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An analysis is made of the results obtained in investigations of dense media by the molecular dynamics
method. This method is based on mathematical simulation of the motion of a sufficiently large number of
particles with a given interparticle interaction law. The attention is concentrated on new physical ideas
about the nature of simple liquids and dense gases which have made their first appearance, have been
derived, or confirmed in studies carried out by the molecular dynamics method. The principal laws of
particle motion and their influence on the form of the temporal velocity correlation function are
considered. Spatial and temporal correlations appearing in dense systems are studied and their role in the
propagation of longitudinal and shear waves is discussed. An analysis is made of the results of molecular
dynamics investigations of thermodynamic and transport properties of simple liquids and dense gases. The
dynamics of a light classical particle in a dense medium of disordered heavy scatterers is discussed.
Consideration is given to the close relationship between the behavior of the temporal velocity correlation
function of a particle, its spatial velocity correlation function, and "percolation" in a random field of
heavy scatterers.
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INTRODUCTION

Liquids, melts, dense plasmas, and some other
dense systems without an ordered structure are
characterized by a property which causes serious
difficulties in the development of the theories of their
properties: the average kinetic energy per particle,
E, is of the order of the potential energy U. The
absence of a small parameter in terms of which ex-
pansions can be made is responsible for the lack of
rigorous theories of liquids and melts of the same kinds
that are available, for example, for solids (E/f/«l) or
gases (E/U»l).

In spite of the fact that considerable progress has
been made recently in studies of dense disordered sys-
tems, which is particularly true of the physics of
simple liquids,1'3 theoretical investigations of such
systems are still far from the precision attainable
experimentally. Moreover, many qualitative results
obtained in the physics of simple liquids are usually
based on the data deduced by the molecular dynamics
(MD) method. This is a basically new method for in-
vestigating strongly interacting systems of many par-

ticles; this method owes its origin to rapid progress in
computational techniques. It is based on mathematical
simulation of the motion of a sufficiently large number
of particles with a given interaction law. Numerical
solutions of the equations of motion are used to find
dynamic trajectories of particles and then the ergodic
hypothesis is applied to determine the Gibbs averages
of any dynamic variables.

The MD method was first put forward by Alder and
Wainwright2 for investigating the motion of a system
of hard spheres. Over the years, this method has been
developed greatly and it is currently applied extensively
in studies of thermodynamic and transport properties
of dense systems. It successfully supplements the
Monte Carlo method in investigations of thermodynamic
properties5 and is so far the only numerical method
for studies of the dynamics of dense media.

The following variant of the MD method is now used
universally. A classical system of several tens or
hundreds of particles with a given interaction potential
is considered. The classical equations of motion of
these particles are solved numerically by different
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methods, for example,1'

1

(I.I)

whereof is the momentum of the i-th particle at the
&-th step; Jcf is the coordinate of the i-th particle at
the &-th step; τη{ is the mass of the i-th particle; Fi}

is the force exerted on the i-th particle by the 7-th
particle. For simplicity, the above formulas are
given for a one-dimensional system. In solving the
equations of motion it is usual to impose periodic
boundary conditions in the following way. A periodic
lattice with a unit cubic cell V filled with Ν particles
(Fig. 1) is assumed. If any one particle crosses the
face of a cube and carries a momentum PJ, another
particle with the same momentum enters through the
opposite face symmetrically relative to the plane
passing through the center of the cube. In the calcula-
tion of the forces acting on a particle, the latter is
surrounded by a cubic volume V and only the interac-
tion with particles inside this volume V is considered.
(The relevant volume V for particle 4 is shaded in
Fig. 1.) The exceptions to this rule are systems with
the long-range Coulomb interaction potential, when
sometimes it is necessary to use the Ewald method in
calculating the interaction energy.135

The particle trajectories p4(i) and r((t) found in this
way can be used to derive information on the thermo-
dynamic and kinetic properties of a many-particle sys-
tem by temporal averaging of the appropriate functions
of dynamic variables along a classical trajectory of
the system:

=lim-i \flv(t),r(t)]dl, (1.2)

where ( · · ·) denotes the Gibbs averages of some func-
tion of the dynamic variables ρ and r. It is assumed
that the investigated system is ergodic.

In the first investigations by the MD method2'10 con-
siderable space was devoted to verification that the
general laws governing the motion of a classical many-
particle system are satisfied: these include energy
conservation, establishment of a temperature defined
in terms of an average kinetic energy per particle

-§-№. (1.3)

and relaxation to the Maxwellian particle velocity dis-
tribution. It was shown there that an equilibrium tem-
perature and Maxwellian distribution are established

FIG. 1. Periodic boundary conditions. Particle 5' leaves the
volume V and particle 5 enters this volume.

in a time of the order of a few collision times. As
expected, this is true of a very great variety of sys-
tems and is practically unaffected by the nature of the
interaction potential. The problems tackled by the MD
method have become gradually more complex. At
present the MD method provides substantial help in
understanding the structure of liquids and gases and in
seeing, in the literal sense, and analyzing the complex
dynamic picture of the motion of particles in a dense
medium. In recent years the use of powerful computers
has made it possible to employ extremely complex
models with spherically asymmetric potentials of the
interaction between particles. Only a few years ago
it had seemed that such models were inaccessible for
investigation. At present, the results obtained by the
MD method are often regarded as no less reliable than
the experimental data, and they are stimulating further
progress in developing theories of dense gases and
liquids.

The present review is devoted mainly to the new
physical ideas first obtained, or unambiguously con-
firmed, by the MD method. In view of this, we shall
be unable to give sufficient attention to the enormous
numerical material obtained by the MD method and
clearly of intrinsic interest in practical applications.
The reader interested in these topics is directed to
the references which will be made to these results
later.

1. MOTION OF PARTICLES IN LIQUIDS AND DENSE
GASES

a) Verification of models of particle motion by the
molecular dynamics method. Temporal velocity
autocorrelation function

Naturally, the first MD investigations were devoted
to simple models, namely to systems composed of
hard spheres (in the three-dimensional case) or disks
of identical radius (in the two-dimensional case). At
temperatures and densities higher than certain critical
values, such model systems describe satisfactorily
the behavior of real dense gases composed of spherical
molecules. At high temperatures and for moderate
densities the attractive part of the potential can be re-
garded as a weak perturbation. These assumptions,
dating back to van der Waals, have inspired a careful
study of the main laws governing the behavior of sys-
tems of hard spheres and disks, carried out by the
group led by Alder.

One of the basic ideas on the nature of transport
processes in liquids and dense systems is the hopping
diffusion mechanism.11 According to this concept, a
molecular flux is transferred by jumps of length of the
same order as the intermolecular distance. These
jumps occur rarely: they take place only when neigh-
bors usually surrounding a molecule become sufficient-
ly widely separated to permit a jump past them. This
diffusion mechanism is analogous to that employed in
the theory of vacancies. Clearly, in this case there
should be two characteristic mean free paths: one
corresponding to "beats" of a particle in its cell and
the other of the order of the intermolecular distance.
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If we introduce the probability &(r)dr that a molecule
travels from r to r+dr between successive collisions,
it follows that in the hopping mechanism we may ex-
pect a distribution &{r) with two peaks. However,
calculations carried out by the MD system for a sys-
tem of hard spheres have demonstrated12'13 that the
distribution ^ ( r ) decreases monotonically. Figure 2
shows the dependence of \0>(r) on r/λ, where λ
= [V2 nno2g(a)]~l is the mean free path, defined in
accordance with Enskog14 that allows for the higher
probability of collisions in denser systems; σ is the
diameter of a hard sphere; g(a) is the radial distribu-
tion function for two spheres in contact. We can see
from Fig. 2 that the distribution of mean free paths
in a hard-sphere liquid (with the scale introduced
above) is practically independent of the density and
agrees (apart from a few percent) with the exponen-
tial distribution for an ideal gas. This distribution
demonstrates convincingly that a molecular flux in a
system consists of a large number of small jumps
rather than a few large ones. A comparison of the
results obtained for densities corresponding to that in
a solid demonstrates similarity between the transport
mechanisms considered here and those in a solid, ex-
cept that the distribution curve for a solid lies lower
than for a liquid, especially at high values of r . It
follows that even in a solid the hopping mechanism of
diffusion does not occur. In spite of the presence of
vacancies, diffusion in a solid is due to a large number
of small jumps which have a much higher probability
than jumps of the order of the intermolecular distance.13

One of the most sensitive indicators of the average
characteristics of the motion of particles is the
temporal velocity correlation function (TVCF). In-
vestigations of this function by the MD method have
made it possible to answer a number of questions
essential for the understanding of the principal laws
governing the motion of particles in liquid and dense
matter: 1) how important is the role of spatial and
temporal correlations in the motion of particles and
what are the correlation-induced deviations from the

KP
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FIG. 2. Distribution of the mean free paths plotted as a func-
tion of the reduced length at various densities V/V^. 1) 3; 2)
2; 3) 1.6; 4) 1.42. Here, Vo is the close-packed volume. The
continuous curve corresponds to infinite rarefaction. The ar-
rows A and Β identify the diameters of a hard sphere for V/VJ
= 3 and 2, respectively.

representations based on the use of stochastic-type
transport equations; 2) how collective motions are
established in a system of this kind.

Figure 3 shows the TVCF of a system of hard spheres
obtained for various densities.15'16 For comparison,
this figure includes the exponential dependence expected
on the basis of the Enskog theory.14 The TVCF demon-
strates the occurrence of collective motion of two
types. In the range of moderate-density gases, the
TVCF has a long positive tail extending to times of the
order of 20 collision times.1 6 The other type of col-
lective motion is observed near the solidification line,
for example, near the triple point, where the TVCF
becomes negative after one or two collisions and re-
mains negative for several relaxation times.1 2 '1 5

At moderate densities a moving particle drags the
particles surrounding it along with itself in the direc-
tion of the initial motion. These particles being dragged
dragged aid in maintaining the velocity of the particle
under consideration, tending to push it along in the
original direction after a suitably long time. Collective
motion of this type was first predicted by Alder and
Wainwright for a system of hard spheres16 and con-
firmed by them later by more detailed investigations.17

Alder and Wainwright17 found that the decay of the
TVCF of a system of hard spheres obeys the t'3'2 law
after a suitably long time, whereas in the case of a two-
dimensional system of hard disks the TVCF falls in
accordance with the t'1 law. The motion of particles
responsible for such a very slow fall is collective and
it involves so many particles that we can use the laws
of hydrodynamics to describe it. The decay proportion-
al to t'3'2 can indeed be explained by the hydrodynamic
motion of a drop of particles as a whole. This idea was
confirmed by Alder and Wainwright17 by numerical
solution of the Navier-Stokes equation in the Eulerian
and Lagrangian coordinates for an element of volume
traveling in a liquid. The size of this volume is taken
to be equal to the volume per molecule and the initial
velocity to be the rms velocity of the molecules. A
comparison of the description of the flow resulting from
the MD calculations and that found by investigating a

FIG. 3. Temporal velocity correlation functions of a system
of hard spheres for different densities V/Vo. Curve Ε cor-
responds to the Enskog Theory. The continuous curves are
calculated for 108 particles and the dashed ones for 500. The
abscissa gives time expressed in units of the average interval
between collisions.
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hydrodynamic flow field has established good agree-
ment between the values of the TVCF calculated for
long times.

It should be stressed that the above hydrodynamic
model differs basically from the Stokes-Einstein model
in which a sphere representing a molecule moves
slowly and adiabatically in a viscous liquid and the re-
tardation force is assumed to have a quasistationary
value, proportional to the velocity, at every moment.
As a result, the velocity is found to decrease ex-
ponentially. In contrast, Adler and Wainwright17 found
the exact time-dependent solution of the Navier-Stokes
equation. The hydrodynamic approach to flow demon-
strated the presence of a double vortex in the two-
dimensional case and of a vortex fing in the three-di-
mensional situation. These results showed how a
positive velocity correlation results from the collec-
tive motion of particles which tend to maintain the
original direction of motion of a given particle over a
long time.

A large cell is needed to attain the asymptotic regime
after a long time. One then faces two conflicting re-
quirements: on the one hand, it is necessary to con-
sider a time sufficiently long to ensure that the system
can be described by the hydrodynamic equations; on
the other, the time t should not be so long that an
acoustic wave resulting from the periodic boundary
conditions traverses the system, i.e., t<L/vac, where
L is the edge of the cell. If a rigorous approach is
made from this point of view, then the three-dimension-
al system (N = 500) used by Alder and Wainwright17 is
far too small to establish accurately the asymptotic
t"3'2 law. In the two-dimensional case, it is clear that
hydrodynamic equations can be used.18 However, an
investigation19 of a system with 4000 particles inter-
acting in accordance with the repulsive part of the
Lennard-Jones potential has confirmed the validity of
the asymptotic decay t'3'2 law established earlier. 1 6 ' 1 7

Several theoretical studies 1 8 ' 2 0 ' 2 3 of the asymptotic
behavior of the TVCF have shown that

(v (0) ν (<)> —-»'|£- [4π (D + v) if (1.1)

where ν is the kinematic viscosity; D is the diffusion
coefficient; ρ is the density.

It seems to us that the most consistent approach to
the asymptotic behavior of the TVCF was put forward
by Fisher.2 3 According to Fisher,2 3 a particle drifts
in the company of its neighbors and, since it travels
together with the surrounding element of volume, the
diffusion coefficient in Eq. (1.1) should be the La-
grangian quantity D, describing the diffusion of a drop
of characteristic size R = (8/3)-/T?, where τ is the re-
laxation time of the viscous stresses. This Lagrangian
diffusion coefficient is considerably smaller than the
microscopic diffusion coefficient.

