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The advantages of using the 4-dimensional group velocity are demonstrated. After first giving its purely
kinematic definition for an arbitrary wave field, the discussion turns to packets of electromagnetic waves
in electrically and magnetically anisotropic media which possess space-time dispersion and are smoothly
nonuniform in space and slowly varying in time. In particular, a simple expression is obtained for the
energy-momentum 4-tensor in terms of the group-velocity 4-vector. Finally, it is shown how the 4-
dimensional notation simplifies the derivation of the conditions of orthogonality and conservation of the
adiabatic invariant. A note by M. L. Levin which follows this paper contains a brief account of the basis
results of W. R. Hamilton's investigations relating to the velocity of wave motion.
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1. INTRODUCTION

Group velocity is one of those physical concepts to
which for various reasons one returns again and again,
although it might seem that everything that could be said
about it has long ago been elucidated and written. This
is apparently so because group velocity is one of the
fundamental concepts of the kinematics (and not only of
the kinematics) of wave motion and is essential for the
propagation of waves of arbitrary physical character,
including "matter waves" in quantum mechanics.

The concept of group velocity was first introduced by
Hamilton,1 long before Stokes and Rayleigh (see the
paper by M. L. Levin in this issue). Its subsequent his-
tory, associated with the names of Stokes2 and Rayleigh3

(who, for a long time, were credited with introducing
the concept of group velocity) and with the classical pa-
pers of Sommerfeld4 and Brillouin,5 is sufficiently well
known. We shall not list here the numerous subsequent
works, a few of which will be mentioned later.

As is well known, group velocity characterizes the
motion of a wave packet in a medium with dispersion
when one considers distances which are not too large,
i.e., under the condition that the packet retains its "in-
dividuality"—its shape and dimensions. Within this lim-
itation, the group velocity of the packet "as a whole" is
analogous to the velocity of a body in classical mechan-
ics. But under these same conditions, i.e., when it is
at all meaningful to employ the concept of group velocity,
the group velocity in the case of a medium which is suf-
ficiently smoothly non-uniform and/or which varies suf-
ficiently slowly in time need not remain constant, i.e.,
it may describe not only a purely uniform and rectilin-
ear motion of the packet.

When there is anisotropy due to either the structure of
bodies (crystals or gyrotropic media) or their motion
(for example, in the case of aberration or a moving dis-
persive medium6), the group velocity plays the role of
the so-called ray velocity.

In other phenomena, it is of interest to consider the
relationship between group velocity and the dynamical
characteristics of the wave field in question, as well as
the idea of a four-dimensional (relativistically invariant)
generalization of the concept of group velocity itself.
There exists a rather voluminous literature on both of
these questions, and the aim of the present methodologi-
cal paper is merely to present certain additional argu-
ments (within the framework of the special theory of re-
lativity) .

The four-dimensional generalization of group velocity,
being a purely kinematic problem, is considered for an
arbitrary wave field (Sec. 2), and the role which the 4-
vector of this velocity plays in dynamics is illustrated
in the case of electromagnetic waves. In Sec. 3 we
briefly recall the four-dimensional form of Maxwell's
equations and consider the motion of a wave packet in
the general case of an electrically and magnetically
anisotropic medium which possesses space-time dis-
persion and is also smoothly non-uniform in space and
slowly varying in time. We then turn to certain dynami-
cal relations for the electromagnetic field (Sec. 4) and
show in particular that the energy-momentum 4-tensor
is related in a very simple way to the group-velocity 4-
vector. In Sec. 5 we discuss the problem of an adiabatic
invariant (orthogonality conditions for the equations of
the first approximation) and present some concluding
remarks.
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2. THE FOUR-DIMENSIONAL GROUP VELOCITY

In using the linear approximation to describe any wave
field in a uniform and time-independent medium, use is
often made of the Fourier expansion, i.e., the expansion
in plane harmonic waves expfe^*").1' The equations for
the field in question then lead to the so-called dispersion
equation, which is a relationship among the components
of the 4-vector x:

Δ (κ) = 0. (1)

In the absence of absorption, the real solutions x=K" of
Eq. (1) specify those plane harmonic waves with wave
4-vector Ki={k., ω/c} which can propagate in the given
uniform, time-independent, and source-free medium—
the so-called proper waves. Only these solutions (which
are real in the absence of absorption) will be considered
here.

A wave group (or packet) is some superposition of
proper waves with similar values of K. U the group is
described by the integral

/ (r, <) — f g (κ) el P"-" <•» ' t f x ,

where the frequency ω is taken from (1) as a function of
κ, andg-fn) is non-zero only in a sufficiently small
neighborhood of H=k, then by retaining only the linear
term of the expansion

we obtain

f(r,t) =/0(r,

in which

h (r. <) = jg (

where

(2)

Thus, in this approximation, the group represents a
quasi-monochromatic quasi-plane wave with a "carr ier"
exp(£[k-r -a)(k)i]) "inscribed" in a smooth "envelope"
5^r -ui) moving with a group velocity u. It is in this
approximation, with no allowance for deformations of
the envelope during the course of its motion, that it
makes sense to introduce the group velocity.

