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A systematic theory of sudden perturbations is derived for quantum systems whose states are described
both by wave functions (a pure ensemble) and by a quantum density operator (a mixed ensemble). A
perturbation series is written in powers of the parameter ωτ, which is small when the perturbation is
"sudden"; ϋω is the typical eigenvalue of the unperturbed system; and τ is the characteristic collision
time. When the perturbation Y(t), taken at different times, commutes with itself, the theory yields a
compact analytic expression for the probabilities for stimulated transitions for any value of Vr/fi. The
results of many cross-section calculations for atomic collision processes are discussed from a common
standpoint: the processes are treated as "jarring" processes which stimulate transitions in the quantum
system. If a momentum 8p is rapidly transferred to the system in a collision, regardless of the physical
nature of the "jarring," the probabilities for the stimulated transitions are governed by the parameter
Ν ~dp-SR/fi where SR is a measure of the uncertainty in the coordinates which is due to the
relatively slow motions in the unperturbed system.

PACS numbers: 03.65.Ca, O5.3O.Ch, O3.65.Nk, 03.80. + r

CONTENTS

1. Introduction 549
2. Theory of sudden perturbations 551

a. "Jarring" of the scattering type with | = 0 551
b. Scattering in the general case (£^0) 552
c. "Jarring" with change in the Hamiltonian of the system 553
d. Example: spin flipping in a magnetic field 553

3. "Jarring" in the case of a nearly resonant external effect on a quantum system 554

4. The "jarring" parameter Ν 555
5. Excitation of an oscillator 557

a. Simple harmonic oscillator 557
b. Parametric "jarring" of a harmonic oscillator at an arbitrary temperature 558
c. Anharmonic oscillators 559

6. "Jarring" of electrons from atomic shells 559
a. Collisions of neutrons with light atoms 559
b. Compton effect at a weakly bound electron 560

7. Other collision processes 563
a. Emission from a nucleus in a molecule or crystal 563
b. Collisions of molecules with electrons and heavy particles 563

References 564

1. INTRODUCTION

The probability for any transition in a quantum-me-
chanical system which is subjected to some external
agent is governed primarily by the duration of the inter-
action. In general, the interaction can vary with the
time in an arbitrary manner. If an atom, for example,
is excited by a passing heavy charged particle, the rate
of change of the interaction between the particles de-
pends on the velocity of the incident particle. In non-
resonant γ scattering the interaction time is governed
by the frequency of the γ ray, while in resonant scatter-
ing it is governed by the lifetime of the excited state,
and so forth.

This characteristic time τ, which we call the "colli-
sion time," is always important not in itself but in com-
parison with the characteristic period 2-η/ω of the quan-
tum system in whose transitions we are interested. Adi-
abatic interaction (ωτ » 1 ) lead to small probabilities

for the quantum transitions in states with a discrete
spectrum (the probabilities decrease in an exponential
or power-law manner). The "most suitable" type of in-
teraction for excitation is the opposite case of a sudden
perturbation (ωτ « 1), for which the probability for a
transition to any other state can approach unity.

For convenience, we will single out the two extreme
cases of the various possible "jarring" processes. In
the first case, the Hamiltonian of the quantum system
alters rapidly in a time τ short in comparison with 1/ω
(a jarring of the "turn-on" type; Fig. 1). In the other
case, a perturbation V(t) acts for a short time τ, and in
the limits t~i<*> the total Hamiltonian of the system is
the unperturbed Hamiltonian^, (a jarring of the "scat-
tering" type; Fig. 2). In general, of course, there can
also be a jarring of the most complicated type, involving
both a sudden jump of the Hamiltonian and a perturbation
V(t) (Fig. 3).

The simplest example of "turn-on" jarring is the en-
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-ϊ ι- FIG. 1. "Jarring" of the
"turn-on" type.

trance of an electron into a strong external field.1 If the
probabilities for quantum transitions are to be signifi-
cant in the case of "turn-on" jarring, the change in the
Hamiltonian must be comparable to the Hamiltonian it-
self, while in a jarring of the scattering type the neces-
sary condition is that the perturbation V(t) be large
enough to satisfy the condition VT/KZ 1.