It should be pointed out that the idea that a selected
diffusing atom is strongly coupled to its neighbors and,
therefore, its diffusion should be regarded as a col-
lective process was proposed earlier by Frenkel.131

Later, Egelstaff132 based his analysis on the picture of

diffusion as a collective phenomenon assuming that
certain groups of atoms bound tightly to one another
(globules) participate in the Brownian motion. How-
ever, the question of the relationship between the de-
cay of the drift velocity after a long time and the rate
of decay of hydrodynamic fluctuations was first formu-
lated correctly and solved by Fisher.2 3 He found that
the attainment of the hydrodynamic regime by a
particle may precede the execution on the average of
even one jump. This picture of molecular motion shows
that the numerous earlier investigations in which the
motion of a particle in a liquid is divided into two
parts, vibrational collective motion corresponding to
short times and single-particle diffusion, have given
an incorrect description of the motion of particles in a
liquid. A Fourier analysis of the velocity correlation
function10 by the MD method and the results of inelastic
noncoherent neutron scattering133 demonstrate that vi-
brational modes are strongly damped and the transition
from short times to times corresponding to diffusion
occurs very smoothly after a long time with the dif-
fusion process in a liquid still having a collective
nature.

As the density increases, approaching the triple
point, a different type of collective motion plays an
increasingly important role and it gives rise to a neg-
ative part of the TVCF (see curve V/Va = l.5 in Fig. 3).
As at lower densities, a particle drags its environ-
ment. In the case of very high densities a particle on
the average reverses its trajectory because of a
barrier formed by the surrounding hard spheres. This
gives rise to a negative part of the TVCF. After a
time, the trajectories of the surrounding particles are
also reversed and this begins to maintain the reversed
motion. Consequently, the TVCF acquires an extended
negative plateau stretching to times of the order of the
relaxation time. Clearly, the role of the negative
temporal correlations increases as the density in-
creases and this results in the disappearance of the
diffusion coefficient in the crystalline state,

A careful study of the hard spheres model has im-
proved our understanding of the structure and kinetics
of dense media. However, this model does not provide
an adequate description of the liquid state because the
attractive forces are ignored completely. We may ex-
pect that in those transport phenomena in which not only
the kinetic but also the potential terms are important
(for example, viscosity and heat conduction), this
neglect of the attractive forces at low temperatures will
give considerable deviations of the predictions based
on the model from the true situation.

Most probably the best description of the nature of
simple liquids and dense gases is provided by a model
in which particles interact with one another in ac-
cordance with the Lennard-Jones potential:

B(r)-4e [(-£)" -(•£)'] . (1.2)

If we forget, for the moment, the range of high pres-
sures where we can expect a strong influence of the
nonadditive interaction on the properties of matter, a
study of this model by the MD method makes it pos-
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sible to describe many features of the behavior ex-
hibited by simple liquids and dense gases discovered
by direct experiments. Hence, we may hope that the
results of the MD method, so far not confirmed by
experiments, describe adequately the phenomena which
occur in liquid and dense states.

What are the effects of allowance for the attraction
between particles? An investigation of a two-
dimensional system of particles interacting with one
another in accordance with Eq. (1.2) has shown24 that
the attraction between particles produces vacancies
and clusters in the liquid phase. The vacancies are
distributed completely at random and their sizes of
the order of a few σ 2. The attraction between par-
ticles close to the edge of a vacancy creates a micro-
scopic surface tension, which effectively prevents
the particles near the edge from moving to un-
occupied regions. The lifetime of these vacancies at
densities encountered in liquids is 3 x 10"12 sec.
Figure 4 shows the instantaneous positions of particles
obtained for various values of the density and tempera-
ture. We can clearly see the cluster-like groups even
at a temperature exceeding the critical value. The
short-range order in the distribution of particles in a
cluster explains the characteristics of the absorption
spectrum of mercury dissolved in liquid argon.24'25

Studies of the trajectories of particles carried out by
Fehder24 once more contradicted the "hopping" mech-
anism of diffusion in liquids and demonstrated that
migrating particles are basically associated with a
group all of whose members diffuse approximately in
the same direction. After a long time and at high
densities the nature of diffusion changes from the
cluster to the chain mechanism. Figure 5, taken from
Fehder's paper,24 demonstrates these two types of
collective motion. In general, the direction of motion
of particles during short times is correlated with the
instantaneous deviation from the symmetry of their
local environment.41 Thus, the asymmetry in the
spatial distribution of neighbors determines the
preferential direction of their subsequent thermal
motion. A correlation of this type decays in a time of
the order of 0.5 x 10'1 2 sec. At first sight, this micro-
diffusion mechanism does not agree with Fig. 5 showing
an almost continuous diffusive migration at t = 2 x 10'1 2

FIG. 5. Trajectories of particles during an interval of 2 xj.0"12

sec (Τ/ε =0.927, pR = 0.6781). Small dark dots represent the
centers of the particles. Lines extending from these centers
are the particle trajectories. Dashed lines surround regions
with diffusive migration of different kinds. Regions 1 and 2
correspond to chain migration; region 2 to migration along a
vacancy edge; region 3 corresponds to cluster diffusion along
the direction of a vacancy; region 4 shows both types, of diffu-
sion.

sec. However, the point is that the thermal motion of
neighbors around a diffusing particle is such as to
maintain continuous or approximately continuous de-
viation from symmetry along the direction of motion of
the particle. Thus, a particle experiences micro-
diffusive displacements in a local environment which
itself is migrating by diffusion. This picture of the
diffusion process confirms the main assumptions adopt-
ed by Fisher.2 3 It is also clear why the Lagrange for-
mulation of the diffusion processes2 3 is the most suit-
able one for the description of the asymptotic be-
havior of the TVCF.

The attraction between particles has the result that
the duration of collisions becomes of the same order of
magnitude as the time interval between collisions. A
comparison of the TVCF for hard spheres15 and for
particles interacting accordance with the Lennard-
Jones potential,27 shown in Figs. 3 and 6, respectively,
demonstrates that the duration of collisions has a
strong influence on the form of the TVCF at short
times. In the case of real liquids (and we are assuming
that the Lennard-Jones potential describes well the
properties of these liquids) the TVCF corresponding
to small values of t is Gaussian, whereas in the case
of hard spheres it is exponential. We can demonstrate
that the area under the TVCF curve for a system of
hard spheres is approximately 25% smaller than the
corresponding area for a liquid with the Lennard-Jones

<ufffWtJ>

/>*=№

FIG. 4. Positions of particles at a certain moment: a) Τ/ε
= 0.927, pR = S0/S =0.6781 (S is the area of the system and So

is the area of a close-packed system); b) T/& =1.145, pR

= 0.4645.

t-ΊΊΟ, sec

FIG. 6. Temporal velocity correlation functions of a particle
in a Lennard-Jones liquid (Ar) plotted for p*=Na3/V, T* = T/t,
ε=119.8°Κ, and σ = 3.405 A.
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potential. In this comparison the diameter of a hard
sphere is selected so that, for given values of ρ and T,
the height of the first structure maximum deduced by
solving28 the Percus-Yevick equation for hard spheres
is identical with the corresponding height for a real
liquid.

b) Autocorrelation function of forces in liquids and
dense gases

An alternative (in a sense) to the hard-sphere model
described in detail above is the model of the liquid
state proposed by Rice and Allnatt.30'31 This model is of
of interest because of the results obtained with its aid
and also because of the underlying assumptions. In the
Rice-Allnatt model a liquid is regarded as a system of
hard spheres which follow, in the intervals between
collisions, Brownian trajectories because of interac-
tion with the weak attractive part of the potential. Col-
lisions due to this soft attractive part of the potential
disturb the temporal correlation in the motion of these
hard spheres, which can then be regarded as totally
uncorrelated. These assumptions make it possible to
write down the transport equations for the distribution
functions. In a series of subsequent papers3 2"3 4 it is
shown how to solve these equations and determine the
transport coefficients of a liquid.

One might expect the Rice-Allnatt model to describe
well the behavior of liquids at low temperatures. How-
ever, the results obtained by Einwohner and Alder13

have given rise to doubts about the validity of the
Rice-Allnatt model. Einwohner and Alder13 used the
MD method to study a system with the "hard sphere
+ square well" interaction potential. All the collisions,
apart from those between hard spheres, are regarded
as "soft" and the ratio of the number of these soft
collisions to the number of collisions of the hard
spheres is calculated. This ratio is found to be close
to 0.5. Since each soft collision has little effect on the
momentum of a particle, it is not easy to see how
such rare soft collisions can result in considerable
weakening of temporal correlations in the motion of
hard spheres.

An important component of the Rice-Allnatt theory
is the formalism of the friction constant developed by
Kirkwood.136 The validity of this formalism in the
Rice-Allnatt theory can be checked by investigating
directly the autocorrelation function of the force acting
on a particle in a liquid.

We shall now consider the formalism of the friction
constant. In the Rice-Allnatt theory it is assumed that
a change in the momentum of a particle between the
hard-sphere collisions is described by the Langevin
equation

dp l i v / \ /1 o\

~Ht~ J P + ^ O I (1.3)

where ξ is the friction constant; X(t) is a random
force; (X(t))=0; {X(t)X(t + τ)> =f(τ); £(τ) is the auto-
correlation function of the random forces. It is as-
sumed that £(T) =0 for τ> τ1; where τι is much less
than the velocity correlation time. The expression for
ξ in terms of ζ(τ) can be written in the form3 6 '3 7

? = JLJ Λζ(τ). (1.4)
0

A very important feature of the derivation of Eq. (1.4)
is the assumption about the nature of the function £(τ),
which should have a sharp peak near τ = 0 and, more-
over, it is assumed that ^ « m / i j .

In this case the friction constant can also be found
from the autocorrelation function of the total force F
using the relationship

ι
SkT

(1.5)

where r t is found from the condition
(F (i) F (t + Tl)> = 0. (1.6)

However, the values of ξ are well defined only if the
integral of (1.5) considered as a function of its upper
limit varies slowly when τ changes from rx to τη/ξ.
(We recall that / 0" (F(t)F(t + τ))άτ = 0.) These conditions
are one of the criteria of the validity of the Rice-
Allnatt theory.

Figure 7 shows the autocorrelation functions of the
forces found by the MD method.35 A deep negative
minimum of the force autocorrelation function is
evidence of considerable temporal correlations in the
system. Clearly, the appearance of the force auto-
correlation function excludes the possibility of a
plateau of the integral (1.5) considered as a function
of the upper limit. Moreover, the correlation time
deduced from Eq. (1.6) is only one-quarter of the value
of τη/ξ calculated from Eq. (1.5). One should also note
an additional point. The collision operators can be
separated in the way it is done in the Rice-Allnatt
theory only if the spectra of their eigenfunctions do
not overlap. Clearly, this is true if the relaxation
time of a system of hard spheres is very different
from the relaxation time of a system of particles inter-
acting in accordance with the van der Waals potential.
A direct check by the MD method shows that this con-
dition is not satisfied. A similar situation also applies
to the autocorrelation function of the forces acting on
a particle in a salt melt.38 The potential of the inter-
action between particles in the melt can be modeled

FIG. 7. Temporal correlation functions of the forces acting on
a particle in a Lennard-Jones liquid (Ar), plotted for ε
= 119.8°K, σ = 3.405Α, p* = 0.68, and various values of T*- 1)
3.55; 2) 2.14; 3) 1.31.
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by short-range repulsion at short distances and Cou-
lomb interaction at longer distances. It would seem
that under these conditions the application of the Rice-
Allnatt model would be most acceptable.39'40 How-
ever, a study of the force autocorrelation function of
the salt melt model by the MD method38 yields results
which give rise to the same objections against the
Rice-Allnatt theory as in the case of simple liquids.
A similar conclusion is also reached by Smedley and
Woodcock42 on the basis of an investigation carried
out by the MD method. Recent calculations of the
transport coefficients43 of liquid argon have shown that
the Rice-Allnatt theory gives results that differ from
the experimental values by a factor of 1.5-2. It is
clear from the above discussion that the reason for this
lies in the violation of the fundamental assumptions of
this theory.

c) Decay of density correlations. Longitudinal and shear
waves in liquids

In investigations of the microscopic properties of
the liquid state it is important to consider the
equilibrium density-density correlation function

G (r, i) - Κ Σ Pi ('·. (1.7)

where p,(r, t) = 5[r - r,(f)]. The function G can be re-
presented by the sum of two functions

), (1.8)

where

G,(r,t)=*V<pt(r,t)f>i(O,O)). (1.9)

The functions G(r,t) and Gs(r, t) were first introduced
by Van Hove44·45 in the neutron scattering theory. The
function Gs(r,t) gives the density of the probability of
finding a particle at a point r at a moment t if at t - 0
this particle is located at the coordinate origin. The
quantity G$(r, t) can be deduced by the MD method with
the aid of the expression

*)>. (1.10)

where θ{χ— r) = 1 if χ lies between r and r + Ay, and it
vanishes in any other case.

The function Gt{r,t) is the temporal pair correlation
function. It is defined as follows: if at a moment t
there are n(r, t) particles at a distance between y and
r + Δτ from the position occupied by an atom at ί = 0,
then

r ir Λ
 ν "(>·' '> (1.11)

The particle originally located at the coordinate origin
is excluded from the calculations.

It is known44'45 that the Fourier transform of the
function Gs{r, t), usually denoted by Sa(k, ω), is the
differential cross section of noncoherent neutron scat-
tering, and that the Fourier transform of the function
G(r,t), is the dynamic structure factor S(k, ω), which is
is the differential cross section of coherent scattering.
In this case Κω represents the energy transferred to
the system and Kk is the modulus of the transferred
momentum. Thus, the quantities Gs(r,t) and G(r,t)

can be measured directly. However, such measure-
ments are very time-consuming and, moreover, they
do not give the dependence over the whole range of k
and ω. Therefore, the MD method is extremely useful
in the interpretation and prediction of the spectra of
scattered neutrons. It is possible to establish how far
in the short-wavelength range is the collective motion
of particles still clearly observable and how collective
migration changes to individual motion at very short
wavelengths. It should be pointed out that the range of
very long wavelengths, corresponding to the hydro-
dynamic regime is still beyond the reach of the MD
method (as demonstrated below) but in this case in-
formation on the nature of the function S(k, ω) can be
obtained from the scattering of light in liquids
(Brillouin scattering). Thus, sufficiently comprehen-
sive information is now available on the form of the
function S{k, ω) for almost all the values of k and ω.

