cribed as a Lorentz line (first term) with the addition
of a dispersion-type term (the authors refer to this
combination as a generalized Lorentz line). The
half-width T5' and shift o, of the “principal” line and
its asymmetry parameter B,/o, are convenient cali-
bration parameters. They vary appreciably with var-
iation of 7, =1/6D all the way up to 7,~10"" sec. This
choice has merit in the lucid physical interpretation of
the parameters, which are related naturally to the
structure of the solution. However, the experimental
verification of the proposed method can be accepted as
being only qualitative, since the parameters of the rad-
ical chosen by the authors of this paper did not con-
form adequately to the theoretical model.

d) Influence of nature of radical-reorientation process on
shape of EPR spectra

1. Isotropic-rotation models. Comparison with
experiment. Goldman, Bruno, Polnaszek, and Freed®®
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investigated the nature of the motion of the PADS® rad-
ical in various media (water-glycerine mixture, ice,
and deuterated ice). Since the shape of the observed
lines of the radical in ice varies with increasing tem-
perature from the characteristic shape for “frozen”
rotations to the shape corresponding to rotation at max-
imum speed, Goldman ef gl.® conclude that PADS ro-
tates quite rapidly in cavities formed in the ice.

The hyperfine splitting of the spectrum of the inorgan-
ic PADS radical is governed, as in the case of the
nitroxyl radicals, by the interaction between the spin
of the unpaired electron and the spin of the nitrogen
nucleus. However, PADS does not contain hydrogen
atoms, and therefore the amount of unresolved HFS of
this radical is much smaller than for most nitroxyl
radicals. For the same reason, it is smaller in deu-
terated ice (D,0O) than in ordinary ice, and varies from
0.2 G in the range of rapid rotations to 1.1-1.5 G in the
absence of rotation. The decrease of the contribution
of the residual width § to the relaxational linewidths
enables us to determine both the values of the g- and
A-tensor components and the nature of the radical’s
rotation with greater accuracy. In fact, the increase
in the amount of unresolved HFS results in smoothing
out subtle details of the spectrum and thereby lowers
the “sensitivity” of the spectrum to the nature of this
rotation.

Spectra of the PADS radical were calculated for two
random-rotation models—continuous (A) and free (C)
diffusion. The authors found the free-diffusion model
preferable on the basis of comparison of curves found
by the above method with experimental spectra’ ob-
served at various temperatures of the media studied.
Curves 1 in Figs. 5 and 6 demonstrate the results of
superposition of the spectrum observed at T=-60°C in
deuterated ice on the theoretical spectra of models A
(Fig. 5) and C (Fig. 6). We note that the deviation of
the theoretical from the observed spectrum in the
ranges from -20 to —10 G and from 15 to 25 G is sig-
nificantly smaller in the case of model C as com-
pared to model A.

Nitroxyl radicals with the rare isotope N'3 in a
water-glycerine mixture were chosen by Antsiferova
et al.”® as objects for experimental and theoretical
study of the influence of the model on the shape of the
spectra. In the rapid-rotation range this system was
first studied by Stryukov and Rozantsev.”! They showed
that the conditions for rotational isotropy are satisfied
in the water-glycerine mixture for these radicals.
Antsiferova et al.® proposed that a model of a spherical
radical rotating in an isotropic medium could also be
used in the range of slow rotations. The difference be-
tween the theoretical spectra of the two models—con-
tinuous diffusion (A) and uncorrelated jumps (B)—was

$)PADS is potassium nitroxyldisulfonate, an inorganic nitroxyl
radical often known as Fremy’s salt.

Dwe do not discuss methods and criteria for selection of the
theoretical spectrum most appropriate to the experimental
spectrum, instead referring the reader to the original papers
cited here and below.58%
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FIG. 5. Comparison of experimental and theoretical spectra.’®
The dotted curves represent the experimental spectrum of the
PADS radical in deuterated ice at T=-60°C, and the solid
curves the theoretical spectra of the models: Diffusional iso-
tropic rotation (1)(T=6v273(8g H/K)(EP)" = 15) and axially sym-
metric diffusional rotation with an anisotropy factor
N=3@Q)(15=6V273(BgH/M)r5=15).

