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According to modern ideas there is a sharp boundary between the localized and extended states in the
electron spectra of disordered systems (amorphous semiconductors, doped crystalline semiconductors,
etc.)· The mathematical description of the electron states near this boundary is a very complicated
problem which is not yet completely solved. The purpose of this review is to describe, in the simplest
possible way, without going into the mathematical problems, the basic physical ideas that have been put
forward in this field. The Anderson and Lifshitz models are considered in detail and the criteria for
localization are discussed. Examples are given of systems in which it is possible to observe experimentally
the transition from localized to extended states that occurs when certain parameters are varied. The
concept of minimum metallic conductivity and the properties of the wave functions near the boundary of
the localized states are discussed. The results of computer experiments that attempt to model a
disordered system near the mobility edge are described. The difficulties that arise in attempts to give a
mathematical description of such a system, and the basic ideas of such a description, are discussed in the
form of a conversation with an unsophisticated partner.
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1 INTRODUCTION o i c a s e s t h e impurity band does not possess the most
important property of crystalline bands—an electron

The developments with which we shall be concerned ι placed at one of the impurity centers does not spread
in this review arose from a paper by Anderson,1 en- out over all the centers from which the band is con-
titled "Absence of diffusion in certain random lattices". structed. Its wave function remains localized. At low
This paper appeared in 1958 and was somewhat ahead impurity concentrations all the states are found to be
of its time. The rapidly growing interest in amorphous localized. When the concentration is increased an
semiconductors in the mid 1960's placed the problem energy band in which the states are extended appears in
of the electron states of disordered systems in the fore- the impurity band. The transition that occurs from ex-
front of the physics of condensed media. In this period, tended to localized states on variation of the energy,
the ideas put forward by Anderson were evaluated in full impurity concentration, or other parameters, has be-
measure. come known as the Anderson transition.

For definiteness, we shall discuss first a crystal into n appears to us that the theory of the Anderson trans-

which an impurity has been introduced, creating an ' i t i o n j s n o t complete at the present time, and it is not

electron state with energy Eo in the gap. It is custom- o u r purpose to give a review of the methods developed

ary to say that, for a finite concentration of impurities m connection with this problem. We notify the reader

of the same kind, an impurity band, having a finite j n advance that our list of references is not complete,
energy width, arises in place of the impurity level. For T n e purpose of the review is to attempt to describe,
the reader, the word "band" will bring to mind the i n the simplest possible way, using practically no math-

Kronig-Penney model, which illustrates beautifully the ematical apparatus, the basic ideas that have been put
smearing out of a level into a band. In this case, the forward in connection with the Anderson transition. It
states are characterized by a wave vector and their seems to us that such an account could be useful for
properties differ little from those of plane waves. In experimental physicists studying this question, and also
the case of a random distribution of impurities, how- for theorists wishing to form an idea of the problem,
ever, the system does not have the translational sym-
metry that is assumed in the Kronig-Penney model. The plan of the review is as follows. In Sec. 2 we
Anderson showed that, because of this, in a number of use the tight-binding method and discuss the proper-
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ties of the narrow bands that are formed by periodically
arranged impurity centers situated at large distances
from each other. The band structure that arises in this
standard treatment is unstable. The electron-electron
interaction leads to splitting of the band, as a result of
which the occupied band and empty band are found to be
separated by a gap (the Mott transition). This section
has an introductory character. Subsequently we con-
fine ourselves to the one-electron approximation and
discuss the question of electron localization in the
Anderson and Lifshitz models. In Sec. 3 the Anderson
model is formulated, the causes that lead to electron
localization are explained, and a simple estimate of the
localization criterion is given. In Sec. 4 it is shown th
that electron states are also localized in the Lifshitz
model (randomly arranged short-range centers). In
Sec. 5 some systems in which the Anderson transition
is observed are discussed. In Sec. 6 the properties
of the electron states in the neighborhood of the Ander-
son transition are considered. Finally, in Sec. 7 the
theoretical difficulties arising in the description of the
Anderson transition are discussed.

2. NARROW BANDS AND THE MOTT TRANSITION

We begin this section with an auxiliary problem,
which we shall subsequently cast aside. We shall sup-
pose that the impurities in the crystal are not distribu-
ted randomly but form a regular crystal lattice (im-
purity sublattice), with a period much greater than that
of the underlying crystal lattice. By the tight-binding
method we obtain the energy spectrum and wave func-
tions of the electrons in the impurity band. This model
permits us to develop the terminology used in the fol-
lowing sections. In addition, we briefly discuss here
the question of the role of electron-electron interaction
under the conditions of a narrow allowed band.

The potential created by the impurity sublattice has
the form

Ι'(Γ)-^Ο(Γ-Ι,.), (2.1)

j

where the sum is taken over all sites of the impurity
sublattice, and t/(r) is the potential of a single impurity
center. The problem will be solved in the framework
of the effective-mass method. We suppose that we
know the wave functions φη and energy levels En cor-
responding to the solution of the Schrodinger equation
with the potential of one impurity center:

Γ ^-Δ+(7(Γ) ] φη = £ηφη, (2.2)

where m is the effective mass. For simplicity we con-
fine ourselves to the case of a normal band, i .e., a
nondegenerate band with an isotropic and quadratic
spectrum.

We shall assume in the following that the width of the
impurity band is much smaller than the spacings be-
tween the levels En, and consider the neighborhood of
one of these levels (Eo). It is well known that a wave-
function corresponding to the potential (2.1) must be
constructed in the form of a superposition of functions
<p(r-r,) satisfying (2.2):

(2.3)

(2.4)

This approximation should be good if the localization
length a of the function φ(τ) is small compared with the
period 60 of the impurity sublattice. Indeed, the prin-
cipal contribution to the energy is given by those re-
gions of space in which the wavefunction *(r) is large,
and these points, as can be seen from (2.3), are very
close to the impurity centers, i .e., within the sphere
of influence of one impurity, in which Eq. (2.2) is valid.
Thus, the experession (2.3) should be close to the sol-
ution of the Schrodinger equation with the potential (2.1).
The coefficients as must be found from the minimum-
energy condition.

Since the wave functions <p(r-ry) corresponding to dif-
ferent sites are not orthogonal, the expectation value of
the energy is not a quadratic form in the coefficients
ar However, ifa«& 0, the overlap between neighbor-
ing states is small. In this case we can confine our-
selves to the first approximation in the expansion of the
expectation value of the energy in aja]tm. For the part
of the energy depending on a*ajArm we obtain

S=S«VW. (2.5)
S.m

The quantity I(m) is called the energy overlap integral
(or simply the overlap integral). We shall not give ex-
plicit expressions for it. We note only that under the
conditions of interest to us it is very small, since it
contains the factor e'^1" (for nearest neighbors).

It is easy to see that the set a} that minimizes (2.5)
under the condition (2.4) has the form as=^neit"tiKJf
is the total number of sites of the impurity sublatticej.
Substituting this expression into (2.5), we obtain

£ = 2 eibn/(m). (2.6)

Since the quantity /(m) falls off exponentially with in-
crease of | m | , in (2.1) it makes sense to confine our-
selves to nearest neighbors. The actual expressions
depend on the form of the lattice. For example, for a
simple cubic lattice we obtain

Ε = 2/ (ft0) (cos kxb<, + cos kvba + cos kzb0). (2.7)

The energy width Vb of the allowed band is equal to
12|/(60)| for the simple cubic lattice and 8|/(60)| for the
simple square lattice. In these cases the rule Vb

= 2Z\l(b0) | holds, where Ζ is the number of nearest
neighbors. For small k, from (2.7) we obtain

E = si(bo)-i(bo)mi. (2.8)

The quantity nl/2lb\ in formula (2.8) plays the role of
the electron mass in the band that is formed. With in-
crease of the distance between nearest neighbors the
width of the allowed band decreases exponentially
(/(&„) ~ β"*0/α. In this case the mass becomes expon-
entially large. This prompts the thought that in the
case of interest to us, namely, that of low impurity
concentrations, i .e., large values of 60, the band prop-
erties in the familiar sense are fictitious. Neverthe-
less, we shall see shortly that for an arbitrarily narrow
band the electron wave function is a modulated plane
wave and the electron can move without being scattered.
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The band formed by the impurities is not more than
half filled, since each impurity gives (or takes away)
one electron and the band is doubly degenerate in the
spin. Thus, it turns out that, if the impurities could
really be assumed to be periodically arranged, the con-
duction due to the impurity electrons should be metallic
in character for arbitrarily small impurity concentra-
tions .