The group velocity admits a four-dimensional gener-
alization, which has been introduced in a number of pa-
pers on electrodynamics. In these papers, a 4-vector U
was defined by means of the energy relations.7 '8 How-
ever, it seems more natural to define the kinematic
concept of a velocity without resorting to dynamical
quantities. This can be done as follows.

In the 4-space of x, the real solutions of the dispersion
equation (1) are described by a three-dimensional (in
general, multi-sheeted) hypersurface, part of which is

^Greek indices take on the values 1,2,3 and Latin Indices
the values 1,2,3,4; lower and upper Latin Indices denote,
as usual, covariant and contravariant components, which are
related to one another in the usual way by means of the pseudo-
Euclidean metric tensor.

shown in Fig. 1, where for obvious reasons the number
of dimensions is reduced by unity. The group consists
of proper waves with sufficiently similar values of K,
i.e., it is described by a Fourier integral

f(x)=\ g(x)e<*r*"dh<, ( 3 )

in which the integration actually extends only over a suf-
ficiently small sector Σ of one of the sheets of the dis-
persion surface Δ(χ)=0.2)

We define U" as a 4-vector normal to the dispersion
surface at the point Kj

. . . . dA(x) I (A)

and we choose the scalar factor A(x) so that U"Un=-c2,
as in the case of solid bodies. To avoid writing all sub-
sequent equations with the symbols | Δ = 0 to indicate that
the solution κη=Κη of the dispersion equation (1) must be
substituted for xn after differentiating with respect to xn,
we shall simply write Kn instead of xn, bearing in mind
that this notation has the meaning described.

According to (4), the vector U" has components

But applying the dispersion equation (1) and the defin-
ition (2) of the three-dimensional group velocity u, we
find that its components are given by

so that

The normalization condition then gives

z)This means that the function g(H) contains a factor ό[Δ(κ)].
On a small region Σ.

and, since Δ (Κ) = 0, we find to first order in (KB —Kn) that

The vector (8Δ/9κ β ) Δ = 0 is directed along the normal to Σ at
the point Kn , so that the integration extends only over those
(vtn—Kn), which lie in the region Σ (orthogonal to the normal).
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and hence

9K ~

Consequently, the components of the group 4-velocity
are the same as those of the 4-velocity of a body:

c \

We note that in the case of degeneracy, i.e., when
there is some multiplicity in the solution •vtI1=Kn of the
dispersion equation, the derivatives 8Δ/θκΒ vanish at
*n=Kn together with Δ(χ.). With the normalization U"Un

= - c 2 , the scalar factor A in Eq. (4) then obviously tends
to infinity at the point Kn, so that the components U" of
the group velocity are again determined by Eq. (5).3>

It is well known10 that the 3-velocity u in an isotropic
medium is directed along the wave vector k and, in the
absence of absorption, is smaller than the velocity of
light in vacuum. In an anisotropic medium, however,
the vectors u and k are not collinear. Nevertheless,
since the group velocity still determines the velocity of
propagation of a signal in this case (in media with no
absorption), it must be less than c. The components of
the group-velocity 4-vector are then real.

3. ELECTROMAGNETIC WAVE PACKET. THE
DISPERSION EQUATION

Combining the electric and magnetic field intensities
Ε and Β and the inductions D and Η into the antisymme-
tric 4-tensors F,m andff'* with components

where e^y is the completely antisymmetric unit tensor
(e123= 1), and introducing the current-density 4-vector
J ' with components J i ={j, cp}, Maxwell's equations can
be written in the form

dF jh dFhi dFi\

.-, Γ ' -L ! ' -. fa *

dx"
. = — J'

(6)

(7)

As is well known, this system of equations must be sup-
plemented by the constituent equations, which relate the
tensors Hlk andF I m . We shall consider quasi-uniform
and quasi-stationary media. To describe the fields and
the medium itself, it is convenient to introduce in this
case, in addition to the coordinates x = {xi}> another set
of "slow coordinates" ξΞ{ξ/}={μ«ί}, where the dimen-
sionless parameter μ of order (ka)'1 fo is the scale of
the nonuniformities) is sufficiently small (μ «1). It
should be noted that the fact that all four coordinates ξ
are of the same order in μ by no means implies that a
medium which is spatially quasi-uniform, for example,
is necessarily also quasi-stationary in its time varia-
tion. However, it is clear that such an asymmetry is
possible only in one coordinate system. In all other

ht is perhaps worth mentioning that the argument in the enve-
lope of the packet 5^(r-ui ), after introducing the 4-velocity
V" , can be written in the form of the 4-vector x1 -V'r, where
τ = t Vi-fuVc2) is the proper time of the packet. The fourth
component of this 4-veetor is equal to zero.

systems, in accordance with the Lorentz transforma-
tion, there is a special type of time dependence in the
same order in μ, namely a drift of "frozen" nonunifor-
mities. It is natural to assume that all the slow coor-
dinates are of the same order in the parameter μ even
in the general case in which there are no "frozen" non-
uniformities.