investigated under these hypotheses as a function of the
hyperfine-interaction tensor parameters. The prin-
cipal values of the g-tensor agree for the two struc-
turally identical radicals with N'* and N'°, since they
are determined by the spin-orbit interaction of the un-
paired electron, while the values of the A-tensor com-
ponents disagree because of the large difference be-
tween the gyromagnetic ratios of the N** and N*® nu-
clei”?. Spectra of models (A) and (B) were calculated
for two sets of magnetic-interaction constants cor-
responding to the radicals with N'4 and N'5. It was
found that the line shapes of these two models differ
more strongly in the case of the radical with N'5. This
is because the values of the hyperfine interaction ten-
sor components of the N'° radical are approximately
1.5 times’! larger than the corresponding A-tensor com-
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FIG. 6. Comparison of experimental and theoretical spectra.”
Dotted curves: same as Fig. 5; the solid curves represent the
theoretical spectra of the models: isotropic free diffusion
(A)(F=6vZ73(8gH/K)(E}*)" = 10) and anisotropic free diffusion
with an anisotropy factor N=3 (2){75=6v273(8gH/R)T5=10).
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ponents of the structurally identical radical with N¢,
These facts played a certain role in the selection by
Antsiferova et al.®® of the radical with N* for studying
the influence of the nature of its rotation on the shape
of the spectrum.

Antsiferova et al.*® presented a whole series of theor-
etical spectra for models A and B that had been cal-
culated for various values of the parameters 7, and 7,.
The amount of unresolved hyperfine structure 6 was
also varied in the calculations. It was assumed that 6
varies monotonically with 7,,(7,) from 1.5 to 4 G.
Estimation of the limiting values of this quantity was
based on analysis of experimental spectra for very
rapid and completely “frozen” rotations. The cal-
culated spectra were compared with experiment over
the entire range of temperature variation of the ob-
served lines. In the range 7,,=7,<3 10" sec, the
spectra of the two models considered are the same and
agree well with experiment. Noticeable differences in
the line shapes of models A and B appear at 7,=17,
25- 107 sec. These differences increase as the mo-
bility of the radical decreases. The uncorrelated-
jump model gives a rather good description of exper-
iment over the entire range of variation of the radical
mobility with temperature. As an example, Fig. 7a
presents experimental spectra for comparison with the
theoretical spectra of model B. The existing differ-
ences in certain details of the spectra can be explained
by the lack of precision in specifying the radical’s
parameters and by the assumptions on which the model
is based (equal probability of jumps through any angle,
isotropy of §). However, the observed difference be-
tween the spectra of model A and the experimental
spectra (Fig. 7b) is more substantive and cannot be
explained by similar causes. Accordingly, Antsi-
ferova et gl.*® find it possible to conclude that the un-
correlated-jump model gives a more adequate des-
cription of the motion of this radical in the viscous
medium studied. In any event, we can definitely, say
that a realistic model should contain jumps through
finite angles.
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FIG. 7. Comparison of experimental and theoretical spectra.’®

The dotted curves represent the spectra of a nitroxyl radical
with the isotope N¥in glycerine; the dashed curves in Fig. a)
represent the theoretical spectra of the uncorrelated-jump
model with 7,=7-10" sec (1) and 7,=8-10" sec (2); the solid
curves in Fig. b) are the theoretical diffusional-rotation spec-
tra with 7p=6-10"% sec (1) and 75,="7.5-10" sec (2).
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2. Anisotropic-votation models. Comparison with
experiment. Goldman ef gl.%® attribute the not quite
satisfactory agreement between the theoretical and
experimental data (for example, the disagreement
between the amplitudes of the extremums to possible
effects of the nonsphericity of the radical on the nature
of its rotations, and, consequently, to deficiencies of
the isotropic-rotation models A and C that were con-
sidered.

Anisotropic diffusion is described by the operator
(3.29b) with the diffusion tensor D, whose principal
values differ from one another in the general case.
Let x'y‘z’ be a system of diffusion-tensor axes that is
bound to the radical, and let D, D, and D, be the prin-
cipal values of the tensor that correspond to these
axes.