The major thrust in the classical papers on jarring
processes was to determine the effects of atomic struc-
ture in fast nuclear reactions.2·3 Other interesting pro-
cesses are the fast processes at the atomic and molecu-
lar level, where the collisions come in a wider variety
than in nuclear reactions, since the atomic and molecu-
lar processes are more susceptible to all types of ex-
ternal fields and may be strongly affected by them.

Despite the differences in the physical nature of the
various processes which are interpreted as jarring pro-
cesses, there are many common features. Themostim-
portant feature is that most of these processes can be
assigned a "jarring parameter" N, whose meaning will
be discussed in detail below.

The general behavior and characteristic features of the
real jarring effects (the list is endless, of course) can
be studied in detail in the example of the interaction of
a weakly bound electron with hard electromagnetic radi-
ation. Of primary importance here are the Compton ef-
fect at an atomic electron and the absorption, emission,
and scattering of light in which molecules are involved.
The interaction with radiation takes up a large part of
the present paper, but we will also describe the most
general features of the jarring parameter in collisions
of molecules with fast charged particles. We will make
no effort to study any of these effects in detail, since a
detailed study would not be necessary for our purposes;
we simply wish to point out the jarring interpretation of
a broad range of problems, and we will approach each
separate problem with this goal in mind.

As will be seen below, the parameter Ν is very sensi-
tive to the uncertainty in the coordinates of the unper-
turbed system, 6R, which is due to the relatively slow
internal motions. We emphasize that the reason for this
uncertainty with respect to the coordinates is physically
unimportant; the reason could be the classical motion of
an electron in a laser wave; quantized motion in the field
of an atom, a molecule, or a crystal lattice; etc. The
only differences in the different situations are in the
equations for the transition probabilities; the way in

FIG. 2. "Jarring" of the
scattering type.

FIG. 3. "Jarring" in the
general case.

which these probabilities vary with the parameter Ν does
not change.

Before we can demonstrate all these arguments, how-
ever, we need a systematic theory for sudden perturba-
tions (based on, for example, a power series in ωτ) SO
that we can clearly specify the range of applicability of
the jarring approach and, in particular, so that we can
see in which collisions we should expect such a charac-
teristic as this parameter Ν to arise. We will first re-
view the previous work on this subject.

The theory of sudden perturbations has been derived
for only a few model problems (see, for example, Refs.
2 and 4), and the analysis has usually been restricted to
the zeroth approximation for the transition amplitude in
the parameter ωτ. In the scattering type of jarring we
are most interested in arbitrary values of VT/H. In the
existing theory,5·8 two distinct commutation relations are
adopted to find the transition amplitudes for this type of
jarring:

[V, <$,]« 0, IV (t), F(t')l = 0

(Vitlina and Chaplik9 derive an equation for the ampli-
tude in zeroth order in ωτ by a method based on only the
second of these commutation relations). Despite these
stringent requirements (the condition [V,^o] =0 never
holds), the relative simplicity of the resulting equations
for the scattering amplitudes has led to the widespread
use of this approximation to study the vibrational and ro-
tational excitation of molecules in collisions with elec-
trons and heavy particles. In the absence of a full-
fledged theory of sudden perturbations, the only way to
evaluate the results has been to compare them numeric-
ally with other calculations, carried out on a firmer ba-
sis.

In Section 2 below we set forth a theory of sudden per-
turbations which does not suffer from these shortcom-
ings. We will show that the condition [V,$f0] sO, which
is not satisfied, is completely unnecessary at small val-
ues of ωτ. Whether the equation for the transition ampli-
tude is simple or complicated for an arbitrary value of
Vf/fi depends strongly on whether the commutator

t. *') 3 [V (ο, ν (1)

is small or large. The equation for the amplitude is
simplest in the limit ξ —0, which corresponds to the
collision models most commonly used. If, on the other
hand, the commutator in (1) is not small, the theory be-
comes far more complicated, and in general the theory
cannot be formulated in finite form for arbitrary values
of Vr/K (see the Note Added in Proof at the end of this
paper).