Theoretical investigations of the functions Gs(r,t)
and Gi(r,t) have been reported in a large number of
papers. The most natural and frequently employed
assumption about the nature of the function Ga(r, t) is
that it is Gaussian. The MD method allows us to de-
termine the true form of the function and the limits of
validity of the Gaussian approximation. If Gs(r,t) is
Gaussian, i.e.,

G.(r, ί) = [4π,1(ί)Γ 3 / 2«-'" ' 4 Α (". ι (1.12)

where A(t)^(r*>, then

where Cn = (2n +1)11 /3" for η = 1,2,3

Calculations carried out by the MD method show that
the function Gs(r, t) deviates from the Gaussian form.10

The magnitude of the deviation, expressed as a function
of

is shown in Fig. 8.

Since all the values of a are positive, it is clear that
an increase in y results in the approach of the true
Gs(r,t) function to zero at a rate slower than in the
Gaussian case. In the limit i— °° the function becomes,
as expected, entirely Gaussian. This occurs in prac-
tice in a time of the order of 10'11 sec. The quantity
V(r2) is then approximately equal to the distance from
the nearest neighboring particle.

For any fixed value of k the function Ss(k, ω) has a
maximum at ω = 0 and falls off smoothly as ω increases.

FIG. 8. Deviation of tile Van Hove autocorrelation function of
argon from the Gaussian form (p = 1.374 g/cm3, T = 94.4°K).
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The half-width ωι/2 at midamplitude of Ss(k, ω) and the
value of Ss(k, 0) can be used to determine the deviation
of Ss(k, ω) from a dispersion curve typical of the long-
and short-wavelength limits. Figure 9 shows the be-
havior of the quantities Z(k) = nk2DSs(k, 0) and &(k)
= u)l/2/k2D, as a function of k. In the hydrodynamic
limit, these quantities tend to unity. The half-width
has a minimum near fc~2A"1, which corresponds to the
first maximum of the structure factor S(k). This
narrowing shows that the spatial correlation of parti-
cles has a considerable influence on the Van Hove
autocorrelation function. This narrowing is associated
with the deviation of Gs(r,t) from the Gaussian form.46

The nature of the function Δ(&) obtained by the MD
method46 and supported by later neutron scattering
experiments133 is in conflict with the predicted de-
pendences, as pointed out by Schofield.1 This is due
to the fact that the form of the function

used by Schofield, does not represent the true behavior
oi g(u>) obtained already by the MD method.10

We shall now consider the results derived by the MD
method using the dynamic structure factor S(k, ω) and
and the associated Fourier transform of the correlation
function of longitudinal currents CN (k, ω). The corre-
lation function of these currents is defined as follows:1

Cn(k, t) = k

where

(1.13)

(1.14)

Clearly, Re C„ (k, ω) = w2S (k, ω). The form of the
function S(k, ω) obtained by the MD method near the
triple point is shown as a function of ω in Fig. 10. We
can see that for wave vectors smaller than l/σ the sys-
tem under consideration exhibits phonon peaks. These
peaks are due to the Brillouin scattering; their maxima
correspond to the values of ω/k equal approximately to
the macroscopic velocity of sound. It should be pointed
out that the use of the hydrodynamic theory with just
one relaxation time of viscous stresses fails to predict
such maxima. The theoretical maxima disappear for
values of k much smaller than those given by the MD
calculations. However, we shall show later that the
approximation for single relaxation times is invalid
near the triple point. The hydrodynamic theory with
two relaxation times of viscous stresses describes
well the range of small values of k attainable in the MD
calculations and predicts corresponding phonon peaks.134

However, these peaks are greatly broadened and the

mi, MM

FIG. 10. Function 2δ№ω)/π for the same model as in Fig. 9.
The results of MD calculations are given for eight values of k:
a) 0.623; b) 0.752; c) 0.881; d) 1.366; e) 1.931; f) 2.534; g) 3.182;
h) 3.812. The values of k are given in units of σ"1, and those of
winunits of τ"1 (T0=Vmcr2/4&ir = 3.112 xlO"13 sec).

vibrations are damped out rapidly. Inthefe> 1 A"1 range
there is no oscillatory behavior of the density fluc-
tuations. In this range they are strongly damped and
cease to propagate. However, fluctuations of the cur-
rent continue to propagate and their frequency and
lifetime depend strongly on the structure factor S{k).
Indeed, the MD investigations of Cv(k,t) demonstrate
oscillatory behavior of this function49'51 over a wide
range of values of k. Consequently, the function
Cn(k, ω) exhibits a maximum at ω *0. The magnitude
of this maximum is plotted as a function of k in Fig. 11,
which demonstrates a well defined dispersion curve.
This figure also includes a plot of the average life-
time of the current fluctuations. It is quite clear that
the maximum lifetime is exhibited by the largest-
scale fluctuations.

The dispersion curve o)max(&), found by the MD
method has two maxima.51 The position of the second
maximum agrees approximately with the position of the
first minimum of S(k). This demonstrates a close re-
lationship between the propagating vibrations and the
structure. Later experiments on neutron scattering133

have confirmed the existence of the second maximum
and there are now many theoretical papers in which the
dispersion curve is reproduced with satisfactory ac-
curacy over a wide range of the parameter k (see

Y'i
•>

| ''-•••••ν.

FIG. 9. Deviations of the values of 2(fe) and A(k) from the
hydrodynamic limit, deduced from MD calculations50 for Ar,
p* =0.8442, Γ* = 0.722, ε =119.8°K, anda=3.405A.

FIG. 11. Position of a maximum ωΜ of the function CM №,ω)
(a) and average lifetime of longitudinal currents τ (b) plotted as
a function of k for Ar, p= 1.407g/cm3, Γ = 70°Κ, ε = 119.8°K,
and σ = 3.405 A. The dots are the results of MD calculations51

and the continuous curve is the structure factor S(k) in relative
units.

573 Sov. Phys. Usp. 21(7), July 1978 A. N. Lagar'kov and V. M. Sergeev 573



Skold et a£.13S and the references given there).

In the range of high values of ft, much greater than
the reciprocal of the interatomic distance, the term
i *j in the correlation function of the currents becomes
small and this function depends only on the single-fre-
quency modes but is no longer the collective coordinate
of these modes. Consequently, the function S(ft, ω) be-
comes equal to the correlation function Sa(ft, ω) and,
for high values of ft, it tends to the gaskinetic limit,
whereas the dispersion curve wmax(ft) reaches at high
values of ft the asymptotic value wmax(ft) =fe -<J2kBT/m.

It should be pointed out that neutron scattering ex-
periments demonstrate similarity between scattering
in liquids and in polycrystalline solids. This similarity
is quite reasonable, as shown in Fig. 12, which shows
the behavior of the function Gd(r,t) obtained by the MD
method.10 Decay of the spatial pair correlation func-
tion g(r) [we recall that Gt(r, 0) -g(r)] demonstrates
retention—for a long time—of spatial correlations
resembling the correlations in a solid. Even after
t =2.5 x 10"12 sec we can still clearly see a short-range
cell. This circumstance justifies to some extent both
the attempts to consider a liquid from a "quasicrystal-
line" point of view and also the introduction of the pho-
non concept in the theory of liquids, because we can
speak of phonons only if the initial structure Gd(r, 0)
does not decay in the phonon lifetime. However, we
must recall that at high frequencies of the density
oscillations the period of these oscillations is compar-
able with the characteristic lifetime of the fluctuations
and the phonon spectrum is practically suppressed.

All the results obtained by the MD method in investi-
gations of the quantities S(ft, ω) and Ss(k, ω) have been
subsequently confirmed experimentally by neutron scat-
tering.1 3 3 These results have served as the basis of
various approximate models for the calculation of the
quantities S(ft, ω) and Ss(ft, ω). The interested reader
can find more information on this subject in the rele-
vant papers.4 7 '4 8

We shall now discuss the results obtained in an inves-
tigation of transverse waves in liquids. Characteristics
of the propagation of shear waves in a liquid can be
understood by considering the correlation function of
transverse currents, defined as

(1.15)C, (k, t) = *»< J [ vf (t) a"'"'» sS v? (0)

The MD investigations50·51 demonstrate that the func-
tion Ct(k, t) begins to oscillate when k exceeds a certain

a w ο φ r/e

critical value kc. In this range of k the quantity
ReC,(fc, ω) has a maximum, when considered as a func-
tion of u>, at ω*0. Figure 13 shows this maximum as a
function of ft. The curve is in qualitative agreement with
with the dispersion law derived by Frenkel131 on the
basis of the viscoelastic theory. Under conditions suf-
ficiently far from the solidification line, so that the
approximation of a single relaxation time of visco-
elastic stresses is justified, the value of kc obtained
from the viscoelastic theory of propagation of shear
waves in a liquid is in approximate agreement with the
value deduced by the MD method. Close to the triple
point the approximation of a single relaxation time is
invalid. Consequently, the critical value of kc is some-
what less than the value found using a single relaxa-
tion time. It is clear from Fig. 13 that the presence
of structure in a liquid has little effect on the nature
of the dispersion curve of transverse currents and this
is apparently due to the fact that fluctuations of these
currents alter relatively little the interparticle dis-
tances, so that the restoring forces acting on the
particles are also weak irrespective of the value of
the wave vector.51

Figure 13 includes also a plot of Imw found by an
analysis of the MD data carried out in the approxima-
tion of a single fc-dependent relaxation time.4 7 A
comparison of a>raM(fc) and Im u>(k) shows that shear
waves in a liquid are strongly damped and are almost
completely suppressed in one oscillation period.

We shall conclude this section by noting that the
special nature of the MD method prevents us from
finding the functions Cl{(k, ω) and Ct(k, ω) for low values
of k. This is clear from an analysis of the method for
calculating these quantities. Since we are considering
a system with periodic boundary conditions, it follows
that the only nonvanishing Fourier components are
those which are characterized by ft - (27r/L)(ml, m2, m3),
where m is a positive or negative integer. Selecting
a certain value of k and knowing the positions and ve-
locities of Ν particles, we can calculate any required
dynamic quantity. The dependences on |ft| of Cn(k,t)
and Ct(k,t) are obtained by adding the results for all the
values of k lying in the shell between ft and k + Δ& di-
vided by the number of vectors k in the shell (for the
selected value of Ak). Clearly, the angular averaging

FIG. 12. Decay of the collective part of the correlation func-
tion of the density in argon (p = 1.374 g/cm3, Γ = 94.4°Κ, ε
= 119.8/k, σ =3.405 A).

FIG. 13. Position of the maximum of Re Ct{k, ω) plotted as
a function of k. The dots are the results of MD calculations51

for the same model as in Fig. 11. The continuous curve I is
found by averaging the MD results. The crosses are the re-
sults of MD calculations50 for the same model as in Fig. 10.
Curve 2 represents the damping coefficient Im ω of transverse
currents under the same conditions as in Fig. 11.
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of k in the range of small values of k is statistically
less satisfactory than at high values of k. It is basically
incorrect to consider oscillations of wavelength com-
parable with the dimensions of an MD cell. Therefore,
the MD method is restricted to investigations of the
values of k exceeding 0.2 A"1. It follows that the range
of small values of k and ω, where the use of the hydro-
dynamic approximation still raises doubts, has been
poorly investigated. The use of fast computers, en-
abling the investigator to increase the number of
particles in an investigated cell, will soon make it
possible to obtain reliable MD results also in this
intermediate range.

2. THERMODYNAMIC PROPERTIES AND
TRANSPORT PHENOMENA IN SIMPLE LIQUIDS AND
DENSE GASES

a) Phase transitions

Recent investigations52 have shown that "numerical
experiments" and, in particular, the MD method can
contribute greatly to the understanding of the qualitative
laws in the theory of phase transitions. Even in the
simplest system consisting of hard spheres the ex-
istence of a solidification (fusion) line has not been
obvious and it has been doubted on many occasions.
The interest in this subject has increased still further
on discovery53·54 that a physically reasonable solution
of the Born-Green equation cannot be obtained at
farily high densities in a hard-sphere system. This
has been interpreted as indicating the occurrence of
a phase transition.1 Singularities in the solution of
the Born-Green equation appear at a reduced density
ρσ3=0.95 (close packing corresponds to ρσ3 = 1.414).
However, investigations of the Percus-Yevick equa-
tion,54 which give much better results for the equation
of state than the Born-Green equation, have re-
vealed the absence of such singularities. Thus, a
sufficiently convincing proof of the existence of a
phase transition in a hard-sphere system has been
lacking and the question has remained open. An in-
vestigation of the system of 500 hard spheres by the
MD method55·56 has demonstrated that the nature of
motion of the particles changes radically at some
critical density. Near the close-packed state the
particles move around certain positions of equilibrium,
but on increase of the volume by 30% the system be-
gins to "flow." Near the critical volume there is an
instability of the motion in time and the system ap-
parently changes from the liquid to the solid state and
vice versa. Such behavior can be regarded as a phase
transition. However, even these results are not suf-
ficiently convincing. A three-dimensional system of
500 particles is too small to demonstrate the existence
of a phase transition because the influence of the
boundary conditions is too great. The coexistence of
phases in such a system has not yet been proved.
Therefore, an attempt has been made to demonstrate
the existence of a phase transition in a hard-disk
system.57 A two-dimensional system of 870 hard disks
is effectively much "larger" than a system of 500 hard
spheres since the influence of the boundary conditions

6.0
1.30 1.40

A/An

FIG. 14. Equation of state of hard disks in the region of a
phase transition.5? Here, A/Ao is the ratio of the area of the
system to the close-packed area. The vertical bars represent
fluctuations of the compressibility factor found by averaging
over 5*104 collisions; the continuous curve represents averag-
ing over 107 collisions.