Generally speaking, this system does not coincide
with the £nk principal-axes system of the radical’s
magnetic-interaction tensors. In the axially sym-
metric diffusion model, we have D,=D,+D;. Freed
et al.®® chose such a model as a probable model for
the rotation of PADS. They concluded from spatial-
symmetry features of this radical that the x'y’z’ axes
coincide with the £&nt axes, but left open the choice of
the equivalence of the preferred axis of rotation z’
to one of the axes £,7, £. Experimental spectra of the
rapidly rotating PADS radical in ice and in a water-
glycerine mixture were analyzed. It was shown on the
basis of Redfield’s theory* and Freed and Fraenkel’s
papers®8 that the best agreement between experiment
and theory results when it is assumed that the 2z’ axis
coincides with the naxis. The value of the rotational-
anisotropy parameter N=D,/D, was determined and
found to be equal to 2.9+ 1 according to the data for
PADS in ice and 4.7+1 for PADS in the glycerine-
water mixture.

The influence of the rotational-anisotropy factor on
the shape of the theoretical spectra was investigated
in the slow-motion range for two models—axially
symmetric Browian diffusion (D) and anisotropic free
diffusion (E). The diffusion operator of model D ag-
rees up to a factor with the symmetrical-top Hamil-
tonian operator (see, for example, Ref. 65) and takes
on the form

Lp=—= —D(Vx’l—‘(Ds—Dl)“éi—g- (4.26)

The eigenvalues of this operator are

E}S =Dl (I4-1)+(Dy— Dy n2. (4.27)
Since the isotropic free-diffusion model was specified
formally by Goldman et gl.°® by a series of eigenvalues
E*® (4.2¢), they introduced rotational anisotropy in this
model by a simple generalization of formula (4.2c):
namely:

El”nd _ Dyl (14 1)+ (Dy—Dy) n® |

’ Vi< Dl 4+ 1)

here D=vVD,D,. (D7, was assumed equal to 1 in the
calculations.)

(4.28)

The quantity 7,= 6B,D)"! was used as a parameter
with the meaning of the correlation time of the aniso-
tropic rotations. Here B,—the model parameter-
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equals 1 for Brownian diffusion and B,={1+1(1+1)]!/?
for free diffusion. :

The results of comparison of the pair of theoretical
spectra for models D and E with the observed spectrum
of PADS in deuterated ice (T = —60°C) are represented
by curves 2 in Figs. 5 and 6, respectively. As in the
isotropic case (N=1 curvesl in Figs. 5 and 6), the
spectrum of the free-diffusion model (see curve 2 in
Fig. 6) gives a much closer approximation to the ex-
perimental spectrum than the spectra corresponding
to Brownian diffusion. There are also certain improve-
ments in the agreement between the spectrum cal-
culated with N=3 and the experimental spectrum (see
curve 2 in Fig. 6) as compared to the isotropic case
(see curve 1 in Fig. 6). This applies to the spectral
range from —10 to -20 G and also to a decrease in the
amplitudes of the hyperfine-splitting outermost ex-
tremums and in the width of the central component.
The paper also includes spectra calculated with N=6.
Although these spectra give improvements in certain
details as compared with N =3, the agreement with the
experimental spectrum cannot be regarded as satis-
factory on the whole. On this basis, Goldman et al.5®
conclude that the best agreement between theory and
experiment is obtained with the anisotropy parameter
N =3 in the free-diffusion model.

Kuznetsov and Radsig’™ studied the variation with
temperature of the EPR-spectrum shapes of peroxide
radicals (ROO’) obtained on irradiation of polymers in
the presence of oxygen. These are radicals without
hyperfine interaction and with a g-tensor that as an
approximation can be assumed to be axially symmetric
with the symmetry axis directed along the 0—0° axis.
The EPR spectra of radicals of “terminal” and “middle”
types were investigated in polytetrafluoroethylene
(PTFET and PTFEM). It has been established earl-
ier™ that the EPR line shape of the PTFEM radical is
governed in the range of rapid rotations by the rotation
of the polymer chain around its long axis, and that the
angle between the axis of rotation and the symmetry
axis of the g-tensor is close to 7/2. Comparison with
the theoretical slow-rotation spectra (in the anisotropic
uncorrelated-jump model) showed that the nature of
this radical’s motion does not change as the tempera-
ture is lowered. It was established on comparison of
theory with the observed EPR lines of the PTFET rad-
ical that this radical also rotates around a single axis
that forms an angle n/4 with the symmetry axis of the
g-tensor. .