In the general case of a space-time nonlocality in the
relations between the inductions and field intensities,
the linearized constituent equations can be written in
the form

H * (x) = J ε*"" (|, x') Flm (x - x') d*x'. (8)

The non-uniform and non-stationary character of the
medium is taken into account here by the fact that the
permeability 4-tensor ziktm(%,x') depends not only on x'1

but also on the slow coordinates ξί=μΛ:ί.4)

By virtue of the anisymmetry of the tensors H№ and
Flm, it follows from (8) that the tensor t m n must be
antisymmetric in the first pair of indices (jft) and can
always be taken to be antisymmetric also in the second
pair of indices (Zm):

kilm • (9)

When μ=0, the medium becomes uniform and time-in-
dependent. In the inertial coordinate system associated
with this medium, the components of the 4-vector cSklm

can be expressed in terms of the components of the di-
electric permeability and inverse magnetic permeability
3-tensors ε^ΟΟ and γ ^(χ^ μ'^ίχ'), respectively, as
follows11:

β*** (0, χ') =

2ε«Ρνν (0, χ · )

(0, x') = 0,

.lmy,a (χ').

2ε4«ί» (0, χ') {χ').
(10)

In saying that clklm is a 4-tensor, we are of course as-
suming that it is determined in an arbitrary inertial co-
ordinate system by the usual equations of the Lorentz
transformation.

In what follows, we shall have to consider the Fourier
transform (with respect to the "fast" coordinates χ') of
the kernel ε'* ΐ Μ(ξ,χ'):

eft'"· (ξ, κ) = J e?u" (ξ, χ') β-·*·*" d'x1. (11)

We note at once that if the medium is not absorptive,
i.e., if the 3-tensors έ Λ (χ) andy^x.) are Hermitian
(έαβ= ε|« and γ ^γξα), then it follows from (10) that the
4-tensor cmm(0,v) satisfies the condition

ε»"" (0, κ) = ε·'""" (0, κ). (12)

We turn now to the propagation of a wave packet, i.e.,
a group of proper waves (<7J=0), in a medium described

4>In a non-dispersive medium, the kernel e J *' m ( i , *') takes the
form ε'*'Κ(ξ)δ(*'). If the medium is also uniform and sta-
tionary, thenfiJ* = eJ*'IB.F,,I1, where the tensor ε is constant.
The fourth-rank permeability 4-tensor (the DM tensor) for
such a medium was first introduced by Mandel'shtam and
Tamm9 (originally, in the framework of the special theory
of relativity). A minor difference is that they introduced the
tensor slmik which is the inverse of ε**'"1 in the sense that
it can be used to express the field intensities in terms of the
inductions: Flm = slmikH

jk.

632 Sov. Phys. Usp. 21(7), July 1978 V. G. Polevoi and S. M. Rytov 632



by the constituent equations (8). We seek a solution of
Maxwell's equations in this case in the form of a quasi-
monochromatic quasi-plane wave

F,m = r I m ω «·•«, (13)

where 5^Μ(ξ) are slowly varying amplitudes, and ip(x) is
a phase which is quasi-linear in the fast coordinates
and whose gradient represents a local wave 4-vector
that depends only on the slow coordinates ξ:

κ (S) = i l ( 1 4 )

We note that the definition (14) has the immediate con-
sequence that

dK) _ O'-t _ 3'ψ _ dK,

~~eT* δμχ' δχί ~ ΰχ' δμχί d-i '

and if we write the derivatives with respect to the slow
coordinates using the more concise notation

this becomes

dsKj = d,K..

(15)

(16)

Let us first see what the constituent equations (8) im-
ply for fields of the type (13). Substituting (13) into (8),
we begin by expanding !?lm and φ in powers of x', retain-
ing the terms up to first order in μ :

jF,m( |- | ') exp [ίψ (*-*')]

= [jFim (1) -^"d.^, m (I)] exp [ii {x)-iK, (ξ) x" + ± 1μχ·»χ»3,Κη (ξ)]

« [*ιη-μχ"δ. r,m + γίμ.ίΤ,αχ'ηχ"δ,Κη (Ε) J exp[ϊψ(x)-iK.x"\.

Then it follows from (8) that
(17)

where

(18)
and where we have made use of the Fourier transform
(11). Since we shall henceforth always encounter only
this transform ε"""(ξ, Κ), we shall omit the tilde and
write simply zlklm, referring to this quantity as the per-
meability 4-tensor and bearing in mind that it is a func-
tion of the slow coordinates ξ and the local wave vector
Κ(ξ).