in the former case is less. This system was investi-
gated over a time interval corresponding to several
million collisions. It was found that the dependence of
the compressibility on the density resembles very
closely the van der Waals equation of state (Fig. 14).
Fluctuations of the pressure near the critical density
were investigated by dividing the trajectory of the
system into segments of 50 000 collisions and the
averaging was carried out over all those segments.
The vertical marks in Fig. 14 show the dependence
of the magnitude of the fluctuations on the density.
A strong increase in this magnitude near the critical
density demonstrated the occurrence of a phase tran-
sition. It was possible to demonstrate the existence
of solid and liquid phases in the investigated system of
870 disks. Figure 15 shows clearly the coexistence of
two regions of a solid and of a liquid layer between
them. Thus, the MD method provides a very convinc-
ing proof of the occurrence of a phase transition in a
hard-disk system. Since there is no attraction in hard-
sphere and disk systems, it is clear that this phase
transition is of purely geometric nature. It is most
likely associated with the appearance of a shear in-
stability in the motion of particles in a solid on increase
of its volume. In fact, in a close-packed state it is
not possible to shift one layer of particles relative to
another but slip becomes possible when the volume of
the system is increased. A comparison of systems
of 7258 and 87057 disks clearly makes it possible to

FIG. 15. Tracks of centers of particles in a system of 870
hard disks near a phase transition.
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extrapolate the results obtained by the MD method for
500 hard spheres to a system with a larger number
of particles. In the case of 72 hard disks the coex-
istence of phases is not observed but in the region of
the critical density the system goes over alternatively
to the solid and liquid states. This dependence of the
behavior of a system on the number of particles is ex-
plained by the fact that the surface energy at a phase
boundary is very considerable. Fluctuations in a small
system are insufficiently strong to provide conditions
for the existence of a phase boundary. The situation is
different for a system of 870 disks. The free surface
energy at the phase boundary, calculated per particle,58

is only ~feT/60, i.e., it is small compared with the
average kinetic energy of a particle so that the exis-
tence of the phases is possible and is indeed observed.
(It should be recalled that in the case of a system of
hard spheres the contribution to the free energy of a
phase boundary is made only by the surface entropy.)
The absence of phase coexistence in a system of 72
disks does not mean that there is no phase transition.
In fact, the conclusion of occurrence of a phase tran-
sition follows from the ergodic hypothesis, according
to which averaging over an ensemble is equivalent to
averaging over time. If we observe a system with a
small number of particles for a sufficiently long
time, we find that the pressure derived by averaging
over all such states may give rise to a plateau in the
region of critical densities. This is indeed observed
for the equation of state of 72 disks (Fig. 16). How-
ever, it should be pointed out that this "plateau" lies
about 10% below the corresponding plateau of a sys-
tem of 870 particles.

We shall conclude this subsection by mentioning that
the MD method can be used to investigate not only phase
transitions but also metastable states of liquids.148'149

b) Thermodynamic properties of simple liquids

The MD method allows us to determine not only the
general laws governing the behavior of a classical
many-particle system but also to investigate quantita-
tive characteristics of systems with realistic inter-
action potentials such as the equation of state, internal
energy, correlation functions, etc. Verlet59 was the
first to demonstrate the capabilities of this approach
and to compare the results of a calculation of the
equation of state based on the Lennard-Jones poten-
tial with the experimental data for argon. Since the

Lennard-Jones potential is a two-parameter quantity,
all the calculations should be carried out in "reduced"
units employing the parameter σ as the unit of length,
ε as the unit of energy, and the molecular mass as the
unit of mass. Then, any thermodynamic variable of a
given substance is found by multiplying the values in
terms of the reduced units by a suitable combination
of ε, or, and m. In this way the MD method makes it
possible not only to determine the properties of a
system from a given potential but also to find the
parameters of the potential by comparison with the
experimental data.

The equation of state can be described by

NkBT
• l -

l

3NkBT

where r0 is the radius equal to half the cell edge and
g{r) is the pair correlation function. The last term in
Eq. (2.1) allows for the contribution to the pressure at
distances exceeding the cell size. It can be estimated
by assuming that#(r) = l f° r y>fv Figure 17 compares
the results of calculations of the equation of state re-
ported by Verlet59 with the experimental data.60 The
constants of the potential ε and σ are taken to be
119.8°K and 3.405 A, respectively.61 The agreement
between the calculations and experiment is strikingly
good. Thus, a correct selection of the potential in the
MD method ensures a precision close to that attainable
experimentally. The results obtained by Verlet59

demonstrate that the Lennard-Jones potential is
suitable for the calculation of the thermodynamic
properties of argon of almost all densities right up to
the triple point. However, we have to remember that
the calculations of thermodynamic properties carried
out by the integral equation method3 and also the MD
calculations of the transport properties (this point is
discussed later) give results which deviate in-
creasingly from the experimental data as the density
increases. The agreement can be improved by intro-
ducing the dependence of the parameters of the po-
tential employed on the density. This is regarded as an
indication of the importance of the nonadditive many-
particle interaction.3

The suitability of the pair potential for the calculation

if.
ρ

A/Aj

FIG. 16. Equation of state of 72 hard disks.5 8 The higher hor-
izontal line gives the compressibility factor for 870 disks.57

FIG. 17. Equation of state of argon. The reciprocal tempera-
ture β and the density ρ are given in reduced units, ε•= 119.8°K,
σ = 3.405 A. The continuous curves are the results of MD cal-
culations59 and the circles are the experimental values.60
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of thermodynamic properties is still a matter of
controversy.62 It is shown in several papers6 2·6 3 that
the Lennard-Jones potential for argon is not the true
pair potential (which is somewhat deeper64) but the
"effective" potential which—to some extent—allows for
many-particle interactions. In fact, we can deduce the
"effective" pair potential by adding a correction for the
three-particle interactions to the "exact" pair potential.
The result modified in this way approaches the
Lennard-Jones potential.63 The suitability of the Len-
nard-Jones potential in the calculation of thermody-
namic properties of argon has also been demonstrated
directly. A comparison of the results obtained
employing the Lennard-Jones, Buckingham, and
Klein-Hanley potentials,65 in the latter of which al-
lowance is made for attraction ~l/ra, shows66 that the
Lennard-Jones potential is the most suitable for the
calculation of thermodynamic properties.

One of the most interesting applications of the MD
method is the verification of the assumptions under-
lying the rapidly developing theory of integral equations
for the pair correlation function. This is particularly
important because the results of calculations of thermo-
dynamic properties obtained by the theory of integral
equations depend on the interaction potential and a
comparison with the experimental data cannot be re-
garded as the absolute criterion of validity. We shall
consider the capabilities of the MD method by inves-
tigating the validity of the two best known integral
equations for the pair correlation function: the
Percus-Yevick and Born-Green equations.

The MD method makes it possible to find the pair
correlation function g(r) and the associated direct cor-
relation function C(r) found from the Ornstein-
Zernike equation

fe'(r) = C\{r) + ρ jft (r1 - r) C (r') dr', (2.2)

where h(r) =g(r) — 1.

Knowing the dependences of these functions on the
volume of a sample and its temperature, we can in-
vestigate the suitability of the Percus— Yevick equa-
tion

Or) = g\r) - 1) (2.3)

for the description of the structure of a liquid. A di-
rect comparison of the pair correlation functions, cal-
culated by the method of molecular dynamics using the
Percus-Yevick equation, shows67 that this equation
gives satisfactory results only at densities below the
critical value. This can be demonstrated even more
clearly by calculating the compressibility factor P/pkT.
For p* = 0.4 and T* = 1.46 the Percus-Yevick equation
gives P/pkT = 0.40, whereas the MD method gives
0.41 ±0.01. For p* = 0.85 and T* = 0.88, we find that the
corresponding values are 3.18 and 1.64, respectively.
Another way of checking the Percus—Yevick equation
is to compare the intermolecular potential deduced
from this equation w i t h e r ) and C(r) calculated by the
MD method with the Lennard-Jones potential. The
results of such a comparison67 are plotted for various
densities and temperatures in Fig. 18. It follows that

2.0 r

FIG. 18. Potential obtained from pair correlation functions
calculated67 by the MD method: 1) T* = 1.328, p* =0.5426; 2)
T* = 1.05, p* = 0.75; 3) r* = 1.127, p* = 0.85; 4) potentials de-
duced from the Percus—Yevick equation (dashed curve).

the Percus-Yevick equation is unsuitable at high values
of the reduced densities and at temperatures below
the critical value.

Since the MD method allows us, in principle, to ob-
tain a correlation function of any order (two-particle,
three-particle, etc.), there should be no difficulty in
investigating the validity of the superposition approxi-
mation employed in the derivation of the Born-Green
equation. This approximation involves the assumption
that the ternary correlation function can be represented
by a product of pair correlation functions

= g (rlt) g (r,,) g (r1 3). (2.4)

This approximation was checked by Alder,68 who
compared the function 3-Jg3(r, r, r) calculated for a
hard-sphere system and the pair correlation function.
An analysis of the validity of Eq. (2.4) demonstrated
that this relationship is obeyed with satisfactory pre-
cision, but the results obtained by Alder68 cannot re-
solve finally the question of validity of the superposition
approximation because the selected configurations are
not sufficiently representative. Rahman146 investigated
a three-particle correlation function of configurations
corresponding to isosceles triangles (r, r,s) in the
case of a Lennard-Jones liquid. The results indicated
that for s smaller than the average distance between
the particles the superposition approximation over-
estimates the contribution of small r. Moreover,
Rr(

s)=g3(ir>r>s)/[g2(r)f has a maximum, whose po-
sition is given incorrectly in the superposition
approximation.

The superposition approximation loses its validity
at short distances also in the case of systems with
different interparticle interaction potentials. For ex-
ample, Tanaka and Fukui147 investigated liquid sodium
by the MD method retaining only the configurations
corresponding to equilateral triangles (r, r, r) and to
isosceles triangles (r,s,s). The results demonstrated
that the superposition approximation for isosceles
triangles is accurate to within 10% for r greater than
the first minimum of the correlations function, but it
considerably overestimates the contribution at
shorter distances.
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c) Transport coefficients

In the case of small deviations of a system from its
thermodynamic equilibrium, the theory of linear re-
sponse gives the relevant fluxes and the corresponding
transport coefficients are as follows:1

the diffusion coefficient

D= \ (wj(O)Bf (ί)>Λ; (2.5)
0

the shear viscosity

η = ψ^ψ \ (<vx, (0)<f,„(*)>&; (2.6)

the volume (bulk) viscosity

r\v=-
1

( 0 ) - <VkBT

the thermal conductivity

« (I) -<

λ = ; At))dt,

(2.7)

(2.8)

where

Σ Pi Pi

and φ Χ Ι are the components of the pressure tensor,

η - V ''ΐ'1* ι y κ ν , , ι ν ι ,

Qx is the Λ; component of the heat flux, and uis is the
interparticle interaction potential.

The transport coefficients are currently being calcu-
lated by the MD method using Eqs. (2.5)-(2.8). How-
ever, there is a different calculation method, based on
the Helfand formulas,69·70 representing an analog of the
Einstein relationship for the diffusion coefficient. For
example, the viscosity can be defined as follows:

η« =<f JEU (0) pv (0)-E xt(t) ί*(«)12>. (2.9)

We can easily see that in the theory of linear response
and in the Helfand method the transport coefficients can
be calculated by averaging a certain time-dependent
function of the dynamic variables over an equilibrium
ensemble, which can easily be done by the MD method
using the ergodic hypothesis. A shortcoming of the
Helfand method compared with the theory of linear
response is the inability to find, by the Helfand method,
the frequency dependences of the transport coefficients
and the form of the correlation functions of the cor-
responding fluxes.

The temporal correlation functions of viscous
fluxes of momentum and of the heat flux in a system
of hard spheres were first found by the MD method by
Alder et al.15 and for a system of particles interacting
in accordance with the Lennard-Jones potential by
Lagar'kov and Sergeev,4·26 and by Levesque et al.50

Until then the time dependences of these functions
were assumed to be exponential, in accordance with
the relaxation theory. Naturally, stochastic-type

equations, for example the Enskog equation14 formu-
lated for the calculation of the transport properties
of very dense gases, also cannot be expected to yield
any kind of time dependence of the temporal correla-
tion functions other than exponential. However, at
high densities when the dimensions of a particle be-
come comparable with the mean free path, successive
collisions are no longer independent. The existence
of temporal correlations should result in a deviation
from the exponential law of decay not only of the
temporal velocity correlation function (TVCF) but
also of other temporal correlation functions. There-
fore, an analysis of temporal correlation functions
carried out by the MD method makes it possible to
determine correctly the range of validity of the sto-
chastic-type transport equations and in the region
where they are invalid, to obtain information which
is as yet inaccessible by other methods.

An investigation of the temporal correlation function
of the microscopic stress tensor of a system of hard
spheres1 5 demonstrated that for V/Vo>2 (Vo is the
volume in the close-packed case) the time dependence
of the temporal correlation functions is approximately
exponential. However, near the solidification curve
the temporal correlation function of the nondiagonal
component of the microscopic stress tensor has an
extended positive "tail." Similar investigations in
dense systems with realistic interaction potentials4 '2 6·5 0

also demonstrate that the positive tail of the temporal
correlation function of the viscous flow of the momentum
rises rapidly as the density is increased (Fig. 19). This
is demonstrated particularly clearly in the case of
densities and temperatures close to the triple point.
The appearance of the tail is associated with collective
effects. The MD experiments50 indicate that these
collective effects occur in a region of the order of the
interparticle distances. The appearance of such effects
can be readily understood if we bear in mind that the
viscosity of a solid tends to infinity. In the liquid phase
far from the solidification curve an intimation of this
effect is seen. This is also observed in salt melts in-
vestigated by the MD method near the solidification
line of the melt.51

The time dependence of the temporal correlation

FIG. 19. Temporal correlation function for the viscous flow
of momentum in argon: 1) ρ = 1.16 g/cm3, T=120°K; 2) p=1.31
g/cm3, T = 127°K; 3) p = 1.37g/cm3 T = 100.2°K; 4) p=1.41g/cm
g/cm3, T = 84.5°K; 5) kinetic part of the temporal correlation
function of the momentum flux, p= 1.16 g/cm3, T = 120°K.