Mason, Polnaszek, and Freed™ interpreted the EPR
spectra of spin-tagged polybenzyl glutamate in a dim-
ethylformamide solution. Experimental data on elec-
tron resonance in this system were published by Wee
and Miller’® (the nitroxyl radical was used as the tag).
Analysis of the data showed that the tag radical rotates
rapidly about the line of the chemical bond, while the
actual macromolecule to which it is attached reorients
slowly in the isotropic liquid. Mason et al. > proposed
a simplified model for this motion, using an axially
symmetric diffusion tensor such that D,(D;) pertains to
the motion around the line of the bond, while D (D)
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takes all other rotations into account. Thus the prob-
lem of calculating the spectra is formally equivalent

to the problem solved by Goldman ef g1.%% A contin-
uous-diffusion model was used to describe rotation
around these axes. Specific calculations were made
for the fixed value 7, =(6D)™ =5. 10 sec and var-
ious values of 7, =(6D,)™ from 6+10™ to 510 sec.
Here the anisotropy parameter N (in the terminology of
Ref. 58) varied from 1 to 8.66 - 102. It was found that
agreement with experiment is good when the spectra are
calculated on the basis of this significaritly simplified
interpretation of the complex motion of the tag radical.

A general theory of relaxation for the case in which
the lattice has “rapid” and “slow” parameters was
developed by Bukhbinder et al®*. Spectra of an aniso-
tropically rotating radical were calculated on the basis .
_of this theory for the same model that was proposed by
Mason ef al.”®. The.anisotropy parameter was varied
in the range from 1 to 100.

The motion of a radical in a liquid crystal is one ex-
ample of anisotropic rotations governed by the aniso-
tropy of the medium. Bruno, Polnaszek, and Freed"
calculated EPR spectra in the range of slow rotations
of a radical in such media.

3. Nature of the rotations of the radical as a function
of its relative dimensions. Arguiments advanced by
Frenkel’™ indicate that the manner in which a particle
rotates in a liquid depends on its relative dimensions.
If the size of the molecule under study is large enough
compared to the dimensions of the solvent molecule,
the continuous rotational diffusion model can be used.
As the size of the molecule of interest becomes
smaller, there is an increasing probability of jumpwise
reorientation through large angles. Therefore the
model of jumpwise changes in orientation is more likely
for particles in a surrounding of molecules of com-
parable or larger size. The results of the investiga-
tions described in subsection d) of this section do not
contradict this reasoning. For spin-tagged oxyhemo-
globin in aqueous solutions, whose relative dimensions
are large, the experimental spectra agreed closely
with the theoretical spectra calculated using the Debye
rotational-diffusion model®?,

Experimental studies of the nature of the reorienta-
tion process as a function of radical size were under-
taken by Kuznetsov ef al.”®.

As Fig. 4 shows, the value of AH,, depends weakly on
the rotation model, while the plots of AH., against 7 for
the jump and diffusion models differ noticeably. There-
fore, R= AH_,/AH,, plotted against AH,, can serve as a
model characteristic that is helpful in interpretation of
experimental data. The region of variation of the theo-
retical R(AH,,) is shaded in Fig. 8 from an upper bound-
ary that represents the shape of this function for the
diffusion model to a lower curve that corresponds to the
uncorrelated-jump model. Experimental R(AH,I) curves

s
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FIG. 8. Plots of the parameter R against AH,; for a number of
nitroxyl radicals in n-butanol,™ |

are the relative dimensions of the radical. These re-
sults can be regarded as a confirmation of concepts of
Frenkel’, -