For the main problems in which we are interested, it
is sufficient to consider only the zeroth approximation
in the small parameter μ. In this approximation, (18)
has the form

and in general the slow coordinates ξ appear quasi-sta-
tically in all quantities and relations simply as parame-
ters on which zSklm and thus also the solutions κη=ΛΓΒ(ξ)
of the dispersion equation depend. In other words, in
the zeroth approximation everything takes the same
form as in a uniform time-independent medium.5'

Having established (17) and (19), we turn now to Max-

5'As can be seen from (18), for example, the terms of first
order In μ already contain derivatives with respect to ξ. We
shall require the first approximation only In Sec. 5.

well's equations with a view to obtaining the dispersion
equation.

Assuming that there are no sources (</J=0) and sub-
stituting (13) and (17) into (6) and (7), we find the zeroth
approximation

- f,jKh = 0, (20)
SiihKk = o,

from which it follows, incidentally, that6)

fikSi*'" = 0.

By (19), Eq. (21) takes the form

*mmKhFlm = 0.

(21)

(22)

(23)

Since the eight equations (20) and (23) for the six
quantities 9,m are certainly not independent, it is al-
ready expedient at this stage to go over from the 4-vec-
tor Flm to the potential 4-vector A m ={A,φ} by putting

Flm=Msi-ja±._ (24)

The equations (6) are then satisfied identically, and by
substituting the expression Α Μ=^η(ξ)β'*<χ) for the 4-po-
tential and (13) for F,m into Eq. (24) we obtain in the
zeroth approximation the following relation between the
slow amplitudes 5^m and j / m :

Using this relation, Eq. (23) takes the form

SimJm = 0, (26)

where we have introduced the second-rank tensor

Slm = tM"KkKt. (27)

The antisymmetry of tlklm in the indices (jk) implies
that K]S3m=0, i.e., there exists a linear relationship
between the rows of the matrix Sim, so that

det || Sim | (28)

Thus the determinant of the system of equations (25) is
equal to zero, so that these equations always have a
non-zero solution for dm, although this of course does
not mean that the field intensities flm are also non-zero.

In order to render the conditions that dm and !Flm are
non-zero equivalent, we subject the 4-potential to the
invariant Lorentz gauge by putting dAm/dxm=0, so that
the amplitudes dm in the zeroth approximation satisfy
the condition

ο. (29)

Equation (25) then implies that

As we are considering the field in a medium and not in
a vacuum, i.e., lC"Km=k2 -w2/c2#0, it is obvious that it
is not possible for all the amplitudes tfm to vanish with

With the condition (29), which indicates that from

6 ) The contraction of (20) with 3P*"1 gives &~№ fp*№K,
+ fi,ijeati*Kj+Srijtf*'*Ki,= 0· By (21) and the antisymmetry
of <***, the last two terms are equal to zero (recall that we
are considering only real Kn).
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among all the non-trivial solutions of (26) we are select-
ing those that are orthogonal to the 4-vector Km, we can
write (26) in the form7'

spect to Ks:

Vm<Am = 0, Vm = S™ + K'Km.

The non-trivial solutions of these equations now auto-
matically entail non-zero fields &tm. The condition for
the existence of non-trivial solutions is the dispersion
equation

D (K, I) = det || Lim || = det || S'm + = 0.

Using (28), we can transform the determinant D to the
form

D = 2KaKm (3SSTSl

m - 2S?Sv

mSl

p - S3),

where S =S\ and S'?=g,riS'"n (g l n is the metric tensor).

Thus the dispersion equation for the ani so tropic medi-
um with space-time dispersion under consideration can
be written in the four-dimensional form

Δ (Κ) = 3SS?Sl

m - 2S?S%S'r - S 3 = 0, (32)

where the smoothly non-uniform and slowly non-station-
ary character of the medium are taken into account by
the dependence on the slow coordinates ξ = μχ of the per-
meability tensor which appears inSJ1 [see (27)].

According to (27), the expression (32) for &(/T) has
the form

Δ (Κ) = Δ""*"' (Κ) Κα . . . Κ,,

where the coefficients &abctef(K) are sums of triple
products of the components of eJ*lm(if). Applying the
operator KS{B faKs) to this expression and using (32),
we obtain

3Α(Α·) _ R da!"
dK,

-K....K,.

This implies that if there is no dispersion, i.e., if cmm

and hence also Δα1κ<1β/ is independent of K, then the vec-
tors Κ and U are mutually orthogonal:

K,U' = 0. (33)

In terms of three-dimensional quantities, this condition
can be written in the form

ku = ω,

or, if we introduce the phase velocity v=wk/fe2 and the
angle a between ν and u, in the form

u cos a = v.