578 Sov. Phys. Usp. 21(7), July 1978 A. N. Lagar'kov and V. M. Sergeev 578



function of the nondiagonal component of the microscopic
stress tensor near the solidification curve can be
described satisfactorily by the viscoelastic theory with
two relaxation times. One of them is the usual re-
laxation time of the order of the time between two
collisions, whereas the other is much greater and it
is associated with the collective effects. In this
connection we recall that shear waves are less damped
near the solidification line and they appear at lower
values of k compared with the model utilizing a single
relaxation time (see Sec. l.c).

It is worth noting the close relationship between the
form of the TVCF and the temporal correlation func-
tion of the nondiagonal component of the microscopic
stress tensor. As pointed out earlier, the TVCF
and, particularly, its asymptotic behavior in time, can
be derived by analyzing the hydrodynamic equations.
A particle is then considered as a macroscopic object
and the decay of its velocity is calculated on the basis
of the Navier-Stokes equation with frequency-dependent
transport coefficients. This approach to the calcula-
tion of the TVCF was first suggested by Zwanzig and
Bixon.71 If the generalized frequency-dependent
viscosity is calculated using the theory with a single
relaxation time, the extended negative plateau of this
function—predicted by the MD calculations to occur near
the triple point—is not observed. Allowance for a long
positive tail of the temporal correlation function of the
nondiagonal component of the stress tensor makes it
possible to remove the resultant conflict and then the
TVCF correlation function deduced by solving the
Navier-Stokes equation is identical with the MD data
for long times. Clearly, in the theory of thermal
hydrodynamic fluctuations23 the use of the viscoelastic
model with two relaxation times would have also im-
proved the agreement between the resultant TVCF
and the MD data.

It is clear from the above discussion why the Stokes
relationship ηΰά/Τ = const (where d is the diameter of
a hard sphere) applied to a microscopic particle re-
tains its validity over a wide range of densities.15 The
reduction in the diffusion coefficient at high densities
because of a deeper negative minimum of the TVCF
correlation function is compensated by an increase in
the viscosity resulting from the extended positive
tail of the temporal correlation function of the viscous
flux of the momentum.15 A more detailed discussion

r/fffsec

FIG. 20. Temporal correlation functions of the heat flux in
argon72 (p= 1.41 g/cm3): 1) T=110°K; 2) Γ=195°Κ; 3) kinetic
part of the temporal correlation function of the heat flux, Τ

of this topic in the two-dimensional case can be found
elsewhere.73

The question of the relative contributions of the
kinetic and potential parts of the momentum and heat
fluxes to the integral of a temporal correlation function
is very important in the theory of transport in liquids.
Calculations of the kinetic contribution to the viscosity
carried out for a system of particles with relativistic
interaction potentials over a wide range of tempera-
tures for transcritical densities26·72 show that this
contribution is very small: 2-5%. In the same range of
thermodynamic parameters the contribution of the
kinetic part of the heat flux to the thermal conductivity
is considerably greater: of the order of 20-30%
(Fig. 20). It is interesting to note that in the case of
the kinetic part of the temporal correlation function of
the microscopic stress tensor and heat flux and for
the potential part of the heat flux the agreement be-
tween the hard-sphere calculations and those based
on the Enskog theory remains good (to within 10%)
right up to densities corresponding to V/Vo = 1.5,
whereas in the case of the potential part of the tem-
poral correlation function of the microscopic stress
theory the agreement is considerably poorer (the
discrepancy is a factor of 1.5 for F/F o = 1.6 and a
factor of 2 for V/Ko = 1.5). These results demonstrate
that the Enskog theory is unsuitable for the calculation
of the viscosity of a dense system with V/Vo s 1.5.

The first application of the MD method to the trans-
port coefficients of liquids was the calculation of the
diffusion coefficient of a system of hard spheres.2 A
calculation carried out using the formula in the theory
of linear response and an application of the Einstein
relationship (Ar2) = &Dt demonstrate that the Enskog
theory is satisfactory right up to a density of p* = 0.6.
Deviations between the Enskog theory and the MD
calculations do not then exceed 20%. The results ob-
tained suggest that at moderate densities and fairly
high temperatures the Enskog theory gives satis-
factory results for the other transport coefficients,
as was indeed confirmed later.1 5 The success of the
Enskog theory in the description of the transport
properties of a system of hard spheres, established
by the MD method, has provided a simple means for
computing the transport coefficients of liquids above
the critical temperature74: a real liquid is considered
as a system of hard spheres whose diameter is found
from the thermodynamic properties and then the Enskog
theory is used to find the transport coefficients. This
calculation approach is characterized by a high pre-
cision (~10%) but it is still insufficiently self-consistent
because it requires the knowledge of the temperature
dependence of the sphere diameter. This dependence
can only be obtained by numerical experiments.

The first calculation of the shear and volume vis-
cosity and of the thermal conductivity of systems with
realistic potentials was carried out by Bruin76 using
the Helfand formulas and by others 4 · 2 6 · 2 7 ' 7 2 using the
formulas of the linear response theory. However, it
should be pointed out that a badly chosen range of the
thermodynamic parameters prevented Bruin76 from
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providing a convincing comparison with the experi-
mental data.

The simplest materials for checking the suitability
of the MD method in calculation of the transport coef-
ficients are liquefied rare gases, because the poten-
tials of the interaction between particles in rare gases
have been investigated more thoroughly than for other
substances. However, even in the case of such a
thoroughly studied material as liquid argon there are
still considerable discrepancies between the published
estimates of the "quality" of various potentials. We
have mentioned earlier the successful application of
the Lennard-Jones potential in the description of the
thermodynamic properties of argon. Nevertheless,
it is not a priori clear that this potential describes
satisfactorily the transport properties.

A comparison26 of the results of calculations carried
out using three interaction potentials—the Lennard-
Jones potential, the Buckingham potential,77 and the
potential deduced by Parson, Siska, and Lee6 4 from
the experiments on the scattering of argon a t o m s -
demonstrated that the Lennard-Jones potential was the
best. This comparison was carried out for self-
diffusion coefficients, shear and bulk viscosities, and
thermal conductivity over a wide range of temperatures
but at a constant density of ρ = 1.16 g/cm3. We
compared26 the results for the pure pair potential and
the "effective" Lennard-Jones potential, which—as
pointed out in Sec. 2.b—can be regarded as including
many-particle effects. It follows from the results ob-
tained that the interaction in a liquid is not identical
with the interaction in the gaseous phase. The validity
of using the Lennard-Jones potential in the calculating
of the transport coefficients in liquid argon was con-
firmed by comparing the experimental data 3 4 ' 7 9" 8 3 with
the calculations of the shear and volume viscosity and
of the thermal conductivity carried out by the MD
method over a wide range of temperatures and den-
sities.7 2·7 8

The MD calculations72 demonstrated that, at a fixed
density, the shear viscosity is independent of tempera-
ture above the critical value and this is true right up to
Γ ~ 400°Κ (Fig. 21). It should be pointed out that the
experiments81 carried out simultaneously and indepen-
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FIG. 21. Temperature dependence of the shear viscosity of
argon plotted for various densities ρ (g/cm3): 1) 0.9; 2) 1.16;
3) 1.31; 4) viscosity on saturation line; 5) 0.904; 6) 1.16; 7)
1.31; 8) 1.41. Symbols 1-3 represent experimental results80

and symbols 5—8 represent calculated results.

dently of the calculations72 also demonstrated that the
isochoric shear viscosity is independent of tempera-
ture at densities above the critical value. This con-
firmed once again Bachinski's view,137 who drew atten-
tion to the constancy of the isochoric shear viscosity
and suggested the formula η =£/(Ω - b) for this proper-
ty; here, Ω is the specific volume, and Β and b are
constants governed by the properties of the liquid. The
difference Ω - 6 represents the free volume of the
liquid and the viscosity is inversely proportional to
this free volume, which is practically independent of
temperature if the density is fixed. Subsequently,
Frenkel131 justified the Bachinski formula from the
point of view of the hole theory of liquids. It should
also be pointed out that Frenkel's concept of the mo-
tion of particles in a liquid as occurring in accordance
with the laws of macroscopic hydrodynamics also ex-
plains excellently the constancy of the isochoric shear
viscosity. Applying Frenkel's relationship rj=JfeflT/
SitdD and the MD self-diffusion coefficient D, which
give DocconstT/p2,75 we obtain directly the temperature
independence of the isochoric viscosity.

The temperature dependence of the thermal conduc-
tivity at a fixed density obtained by the MD method72

differs slightly from the experimental dependence and
this is clearly due to the fact that the calculations72

were carried out using a small number of particles
in a cell, whereas an accurate calculation of the
thermal conductivity requires consideration of a
larger number of particles than in the cases of the
shear and volume viscosity. An increase in the number
of particles to 108 gives a better agreement78 with
experiment. On the whole, the results of Refs. 26,
72, and 78 are clear evidence of the great effective-
ness of the formulas of the linear response theory in
the calculation of the transport coefficients by the MD
method. Attempts to calculate the transport coefficients
of argon by the MD method50'84 gave results not in
good agreement with the experimental data. This is
apparently due to the fact that in one case5 0 the calcula-
tions were carried out at the triple point where, be-
cause of the high density, it is not possible to allow
for the density dependences of the constants ε and σ in
the Lennard-Jones potential. In the other case,84 use
was made of an incorrect method for the calculation of
the temporal correlation function. When the method
was modified,78 the agreement with the experimental
results and those reported elsewhere72 was found to be
good.

It is interesting to note that the MD calculations of
the viscosity are in good agreement with the experi-
mental results even when the number of particles in a
cell is only J\T = 32-36.2e·72 A further increase in the
number of particles to a few hundred78 has little effect
on the results. The situation is somewhat different in
the case of the thermodynamic quantities. A pre-
cision of ~10% can be obtained by calculations for at
least 100 particles in a cell. This is apparently due to
the fact that the expression for the potential part of the
pressure, which is being averaged, falls off as l / r e ,
i.e., fairly slowly, whereas in the expressions for the
temporal correlation function of the momentum flux

580 Sov. Phys. Usp. 21(7), July 1978 A. N. Lagar'kov and V. M. Sergeev 580



the averaged quantities that make the principal con-
tributions fall off as 1/r12 and the interactions with
distant particles may have little effect on the temporal
correlation function of the momentum flux. Similar
considerations explain why a calculation of the thermal
conductivity of a small number of particles agrees less
satisfactorily with the experimental data than a similar
calculation of the viscosity. The point is that the ex-
pression for the temporal correlation function of the
energy flux includes a term proportional to the inter-
action potential and, consequently, falling off as i/re.
This term is found by multiplying the kinetic and poten-
tial parts of the energy flux vector, which occur in the
correlation function (Qx(0)Qx(t)), and it is of the form
ZiP2iPXi\ozi*kuik(P'+Pl)\f For short times, i.e., in the
range making the principal contribution to the integral
of the temporal correlation function, this term is pro-
portional to TZU after the Gibbs averaging; here, 5 is
the interaction energy per particle, which is a thermo-
dynamic quantity and a large number of particles is
required if calculations of it are to be accurate.

A very promising approach in investigations of the
transport phenomena by the MD method is the creation
of a deliberate lack of equilibrium in a cell. The main
advantage of this method is the possibility of inves-
tigating nonlinear effects which appear under strongly
inhomogeneous conditions.85 The method of creating
a deliberate lack of equilibrium has been used success-
fully in calculating the shear viscosity of argon. This
gives the dependence of the shear viscosity on the stress
tensor. In the case of low velocity gradients the results
agree well with those obtained by us2 6 and with the ex-
perimental data. Another very simple illustration
of the possibility of creating a deliberate lack of
equilibrium is the application of a static field to a cell
filled with particles with opposite charges interacting
in accordance with the Coulomb law. In this case the
field dependence of the current across the wall of the
cell gives directly the electrical conductivity. This
scheme has not yet been implemented.

d) Calculation techniques and precision of the
molecular dynamics method

In view of the fact that the MD calculations for sys-
tems composed of a few hundreds of particles are, at
the present time, near the limit of capabilities of
modern computers, the effectiveness of difference
schemes becomes of basic importance. Calculation
schemes for a system of hard spheres are relatively
simple2 and reduce to the solution of algebraic equa-
tions. The situation is more difficult in the case of
systems with realistic potentials. This is due to the
fact that at short distances the intermolecular inter-
action potential depends very strongly on the distance
and in such cases the difference schemes suffer from
poor convergence. Apparently this was the reason
why an iteration scheme was used in the first calcula-
tions.10 However, it was subsequently shown99·4 that a
very simple noniteration scheme, described by Eq.
(I.I), ensures an entirely satisfactory precision. The
criteria of the quality of a scheme are the degree to
which the law of conservation of energy is obeyed and
the dependence of the coordinate t(t) on the step in a

difference scheme. A difference scheme is most con-
veniently tested on a one-dimensional problem. Cal-
culations based on the scheme (I.I) and the Lennard-
Jones potential demonstrated4 that in 10s steps (corre-
sponding to 2-3 oscillations in a potential well) the
energy fluctuates within 2-3% and that the coordinate
error for a step (in reduced units t* = ta^e/m ) At
= 0.005 in the same number of steps is ~3%.

It should be pointed out that ways of economizing the
calculation time are not limited to selection of a good
difference scheme. Other improvements are also pos-
sible. In considering a system with a large number of
particles (ΛΓ~ 103) it is not necessary to calculate all
the distances between the particles and all the inter-
action forces at each step. For particles at consider-
able distances 0*3.3σ) the Lennard-Jones potential is
so small that it can be simply assumed to be zero.
Over somewhat shorter distances in the range
2.5<r<3.3 the interaction forces vary slowly with
time and, therefore, they need not be calculated at
every step of the difference scheme but every few
steps. Implementation of such a scheme59 reduced the
calculation time by about an order of magnitude (the
number of particles was Ν = 864). Correct selection
of the calculation scheme made it possible to reduce
the resultant error to a value considerably smaller
than the error due to the use of periodic boundary
conditions.

Frequent attempts have been made to estimate
analytically the error resulting from the application of
periodic boundary conditions. However, such estimates
have been obtained only for the virial coefficients.6"9

It has been found that the error in the second and third
virial coefficients resulting from periodicity of the
boundary conditions is of the order of O(l/N), The de-
pendence on the number of particles has also been
estimated directly from the MD calculations by in-
creasing this number to a few thousand. In the case of
the diffusion coefficient of a system of hard spheres16

this approach gives the result

flw=fl.(i--l). (2.10)

The dependence is fairly weak and it shows that a
system with 30-40 particles per cell gives results with
the same precision as the experimental data.