This statement is incorrect even with the stipulation
of a relatively periodic arrangement of the impurities.
The point is that in the above deduction we used the
one-electron approximation. This approximation, which
works satisfactorily in the calculation of the broad al-
lowed bands of metals, turns out to be inadmissable in
the case of narrow bands. As can be seen from (2.3),
the electron wave function near each site differs little
from the site function φ(τ). We shall estimate now the
interaction energy of two electrons with different spins,
situated at one site. This turns out to be of the order of
U0&e2/a. If the magnitude of Uo is small compared
with the width Vb of the allowed band, the change in the
wave functions as a result of the electron intersection
will be insignificant. This is the situation in good met-
als. In the case of interest to us, however, the quantity
Vb is exponentially small and considerably smaller than
Uo. Let the impurity-sublattice constant 60 be infinitely
large. Then at each site there are two electron levels.
An electron can have energy £ 0 or £ 0 + Uo, depending
on whether or not there is another electron at the site.
For a finite value of 60, both levels are spread out into
bands, with width of the order of /(60) (Fig. 1). The
number of places in each of these bands is half as many
as in the band (2.6), and is equal to the number of sites.
(In the lower band, there cannot be a site with two elec-
trons .) The lower band will be filled, and the upper
band empty. Thus, ii I(b0) « Uo, our substance will be an
insulator. With decrease of 60, at a certain point A
the width of the gap vanishes and an insulator-metal
transition, customarily called the Mott transition, oc-
curs. The question of the character of this transition
and of the behavior of the electrical conductivity at
the transition point remain open up to now.

For a quantitative study of the Mott transition one
uses, as a rule, the Hubbard model. In this maximally
simplified model it is assumed that the electrons repel
each other only if they are at the same site. The Hub-
bard Hamiltonian has the form

ψ Jj ni, α"), σι (2.9)

A l/bB

FIG. 1. Electron bands as a function of the period b0 of the
impurity sublattice. To the left of the points we have an in-
sulator, and to the right a metal.

where nite = a*itOa}te is the occupation-number operator
for the state on site j with spin σ. This Hamiltonian is
obtained from (2.5) by adding a term describing the
repulsion of electrons situated on the same site and
having different spins.

The Hubbard model permits an exact solution only in
the one-dimensional case. 2 The result contradicts the
qualitative arguments given above. In the one-dimen-
sional case the gap in the spectrum is preserved for all
values of/(60)/i70), i .e . , the one-dimensional model is
always an insulator. It is customary, however, to
assume that this is an exceptional property of one-
dimensional systems, and that this fact does not throw
a shadow on the qualitative picture described above,
so long as this refers to two- and three-dimensional
systems.

A review of the theory developed in connection with the
Mott transition is not part of our purpose. An account
of these questions can be found in the book by Mott3 or
in the review by Khomskii.4 We have given a picture
of the Mott transition only because in real systems a
situation usually arises in which, in the vicinity of the
Anderson transition, we cannot neglect the electron-
electron interaction, as a result of which the transition
has features of an Anderson transition and features of
a Mott transition. Theoretically, of course, these two
phenomena are strictly distinct. The Anderson trans-
ition exists in the one-electron approximation, and in
the following sections we return to this approximation.
It is necessary only to bear in mind that, when speak-
ing of a narrow impurity band, we shall always have in
mind the lower Hubbard band (see Fig. 1). The broad-
ening of this band, which can be due both the quantum
overlap and to spreading of the levels as a result of a
fluctuating classical field, will be assumed to be small
compared with its distance Uo from the second band.
Therefore, when studying the structure of the impurity
band at zero temperature we shall assume that there
can be only one electron at each site. As we have seen,
this follows not from the Pauli principle, which permits
the presence of two electrons in one orbital state, but
from the charge restriction, which turns out to be more
stringent in this case.

3. THE ANDERSON MODEL

In Sec. 2 we assumed that the impurities form a per-
fect lattice. The ideality of the impurity sublattice can
be violated in several ways. The simplest way is to
assume that the arrangement of the impurities is ran-
dom. We shall return to this latter, but consider now
another, more developed and also practically impor-
tant, variant of disordering. We suppose that the im-
purities are situated at the sites of a regular lattice,
but that the electron levels at all the sites are different.
We shall denote each level by tjt assigning it the site
index. Thus, we obtain a system of periodically ar-
ranged potential wells of different depths (Fig. 2). The
Hamiltonian of such a system in the site representation
is obtained from (2.5) by adding a term representing the
sum of the energies of the electrons situated at the is-
olated sites:
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] Ejajaj + Σ Ι (m) atai*m-

FIG. 2. Potential wells in
the Anderson model.

(3.1)

The energies ε, are assumed to be random quantities,
with no correlation between them. In other words, the
probability that a certain site has a given energy does
not depend on the energies of the other sites. We shall
assume the energy distribution to be constant in a cer-
tain interval W. The distribution function Ρ(ε) has the
form

l/W, \e\<W/2
0, |e|>W72.P(e) = (3.2)

The model formulated was proposed by Anderson1 and
bears his name. Unfortunately, the Anderson model
does not permit an exact solution. Despite the enorm-
ous number of papers on the problem of the Anderson
transition, a good mathematical description of this
phenomenon does not yet exist. Nevertheless, a qual-
itative understanding of it, based on comparatively
simple physical concepts, undoubtedly does exist and
inspires confidence. As we shall see, it is also con-
firmed by computer experiments. Primarily, it is the
qualitative picture of the phenomenon that we shall dis-
cuss.

The fundamental problem that is raised in the con-
sideration of the Anderson model is to determine wheth-
er the electron wave functions are localized in the
neighborhood of a certain site or whether they extend
over the whole system. In both cases the wave function
near each impurity is similar to the site wave function,
so long as the overlap is small. It is important to un-
derstand whether a coherent state is formed that con-
sists of a superposition of an infinite number of site
functions, occurring with approximately equal weight,
and extends over a macroscopic distance. The altern-
ative variant is that the site functions appear in the
superposition with a weight that decreases exponentially
with the distance from a certain site. Such a state is
said to be localized near this site. If all states are lo-
calized, the conductivity of the system at zero temper-
ature is equal to zero.

The problem of how to formulate the condition for
localization in mathematical language is far from triv-
ial. Several different criteria for localization are used.
Anderson1 used the following criterion. We suppose that
at time zero the electron wave function coincided with
the site function corresponding to the site i. This func-
tion is not an eigenfunction of the Hamiltonian (3.1), and
will change with time. By solving the Schrodinger equa-
tion we find the modulus squared |φ,(ί) | 2 of the wave
function at site i at large times t. If the states are not
localized, the initial wave packet spreads out over the
whole system. Therefore, in an infinite system,
lim|*,(f) | 2 = 0. If there is no spread of the levels, and
we have the ideal band structure considered in the pre-
ceding section, the spreading of the wave packet occurs
over a time of the order of H/Vt. But if the true wave
functions are localized, spreading does not occur at
all: With time, the wave function acquires "tails" with

exponentially small amplitudes at neighboring sites and
will be concentrated in approximately the same region
of space as at the initial time. Therefore, 1πη|ψ,(ί)|2

will turn out to be a finite quantity. This is the Ander-
son criterion.

Other localization criteria have also been proposed.
Bell and Dean5 considered the quantity

(Γ) |
α fr) (3.3)

where Φ ο is a stationary wave function of the Hamilton-
ian (3.1) in the coordinate representation. It is easy to
understand that for extended states the quantity Ba tends
to zero like l/./V, where^i s the total number of sites in
the system, while for localized states the quantity Ba is
nonzero and does not depend on the size of the system.

Herbert and Jones" considered the criterion for local-
ization to be the asymptotic behavior of the site-off-
diagonal matrix element GOn of the Green function in the
site representation at large values of the distance ΛΟη.
It is natural to suppose that this quantity falls off like
Rll for extended states, and like exp[-ROn/a(E) for local-
ized states, where a(E) is a certain localization length
(see Sec. 6).

Finally, in Sec. 6 we consider in detail yet another
criterion, proposed by Edwards and Thouless.