e) Temperature dependence of rotation correlation time

Comparison of the experimental spectra of a radical
in a medium at various temperatures with the theoreti-
cal spectra yields the dependence of 7 on temperature.
This relation is found in the rapid rotation range by
measuring the widths and amplitudes of individual hy-
perfine components of the observed lines and calculat-
ing 7 from analytic formulas derived on-the basis of
Redfield’s theory (see, for example, Ref. 66). Calibra-
tion curves are used to construct this relation in the
slow rotation range. Correspondence is established
between a given value of T and a temperature from the
agreement of the calibration parameter values inea-
sured on the observed and theoretical spectra®®. Fig-
ure 9 shows plots of T against reciprocal temperature
as obtained by this method® *® from data for a water-
glycerine mixture. The relation between log 7 and 1/T
is linear throughout the entire temperature range stud-
ied. This means that 7(7) can be described by a form-
ula of the Arrhenius type: 7(T)= 7 exp(E,/ET), where
E, is the activation energy of reorientation. Accord-
ing to Ref. 66, its value is 12+ 0.5 kcal/mole. Goldman
et al .>® and Antsiferova et al.%® obtained values in this
range for the activation energies in the same medium
(water-glycerine mixture): E,= 13£0.2 kcal/mole and
E,= 11 kcal/mole. Certain differences in the E, re-
sult from the fact that the height of the activation bar-
rier depends on the viscosity of the medium, and the
percentage compositions of the water-glycerine mix-
ture were not the same in the various experiments.

5. NONLINEAR-RESPONSE METHOD

The EPR spectra discussed in the preceding sections
were recorded with a weak radio-frequency field that

TABLE I.
Radical M Vo d Radical M Vo d
1 376 7 3 4 267 4 2.2
2 303 6.5 1.8 5 182 2.5 1.2
3 289 6 2 8 166 2 1.3

were plotted™ for six radicals of different sizes and
molecular weights in z-butanol (their characteristics
are given in Table I). These curves lie in the shaded
region and are closer to the lower boundary the larger

M is the molecular weight and V, the molecular-volume ratio of the
radical and n-butanol; d=2I;/(Iy+13), where I is the linear dimen-
sion of the radical along its longest axis and I, and [ are its linear
dimensions along the other two axes.
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FIG. 9. Rotation correlation time (logarithmic scale) vs. 1/7T.
1) For nitroxyl radical with isotope N'% inglycerine; 5 2) for PADS
radical in the same medium; % a) Redfield theory;4 b) uncorre-
lated-jump model; c) continuous diffusional rotation; d) free
diffusion.

did not disturb the equilibrium distribution in the spin
system. This makes it possible to construct a spin-
system relaxation theory in an approximation linear in
the radio-frequency field, which leads eventually to
expression (3.1) for the shape of the EPR line. The
methods that have been developed for calculation of the
spectra place no limits on the mobility parameter 7 of
the spin carrier. However, EPR study of molecular
mobility under conditions far from saturation is lim-
ited to the temperature range corresponding to 7 <107
sec, since the shape of the line undergoes practically
no change with increasing 7 at rotation correlation
times 7 2107 sec.

Hyde and Dalton®® and Goldman, Bruno, and Freed™
showed that EPR spectra obtained at saturation, i.e.,
on application of a comparatively strong radio-frequen-
cy field, are “sensitive” to temperature changes in the
range of very slow molecular motions (r 2 107 sec).
The linear-response approximation is not suitable in
this case. Therefore, the description of the spin sys-
tem must take exact account of the time dependence of
the applied field and the Hamiltonian #(Q) (2.5) in the
equation for the density matrix (3.31) must be replaced
by a Hamiltonian of the form

S = S (Q) + ke (2); (5.1)
here &(t) takes into account the interaction between the

spin system and the external alternating fields and can
be written in the form

e(£) == dy (Sye~i0t 4 S_e) 4 (4, + ;L) (elost o), (5.2)

where

d=Lp, oLy, a-

=9 —3H,

H, is the amplitude of the applied radio-frequency field
of frequency w, and H_ is the amplitude of modulation
of the constant field H with frequency w,. The state of
the spin system becomes essentially nonequilibrium at
saturation. Accordingly, it is especially important to
consider transfer of spin-system energy to the lattice.
To take account of this transfer, the equations for the
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diagonal elements of the spin density matrix acquire a
term that determines the relaxation of these elements
at the rate T}(T, is the spin-lattice relaxation time

for the electron spin, which is usually estimated from

independent experiments).

In this case, the solution of the spin density matrix
equation can be sought in series form:
400

p=pot 2, 3 Con(k) DR, n(R)exp i (0 + ko,)¢],
k:

=—ool, m, n

(5.3)

where p, is the equilibrium spin density matrix and the
coefficients C(m")n(k) form a matrix in the space of spin
variables whose components are related by an infinite
chain of equations similar to (4.17).