As can be seen from its derivation, this relation, which
is well known in the optics of non-dispersive crystals
(see, e.g., Ref. 12), remains valid in the presence of
not only electric but also magnetic anisotropy (with an
arbitrary relative orientation of the axes of the 3-ten-
sors ε̂  ΖΆάγ ^β'αβ)·

We also give an expression for Us in terms of the ten-
sor S'm [Eq. (27)1, obtained from the definition (4) by dif-
ferentiating the expression for Δ(Κ") directly with re-

could have Introduced an arbitrary scalar C as a factor
in front of the product if jKm in (30), but this would simply
give a factor C in (31).

(30) where

5S.5i.-5Si,,,

Since the dispersion equation (32) itself can be written
in terms of the auxiliary tensor Pl

m in the form

by taking the expression for Ρ from this relation we can
represent U* in the form

P'm
—

esp
'-ΪΚΤΤ-· (34)

4. THE ENERGY-MOMENTUM TENSOR

We turn now to dynamical quantities, i.e., quantities
which are bilinear in the field. As is well known, the
contraction of the tensor Fn with the current-density
vector J 1 gives the force-density 4-vector f}:

with components /i={pE + (l/c)( j * B), (1/c) j -E}. Thus
the space-like part (/„) is the density of the Lorentz
force acting on the free charges and currents, and the
time-like component (/4) is equal to the power density
generated by the field (divided by c). By eliminating j '
from (35) by means of (7) and then making use of the
equations (6), we can express^ entirely in terms of the
field intensities Flm and the inductions Η'" in different
but equivalent forms. One of these equivalent represen-
tations is

t l d I f rr'* i_ l ftp Hlm\-L· l I ulm aF'"> f dH'm \

(36)

where 5) is the unit tensor. This general expression is
of course independent of the form of the constituent
equations. We shall apply it to the case of free waves
in which we are interested (J ' = 0, and accordingly fs=G)
and to the propagation of a group of such waves in the
case of the constituent equations (18), but first we make
some preliminary remarks.

If we were considering Maxwell's equations together
with the equations of motion of the medium, taking into
account the effect of the field on the medium, we would
have to require conservation of the total (mechanical
+ electromagnetic) energy and momentum in a closed
system with no dissipation. But we are not considering
the mechanics of the medium, and we are assuming that
its space-time variations or motions are specified.
Thus, we need consider only the electromagnetic energy
and momentum of the system {medium +field}· Obvious-
ly, in a transparent, uniform, and time-independent
medium which contains no free currents or charges,
i.e., in the case in which/^=0 and the three-dimension-
al permeability tensors are independent of ξ=μ# and are
Hermitian, the electromagnetic energy and momentum
must be conserved in a closed system. This means that
the equations
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where

(37) Ti = m\

under these conditions must take the form of the contin-
uity equations

J_ _= f\ W O /

in which it is natural to regard the tensor T), which is
bilinear in the field, as the energy-momentum tensor of
the system {field + medium}. Of course, the equations
(38) themselves do not determine T) uniquely, but only
up to a term R) for which 3/?J/ax* = 0. In the presence
of absorption and/or space-time variations of ciktm, the
equations (37) must contain not only terms of the form
dTj/8x* but also additional terms which are not redu-
cible to this form but which vanish in the case of a
non-absorbing, uniform, and stationary medium.
Bearing this in mind, we apply Eq. (37) to a wave packet,
writing the real field intensities and inductions in
the form

ο. π'~-±№ι-*ι*+4?"'*-1·). (39)

Substituting this into (37), making use of (14) and the
fact that 3/3#*=μ8/θξ*Ξμ3» for the slow amplitudes
(which depend on ζ = μχ), and averaging over a wave-
length or period of high frequency (terms containing
exp(±/2ii>) vanish after taking this average), we obtain
the equation

Ϊ65

(44)

and 8S is the derivative with respect to the argument ξ'
which appears explicitly, i.e., for the function/(ξ, Κ(ξ))
we have

As we have already pointed out, these equations always
involve the amplitudes flm axiaffl* taken from the equa-
tions of the zeroth approximation. We could have
omitted the terms containing 6* in (40) and (44), since
(22) holds in the zeroth approximation.