The most important characteristic of the impurity
band is the density of states. This is defined as the
number of levels in a small energy interval, divided
by this interval and by the volume of the system. It
should be borne in mind that in a macroscopic system
the density of states is a continuous function of the en-
ergy in a certain interval, even if we are speaking of the
impurity band, which is a set of discrete levels. Thus,
the density of states does not contain information per-
mitting us to distinguish a true band from a set of dis-
crete levels that are unconnected with each other and
randomly dispersed in energy space.

The Anderson model contains one dimensionless para-
meter W/I, where / is the overlap integral for neighbor-
ing sites. Anderson's result, confirmed by a large
number of later investigations, is as follows. For suf-
ficiently large values of W/I all states are localized.
There exists a critical value (WJI), at which extended
states first appear at the center of the band. With fur-
ther decrease of W/I the region of extended states in-
creases, encompassing almost the whole band (Fig.
3). It is curious that all this does not apply to a one-
dimensional system. As Mott and Twose have shown,
in a one-dimensional system the states are always lo-
calized.7"13 The situation here is analogous to the sit-

[r

FIG. 3. Density of states in the Anderson model. The local-
ized states are shaded. The energies Ec and -Ec separating
the regions of localized and extended states are the mobility
edges.

749 Sov. Phys. Usp. 21(9), Sept. 1978 A. L. Efros 749



uation with the Mott transition, mentioned in the pre-
ceding section. We see that the inclusion of arbitrarily
weak fluctuations of the site energies, like inclusion of
the electron-electron interaction, inevitably transforms
a one-dimensional conductor into an insulator.

Both the Anderson transition and the Mott transition
are variants of the metal-insulator transition. As we
have seen, the basic difference between them is that the
Anderson transition is connected with disorder of the
system while the Mott transition also occurs in a per-
fect periodic structure. In addition, it is necessary to
bear in mind that the Mott transition arises as a con-
sequence of the electron-electron interaction, while in
the theory of the Anderson transition the motion of one
electron is considered.

In order to comprehend Anderson's result, we shall
consider the auxiliary problem of two wells of different
depths, positioned at a large distance apart. This
quantum-mechanical problem is easily solved. Let the
energies of the electrons in each of the wells when the
other well is disregarded be ε( and ε2, respectively,
and let the wave functions be φ{ and <p2. If the wells
are identical, then ε ^ ε 2 and two states arise, with the
wave functions

Ψΐ ρ - («Pi + «Pd. Ψ11 = y | <<Pι - <Fi)· (3.4)

The difference in the energies of these states is equal to
E1 - Eu = 27, where / is the overlap integral. It is im-
portant to note that, however far apart these wells are,
and whatever the overlap integral is, in both states the
electron belongs to each of the wells to an equal extent,
i .e . , it can be found in either of them with equal prob-
ability. The character of the solution changes little, if
|ε χ — ε21 «/. In the opposite limiting case | ε , - ε 2 |
» / the picture is completely different. As before,
there are two states:

Ψ, C,<ft, C,<p, (3.5)

However, in the state / the energy E, is close to the
energy c t, and the wave function is close to φν The
ratio Ο 2 /Ο 1 «7/ |ε 1 -ε 2 | , and decreases exponentially
with increase of the distance between the wells. On the
other hand, in the state Π the energy Eu is close to
the energy ε2, and the wave function Ψ π is close to <p2.
Thus, in this case collectivization of the electron does
not occur. Each state is essentially the state of an
electron in one of the wells.

This example helps us to understand the essence of
the Anderson transition. ° We shall consider a certain
energy band of width Δ, symmetric about zero, with Δ
of the order of the overlap integral /. The sites whose
energies fall in this band will be called resonance sites,
and the sites with energies outside the band—nonres-
onance sites. The point of this definition is that an
electron state is collectivized between two resonances
sites if these sites are nearest neighbors. Further, we
shall say that two resonance sites are connected with
each other if they are nearest neighbors or if there is

i)rThe idea of the following arguments is due to Thouless.14
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a third resonance site which is a nearest neighbor of
both of them. Two resonance sites are also connected
with each other if they are joined by a chain of con-
nected resonance sites. An aggregate of sites con-
nected with each other will be called a cluster. Cor-
responding to these clusters will be electron states
in which the modulus squared of the wave function is of
the same order at all the sites belonging to the cluster
and small everywhere outside the cluster. As the next
step, we exclude all the non-resonance sites from con-
sideration. This step is dubious. The Anderson Ham-
iltonian (3.1) connects only neighboring sites. But
two resonance sites can also have a common electron
state in the case when there is a nonresonance site
between them. However, the effective overlap integral
in this case will be not of order / but of order I2/ W.
If I/W is small, the connection through the nonreson-
ance site will lead to collectivization of the states in a
band considerably narrower than the one we are con-
sidering, and this can be neglected. Having discarded
the nonresonance sites, then, we find that the char-
acteristic size of the wave function is determined by
the size of the clusters of connected resonance sites.

The distribution of the energies ε4 in the Anderson
model is assumed to be constant in the interval W. For
this reason, the fraction of resonance sites should be
of the order of I/W. For small values of this parameter
there are few resonance sites and they are distributed
primarily singly. However, at a certain critical value
ol I/W an infinite cluster of connected resonance sites
appears, i .e . , paths going away to infinity are formed.
The wave functions of the electron states spread out
along these paths. It is this which constitutes the
Anderson transition.

Percolation theory (see the review of Ref. 15) enables
us to find the exact value of the quantity Δ/ Wc at which
an infinite cluster is formed.2' For this we must equate
the fraction Δ/W of resonance sites to the percolation
limit xc($ for the site problem, i .e . ,

-£••=*.(»). (3.6)

Values of xji&i for various lattices (Fig. 4) are given
in Table I. For the two- and three-dimensional lattices
the data given in the review of Ref. 15 are used, while
the data for the hyper-lattices are borrowed from the
paper by Kirkpatrick.16

To estimate the critical value Wjl it is necessary to
find the relationship between the width Δ of the reson-
ance and the overlap integral /. There is the most
complicated (and controversial) aspect of the proposed
estimate. The point is that the very definition of the
resonance sites is not exact, since with decrease of
the difference | ε, - ε,| the collectivization of the elec-
tron states between two sites occurs gradually rather
than discontinuously.

Nevertheless, the Anderson transition occurs at a
fully determinate value Wjl. Indeed, if the wave func-

2)The latter part of this section was written jointly with B. I.
Shklovskif.
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bl c)

FIG. 4. Planar lattices: a) hexagonal, b) square, and c) tri-
angular.

tion decreases exponentially from site to site, it cannot
belong to an extended state. Therefore, for large val-
ues of W/I all states are localized. In an infinite sys-
stem, the appearance of an extended state on decrease
of W/I is a sharply pronounced critical phenomenon,
corresponding to which there should be a well defined
thereshold value Wjl. Therefore, the aforementioned
indeterminacy in the definition of the resonance sites is
evidence of the approximate character of a description
that uses the concept of a resonance band.

It is possible, however, to postulate a way of estimat-
ing the width and the critical value Wjl, based on the
topological properties of an infinite cluster (see Ref.
15). Near the percolation limit an infinite cluster is a
network composed of practically one-dimensional chains
of resonance sites. If we neglect the difference in the
energies of the resonance sites, it turns out that, be-
cause of the overlap of the wave functions along a chain,
a band of width 4/ is formed. Therefore, it is natural
to assume that the width of the resonance band is Δ « 41.
Substituting this value into (3.6), we obtain the follow-
ing estimate:

For a number of lattices the value of Wjl are known
from numerical experiments on a computer. Edwards
and Thouless,17 and also Licciardello and Thouless,18

have carried out experiments for two-dimensional lat-
tices, and Weaire and Srivastava19 have done so for
three-dimensional lattices and lattices of higher dim-
ensionality. The results of these papers are collected
in Table I. For comparison, the results of the estimate
(3.7) are also given. Of course, the assumptions made
in the derivation of (3.7) are very crude and can give
rise to objections. (The most serious objection, in our
opinion, is associated with the one-dimensionality of
the percolation paths, and is discussed in Sec. 6.)
Table I, however, shows that the estimate agrees well
with the results of the numerical experiments.