Three types of experiments involving saturation ef-
fects have been discussed in the literature®°®” as meth-
ods for studying molecular motions with correlation
times exceeding 1077 sec. Simplest among these is the
stationary-saturation method, which uses a moder-
ately saturating field (a field such that the signal has
an amplitude sufficient for observation). EPR spectra
observed in the stationary-saturation regime were
investigated in comparison with the theoretical spec-
tra®, It was noted that the shape of the spectra changes
appreciably with changes in the strength of the radio-
frequency field. Accordingly, it was proposed that the
spectra be compared with respect to the parameters
Ho (+1)/H_,,(0) and H,, (+1)/H_(~1), where H_ (m )
is the value of the radio-frequency field at which the
component m (m ;= 0, 1) of the hyperfine structure of
the spectrum has its largest value. Comparison of the
theoretical and experimental values of these ratios en-
ables us to plot 7 against temperature in the range of
large correlation times from 107 to 10™ sec. Cal-
culations made for the Debye and free rotational-dif-
fusion models have shown that EPR spectra in the sat-
uration regime are “insensitive” to the type of molecu-
lar motion.

Another experimental approach to the investigation of
very slow motions is the stationary electron-electron
double resonance (ELDOR) method®2™4,

In ELDOR, two resonant radio-frequency fields act
on the specimen. One of them is a saturating field with
frequency w,, and the other is a weaker “tracking” field
of frequency w. The relative decrease of the EPR sig-
nal is recorded as a function of the frequency differ-
ence: (w,~ w)/271= Av. As for calculations of this ef-
fect, atermd,(S +e™#s* +S_e'“s*), which describes
the interaction of the electron spin with the saturating
microwave field, must be added to expression (5.2) for
£(t), and the expression d, (S,e"*“* +S_¢*“*) must be un-
derstood as its interaction with the weak “tracking”
field. Theoretical relationships for the ELDOR signal
as a function of the frequency difference Ay were ob-
tained® for 7, of 3- 10, 107, 1.2- 107, and 3- 107
sec. A jump model with a fixed angle step was chosen
as the radical-reorientation model. The results of cal-
culations made for two values of the unit orientation
jumps (0.5 and 0.15 radian) differ appreciably. This
encourages the belief that it may be possible to choose
2 model that permits optimum simulation of the ob-
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served ELDOR specira and estimation of rotation cor-
relation times all the way up to 7= 1075 sec.

Study of still slower motions with correlation times of
up to 10~ sec was made possible by the use of rapid
passage through resonance under saturation condi-
tions®™8538  Portis®™ was the first to observe spectra
under conditions of rapid EPR passage. The shape and
intensity of the EPR signal depend strongly on the ad-
iabaticity® of the passage, as well as on the relation
between the time of passage across resonance and the
times of longitudinal T, and transverse T, relaxation®,
The conditions for adiabatically fast passage through
resonance are the inequalities®

7o T T S <.
Use of the fast-passage method to investigate low mol-
ecular motions has the following physical basis. Be-
cause of the anisotropy of the radical’s magnetic in-
teractions, passage through resonance conditions is
brought about not only by the change in the external
field, but also because of the rotational motions of the
radicals themselves. Therefore the velocity of rota-
tion determines the nature of the passage across reson-
ance, and this has a significant effect on the observed
rapid-passage signal.

Hyde and Dalton®® observed the spectra of tanol in
sec-butylbenzene at various temperatures. The rota-
tion correlation time corresponding to these tempera-
tures, which was estimated from the Debye-Stokes
formula®®’ varied in the range from 107 to 10™ sec.
The conditions for experimental observation of the
signal were determined by the inequalities

%<Q,T“<i, A_H>Hn

where AH is the total width of the resonance line. The
spectrum was recorded by phase detection at the mod-
ulation frequency. It was shown that the first harmonic
of the dispersion signal, which is phase-shifted 90°
from the modulating field, is most “sensitive” to var-
iation of T in the slow-rotation range.

The dependence of the observed dispersion signal on
the intensity of the radical’s rotation was confirmed by
the theoretical calculations of Thomas and McConnell®®,
who modeled the experimental conditions of Ref. 80.
They used the adiabatic approximation in solving the
initial equations and chose Debye diffusion as the mol-
ecular-rotation model.