The right-hand side of (43) vanishes as soon as we
consider the case of a uniform and stationary medium
(a'mpq is independent of ξ) with no absorption (fi'mpQ=0),
and the conservation laws for the tensor T) then come
into effect. Thus we can regard T) as the energy-mo-
mentum tensor. We note that the last term in (44) is
purely dispersive: if a'tmpq is independent of the com-
ponents of the wave vector K, this term vanishes.9'

We shall now show that the energy-momentum tensor
in the form (44) can be written in a very compact form
in terms of the group 4-velocity U. First of all, we use
Eqs. (19) (where Eiklm=ai*tm) and (25) to express all the
field intensities and inductions in (44) in terms of the
4 -potential J. It is easy to see that by using (29) and
(42) the result is reduced to the form

(40)
Let us now assume that the medium possesses weak

absorption, i.e., that the permeability tensor ε-'*'"1 con-
tains a small anti-Hermitian component (of order μ),
so that8»

ε»"» = a'""" + ίμβ'*"". (41)

In this form, the tensors aSktm and β""η are obviously
Hermitian, i.e.,

a*Mm _ a(mAi β*Λ» _ β!>«*_ (42)

Let us substitute Eq. (41) and the constituent equation
(18) into (40). In doing so, it is necessary to take into
account the correction of order μ in (18) only in calcu-
lating the last term of (40), and the remaining terms,
which already contain the factor μ, can be evaluated by
simply substituting the zeroth approximations, i.e.,

cmm=ajKim and (igj# After simple manipulations, Eq.
(40) reduces to the form

(43)

8 )In this case, the vootsK^dtp/Bx1 of the dispersion equation
(32) are complex (like the phase φ), but their imaginary parts
are of order μ. Since the difference in the last term of (40) is
of order μ , allowance for the imaginary parts of Kj would
give a correction of order μ2. We have therefore immediately
written 2Kj instead olKj + Kj in (40), assuming that their,
are real. For the same reason, we also take φ in (39) to be
real.

By virtue of (27) and the expression (30) for £"", this
can also be written in the form

dLlradi*.4m (45)
rpH

"5T" "~ ~"&T" dKk

and by using the hermiticity of S'm and Llm and Eqs. (26)
and (30) we can take simd* outside the derivative with
respect to Kk, i.e., we obtain the alternative expression

8 π
(46)

For ~*-n±Kn, we now write the nonhomogeneous equa-
tions

(47)
L'm (x) ^m = B> (κ) D (X),

where B'M is an arbitrary 4-vector which does not
vanish in the case *„=#„, when the equations (47) reduce
to the homogeneous equations (30). Since D(v-)*0, there
exists a unique solution of (47), namely

where DmP denotes the third-order determinants given

8)Equation (44) for T), corresponding to the presence of space-
time dispersion in the medium, was obtained by Gertsen-
shteln, who first Introduced the term "spatial dispersion"
for the case in which the permeabilities of the medium depend
not only on ojflfe) but also on the wave vector k itself.14

635 Sov. Phys. Usp. 21(7), July 1978 V. G. Polevoi and S. M. Rytov 635



by the adjoints of the elements £,"·*, so that LlmDmp

= 6pD. The bilinear form Llmd*sim is then equal to the
expression

LlmJtUm D*MBpB'qD (κ),

or, using (31), to

LlmJUm = 2X rx
rO;,BpB*'A (κ) =E Φ (κ) Λ (κ). (48)

Η the solution x>1=Kn of the dispersion equation is not de-
generate, i.e., if not all the adjoints D^W vanish to-
gether with D(y) for v-n=Kn, then the scalar Φ(χ.)
= 2Krx.rD*iB*B*« is non-zero for ^n=Kn. Consequently,
differentiating (48) with respect to x^ and then putting
y-k=Kk, we obtain, according to (4),

dKk
(49)

Thus, writing the tensor (45) not in the mixed form but
in the completely contravariant form (i.e., raising the
index j), we have

fjk _ K'Uh. (50)

In the case of a multiple root Kn, when all the D^Ui)
= 0, it is clearly always possible to choose the 4-vector
BM in such a way that its components become infinitely
large as v.n-Kn, with a non-zero value of Φ(Κ) at the
point Kn. Thus the result (50) remains valid in the case
of degeneracy.

Consequently, the electromagnetic energy-momentum
tensor of the system {medium +field} is proportional to
the dyad formed from the two 4-vectors—the wave velo-
city and the group velocity.

It is well known that in a non-absorbing medium the
three-dimensional energy density w, energy fluxSw

momentum density gw and Maxwell stress tensor e^
coincide with the following components of the energy-
momentum 4-tensor:

~ ' u~~ **α~~Τ ' α Β~ ' (51)

To determine the scalar factor in (50) which depends on
the field intensity, we can make use of any of the com-
ponents T J V 0 ) but it is best to take the component T 4 4

because the energy density is non-zero for any struc-
ture of the field. Dividing (50) by T44=w
= -(φ(Κ)/8ιτ)ίί41/4, substituting K4=co/c, and taking U*
from (5), we find

T^ Ϊ= — 1/ 1 — ~- KJUh. (52)

In the three-dimensional notation, it follows from (51)
and (52) that

S . — wa%, θ β ί — g a u B , go. =•—• I (53)

The first equation, which relates the energy flux to the
three -dimensional group velocity, has been known for a
long time.1 5 The second equation was obtained in Ref.
11 for the case of media with no spatial dispersion. In
Ref. 13 both relations were generalized to the case in
which there is dispersion. Thus (52) unifies the rela-

10However, the trace Τ =Τ\ is Inconvenient, since, according
to (33), it vanishes in the absence of dispersion.

tions (53) in a four-dimensional form.