The extrapolation method can be used to find accurate
values of the quantities determined by the MD method
and to eliminate the dependence on the boundary con-
ditions. This is done by plotting i/N along the χ axis
and the values of the investigated quantity Ps(\/N) along
the y axis. The set PN{\/N) is approximated by a linear
function and the required value Ρ is deduced as the
value of this function at \/N = 0. This makes it possible
to obtain reliable values of Ρ even when only two points
PNl and PN2 are available.

Specific causes of the error appear in calculations of
the transport coefficients by the MD method using the
linear response theory. In the expressions for the
transport coefficients (2.7)-(2.10) the temporal corre-
lation function is integrated with respect to time from
0 to °°. It is not realistic to carry out such integration
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and, therefore, it is necessary to estimate the con-
tribution of long times to the integral. This can be
done using the hydrodynamic asymptotic behavior of the
temporal correlation function discussed above. Esti-
mates indicate that for f > (3-5)τ0, where τ0 is the re-
laxation time, this contribution is small (~10%) and it
decreases as the temperature is increased and the
density is reduced. Extension of the integration time
naturally reduces the error. Attempts have also been
made86 to estimate the error in the MD calculations of
the temporal velocity correlation function (vi(0)vi{t))
due to the quantity (ι^ΟΦ^ί + τ)), being averaged in
accordance with the ergodic hypothesis and the integra-
tion with respect to τ not being carried out up to <*> but
to some value T. If we assume that the velocity v(t)
is a Gaussian random quantity and introduce

Η- (2.11)

then (Δί) = Ο, and the error due to the finite integration
time can be found by calculating the second moment
<Δ2(ί)). If υ (t) is a Gaussian quantity, we can show
that <Δ2(ί))~2τ0/Γ and, consequently,

(2.12)

Therefore, in calculating the temporal correlation
function to within 2-3% (which corresponds to the ex-
perimental error) it is necessary to ensure that
Τ~1&τ0. When additional averaging over the particles

<•>! ( 0 ) •>!(<)> =4" (2.13)

is used, the error in Eq. (2.12) decreases as 1/-JF,
which is easy to explain physically because averaging
over the particles is equivalent to an increase in the
averaging time in Eq. (2.12) by a factor of N. How-
ever, it should be pointed out that v(t) is not really a
Gaussian random quantity. Moreover, at the outset
we have assumed that the temporal correlation function
falls off exponentially at large values of t, which we
know to be incorrect. All this makes it necessary to
treat Eq. (2.12) with caution. Direct calculations
demonstrate that the estimate given by Eq. (2.12) is
somewhat too high.

In view of the above discussion we may conclude that
the use of modern computers in calculation of the trans-
port coefficients of classical systems by the MD
method makes it possible to achieve in a reasonable
time a precision comparable with that obtainable ex-
perimentally.

3. DYNAMICS OF A LIGHT CLASSICAL PARTICLE IN
A DENSE MEDIUM OF DISORDERED HEAVY
SCATTERERS

a) Formulation of the problem

The problem of the motion of a light particle among
disordered scatterers arises in investigations of
very many physical situations and its solution has
direct applications to rarefied and dense gases, and to
condensed media. The model for the limiting case of

strongly rarefied scatterers is familiar under the name
of the Lorentz gas model. The solution of the linear-
ized Boltzmann equation, describing the behavior of a
Lorentz gas, can be found in most textbooks on physi-
cal kinetics. However, the problem complicates
greatly as soon as the scatterer density Ν increases.
Even for a very simple type of interaction, such as
that of a hard sphere of radius a with immobile point
centers, the development of the kinetic theory for the
Na3~l case involves fundamental difficulties. These
difficulties appear because of the need to allow for the
spatial and temporal correlations that occur when a
particle moves in a dense medium, and they increase
considerably in the case of "soft" interaction poten-
tials.

As before, in the present section we shall consider
all the problems from the point of view of nonequilibri-
um classical statistical mechanics, which naturally
limits the range of validity of the results obtained.
However, it should be remembered that the results
of a self-consistent theory are extremely modest even
in the case of a classical description. At present the
theory87 gives the first terms of the expansion, in
terms of the density, of the reciprocal diffusion co-
efficient and predicts the existence of terms log-
arithmic in density. An investigation of the motion
of a hard disk126 among randomly distributed point
scatterers, carried out by the MD method, has con-
firmed the existence of terms logarithmic in density
in the case of a two-dimensional Lorentz gas. For a
three-dimensional system the results of the MD cal-
culations88 of the motion of a hard sphere among point
scatterers has demonstrated reasonable agreement
with the theory in which the reciprocal diffusion co-
efficient is described by an expansion in powers of the
density. However, at present it is hardly possible to
identify the logarithmic terms for a three-dimensional
case by the MD method and to demonstrate their ex-
istence because in this case the logarithmic terms play
a less important role than in two-dimensional cases.

Apparently the most effective approach is the use of
the MD method for investigating the motion of a light
particle in a high-density disordered medium. At high
scatterer densities basically new qualitative phenomena
arise which do not occur in rarefied systems. They
include, for example, a nonmonotonic energy de-
pendence of the mobility, the appearance of percola-
tion at negative particle energies, etc. (The percola-
tion level is the minimum energy E, of a classical
particle in an arbitrary potential energy curve U for
which there still exists a region in space with E>U
extending to infinity in all directions.) Even for the
determination of such a relatively simple character-
istic of the motion of a particle in a dense medium as
the percolation level, it is necessary to use the Monte
Carlo method specially developed for solving continuum
problems.138 More complex dynamic characteristics
can be found reasonably consistently only by the MD
method. Investigation of the phenomenon of percolation
as such is hardly the purpose of the present section,
especially as a recent review139 has dealt with the
problem of percolation and its relationship to the con-
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ductivity of strongly inhomogeneous media. We shall
consider the behavior of a particle in a disordered
medium from a somewhat different angle, which has
not yet been sufficiently thoroughly investigated,
namely, we shall demonstrate a close relationship be-
tween the behavior of the TVCF and spatial correlation
function of a particle (the latter representing its po-
sition relative to the scatterers), density of states,
percolation level, and mobility; this relationship is
revealed by calculations based on the exact microscopic
approach. This approach has become possible because
of the application of the MD method somewhat
modified91 to fit the specific nature of the problem
under discussion. The value of the percolation level is
found in this approach, together with many other
macroscopic averages, and in determining this level
the MD method is an important supplement of the
Monte Carlo method.

Let a light particle to which we shall refer (because
of subsequent applications) as an electron move in a
field formed by scatterers:

u(Rj-r), (3.1)

where «(R, - r) is the electron-scatterer interaction
potential; r is the coordinate of the electron; R̂  is the
coordinate of the scatterer.

If the asymptotic form of the interaction potential
u(r) at large distances is taken to be the polarization
potential ~ae2/2r4, where a is the polarization con-
stant, and some effective repulsion is assumed for
short distances, the motion of a particle in the field .
(3.1) simulates a situation which occurs in a dense
weakly ionized plasma of metal vapors at subscritical
densities. In such a plasma subject to the conditions
fiNofudr»l, MiyV/3<l, where fi = l/kBT, η is the
electron density, and No is the density of neutral
atoms, the interaction between an electron and neutral
atoms predominates and the interaction of the electron
with ions and with other electrons can be ignored. At
such concentrations of heavy neutral particles an
electron is always in the field of action of their forces
and, naturally, is not free. These conditions occur
not only in dense plasmas of metal vapors, but also
in dense gases on injection into them of charged
particles, for example, under the action of ionizing
radiation, and also in many other physical systems.140

All the subsequent results will be obtained for the
electron-atom interaction potential of the form shown
in Fig. 22, which simulates the interaction of an elec-
tron with a mercury atom. The selection of the poten-
tial describing the electron-atom interaction was
discussed in detail by Lagar'kov and Sarychev.92 It
should be pointed out here that the main qualitative re-
lationships, which will be demonstrated later, remain
valid for any potential characterized by attraction over
long distances and repulsion over short distances; for
example, the ideas and method presented in this section
can be applied to investigate the motion of a light ion
or atom (for example, He* or He) moving in a very
dense and heavy gas (for example, Xe).

10 r,k

FIG. 22. Effective poten-
tial of the interaction be-
tween an electron and an
Hg atom.
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In this section we shall examine how the density of
states, the electron-atom pair correlation function,
and the TVCF of an electron moving in the field (3.1)
vary with the electron energy and the density of the
scattering atoms. We shall show that an investigation
of these quantities by the MO method makes it possible
to study the rapid rise of the conductivity from the
value in a gas to a value close to that in a metal89'95

as a result of a slight increase in the density at sub-
critical densities. In this way we shall use the MD
method to describe the initial stage of a metal-insulator
phase transition. Extension to supercritical densities
is limited by the use of the classical ideas suitable for
the description of the motion of an electron in a dense
weakly ionized plasma. The criteria of the quasi-
classical situation were given by Rice and Allnatt.30

Since in this problem the interaction of electrons
with one another can be ignored, the conductivity of a
system of electrons in the field (3.1) is given by the
familiar expression141

e-»Ep(E)D(E, ω)άΕ, (3.2)

where η is the electron density, p(E) is the density of
states,

j (3.3)

(3.4)D (Ε, ω)=^ cos (ut<f>E(t)dt,

<pB(t) is the TVCF of an electron,
<pE(<)= (vx (OK (t))E, (3.5)

νx is the «-component of the electron velocity, and (}B

is the micorcanonical average over the initial momenta
and coordinates of an electron for a fixed electron en-
ergy (the scatterer mass is assumed to be infinite),
which is also averaged over all the possible scatterer
configurations.

We shall now analyze the behavior of the quantities
determining οχχ(ω, β).

b) Density of states and spatial electron—atom
correlation function

In the quasiclassical approximation the density of
states is given by

(3.6)

where vir = l/V^J f(r,^?y)rfr», m is the electron mass,
V(T,$ }) is the velocity of an electron at a point r in a
scatterer configuration 01 Jf and (( )) denotes averaging
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over the scatterer positions, which may be correlated
with one another.

We can show92 that the value of νίτ can be calculated
by the MD method from

(3.7)

where Vt is the volume accessible to classical motion.

The expression (3.7) can be interpreted on the basis
of the following qualitative considerations.

The whole space in which the integration is carried
out is divided into cubes of side L{ =vt&t, where
v( =V2[£-l/(r|)], Δ* is the integration step in the nu-
merical solution of the equations of motion by the MD
method, and vt is the velocity of an electron at a point
r,. This division is possible because for Δί- Ο the
region of overlap of two cubes tends to zero faster than
the volumes themselves. Then, the integral in Eq.
(3.7) can be rewritten as the sum fvdr=Lf,iviv?(Δί)3.
Calculating now the integral j^v*dt along a trajectory,
we can traverse the whole volume. However, the con-
tribution made to the integral by each of the points r\
is v\Cd, and in the limit Γ—» each such contribution is
included many times. The degree of repetition can be
allowed for by introducing a normalization factor
V,/&t2f0

Tv3dt, equal to the ratio of the accessible vol-
ume Vt to the total volume covered by the trajectory
during its motion. The proportion of the accessible
volume to the total can also be found by numerical
methods.92

Figure 23 shows the energy dependence of the density
of states calculated by the MD method for systems of
correlated and uncorrelated scatterers. In allowing for
the correlation between the scatterers it is assumed
that they interact with one another as hard spheres of
radius 5L. Dimensionless units are used in Fig. 23 and
some of the other figures. The energy is then mea-
sured in terms of the depth of the potential ε and the
length in units of 6t (Fig. 22). The electron mass is
taken to be unity. Then, the dimensionless time is

Figure 23 shows also the density of states in the
Gaussian approximation, used widely in the theory of
disordered systems. We can see that beginning from

n — y, where

FIG. 23. Energy dependences of the density of electron states.
The continuous curves represent correlated scatterers and the
dashed curves the uncorrelated systems. 1) W=1.32 xlO22 cm"3

Ονδξ = 0.069); 2) JV = 8.3 xlO21 cm"3 (ΛΓδ? = 0.043); 3)ΑΓ=4.8 xlO21

cm"3 (Νδ\ = 0.025); 4) N=2A xlO^cm"3* (M5j = O.O13); 5) tf=1.04
xlO21 cm"3 (Νδ| = 0.0054). The chain curve represents the Gaus-
sian approximation for case 1.

2Λίο4JI f u*r2dr,

the Gaussian approximation overestimates the density
of states. This is due to the fact that states of energies
E<un--y belong to electrons localized at scatterer
clusters. These clusters are created by an electron
which attracts atoms and thus forms a cloud of higher
density, and is then captured by the potential well of
this cloud. The density of the scatterers in clusters
is much higher than the average density of neutral
atoms and, naturally, the Gaussian statistics is in-
applicable to such large fluctuations of the density.
The resultant clusters are similar in nature to those
considered elsewhere142 and the phenomenon itself is
analogous to the localization of electrons by fluctua-
tions of the impurity ion density in heavily doped semi-
conductors. The importance of clusters in the be-
havior of a dense plasma was first pointed out by
Khrapak and Yakubov.143 The structure of a cluster
can be seen by considering the electron-atom spatial
correlation function:

(3.8)
Ju.1 /

where χΔ(*) = 1 for \x\ «Δ, χ(*) = 0 for |χ|>Δ, and
r(t,&k, E) is the trajectory of an electron in a scatterer
configuration 01 k.