It was shown that the line shapes of the first disper-
sion-signal harmonic, with the 90° phase shift from
the modulation field, and of the second absorption-
signal harmonic, which has the same shift, change
noticeably as T varies in the range from 10”7 to 10™ sec.
The amplitudes of these signals are quite high, amount-
ing to 50% of the amplitude of the ordinary absorption
signal for the anomalous dispersion and 25% for the
anomalous absorption.

811 adiabatic passage, the projection of the magnetization vec-
tor on the direction of the effective field remains constant in
a coordinate frame that rotates at the frequency w.
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FIG. 10. Observed® anomalous dispersion spectra of TANONE
nitroxyl radical with isotope N in sec-butylbenzene at various
temperatures.

Dalton et al.®® observed the spectra of the TANONE
nitroxyl radical with the isotope N'® in sec-butylbenzene
under conditions of adiabatically rapid passage through
resonance. The resulting spectra were compared to
theoretical spectra calculated with Eq. (3.31) for the
density matrix, using the Debye diffusion model, the
Hamiltonian (5.2), and the expansion (5.3). Figures 10
and 11 show the experimental and theoretical anomal-
ous dispersion spectira given in that paper. The latter
change shape noticeably as the parameter 7 varies all
the way up to 7= 10™ sec. The agreement of the cal-
culated and experimental curves can be regarded as
quite satisfactory. Certain differences in the centers
of the spectra are attributed by Dalton et al. to the
approximation of axial symmetry of the g-tensor that
was used to simplify the calculations. The cited paper
also presents rapid-passage spectra that demonstrate
the clear dependence of their shape on the power of the
radio-frequency field.

The reliability of quantitative molecular-motion char-
acteristics obtained by EPR methods that involve sat-
uration effects depends in an essential manner on the
precision of measurement of the spin-lattice relaxa-
tion time T,. In fact, the radio-frequency field energy
acquired by the spin system is transferred to the lattice
at a rate T;l. Rotation of the radical drives the spin
system out of saturation at an average rate 7!, There-
fore the range of variation of the saturation spectra that
is critical with respect to the rate of molecular rota-
tation is the range of 7 comparable in magnitude to T,,

Further progress in investigation of slow rotations by
EPR techniques depends in principle on improvement
of experimental procedures, since methods for theoret-
ical calculation of spectra on the basis of relaxation
equations of the type (3.31) are suitable for molecular
motions that are arbitrarily slow. Moreover, certain
theoretical studies are ahead of experiment. For ex-
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FIG. 11. Theoretical anomalous dispersion spectra for various
values of the correlation time 7, sec.%
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ample, Freed®® and Smigel and Dalton®® considered the
possibilities of nonstationary EPR methods in investi-
gation of slow molecular rotations. They give a theoret-
ical treatment of the “recovery,” with time, of the
spectrum that forms on pulsed saturation of the speci-
men to the usual spectrum without saturation as a func-
tion of the relation between the times of rotational cor-
relation 7, spin-lattice relaxation 7, and the saturat-
ing pulse duration 7,. Smigel and Dalton®! also in-
vestigated the influence of the molecular-reorientation
model on the details of “recovery” of line shape.

It should be noted in conclusion that nonmarkovian
random processes have recently been examined as mol-
ecular-rotation models. The spectrum of a deuterated
nitroxyl radical was investigated in various deuterated
solvents over a broad temperature range®:. It was con-
cluded on the basis of a very subtle analysis similar to
that in Refs. 58, 67 that it is advantageous to take into
account the fluctuating moments of forces exerted on the
radical by its surroundings. If it is assumed that the
correlation time of these fluctuations is non-zero, the
Fokker- Planck-type diffusion equation that describes
the rotation of the radical will contain an integral oper-
ator that takes the aftereffect into account. In this
case, derivation of an equation similar to (3.1) for the
density matrix of the spin system is a special prob-
lem.

The authors thank T. N. Khazanovich, who accepted
the task of reading the manuscript and offered a num-
ber of helpful comments.

Note in proof. It will be well to mention the recently
published monograph,®® which contains a large set of
theoretical EPR spectra that correspond to situations
frequently encountered in experimental practice.
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