By contracting Tih with either Kf or Uk, we can intro-
duce two 4-vectors, which we write with a definite nor-
malization, namely

/* =
T'"Uh (54)

By (5), (52), and (53), the components of these vectors
are as follows:

(54a)

The vector / is related to the density of the adiabatic in-
variant of the field (see Sec. 5), and G is related to the
density of momentum and energy. The tensor Tik itself
can be written in terms of these vectors in two forms:

Γ * «- G}Vk = K'lh, (55)

and the 4-vector of the total energy and momentum of
the wave packet, Pi*JTitdV(dV=dx1dxidx>), can ac-
cordingly be expressed in the form

P* = \ G'UHV = f K'lHV = ie \ gdF, f w dv}.

As is already clear from the original expression (44)
for T1", and in particular from the expression (52) in
terms of if and U, the electromagnetic energy-momen-
tum tensor of the system {field +medium} is non-sym-
metric in the general case. Moreover, the values of all
its components at the point ξ are local in the field, i.e.,
they are local functions of the field intensities ZF and in-
ductions Ji"at this point.

It is easy to show that any tensor Tik(0 can always be
symmetrized without altering the values of its diver-
gence dkT

lk. This can be done by adding to Τίΐ!(ξ) a ten-
sor of the form 8 t R

l k l ( t) , where Rm is a third-rank
tensor which is antisymmetric in the indices (kl) and bi-
linear in ^"and ^ In the case of a uniform, stationary,
and non-absorbing medium, the conservation laws stT

Jk

= 0 are still valid, but we lose locality in the field for
the components of the tensor Tih, since they then con-
tain terms involving integrals with respect to ξ ί of bi-
linear functions of ^ a n d #T Should we, under these
circumstances, require that Ts* be symmetric and
thereby abandon the usual (local in the field) relation
between Tib and the quantities ^"and 2ft

The symmetry condition might indeed be justified for
the total energy-momentum tensor of an autonomous
(and non-linear) system {field+ medium} which depends
not only on the electromagnetic field but also on the
mechanical state of the medium. But we have consider-
ed only the approximation of specified variations (mo-
tions) of the medium, i.e., we have neglected the in-
verse effect of the field on the motion of the medium.
In this formulation of the problem, there is no physical
basis for attempting to make Ts" symmetric.

It is of interest to determine under what conditions the
tensor (52) is nevertheless symmetric. Obviously, a
necessary condition for its symmetry is the collinearity
of Κ and U:

K> = aV>,

636 Sov. Phys. Usp. 21(7), July 1978 V. G. Polevoi and S. M. Rytov 636



i.e., the medium must be isotropic and certainly dis-
persive [otherwise Κ and U would be orthogonal; see
(33)]. In the three-dimensional form, the foregoing
equality implies the collinearity of k and u and the fol-
lowing equations for k,u, and ω:

Vi-("'/iJ) ' c

Eliminating a ft 1 -(u2/c2) from these equations, we ob-
tain

Since the phase velocity is υ^ω/k, this equation can al-
so be written in the form vu-c2. Substitutingu = άω/dk
into this relation, we find

ω dm 2

~kdk~ '

and hence u)2=k2cz+b, where b= const. Consequently, if
we introduce the index of refraction n=c/v, we arrive
at the dispersion law

where 6 &0, since w/c=w«l. Thus an isotropic medium
with a "Langmuir" dispersion law is the only one in
which the tensor TJk [Eq. (52)] is symmetric and, as is
easy to show, has the form

5. THE FIRST APPROXIMATION. FURTHER REMARKS
We have considered above only the zeroth approxima-

tion in the small parameter μ, which characterizes the
nonuniformity and nonstationarity of the medium and the
degree of absorption. It is not difficult to write all the
equations with allowance for the terms of first order in
μ. For the corrections jrf*,1' in the expansion ^ m = ^ 0 )

+ μ.ί^1

1)+· · · (for brevity, we have omitted the index 0
and continue to do so in what follows), we obtain the
system of nonhomogeneous equations

As is well known, the condition for the consistency of
the system of equations (56) with zero determinant is
that the right-hand side X1 (d), after substituting into it
the general solution dm of the homogeneous equations
(30), should be orthogonal to each of the linearly inde-
pendent particular solutions of the transposed equations
(30). The number of such particular solutions depends
on the degree of degeneracy, i.e., on the multiplicity of
the root Kn of the dispersion equation. By virtue of the
hermiticity of Lim, the solutions of the transposed sys-
tem are simply the complex conjugates of those of the
system (30).