The quantity g(r, E) is plotted in Fig. 24 for several
values of the density and for an energy corresponding
to a transition of an electron to a nonlocalized state,
i.e., for values of the energy corresponding to the
percolation level. Clearly, the percolation level de-
creases as the density increases. When the energy is
increased, the function g(r, E), calculated for the case
of correlated scatterers, exhibits the first maximum
and then a second one at lower energies. The existence
of two maxima is due to the fact that the scatterers

V-A -
I, 26, 3d, Ίδ, SS, 6ΰ, 71, r

FIG. 24. Spatial electron—atom correlation function at ener-
gies equal to the percolation energy. The continuous curves
represent correlated scatterers and the dashed curves an un-
correlated system. Mem"3): a)1.32X1022; b)8.3XlOa; c)2.4
xlO21; d)4.8xlO2 1.
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interact with one another as hard spheres of radius 6l.
If the scatterers attracting an electron were close
packed, the radius corresponding to the second max-
imum would have been equal to the radius of the
second coordination sphere. Clearly, in the case of
uncorrelated scatterers the quantity g(r, E) should
have one maximum which increases on reduction of the
energy, as confirmed by the results in Fig. 24.
Knowing the function g(r, E), we can determine the
average number of particles in a cluster Nd . For
Γ ~ 1500°Κ and JV = 6X10" cm"3, we have WCi~20,
i.e., an electron is localized at a large cluster of
scatterers which is characterized by a short-range
order in the case of a correlated system. We can now
understand the difference between the densities of
states for the correlated and uncorrelated scatterers
demonstrated in Fig. 23. The entropy of formation of
a cluster is higher for completely disordered scat-
terer systems. If scatterers do not repel, a cluster
assembles more readily and, therefore, a deep well
forms in which an electron may have a large
negative energy.

c) Temporal velocity autocorrelation function and
constant-energy conductivity

As in Sec. 1, the TVCF of an electron moving in the
field of the surrounding heavy scatterers can be found
on the basis of the ergodic hypothesis

l i m 4 " (3.9)

The results of calculations of <p£(t) for different
energies and two densities are presented in Figs. 25
and 26. At high positive energies (an electron moves
in a dense gas of heavy spheres and the attractive
part is a weak perturbation) this correlation function
is monotonically damped. However, at higher den-
sities the behavior of the temporal velocity correlation
function differs greatly from the exponential form even
when the energy is high. As the energy is reduced, the
function <pB(t) acquires a negative minimum, which re-
flects the oscillatory motion of an electron, i.e., an
electron is localized for a time until it finds a pas-
sage in the potential barrier. Then, the integral
D(E, 0)=fo°°cpB(t)dt, representing the conductivity of
electrons of a given energy E, differs considerably
from zero: an electron can then escape to infinity along
conducting channels. Finally, for a value of Ε such

FIG. 26. Temporal velocity correlation function for motion in
a field of correlated scatterers (ii=4.8xl021cm"3).

that D{E, 0) = 0, an electron becomes localized and
makes no contribution to the conductivity. This def-
inition of a localized electron agrees with that pro-
posed by Mott.140 Since the number of particles in a
cluster is fairly large, the function <Pe(t) is damped
out rapidly also in the localized case because electron
"forgets" its initial velocity on becoming entangled
inside a cluster. Figure 27 gives the values of D{E, 0)
obtained for various densities. At all densities that
have been investigated the value of D(E, 0) rises by
several orders of magnitude in a narrow range of en-
ergies. At lower densities the conductivity channels
become open at higher energies. The maximum value
of Ε at which D(E, 0) is still zero determines the
percolation level. Thus, an analysis of the TVCF
enables us to investigate the phenomenon of percolation
in the continuum model with a realistic interparticle
interaction potential.

Since the fraction of the volume accessible to clas-
sical motion C(E) is calculated as a function of the
particle energy by finding the density of states while
the percolation level can be deduced from the graphs
of D(E, 0), we can easily determine the dependence
C(EP). This dependence C(Ef) is plotted in Fig. 28 for
the interparticle potential shown in Fig. 22. First of
all, it is necessary to draw attention to the fact that
the value of C(EP) depends strongly on the density of
the system. At low densities, when the field correla-
tion radius is small, C(EP) tends to the value of 0.32
obtained earlier. 9 3 · 1 3 8 The same value of C(EP) can
also be found by an approach based on the use of a
renormalized group.94 However, at high densities
of correlated scatterers the value of C(EP) decreases
as the density is increased and is no longer universal.
Variation of C(EP) over a wide range has been found
also for non-Gaussian potentials.138 In our opinion,
this result is extremely important because it shows
that, for real interaction potentials and a high density

FIG. 25. Temporal velocity correlation function for motion In
a field of correlated scatterers (iV=1.04 xlO21 cm"3) plotted for
different values of the energy against the relative time.

FIG. 27. Constant-energy conductivity DiE, 0) plotted as a
function of the energy for various densities. The notation Is
the same as in Fig. 23.
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β, Ο1 • c m '

FIG. 28. Fraction of the critical volume plotted as a function
of the density of atoms.

of correlated scatterers, it is not reasonable to ex-
pect universal relationships for determining the frac-
tion of the accessible volume.

d) Calculation of the conductivity

The conductivity σ{β, ω) of a system can be calculated
by determining the dependence of the total electron
density (i.e., the density of electrons both in clusters
and in the free state) on the density of the scattering
atoms and on the temperature. Clearly, this can be
done by finding the free energy of the system and
minimizing it. The dependence of the electron density
on the density of neutral atoms can be understood
qualitatively on the basis of a simple model in which
electrons and ions interact identically with atoms and
atoms do not interact with one another (this calculation
is included in the rigorous calculations by the MD
method92). Then, the expression for the free energy
becomes1 4 3

[ dre'»" «—I (3.10)

where F o is the free energy of an ideal plasma; hence,
we obtain directly the ionization equilibrium equation

+2JV0 " —1)] , (3.Π)

where λΓ is the thermal wavelength of an electron and
El is the ionization energy of a neutral atom.

Equation (3.11) differs from the Saha equation by the
appearance of a positive term in the argument of the
exponential function and this term increases as the
degree of departure of the system from the ideal case
increases. Consequently, the electron density begins to
rise rapidly on attainment of fairly high densities and
this explains partly the steep rise of the conductivity
σ(β, 0) in a narrow range of densities. Using the values
of p(E), D(E, ω), and η calculated by the MD method,
we can find the conductivity σ(ω, β) and explain the
observed rise of the static conductivity σ(0, β) during
the first stage of plasma metallization. The data
found by the MD method9 2·1 4 4 are in good agreement
with the experimental results in the subcritical range
at all temperatures for which such data are available
(Fig. 29). The use of the MD method for a calculation
of σ(ω, β) makes it possible to predict qualitatively the
change in the free-free absorption of visible infrared
radiation by electrons at high plasma densities. The
expected anomalies are associated with a change in the
form of the TVCF on localization of an electron in a
cluster of atoms.

We shall conclude this section by noting that the

FIG. 29. Dependence of the conductivity of a mercury plasma
on the relative density (pc is the critical density of Hg). The
circles represent the experimental results1 4 5 obtained at
T = 1850°K. The continuous curves are calculated tof Γ(°Κ):
1)1823; 2)2200; 3)2600; 4)3000; 5)4000; 6)5000; 7)6000; 8)
7000; 9) 10 000; 10) 15 000. The dashed curve is the boundary of
the electron density lower than O.ljV.

MD method has been found to be exceptionally effective
in the calculation of the thermo-emf of a dense
mercury plasma.

CONCLUSIONS

The number of papers utilizing the MD method is
increasing in an avalanche-like manner. The branches
of physics in which the MD method has been used
successfully are frequently so far apart that a separate
review could be written for many of these applications.
Moreover, there is a certain number of papers which
describe new applications and are interesting per se
but yet do not give the complete physical picture of the
nature of motion in dense systems characterized by a
fairly complex interaction law. For this reason we
have confined the present review to a detailed analysis
of systems with relatively simple interaction poten-
tials, especially as only such systems give us hope to
expect soon the development of physical ideas based
on the MD method in the same way as on the ex-
perimental data.

Readers interested in the MD results obtained in in-
vestigations of diatomic liquids with spherically
asymmetric interaction potentials can find them in the
review by Berne and Harp96 and also elsewhere.9 7·9 8

Molecular dynamics investigations have also been made
of mixtures of simple liquids,9 9"1 0 5·"5 melts of
salts,3 8·4 2·1 0 6·1 0 7 liquid metals, 1 0 8· 1 0 9· 1 5 0· 1 5 1 scattering of
light in liquids and melts,1 1 0"1 1 4 relaxation of dipole
polarization,113 thermodynamic and transport proper-
ties of water,1 1 6"1 1 9 dense strongly ionized plas-
mas, 1 2 0 > 1 5 2 ' 1 5 3 structure and properties of micro-
clusters, 1 2 7 · 1 2 8 · 1 5 4" 1 5 8 and formation of dimers. 1 2 9 · 1 3 0

The MD method has been applied to nonergodic sys-
tems 1 2 1 " 1 2 4 and to the formation of cluster waves in
solids.125 We can thus see that the potentialities of the
MD method are extremely wide and the range of its
applications is growing continuously. In particular,
there are grounds for expecting that attempts to study
quantum systems will be made in the nearest future.

'Fizika prostykh zhidkostei (Collection: Physics of Simple
Liquids, Russ.Transl.), Mir, M., 1971.

586 Sov. Phys. Usp. 21(7), July 1978 A. N. Lagar'kov and V. M. Sergeev 586



2B. J. Alder and T. Wainwright, in: Proc. Intern. Symposium
on Transport Processes in Statistical Mechanics, Brussels,
1956 (ed. by I. Prigogine), Interscience, New York, 1958, p.
97.

3N. T. Kovalenko and I. Z. Fisher, Usp. Fiz. Nauk 108, 209
(1972) [Sov. Phys. Usp. 15, 592 (1973)].

4A. N. Lagar'kov and V. M. Sergeev, Teplofiz. Vys. Temp. 8,
1309 (1970).

5I. Z. Fisher, Statisticheskaya teoriya zhidkosti (Statistical
Theory of Liquids), Fitzmatgiz, M., 1961.

6 I . Oppenheim and P. Mazur, Physica (Utrecht) 23, 197 (1957).
7 J. L. Lebowitz and J. K. Percus, Phys. Rev. 122, 1675 (1961).
8 I . Z. Fisher, Dokl. Akad. Nauk B. SSR 4, 148 (1960).
9J. E. Mayer, J. Phys. Chem. 66, 591 (1962).
10A. Rahman, Phys. Rev. 136, A405 (1964).
" j . O. Hirschfelder, C. F. Curtiss, andR. B. Bird, Molecular

Theory of Gases and Liquids, Wiley, New York, 1954, p.
624.

1 2 B. J. Alder and T. Einwohner, J. Chem. Phys. 43, 3399
(1965).

1 3 T. Einwohner and B. J . Alder, J. Chem. Phys. 49, 1458
(1968).

1 4 D. Enskog, K. Sven. Vetenskapsakad. Handl. 63, No. 4 (1922).
1 5B. J. Alder, D. M. Gass, and Τ. Ε. Wainwright, J. Chem.

Phys. 53, 3813 (1970).
1 6 B. J. Alder and Τ. Ε. Wainwright, Phys. Rev. Lett. 18, 988

(1967).
1 7 B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18,

(1970).
18Y. Pomeau, J . Chem. Phys. 57, 2800 (1972).
1 9 D. Levesque and W. T. Ashurst, Phys. Rev. Lett. 33, 277

(1974).
20M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys.

Lett. A 34, 419 (1971).
2 1M. H. Ernst, E. H. Hauge, and J. M. J, van Leeuwen, Phys.

Rev. A 4, 2055 (1971).
22R. Zwanzig and M. Bixon, Phys. Rev. A 2, 2005 (1970).
2 3 I . Z. Fisher, Zh. Eksp. Teor. Fiz. 61, 1647 (1971) [Sov.

Phys. JETP34, 878 (1972)].
2 4 P . L. Fehder, J. Chem. Phys. 50, 2617 (1969).
2 5G. W. Robinson, Mol. Phys. 3, 301 (1960).
26A. N. Lagar'kov and V. M. Sergeev, Teplofiz. Vys. Temp.

11, 513 (1973).
2 7D. Levesque and L. Verlet, Phys. Rev. A 2, 2514 (1970).
2 8M. S. Wertheim, Phys. Rev. Lett. 10
2 9 E. J. Thiele, J. Chem. Phys. 38, 1959 (1963); Y. Hiwartari,

H. Matsuda, T. Ogawa, N. Ogita, and A. Ueda, Prog. Theor.
Phys. 52, 1105 (1974).

3 0S. A. Rice and A. R. Allnatt, J . Chem. Phys.34, 2144 (1961).
31A. R. Allnatt and S. A. Rice, J. Chem. Phys. 34, 2156 (1961).
3 2 P . Gray and S. A. Rice, J. Chem. Phys. 41, 3689 (1964).
3 3 B. A. Lowry, S. A. Rice, and P. Gray, J. Chem. Phys. 40,

3673 (1964).
3 4L. D. Ikenberry and S. A. Rice, J. Chem. Phys. 39, 1561

(1963).
35A. N. Lagar'kov and V. M. Sergeev, Teplofiz. Vys. Temp.

13, 438 (1975).
3 6 E. Helfand, Phys. Rev. 119, 1 (1960).
3 7 J. Ross, J. Chem. Phys. 24, 375 (1956).
38V. M. Sergeev, Avtoreferat kand. dissertatsii (Author's Ab-

stract of Thesis for Candidate's Degree), Institute of High
Temperatures, Academy of Sciences of the USSR, M., 1973.

3 9S. A. Rice, Trans. Faraday Soc. 58, 499 (1962).
4 0 B. Berne and S. A. Rice, J. Chem. Phys. 40, 1347 (1964).
41A. Rahman, J. Chem. Phys. 45, 2585 (1966).
4 2S. I. Smedley and L. V. Woodcock, J. Chem. Soc. Faraday

Trans. II, 70, 955 (1974).
43A. F. Collings and L. A. Woolf, Aust. J. Chem. 24, 225

(1971).
4 4L. Van Hove, Phys. Rev. 95, 249 (1954).
4 5L. Van Hove, Physica (Utrecht) 24, 404 (1958).

4 6 B. R. A. Nijboer and A. Rahman, Physica (Utrecht) 32, 415
(1966).