For W< Wc, then, a band of extended states appears
in the electron spectrum. It is natural to ask whether,
near the transition, this band is infinitesimally narrow
or has a finite width from the outset. A well sub-

TABLE I.

Lattices

Two-dimensional
hexagonal
square
triangular

Three-dimensional
diamond-type

0.70
0.59
0.50

0.43

4/xc (i)

5.7
6.8
8.0

9.3

Wjl

4.3
6.1
9.4

8.0

Lattices

Simple cubic

Hypercubic
four-dimensional
five-dimensional

0.31

0.20
0.14

*/*„(.)

12.9

20
28.6

Wjl

14.4

25
36

stantiated answer to this question does not exist. It is
usually assumed (cf, e.g., Ref. 18) that the band of
extended states "opens out" gradually, although, in our
view, there are no serious arguments in favor of this
opinion. Moreover, it seems to us that the existence
of arbitrarily narrow extended bands is difficult to
reconcile with the concept of a minimum metallic con-
ductivity (see Sec. 6).

4. LOCALIZATION IN THE LIFSHITZ MODEL

In the Anderson model, potential wells of different
depths are located at the sites of a regular crystal lat-
tice. We now consider the alternative (in a certain
sense) model: identical potential wells, randomly lo-
cated in space. In the physics literature this model is
sometimes called a "model with structural disorder".
We shall assume that the well potential is short-range
and that the average spacing between wells is large
not only in comparison with the range of the potential
but also in comparison with the radius of the wave-
function corresponding to one well. This model was
first studied in detail by I.M. Lifshitz.20·21

The fundamental question that we wish to elucidate is
whether the electron states in this case are localized
near the individual wells or whether they are spread
out over the whole system. At first glance, it may
appear that, since all the wells are identical, in the
terminology of Sec. 3 they are resonance wells, and,
consequently, spreading out of the wave packet should
occur. However, overlap of the wave functions of
neighboring wells leads to a shit in the energy levels,
and since, for different wells, the nearest neighbors
are at different distances, the shifts will also be differ-
ent. It would seem, after this, that we should turn to
the results of the preceding section. However, the
Anderson model does not help us. It was assumed in
the latter that the spread of the levels and the overlap
have a different nature and can be specified in an arbi-
trary ratio. If the spread is considerably greater than
the overlap, the states are localized, while if it is con-
siderably smaller, they are extended. In the Lifshitz
model the overlap and spread have the same nature and
the same order of magnitude. The only small para-
meter in the problem is the ratio of the radius of the
wave-function to the average spacing between the wells.
As we shall now see, this parameter also assists in the
analysis of this situation.

We shall not give a full account of the mathematical
apparatus developed for this case by Lifshitz, but con-
sider the problems of two and three potential wells.
This clarifies the problem sufficiently to make it pos-
sible to explain the principal results of Lifshitz without
further mathematics. These results are as follows.
The electron states either turn out to be localized near
individual potential wells, or belong to two closely
spaced wells at once, forming a superposition of the
form (3.4). Both types contain exponentially small ad-
mixtures of other states. States in which wave func-
tions of three or more wells appear on an equal footing
are not realized, since this could happen only for a
strictly symmetrical arrangement of these wells. Thus,
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the states in the Lifshitz model are localized. This in-
formation is sufficient for the reader to pass on to the
next sections.

For the reader who is prepared to go more deeply in-
to the Lifshitz model, its Hamiltonian is

(4.1)

We suppose that the potential t/(r) of an individual well
produces a localized state * 0 (r) with energy Eo, and that
the other states formed by this well are separated from
Eo by an energy considerably greater than the displace-
ment of the level JE0 under the influence of the other
potential wells. We shall assume that U(T) falls off
much faster than * 0 ( r ) , so that the wavefunction in the
sphere of influence of the potential can be assumed to
be constant. Therefore, in the Schrodinger equation
the term TtfU(r - Γ,)Φ (Γ) is replaced by the term
Σ / , # ( Γ - τ,)τ{, where τ , = * ( Γ / ) . Then,

where Ε is the required energy, or

(4.2)

(4.3)

Expanding the right-hand side in a Fourier series, we
find

(4.4)

where
• f c(k)exp(ft,)jk

" · ' ' J B-{ltWI2m) ·

V (r) = f c (k) e i k'dk.

Putting r = r ( , we obtain a system of linear homoge-
neous equations

(4.6)

( r i i = r , - r i ) , and the condition for solvability of this
system determines the energy E.

If there is only one well, the energy level Eo is de-
termined by the equation

„) = o, (4.7)ι -

where

'~J £-(*"k«/2m) (4.8)

The reader will find a detailed analysis of Eq. (4.7) in,
e.g., the book by Kosevich.22

The wavefunction Ψ 0(Γ) of an electron in the one well
is determined from (4.4):

V, (r) = ψ 0 (0) F [Β,,τ). (4.9)

At large r we can replace c(k) by c(0) in the integral
(4.5) and we obtain

F{Et<t)=-A—r-,

mc(O) , 2mE,

(4.10)

which determines the asymptotic form of the wave-
function.

We now write the condition for solvability of the sys-
tem (4.6), which determines the energy Ε in the poten-
tial of a large number of wells. We assume that the
quantity ε = Eo - Ε is small compared with the distance
to the next single-well level, and perform the expansion
in (4.8). For the diagonal terms of (4.6), making use of
(4.7) we obtain

1 - Ft (£) = Be, (4.11)

where

J (£(k)-£J«

For the nondiagonal terms we make use of the formula
(4.10), since the average distance between cells is
AT1'3»*»"1. As a result, we obtain the following equa-
tion for the energy ε:21

(4.12)

where \=A/B. For the case of two wells separated by
a distance r, this is easily solved:

The wave functions have the form

(4.13)

(4.14)

where * 0 (r) is determined by (4.9). Thus, the electron
states belong to both wells in equal measure, and the
shift of the levels decreases exponentially with the dis-
tance between the wells.

We now consider three wells, lying on a straight line
as shown in Fig. 5. We shall assume the distance r 1 2

to be fixed and see how the energies of the levels vary
as a function of r 2 3. We represent each of the three
roots of Eq. (4.12) in the form

« = «.Λ (4.15)

where ε 0 is a power function of r 1 2 and r23, in which we
shall not be interested—we concentrate our attention on
the exponential dependence. The dependence of s on
xi3= ar23 for each root of Eq. (4.12) is depicted in Fig.
5. If r 2 3 >r 1 2 , the states are classified as follows. Two
states are collectivized between the wells 1 and 2, and
have the wavefunctions (4.14). Their energies are de-
termined by (4.13), and s = # 1 2 . The third well has
practically no effect on these states. It has an eigen-
state with wavefunction * 0 ( r - r3) and with s = 2x23.
Attention should be drawn to the fact that the level
shift in the resonance situation, when the electron is
collectivized between two wells, is proportional to the

FIG. 5. Energy levels for three potential wells as functions of
the distance r-i^x^a (the point η 1 2 corresponds to 2x12).
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overlap integral (s = xi2), while that in the nonresonance
situation is proportional to its square (s = 2x23).

Entirely analogously, for r23<rl2 we obtain a doublet
collectivized by the wells 2 and 3, with s=x23, and a
state in the well 1, with s = 2x12. The essential point is
that if, for example, the wells 1 and 2 are close to each
other, then their states are collectivized and the two
levels that appear "repel" each other so strongly that
they move out of resonance with the third level.

A state belonging in equal measure to all three wells
arises only if r1 2 = r2 3. It is important to understand that
the maximum permissible deviation from this equality
for which the states are still collectivized is equal to
the radius a"1 of the state. This is the key to an under-
standing of the situation as a whole. The point is that
the average spacing between impurities is much greater
than a'1. For this reason, the probability of ordered
configurations is negligibly small, and in a system of
any number of wells the states will be singlets and
doublets with the wavefunctions (4.9) and (4.14). Thus,
the possibility of the spreading of a wave packet over a
band is completely ruled out.