Let Kn be a simple root, so that the solution Jf of the
transposed system is unique, apart from a scalar fac-
tor. The orthogonality condition then reduces to the
single (complex) scalar equation

X' (<A) <Α* = 0 (57)

Separating the real and imaginary parts of (57), we ob-

tain two real conditions, which, after allowing for the
hermiticity of amm and 0Sklm, can be written in the form

dk (
dK,

A* [d

kKtJm^ dsKn - ^""Κ,,

• Kkd, I

(58)

dKs

...u . . ^-K,ds(Kkjj)] = o.

(59)

We make the substitution dk = 8S5*=9s(dKk/dKs) (and sim-
ilarly for 9,) in (58). Using (46), the condition (58) then
reduces to the form

-8πβ. i^C) = f S. (*gl) + # " " 1 **AV^·· (60)

Using (25) and the hermiticity of a""m and β3*'"1, it is
easy to see that the product KkKtdmd^ on the right-hand
side of (60) can be replaced by - 1 / 4 ^ ^ . As to the
4-vector being differentiated on the left-hand side of
(60), this is nothing other than the vector/5 introduced
above [see (54) and (54a)]. Consequently, (60) takes
the form

, „ 1 Γ ή / ΰα'"'1' \ , οαϋι'"· Ι ,τ- (61)

In a medium with no dispersion (amm is independent of
K) and no absorption (/3y*'m=0), the equality (61) is the
continuity equation for the density of the adiabatic in-
variant w/ω (see Ref. 16). In the general case, the con-
dition for the conservation of the adiabatic invariant is
the vanishing of the tensor in the square brackets in
(61):

Under the same conditions, but for a stationary medium
and for ω= const, (61) reduces to the continuity equation
for the energy density w.

The second orthogonality condition (59) determines the
law of variation of the additional advance of the phase of
the wave group. This advance is important only in a
non-uniform gyrotropic medium and is discussed in de-
tail (in the three-dimensional form) in Ref. 17.

We shall not consider the case of polarization degen-
eracy (a double root Kn of the dispersion equation),
which was studied in Ref. 18 for an isotropic and spati-
ally non-uniform medium and in Ref. 19 for a medium
with weak anisotropy, for which the so-called "quasi-
isotropic" approximation is applicable.

As has already been stressed earlier, the concept of
group velocity makes sense only in the case of suffi-
ciently small curvature of the region of integration Σ
on the dispersion hypersurface, when at least the terms
containing second derivatives in the expansion

Δ (κ); an (K)

can be neglected. This in turn imposes a limitation on
the length of the 4-interval or the proper time interval
τ of the packet within which the envelope of the packet
has not yet undergone appreciable change. These con-
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ditions are well known and have been studied in detail,
for example, in Ref. 20 in the case of a uniform and
time-independent medium.

A medium which is smoothly non-uniform and slowly
varying in time is subject to not only this dispersive
spreading of the packet, but also to another mechanism:
distortion of the wave fronts (bending of the rays and
the Doppler effect) as a result of the space-time non-
homogeneities. This "nonhomogeneity" deformation of
the packet obviously has its characteristic dimensions,
which become infinitely large as μ—0.

Of course, in the presence of both types of deforma-
tion of the packet, these two mechanisms interact, but
in principle they are independent. The first (dispersive)
mechanism is still present in a uniform medium, while
the second ("nonhomogeneity") mechanism is not nec-
essarily associated with the presence of dispersion.

In conclusion, we would like to say a few words about
the four-dimensional form of the fundamental equations
and the corresponding form of all the conclusions. This
formalism, which has been employed in very many
works, was applied, in particular, in Refs. 11 and 13.
The results of Refs. 11 and 13 were derived in the
three-dimensional form in a more recent paper21 in the
case of a dispersive, electrically anisotropic medium.
In this connection, the authors of Ref. 21 expressed the
following opinion: "As to the form of the notation and
the derivation of the relations, this is naturally a mat-
ter of taste and habit. However, it seems to us that the
foregoing [authors'note: i.e., three-dimensional] de-
rivation is so simple that the transition to the relati-
vistic equations, rarely used in macroscopic electro-
dynamics, is more complicated than the proof itself and
is therefore no longer expedient."

Of course, tastes differ, but this point of view re-
garding the expediency of the four-dimensional notation
can hardly be justified. Four-dimensional tensors and
operations using them are extremely concise and most
adequately reflect the relativistic invariance of the re-
lations in which we are interested. They could perhaps
have been regarded as unusual at the beginning of the
century. One might criticize Refs. 11 and 13 not for the
fact that they employ the four-dimensional notation, but
for the fact that they do not apply it sufficiently consis-
tently, as they do not explicitly introduce the group 4-
velocity. It seems to us that this is the reason why it
is of methodological interest to introduce this velocity
together with the four-dimensional description of aniso-

tropy and space-time dispersion.

We are grateful to M. L. Levin for useful advice and
remarks.
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