4 TC. H. Chung and S. Yip, Phys. Rev. 182, 323 (1969).
4 8R. C. Desai and M. Nelkin, Phys. Rev. Lett. 16, 839 (1966).
49A. Rahman, Phys. Rev. Lett. 19, 420 (1967).
5 0D. Levesque, L. Verlet, and J. Kurkijarvi, Phys. Rev. A 7,

1690 (1973).
51A. Rahman, in: Neutron Inelastic Scattering (Proc. Fourth

Intern. Symposium, Copenhagen, 1968), Vol. 1, International
Atomic Energy Agency, Vienna, 1968, p. 561.

52W. G. Hoover and B. J . Alder, J. Chem. Phys. 46, 686 (1967).
5 3 J. G. Kirkwood, E. K. Maun, and B. J. Alder, J. Chem. Phys.

18, 1040 (1950).
5 4D. Levesque, Physica (Utrecht) 32, 1985 (1966).
5 5B. J . Alder and Τ. Ε. Wainwright, J . Chem. Phys. 31, 459

(1959).
5 6B. J. Alder and Τ. Ε. Wainwright, J. Chem. Phys. 33, 1439

(I960).
5 7B. J. Alder and Τ. Ε. Wainwright, Phys. Rev. 127, 359

(1962).
58W. G. Hoover and B. J. Alder, J. Chem. Phys. 46, 686

(1967).
5 9L. Verlet, Phys. Rev. 159, 98 (1967).
60A. van Itterbeek, O. Verbeke, and K. Staes, Physica (Ut-

recht) 29, 742 (1963).
61A. Michels, H. Wijker, and Hk. Wijker, Physica (Utrecht)

15, 627 (1949).
6 2R. D. Present, Contemp. Phys. 12, 595 (1971).
6 3 J. H. Dymond and B. J. Alder, J. Chem. Phys. 54, 3472

(1971).
6 4 J. M. Parson, P. E. Siska, and Υ. Τ. Lee, J. Chem. Phys.

56, 1511 (1972).
6 5M. Klein and H. J. M. Hanley, J. Chem. Phys. 53, 4722

(1970).
e6V. M. Jansoone and Ο. Β. Verbeke, Ber. Bunsenges. Phys.

Chem. 76, 157 (1972).
6 7L. Verlet, Phys. Rev. 165, 201 (1968).
6 8 B. J. Alder, Phys. Rev. Lett. 12, 317 (1964).
6 9 E. Helfand, Phys. Rev. 119, 1 (1960).
70R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).
71R. Zwanzig and M. Bixon, Phys. Rev. A 2, 2005 (1970).
72A. N. Lagar'kov and V. M. Sergeev, Teplofiz. Vys. Temp.

11, 1162 (1973).
7 3 T. E. Wainwright, B. J. Alder, and D. M. Gass, Phys. Rev.

A 4, 233 (1971).
7 4J. H. Dymond and B. J. Alder, J. Chem. Phys. 45, 2061

(1966).
7 5J. J. van Loef, Phys. Lett. A 35, 169 (1971).
7 6 C. Bruin, Phys. Lett. A 28, 777 (1969).
77M. J. ROSS and B. J. Alder, J. Chem. Phys. 46, 4203 (1967).
78A. K. Ashurov, A. M. Evseev, and A. A. Adkhamov, Dokl.

Akad. Nauk SSSR 220, 396 (1975).
7 9B. A. Lowry, S. A. Rice, and P. Gray, J. Chem. Phys. 40,

3673 (1964).
8 0N. F. Zhdanova, Zh. Eksp. Teor. Fiz. 31, 724 (1956) [Sov.

Phys. JETP4, 749 (1957)].
MV. P. Slyusar' , N. S. Rudenko, and V. M. Tret'yakov, Teplo-

fizicheskie svoistva veshchestv i materialov (Termophysical
Properties of Substances and Materials), No. 7, Izd. Stand-
artov, M., 1973.

8 2D. G. Naugle, J. H. Lunsford, and J. R. Singer, J. Chem.
Phys. 45, 4469 (1966).

83W. M. Madigosky, J. Chem. Phys. 46, 4441 (1967).
MA. M. Evseev and A. N. Shinkarev, Zh. Fiz. Khim. 46, 1452

(1972).
85W. T. Ashurst and W. G. Hoover, Phys. Rev. Lett. 31, 206

(1973).
^R. Zwanzig and Ν. Κ. Ailawadi, Phys. Rev. 182, 280 (1969).
87A. Weijland and J. M. J. van Leeuwen, Physica (Utrecht) 38,

35 (1968).
8 8 C. Bruin, Physica (Utrecht) 72, 261 (1974).

587 Sov. Phys. Usp. 21(7), July 1978 A. N. Lagar'kov and V. M. Sergeev 587



89V. A. Alekseev and A. A. Vecenov, Usp. Flz. Nauk 102, 665
(1970) [Sov. Phys. Usp. 13, 830 (1971)].

MA. G. Khrapak and I. T. Yakubov, Teplofiz. Vys. Temp. 9,
1139 (1971).
A. N. Lagar'kov and A. K. Sarychev, Zh. Eksp. Teor. Fiz.
68, 641 (1975) [Sov. Phys. JETP 41, 317 (1975)].

WA. N. Lagar'kov and A. K. Sarychev, Teplofiz. Vys. Temp.
15, 645 (1977).

93S. Kirkpatrick, Phys. Rev. Lett. 36, 69 (1976).
94A. K. Sarychev, Zh. Eksp. Teor. Fiz. 72, 1001 (1977) [Sov.

Phys. JETP 45, 524 (1977)].
95I. K. Klkoin and A. P. Senchenkov, Ftz. Met. Metalloved. 24,

843 (1967).
^B . J. Berne and G. D. Harp, Adv. Chem. Phys. 17, 63 (1970).
97J. Barojas, D. Levesque, and B. Quentrec, Phys. Rev. A 7,

1092 (1973).
98P. S. Y. Cheung and J. G. Powles, Mol. Phys. 30, 921 (1975).

B. Borstnik and A. Azman, Chem. Phys. Lett. 11, 374 (1971).
100B. Borstnik and A. Azman, Ber. Bunsenges. Phys. Chem.

75, 392 (1971).
1MB. J. Alder, J. Chem. Phys. 40, 2742 (1964).
102K. C. Mo, K. E. Gubbins, G. Jacucci, and I. R. McDonald,

Mol. Phys. 27, 1173 (1974).
103B. J. Alder, W. E. Allsy, and J. H. Dymond, J. Chem. Phys.

61, 1415 (1974).
104V. M. Sergeev, Zh. Fiz. Khim. 50, 2624 (1976).
105A. M. Evseev and A. V. Chelovskit, Vestn. Mosk. Univ.

Khim. 26, 279 (1971).
106F. Lantelme, P. Turq, B. Quentrec, and J. W. E. Lewis,

Mol. Phys. 28, 1537 (1974).
107L. Woodcock, Chem. Phys. Lett. 10, 257 (1971).
l08A. Paskin and A. Rahman, Phys. Rev. Lett. 16, 300 (1966).
109A. Paskin, Adv. Phys. 16, 223 (1967).
110J. H. R. Clarke, S. Miller, and L. V. Woodcock, in: Molec-

ular Motions in Liquids (Proc. Twenty-Fourth Annual Meet-
ing of Societe de Chimie Physique, Paris-Orsay, 1972), ed.
by J. Las combe, publ. by Reidel, Dordrecht, Holland and
Boston, 1974, p. 495.

U 1J. H. R. Clarke and L. V. Woodcock, J. Chem. Phys. 57,
1006 (1972).

112L. V. Woodcock, Chem. Phys. Lett. 10, 257 (1971).
113B. J. Alder, J. J. Weis, and H. L. Strauss, Phys. Rev. A

7, 281 (1973).
114B. J. Alder, H. L. Strauss, and J. J. Weis, J. Chem. Phys.

59, 1002 (1973).
115A. M. Evseev, M. I. Shakhparonov, andG. P. Misyurina, Zh.

Fiz. Khim. 44, 2999 (1970).
116A. Rahman and F. H. Stillinger, J . Chem. Phys. 55, 3336

(1971).
117A. Rahman and F. H. Stillinger, in: Molecular Motions in

Liquids (Proc. Twenty-Fourth Annual Meeting of Societe de
Chimie Physique, Paris-Orsay, 1972), ed. by J. Lascombe,
publ. by Reidel, Dordrecht, Holland and Boston, 1974, p.
479.

118F. H. Stillinger and A. Rahman, J. Chem. Phys. 61, 4973
(1974).

119F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545
(1974).

120G. E. Norman and A. A. Valuev, in: Proc. Twelfth Inter.
Conf. on Phenomena in Ionized Gases, Eindhoven, 1975, p.
257.

121W. G. Rudd and H. L. Frisch, J. Comput. Phys. 7, 394
(1971).

122C. Carlier and H. L. Frisch, Phys. Rev. A 7, 348 (1973).
123H. H. Szu, J. Bdzil, C. Carlier, and H. L. Frisch, Phys.

Rev. A 9, 1359 (1974).
124N. Saito, N. Ooyama, Y. Alzawa, and H. Hirooka, Progr.

Theor. Phys. Suppl. No. 45, 209 (1970).
i25T. Schneider and E. Stoll, Phys. Rev. Lett. 35, 296 (1975).

126C. Bruin, Phys. Rev. Lett. 29, 1670 (1972).
127C. L. Briant and J. J. Burton, J. Chem. Phys. 63, 2045

(1975).
128C. L. Briant and J. J. Burton, J. Chem. Phys. 63, 3327

(1975).
129H. W. Harrison and W. C. Schieve, J. Chem. Phys. 58, 3634

(1973).
130W. C. Schieve and H. W. Harrison, J. Chem. Phys. 61, 700

(1974).
131Ya. I. Frenkel' (J. Frenkel), Kineticheskaya teoriya zhid-

kostet, Izd. AN SSSR, M., 1945 (Kinetic Theory of Liquids,
Oxford University Press, Oxford, 1946, reprinted by Dover,
New York, 1954).

132P. A. Egelstaff, Adv. Phys. 11, 203 (1962).
133K. Skold, J. M. Rowe, G. Ostrowski, and P. D. Randolph,

"Neutron Inelastic Scattering Study of Liquid Argon," Report
No. AE-445, Ab. Atomenergl, Stockholm, Sweden, 1972.

134L. Verlet, in: Molecular Motions in Liquids (Proc. Twenty-
Fourth Annual Meeting of Societe de Chimie Physique, Paris-
Orsay, 1972), ed. by J. Lascombe, publ. by Reidel, Dor-
drecht, Holland and Boston, 1974, p. 469.

135J. M. Zlman, Principles of the Theory of Solids, Cambridge
University Press, Cambridge, 1964 (Russ. Transl., Mir,
M., 1966).

136J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946).
137A. I. Bachinskl, Z. Phys. Chem. (Leipzig) 84, 643 (1913).
138A. S. Skal, B. I. Shklovskii, and A. L. Efros, Pis'ma Zh.
Eksp. Teor. Fiz. 17, 522 (1973) [JETP Lett. 17, 377 (1973)].

139V. I. Shklovskii and A. L. Efros, Usp. Fiz. Nauk 117, 401
(1975) [Sov. Phys. Usp. 18, 845 (1975)].

140N. F. Mott, " Electrons in disordered structures," Adv.
Phys. 16, 49 (1967) (Russ. Transl., Mir, M., 1969).

141R. Kubo, H. Hasegawa, and N. Hashltsume, J. Phys. Soc.
Jpn. 14, 56 (1959).

142I. M. Lifshlts and S. A. Gredeskul, Zh. Eksp. Teor. Fiz.
57, 2209 (1969) [Sov. Phys. JETP 30, 1197 (1970)].

143A. G. Khrapak and I. T. Yakubov, Zh. Eksp. Teor. Flz. 59,
945 (1970) [Sov. Phys. JETP 32, 514 (1971)].

144A. N. Lagar'kov and A. K. Sarychev, Teplofiz. Vys. Temp.
15, 645 (1977).

145F. Hensel and E. U. Franck, Rev. Mod. Phys. 40, 697 (1968).
146A. Rahman, Phys. Rev. Lett. 12, 575 (1964).
147M. Tanaka and Y. Fukui, Prog. Theor. Phys. 53, 1547

(1975).
148B. Borstnik and A. Azman, Chem. Phys. Lett. 12, 620

(1972).
149V. G. Baidakov, A. E. Galashev, and V. P. Skripov, Fiz.

Nizk. Temp. 2, 957 (1976) [Sov. J. Low Temp. Phys. 2, 469
(1976)].

150V. A. Polukhin, M. M. Dzugutov, A. M. Evseev, B. R. Gel'-
chinskii, V. F. Ukhov, N. A. Vatolin, and O. A. Esin, Dokl.
Akad. Nauk SSSR 223, 650 (1975).

151N. A. Vatolin, I. T. Sryvalin, A. M. Evseev, V. A. Polukhin,
B. R. Gel'chlnskii, V. F. Ukhov, and O. A. Esin, Dokl. Akad.
Nauk SSSR 219, 1394 (1974).

152A. A. Valuev and G. E. Norman, Teplofiz. Vys. Temp. 15,
689 (1977).

153A. A. Valuev and G. E. Norman, Teplofiz. Vys. Temp. 15,
191 (1977).

164A. A. Insepov and G. E. Norman, Zh. Eksp. Teor. Fiz. 73,
1517 (1977) [Sov. Phys. JETP 46,798 (1977)].

155D. J. McGinty, J . Chem. Phys. 55, 580 (1971).
15eD. J. McGinty, J. Chem. Phys. 58, 4733 (1973).
157W. D. Kristensen, E. J. Jensen, R. M. J. Cotterill, J. Chem.

Phys. 60, 4161 (1974).
158S. P. Protsenko and V. P. Skripov, Fiz. Nizk. Temp. 3, 5

(1977) [Sov. J. Low Temp. Phys. 3, 1 (1977)].

Translated by A. Tybulewlcz

588 Sov. Phys. Usp. 21(7), July 1978 A. N. Lagar'kov and V. M. Sergeev 588