It is easy to understand what the density of states
looks like in the Lifshitz model. It is obvious that the
characteristic energy determining the spread of the
levels (the width of the impurity band, if the potential
wells are associated with impurities) is of the order of

Δ ^ λίνν'οχρ (- αΛΓ-V). (4.16)

This estimate is obtained if we substitute the average
spacing between wells in place of r in (4.13) (N is the
concentration of wells). We note that the density of
states has a minimum at the point ε = 0. In fact, only
those states around which there are no other wells with-
in a distance much greater than the average spacing
between wells have small level shifts ε « Δ. But the
probability of such voids is small. Thus, the density of
states is a double-humped curve with a minimum λ at
E = Ea, each hump having a width of the order of Δ.

Thus, the electron states in the Lifshitz model should
be localized. Of course, this conclusion is a conse-
quence of the assumption that the average spacing be-
tween wells is large compared with the radius of the
wavefunction (aN~113» 1). For values of aN~in of order
unity, extended states arise even in the Lifshitz model.
In the two-dimensional case this transition has been
traced by means of a computer,23 but it was not possible
to determine definitely the critical value of aN'1/3.

5. EXAMPLES OF ANDERSON TRANSITIONS

The ideas behind the Anderson transition form the
basis for a most important concept in the theory of
disordered systems—the concept of the mobility edge.
This concept plays a fundamental role in the theory of
amorphous semiconductors. According to the modern
theory, the band structure of an amorphous semi-con-
ductor has the form depicted in Fig. 6. The presence of
short-range order leads to the result that the concept
of forbidden and allowed bands is preserved. However,
the numerous structural imperfections create a density-

FIG. 6. Density of states in an amorphous semiconductor. The
localized states are shaded.

of-states "tail" in the forbidden band, so that the band
edges (in the sense of the vanishing of the density of
states) are smeared out. The decrease in the density
of states leads to the result that states in the gap are
found to be localized, and, in a certain sense, the lo-
calization thresholds play the role of the band edges.
The Fermi level lies in the region of localized states,
and so charge transfer is effected by thermal excita-
tion of carriers into the region of extended states or by
activated hops between localized states (see the book
by Mott and Davis24). Both ways lead at low tempera-
tures to an exponential increase of the resistance with
temperature. The statement that there is strict local-
ization of electron states plays a very important role
here. If the possibility of spreading of the wave packet
existed, activationless motion of electrons in an elec-
tric field would be possible. At sufficiently low temper-
atures this transport mechanism would have undoubted
preference, and the electrical conductivity would cease
to depend on the temperature.

Another important application of the ideas discussed
in the preceding sections is to the problem of the metal-
insulator transition in doped semiconductors. As is
well known, in strongly doped semiconductors the con-
ductivity at low temperatures has a metallic character,
in the sense that it depends weakly on the temperature
(in order of magnitude, of course, this conductivity is
considerably smaller than the conductivity of typical
metals). The strong-doping condition (see the reviews
of Refs. 25, 26) has the form Να 3 » 1, where Ν is the
impurity concentration and a is the Bohr radius of the
impurity state. When this condition is fulfilled the elec-
tron gas is found to be almost ideal. The energies of
interaction of the electrons with the impurities and with
each other become considerably smaller than the Fermi
energy. But at low impurity concentrations the current
carriers turn out to be localized. In fact, at low tem-
peratures in an η-type semiconductor the electrons are
situated at the donors. The absence of an electron at
one of the donors will be an elementary excitation. It is
natural to raise the question of the excitation spectrum
and the density of states. Here it is necessary to take
into account that an excitation can be situated on any of
the donors. If we neglect the potential that is created
by the neutral donors, we arrive at the Lifshitz model
discussed in the preceding section. It follows from this
that the states should be localized. This means that at
zero temperature a hole appearing on one of the donors
cannot migrate to another donor. Thus, the low-tem-
perature conductivity should be activational in charac-
ter, i.e., it should decrease exponentially with temper-
ature. The potential of the neutral donors produces a
spread of the hole levels, which depends in a power-law
manner on the impurity concentration. On the other
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hand, the width of the impurity band in the Lifshitz
model [formula (4.16)] is associated with the overlap
and falls off exponentially with the concentration.
Therefore, at low concentrations we cannot neglect the
potential of the neutral donors. However, as we know
from the analysis of the Anderson model, a spread of
the levels only facilitates localization of states.

When the impurity concentration is increased a tran-
sition from activational to metallic conduction should
occur. In practice, it occurs at Na3 «0.02 (see the re-
view of Ref. 27). (Inp-Ge, e.g., it occurs at a con-
centration 1017 cm"3.) It is customary to call this tran-
sition a Mott transition, although it is far from identi-
cal with the transition described in Sec. 2. The princi-
pal difference is that, in the case under consideration,
the states in the dielectric phase turn out to be local-
ized, which is a signal of an Anderson transition. On
the other hand, this is not, of course, an Anderson
transition, since the electron-electron interaction un-
doubtedly plays a paramount role near the transition.
At the transition point the electron-screening radius is
comparable with the Bohr radius, and this leads to the
destruction of the bound states at the impurities.

An example of a genuine Anderson transition is,
apparently, the metal-insulator transition in strongly
doped semiconductors under the influence of compensa-
tion. We suppose that in a strongly doped «-type semi-
conductor there is a compensating impurity (acceptors),
with concentration NA very close to the donor concen-
tration N. At low temperatures each of the acceptors
takes just one electron from a donor and becomes nega-
tively charged. The remaining electrons, with concen-
tration n = N -NA, lie in the conduction band and are
subjected to the action of the potential created by the
donors and acceptors. It is usually said that, in a
strongly doped semiconductor at low levels of compen-
sation, when n~N, the potential of the impurities is
small compared with the Fermi energy μ. However, if
NA~N, and η decreases, the Fermi energy falls and the
potential increases, since the electron screening is
weakened. The theory of strongly compensated semi-
conductors has been developed in papers by Shklovskii
and fefros.28'29 The energy scheme that they obtained is
presented in Fig. 7. The curve represents (in coordi-
nate space) the bottom of the conduction band, distorted
by the impurity potential. If there is no correlation in
the disposition of the impurities, the maximum size and

amplitude of the potential fluctuations are determined
by the electron screening. It is clear, however, that
the screening in this situation is completely unlike
Debye screening. It has been found that the role of the
screening length is played by the length Rc = N1/3/n2/3.
The amplitude of the fluctuations of the potential energy
of an electron is of the order of #bPl3/vnlf3 (x. is the
dielectric permittivity). The electrons form metallic
drops, isolated from each other and located in the
deepest parts of the potential contour. The character-
istic size of a drop is

The electrons at the Fermi level are localized in re-
gions of the order of Λ,. With increase of the energy
the localization length of the electron states increases,
and, finally, at an energy equal to the percolation ener-
gy ε^, the states become extended. Electrons having
energy greater than ε^ can move over macroscopic dis-
tances while remaining all the time in classically al-
lowed regions. The energy ε^ is determined from the
solution of the so-called continuum problem of percola-
tion theory.15 Conduction is effected by thermal excita-
tion of electrons to the percolation level. The activa-
tion energy εχ corresponding to this process is depicted
in Fig. 7. (At very low temperatures the activation
energy decreases as a result of the increase in the role
of tunneling, but the conductivity at zero temperature
is strictly equal to zero.) With increase of the electron
concentration η the Fermi level increases, and when it
reaches the percolation energy a metal-insulator tran-
sition occurs. In essence, this transition is a quasi-
classical variant of the Anderson transition. This
variant of the transition was first considered by
Ziman.30

The question of Anderson localization in the theory of
MIS (metal-insulator-semiconductor) structures has
also turned out to be very important. Most often, this
structure is a silicon dioxide film (the insulator), sit-
uated between a silicon support (the semiconductor) and
a planar metallic electrode. A potential applied to the
metal bends the bands and redistributes the charge in
such a way that a narrow inversion layer, i .e . , a layer
with current carriers of opposite sign to those in the
bulk, is formed on the surface of the semiconductor
(Fig. 8). By changing the applied potential it is pos-
sible to change the concentration of carriers in the in-
version layer, and, consequently, the surface conduc-

FIG. 7. This, according to Shklovskif and Efros,28 is how the
potential energy of an electron in a compensated semiconduc-
tor can appear. The regions occupied by electrons are shaded.

FIG. 8. Band scheme near the surface of the semiconductor in
an MIS structure, d is the distance from the surface, and 6 is
the width of the inversion layer. The Fermi level is shown by
the dashed line μ.
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tivity of the layer, with extremely wide limits. This is
the basis of a field-effect transistor, which is such a
structure. The-inversion layer is occupied by a two-
dimensional electron gas, situated in a random poten-
tial produced principally by the inhomogeneities of the
insulating film. According to the ideas of Mott31 and
Stern,32 Anderson localization of carriers occurs in this
potential. At low carrier concentrations the conduc-
tivity of the inversion layer is activational in character,
with an activation energy that decreases with temper-
ature at low temperatures. This means that in the vic-
inity of the Fermi level there are localized states, be-
tween which hopping occurs. When the carrier concen-
tration is increased the Fermi level is found in the
region of extended states and the conduction has a met-
allic character (for a detailed discussion of the ex-
tensive experimental material, see the review by Mott
et al.33). This simple way of varying the concentration
by means of an applied voltage makes it possible to
investigate the electrical conductivity near the Anderson
threshold comparatively easily. There then arises
a further interesting theoretical problem, to the dis-
cussion of which we now turn.

6. ELECTRICAL CONDUCTIVITY AND ELECTRON

WAVE FUNCTIONS IN THE VICINITY OF THE

ANDERSON TRANSITION

We shall suppose that the Fermi level approaches the
Anderson threshold from above. We ask: does the
electrical conductivity at zero temperature vanish dis-
continuously or continuously (Fig. 9)?

There is no rigorously substantial answer to this
question. Below we discuss the point of view of
Mott,34·^6 which is close to ours and evidently occupies
a dominant position in the literature, although it has
been subjected repeatedly to criticism (see Refs. 37-
39).

Let the Fermi level be in the middle of the allowed
band. If the disorder is small and the electrons are
almost free, the conductivity is expressed by the usual
Drude formula

3π'/4 (6.1)

where I is the mean free path and kF is the wave vector
at the Fermi surface. Mott's point of view is based on
the assertion (put forward by the pioneers of the physics

FIG. 9. Electrical conductivity at zero temperature as a func-
tion of the position of the Fermi level μ. The electrical con-
ductivity should vanish at the point at which the Fermi level
passes through the localization threshold Ec. But does it van-
ish discontinuously (the solid curve) or smoothly (the dashed
curve)?

of disordered systems, A.F. Ioffe and A.R. Regel40)
that the mean free path, by its actual physical meaning,
cannot be shorter than the electron wavelength. In the
case of a half-filled band, kF~ aj1, where a0 is the lat-
tice constant, and the statement that kFl = l/ao> 1 is
perfectly clear. It follows from it that the electrical
conductivity cannot be smaller than the quantity

*«.
(6.2)

where C3 is a constant. Mott's concept is, in essence,
that at zero temperature an electron gas cannot possess
any conductivity other than that which is described in
general physics courses and which is expressed, in
order of magnitude, by the formula (6.1). But such a
conductivity has a minimum possible value (6.2). From
this, Mott concludes that, with increase of the disorder
(e.g., with increase of the quantity Win the Anderson
model), the conductivity decreases and, after reaching
the value (6.2), goes to zero discontinuously (cf. Fig.
9). In the literature, this point of view has been named
the "concept of minimum metallic conductivity". Of
course, if we are talking microscopically, the reason
that the conductivity vanishes is the Anderson localiza-
tion, and the point at which this occurs corresponds to
the Anderson limit.

It should be noted that, strictly speaking, the con-
cept of a minimum metallic conductivity contradicts the
ideas about the Anderson transition that are based on
percolation theory (those presented in Sec. 3). Indeed,
in the spirit of these ideas we can argue in the follow-
ing way. We consider a chain of resonance sites, pen-
etrating the whole sample; the wave function of an ex-
tended state is nonzero at these sites. It is natural to
suppose that an electric current will flow along such
chains. In the above discussions concerning the mean
free path I that occurs in (6.1) it was tacitly assumed
that the system is homogeneous. Near the transition,
however, this assumption can scarcely be assumed to
be correct. Moreover, it is clear that our chains are
chosen in just such a way that the mean free path along
them will be relatively large. As a result, the chains
play the role of metallic filaments in a dielectric sam-
ple. As the transition point is approached the number
of filaments penetrating unit area tends gradually to
zero. Because of this, the electrical conductivity
should vanish continuously, and not discontinuously.
This is precisely the situation in two-component sys-
tems that are mixtures of a metal with an insulator, if
the concentration of the metallic component is close to
the percolation limit.1 5

Objections of this kind against the concept of a mini-
mum metallic conductivity were put forward in Refs.
37 and 38. The defect of these arguments is, in our
opinion, the following. Near the percolation limit the
resonance chains become one-dimensional over a con-
siderable length. But, as pointed out in Sec. 3, in a
one-dimensional system arbitrarily small fluctuations
lead to localization. Thus, the above-described mech-
anism, by which the electrical conductivity could be
arbitrarily small but independent of temperature, ev-
idently does not exist.
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These considerations are also evidence that ideas
based solely on percolation theory cannot describe the
Anderson transition adequately. It is possible, how-
ever, to hope that the one-dimensional character of the
percolation paths will become important only near the
transition itself, and that this will not have a strong
influence on the estimates of Wjl made in Sec. 3.

In the Anderson model, the constant C3 in (6.2) lies,
according to the estimate of Mott et al. , 3 3 in the range
0.025-0.1 (for different lattices),
in the range 250-1000 ohm-'cm-1.

Therefore, σ,,,,, lies

The concept of a minimum metallic conductivity ac-
quired special interest in the two-dimensional case.
In this case,

«ΊηΙη=—J~ · (6.3)

and the only dimensional quantities that appear in a m U

are universal constants. This gives us grounds to hope
that the constant C2 is also universal and does not de-
pend on the model under consideration. This is con-
firmed by elegant arguments of the scaling type, ad-
duced by Licciardello and Thouless.4 1 The same auth-
ors 1 8 ' 4 1 performed a computer calculation by the Monte
Carlo method, which confirmed the fact that a minimum
metallic conductivity exists. They found that C2 = 0.12
τ0.03 (this corresponds to σβ 1 1=3χ1(Γ 5 ohnT1), and that
in the framework of the Anderson model C2 does not
depend on the form of the lattice, for the three two-
dimensional lattices represented in Table I. More-
over, the quantity C2 was found to be independent of the
ratio I/W, on increase of which the localization limits
shifted from the center of the band to its edges (see
Fig. 11). It seems to us that it makes sense for any-
one who wishes to understand the physics of the An-
derson transition to scrutinize the idea of these calcu-
lations, and so we shall discuss them in more detail
below. However, we note first that, according to Ref.
33, the results of the numerical calculations are in
satisfactory agreement with the experimental data on
the minimum metallic conductivity that have been ob-
tained for MIS structures.

The basic ideas of the calculation of the electrical
conductivity of a two-dimensional system near the lo-
calization limit go back to the paper by Edwards and
Thouless.17 We shall consider a square of side L,
containing Jflattice sites with unit lattice constant. In
accordance with the Anderson model, we assume that
the electron energy at each site is a random quantity,
uniformly distributed in an interval W. To find the
energy levels it is necessary to solve the SchrSdinger
equation with the Hamiltonian (3.1). Here it is ne-
cessary to use particular boundary conditions. We shall
assume first that these are periodic (aK = aRtL), and
then that they are antiperiodic (a s = -aR*i), and find the
level shift ΔΕ corresponding to the change of the bound-
ary conditions.

We consider now the quantity jf&.Eg(E), where Δ£ is
the geometric average shift of the levels in a certain
energy interval, and g(E) is the density of states in this
same interval. What is the value of this quantity in the

limit X — M? It is easy to understand that if the energy
interval under consideration is in the region of locali-
zed states, this quantity will vanish exponentially. In-
deed, if the wave function of the states considered van-
ished like β* / β, the shift of the levels with change of
the boundary conditions should also be exponentially
small: &.E~exp(-L/a). The density of states g(E) is
a finite quantity, and so

lim (6.4)

The nontrivial statement is that, in the region of ex-
tended states,

lim (6.5)

where σ is the two-dimensional specific electrical con-
ductivity that arises when the Fermi level has the val-
ue E, e is the electron charge, and/i s a coefficient
that depends on the form of the lattice. For a square
lattice/= 1, for a hexagonal lattice /=\/3~, and for a
triangular lattice/=V372\

An elegant proof of the formula (6.5), based on the
Kubo-Greenwoodformula, is given in Refs. 17 and 18.
We confine ourselves here to just a qualitative inter-
pretation. If the mean free path is much shorter than
the distance L to a boundary, the level shift ΔΕ for the
nonlocalized electrons is of the order of Η/τ, where τ
is the time needed for an electron to diffuse to the
boundary. According to the diffusion equation, L2 = Dr,
where D is the diffusion coefficient. On the other hand,
the electrical conductivity is connected with the diffu-
sion coefficient by the usual relation e2Dg(E) = σ. Com-
bining these formulas and taking into account that, for
a lattice with unit period, L2 = Jf, it is easy to obtain
an order-of-magnitude relation of the type of formula
(6.5).

Thus, in the two-dimensional case the criterion for
localization is that we go over from the formula (6.5)
to the formula (6.4). The results of Licciardello and
Thouless18 for the triangular lattice are presented in
Fig. 10. The authors assume that the states are lo-
calized in a given energy interval if JfeEg(E) decreases

0.4

0.3

0.2.

0.1

0

^

Γιΐ

-6.0 Ec -2J3 Ec ZJ) Ί.0 SO 0 2.0 Ί.0

FIG. 10. Dependence of J/AEg{E) on the energy for the tri-
angular lattice. The values of W/I are 8.0 (1), 8.5 (2), 9.0
(3), and 9.5 (4). In each energy interval we show the values of
JfaEg(E) for^"=36, 64, 100, 144, and 196, arranged in this
order from left to right. The upper and lower boundaries of
the extended states are denoted by Ec.
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monotonically with increase of Jf from >"=36 to./f
= 196. But if, in this energy interval, the monotonic
behavior is violated, the authors assume that the
states there are extended. Figure 11, which is also
borrowed from Ref. 18, shows the localization thresh-
olds obtained in this way, the electrical conductivity
in the region of extended states, and the density of
states, calculated in the usual way. Attention is drawn
to the fact that this Figure is not like Fig. 3, in which
the same things are depicted schematically. Accord-
ing to Ref. 18, the region of extended states appears
neither at the center of the band nor at the maximum
of the density of states. It is difficult to comment on
this fact. It is possible that the accuracy of the deter-
mination of the threshold was insufficient, and it is
possible that we still do not understand some impor-
tant features of this undoubtedly very complicated
phenomenon (cf. Ref. 60).

With regard to the concept of a minimum metallic
conductivity, one should also bear the following in
mind. All the arguments and calculations described
above were made in the one-electron approximation.
A very important aspect of these arguments is that the
density of states at the Fermi level was assumed to
be a nonzero constant quantity. As shown in Refs. 42
and 43, the electron-electron interaction leads to the
vanishing of the density of states at the Fermi level.
In view of this circumstance, the question of a mini-
mum metallic conductivity requires further discussion.

We turn now to another important aspect of the theory
of the Anderson transition, namely, to the question of
the behavior of the wave functions at energies close to
the critical energy Ec that separates the localized and
extended states. It follows from general principles of
quantum mechanics that the behavior of the wave func-
tions cannot change discontinuously for a small change
in the energy. The localized states that are separated
from the extended ones by a very small energy should
have a large localization length, as it is precisely the

-8.0 -Ί.0 0 ίΰ 10
c/i

FIG. 11. Histogram of the density of states for 100 samples
consisting of 100 sites of a triangular lattice. The values of
W/I are the same as in Fig. 10. The regions of localized states
are shaded. The electrical conductivity (in units of e2/H) is
shown by the solid curves in the regions of extended states.

energy Ec- Ε that determines the attenuation of the
localized states in the classically forbidden regions.

We shall consider, for example, a potential well, and
suppose that, as a result of a decrease of its depth, a
certain bound state is "expelled" into the continuum.
In this case, inevitably, the localization length of this
state becomes infinite like E~in where Ε is the energy
measured from the boundary of the continuum. We
must assume, therefore, that the radius a(JE) of the
localized states behaves near threshold in accordance
with the law

where s is an unknown critical index. It should be
borne in mind that the corresponding wave functions
oscillate on a scale of the order of the lattice constant,
and only their envelope behaves like e'r/aiB} (Fig. 12).

The problem of the value of the critical index s is not
yet finally solved. If we were talking about a simple
potential well, where it can be assumed that the poten-
tial at a sufficiently large distance from the well is a
constant, the natural answer would be that s = | . This
is just what was assumed, in the first place, by Mott
and Davis (see Ref. 24, p. 22). However, there are
no serious grounds for such an assumption. In 1972,
Anderson,44 using results from the theory of self-avoid-
ing walks, showed that the most probable Green's func-
tion falls off with distance like e'R/aiB\ where a(E) is
expressed by the formula (6.6) with s = 0.6. It should
be noted, however, that the arguments used by Ander-
son to reduce the problem of the asymptotic form of the
most probable Green's function to the problem of self-
avoiding walks contain a number of far-from-obvious
assumptions. It is interesting, nevertheless, that
Abram and Edwards45 obtained the same result from
entirely different considerations. Freed4 6"4 7 obtained
the similar, but not identical, result s = f. A similar
result was also obtained by Sadovskii,48 who, using
Anderson's argumentation and the theory of self-avoid-
ing walks developed by de Gennes,49 found that the index
s coincides with the correlation-length index of the us-
ual theory of critical phenomena.

It is entirely natural to assume that the index s does
not depend on the specific model of the disordered sys-
tem but does depend on the number of dimensions of
space. The index values given above pertain to the
three-dimensional case. Abram50 showed that in the
two-dimensional case s = 0.75. Finally, Last and
Thouless assumed that, in the three-dimensional case,
in the immediate vicinity of the energy Ec there exists
an energy region in which the wave functions decrease
with distance by a power law.51 In the same work, a
numerical experiment providing evidence in favor of
this assumption was performed.

FIG. 12. Wave function
near the Anderson trans-
ition.
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7. SOME ASPECTS OF THE THEORY OF THE

ANDERSON TRANSITION. CONVERSATION WITH

A THEORIST ABOUT THE THEORY

Theorist. I have read the manuscript of your review.
Perhaps it will be good for some, but I didn't like it
very much. All you have here is words, and I don't
understand words very well. Can we really not see at
least something from formulas? I grant, as you say,
that there is no satisfactory theory, but surely there is
something definite? You report a large number of dif-
ferent results. If they are well known, they must have
been obtained somehow. And the very fact of the ex-
istence of the Anderson transition? Where does that
come from? Certainly not from your resonance bands.
Incidentally, I have seen papers on this subject. True,
I haven't analyzed them myself, but they appeared to
be perfectly solid. But you haven't written anything
about them.

Author. Your reproach is fair. In my defense I can
only say that I have tried to make the review as simple
and clear as possible. However, as is clear from what
you have said, these concepts are highly subjective.
Besides, it seems to me that the analytic methods in
the theory of the Anderson transition are still not ad-
equately developed. Nevertheless, I ought, of course,
to have talked about the steps made in this direction,
especially as everything started from these. The
founding paper by Anderson1 did, in fact, contain the
method that has been used in almost all the papers you
mentioned.

Theorist. Well, what was in it?

Author. Just what you want, probably. The Green's
function in the site representation, a perturbation-
theory expansion, a re-expansion taking into account
multiple scattering at one site . . .

Theorist. Of course, of course ! I am convinced that
if anything is really happening, this fact should be clear
from perturbation theoryl In some order, something
should necessarily go to zero or to infinity. I wanted
to look at this myself before talking with you, but I
didn't have time. However, it should be very simple.
Surely, what you are stating i s . . .you say that a trans-
ition between states belonging to different sites is im-
possible. Then the states will be strictly localized.
Excellent—this means that at a certain energy value,
lying on the real axis, the imaginary part of the self-
energy of the single-particle Green's function should
vanish. This energy will be the threshold of the Ander-
son transition. Is that correct?

Author. In general yes. But...

Theorist. You want to say that the Green's function
Gin in the site representation is, in general, off-diago-
nal in the site index i. So it is not clear precisely what
function I am talking about?

Author. Well, no, the point is that . . .

Theorist. I am talking, of course, of the site-diago-
nal Green's function. Let's call it Goo.

Author. You think that the choice of this site is not
important here?

Theorist. Of course it isn't. After averaging, all the
sites will be come equivalent. It is strange to hear such
a question from a specialist in disordered systems.
(Puase) In practice we simply need to write the series
for the probability of a transition away from the given
site to any other site. At the transition point, if you
are right and such a point does indeed exist, this series
should vanish. That's all. We start by analyzing the
first term of the series. In second order of perturba-
tion theory... Wait, wait... There's a funny thingl This
probability will never vanish. No, I no longer under-
stand you at all—I disagree with you completely.

Author. Why?

Theorist. Listen to me for five minutes, and you will
understand everything without explanations. In second
order of perturbation theory, we have

m

here, V is the transition probability. The sum is taken
over the nearest neighbors of the site 0, and (. . .) de-
notes averaging over all values of the energy cm. Now
what form did your energy distribution function have?
Aha, formula (3.2) Excellent ! We carry out the av-
eraging in (7.1):

t)de. (7.2)

(7.3)

We make use of (3.2) and obtain

So, in contradiction to what you said, this quantity does
not vanish for any finite values of // W. Moreover, I
see clearly that the same is also true in all orders of
perturbation theory. What do you say to that?

Author. You are probably right.

Theorist. But this means that there is no transition
at all!

Author. Look carefully at the formula (7.1) that you
have written. In it is a summation over the sites that
are nearest neighbors of the site 0. What do you think
is the probability that amongst these neighbors there
will be a site with energy εΜ = ε0?

Theorist. The probability of exact equality is, of
course, zero, but we can't argue in this way if there is
a 6-function in the expression. Represent it in the
form jf's/IV + U o - E j 2 ] , where s is a very small quan-
tity. After this it is easy to see that the result does
not depend on s.

Author. Very good, let's interpret your result as-
suming that all the levels have a finite width s.

In the system there are a certain number of sites
having at least one nearest neighbor with an energy
differing from their own energy by an amount not greater
than s. For s —0 the number of such sites tends to
zero, but they give a finite contribution to (7.1) because
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they are assigned a very large weight, of the order of
1/s, in the averaging. This is the way you obtained the
expression (7.3), which, as we now see, bears no re-
lation to the matter.

Theorist. I don't see that.

Author. Imagine all this in space. There are pairs
within which a transition between the sites is possible.
In the Anderson model the distance between the sites
of one pair is equal to the lattice constant, and the frac-
tion of sites belonging to such pairs is of the order of
s/W. Thus, for small values of s the pairs are iso-
lated from each other and no transitions are possible
between them. Can such pairs really ensure spreading
of a wave packet over a macroscopic distance?

Theorist. Perhaps you are right. It appears that it
is meaningless to average the transition probability.
But what then must we calculate?

Author. Anderson represented the probability of a
transition from a site (or, more precisely, the imagin-
ary part of the self-energy of the Green's function Goo)
in the form W = limsX(s). In second order of perturba-
. . . . s- 0

tion theory,
(7.4)

This coincides, of course, with what you wrote, but
without the averaging over the energies zm.

Theorist. How can we work with such a quantity ?
It depends, surely, on which site we take as our start-
ing point.

Author. Do you think that this probability does not
in fact depend on the site? Yes, X{s) is a random
quantity, and Anderson calculated its distribution func-
tion using the second-order expression (7.4). This is
very simple to do. It turned out that the distribution
function F{X) has a completely well-defined limit as
s — 0. The most probable value of X turns out to be a
finite quantity. Because of this, the quantity V is equal
to zero with probability unity.

Theorist. But how does this tie in with formula
(7.3)?

Author. The point is that for large X the function
F(X) falls off only like X~3/2, so that the average value
of X diverges. Your result is due to just this. As you
see, it has no direct bearing on the question of local-
ization.

Theorist. But, permit me, it has now turned out that
V is always zero, and, consequently, the states are
always localized!

Author. Yes, that is precisely what happens in sec-
ond order of perturbation theory. But Anderson showed
that the perturbation-theory series for the quantity X
diverges with probability unity for large values of I/W.
The point where it begins to diverge is the localization
threshold. Anderson showed that such a point does
indeed exist, but he came up against considerable dif-
ficulties in estimating the critical value of Wjl. Nev-
ertheless, he did give an estimate for Wjl. From the

standpoint of the subsequent computer calculations,
this estimate was much too high. The estimate is
analyzed comparatively simply in a paper by Ziman.52

Theorist. One is analyzing here the probability of
convergence of a series for a random quantity. How is
this done?

Author. This a complicated mathematical problem,
and I was not prepared to discuss it in this review.
You can form your own opinion with the aid of the arti-
cles by Thouless14 and Licciardello and Economou.53

I should say, incidentally, that the values of Wjl ob-
tained in Ref. 53 are in good agreement with the com-
puter calculations.

Theorist. Are you saying that the averaged single-
particle Green's function, which contains complete in-
formation about the density of states, "knows nothing
at all" about the Anderson transition, in that the trans-
ition point is in no way special for it?

Author. No, I am not prepared to defend so general
a statement, but I shall give you a few well known arg-
uments in favor of it. You remarked, correctly, that
the Anderson transition corresponds to the vanishing
of the imaginary part of the self-energy. But here we
must be talking only about the unaveraged quantity.
The averaged Green's function always contains an im-
aginary part, at all energies. To see this, take the
free Green's function G{1 = (ε - ε, +ίδ)" ! and integrate
it with weight P(tt). Moreover, there exists a model
for which the averaged single-particle Green's function
is known exactly. This is Lloyd's model.54 It differs
from the Anderson model only in the fact that the func-
tion Ρ(ε) is expressed not by formula (3.2) but by the
formula

All the qualitative arguments given in Sec. 3 apply in
equal measure to Lloyd's model. We need only replace
Why γ everywhere (with the sole exception, perhaps,
of quantitative estimates). Therefore, there is every
reason to suppose that an Anderson transition also oc-
curs in Lloyd's model, when γ and / have a certain ratio.
Nevertheless, the Green's function found by Lloyd, when
averaged over all realizations of the energy, has the
form

Gk(e) = (e-£(k) + iv)-' (Ime>0), (7.6)

where £(k) is expressed by formula (2.6).

It is impossible to imagine anything simpler than this
function. Its self-energy part not only has no singulari-
ties but is also completely independent of the energy.
This fact seems to me to be a strong argument that the
averaged Green's function in the general case, as you
expressed it, "knows nothing" about the Anderson trans-
ition (see also Ref. 55).

Theorist. Do you know of any solved model in which
the transition can be seen?

Author. Yes, the Anderson model on a Bethe lattice,
which is an infinitely branching tree. The method em-
ployed to solve it has been used as the basis of approx-
imate calculations for ordinary lattices.5 6·5 7
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8. CONCLUSION

We have given an account of modern ideas about the
localization of quantum states in disordered systems.
For definiteness, we have been concerned with elec-
trons, although, to a considerable extent, these ideas
can also be extended to vibrational levels in lattices with
substituted atoms. Two important concepts, formula-
ted by Anderson and Mott, form the basis of these
ideas. One of them is that there exists a narrow bound-
ary between the localized and extended states, and the
other asserts that the electrical conductivity vanishes
discontinuously when the Fermi level passes through
this boundary. It is probable that neither of these con-
cepts is strictly justified. However, as we have seen,
the first of them is so firmly ensconced in modern phy-
sics that it seems inconceivable that we could explain
the enormous volume of experimental material con-
cerning amorphous and doped crystalline semiconduc-
tors without using this concept as a basis.

It would be an exaggeration to say the same about the
concept of a minimum metallic conductivity, although
the recently published experimental data on MIS struc-
tures constitute ever more evidence in its favor.3 3·5 8·5 9

We have left aside a large number of extremely in-
teresting papers in which analytic methods for the cal-
culation of the localization thresholds are developed
(see the bibliography in Refs. 53 and 54), although the
basic ideas of these papers are described in Sec. 7.

It seems to us that the problem of the Anderson trans-
ition is similar to the problem of second-order phase
transitions, and its solution should be constructed in the
spirit of scaling ideas. Probably, this should be pre-
ceded by a phenomenological theory, introducing an
order parameter and critical indices and similar to the
one that has been created in percolation theory. Clear-
ly, the correlation-length index is the index s in (6.6).
However, so far as we know, there has not yet been any
work of this kind.
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