From nuclear physics we have a good example of a sit-
uation in which the interaction potential is large and the
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commutator in (1) is by no means small. We have in
mind the tensor part of the two-nuclear interaction,10·11

which is proportional to the operator

73Γ (Μίσ^-σ,σ,,

where dU2 are spinors, and r is the radius vector be-
tween the two nucleons. Choosing any arbitrary classi-
cal trajectory for one of the nucleons as it is scattered
by the other, we easily see that the operators {σιη){σ2η)
corresponding to different times do not commute (the di-
rection of the unit vector n=r/r varies with the time).

An analogous example from atomic physics is the in-
teraction of a magnetic moment μ with a strong magnetic
field. If the field is variable, and the vector H(t)
changes direction in a time τ, then the potential V = μΗ(ί)
does not commute with itself at different times. In this
case the exact equation for the transition amplitude has
nothing in common with the simplest jarring result,
which is valid only in the limit ξ —0.

2. THEORY OF SUDDEN PERTURBATIONS

a. "Jarring" of the scattering type with ξ = 0

We assume that the total Hamiltonian of the quantum-
mechanical system^, is broken up into the sum of a
time-independent par t^ , (the unperturbed Hamiltonian)
and a part which is due to the interaction with the extern-
al field, V(t):

We assume that V(t) vanishes outside a time interval τ
near the instant t0 and that the operators V(t) taken at
different times commute.

Below we will distinguish among the state vectors of
the quantum system which are written in the interaction
picture, |Φ) and those which are written in the Schro-
dinger picture |Φ); and the corresponding unitary evolu-
tion operators §(t, t') and U(t, t), which relate the corres-
ponding vectors at different times:

|ψ (f)> = s (ί, t') | Ψ (Ο>. (2)
Ι Φ (<)> = 0 (t, t') | Φ (<')>· (3)

In the general case, we find the most informative pos-
sible description of the quantum-mechanical system
when we replace the state vectors by the quantum dens-
ity operator ρ (this operator is the "statistical opera-
tor," and the set of elements ( s'[p\ s) forms the density
matrix). For our purposes it will be convenient to use
the density operator written in the interaction picture,

ν.(Ψ,\ (4)

(the weight factors ws determine the probabilities for
finding the system in the different quantum states |Φ,}).
The time evolution of the operator in (4) is evidently de-
scribed by

p(f) = 5(i, t')p(i')3-'(t, t·). (5)

The time-evolution operator S(t, t') satisfies the differ-
ential equation

with the boundary condition S(t, t) =/, or, equivalently,

the integral equation
t

S(t,f) = I—l

r\dtW(t)S(t,f); (7)

here W(t) is the operator V(t) written in the interaction
picture,

In terms of the state vectors describing the pure en-
semble, the scattering problem can be formulated as fol-
lows. We denote by \i) and \f) the initial and final
states of the system, which are eigenfunctions of the
Hamiltonian j ^ :

010 = (9)

The probability for a transition from state \i) to the
state If) as the result of the perturbation V(t) is govern-
ed by the square of the modulus of the matrix element

Wft = (/ \'S >, — o o ) I (10)

For the case of a mixed ensemble the scattering prob-
lem cannot be formulated as a quantum-transition prob-
lem in the ordinary sense of the phrase. We assume
that in its initial state (f —-°°) the system is described
by the density operator

where the sum is over all eigenstates of the unperturbed
Hamiltonian^. Then the probability for finding the sys-
tem in stationary state \f) of the unperturbed Hamilton-
ian in the limit f — +<*> is given by

w,(0 = (/|p(+°°)l/) = (/l^( + co,-cx>)pi5-i(+oo, -oo)|/). (12)

If Ηω is a typical eigenvalue oi$f0, and the parameter
ωτ is small, the perturbation operator in the interaction
picture can be expanded in a power series in ωτ [here

W (t) =

IV (t), Sg

(13)
(14)
(15)

(16)
To solve Eq. (6), we also write the evolution operator

S(t, t') as a power series in ωτ [Δ,~(ωτ)"]:

S(t, f) = S0(t,t')il + Kt(t,f) + A!(t,t')+...]. (17)

Since we are assuming | = 0 in this subsection, we can
immediately integrate Eq. (6), using the substitution

f

So (i, f) = exp [ - ±- j dt Wo («)] (18.)
V

t

= exp ( ± Seoto) exp [ - -L J dt V (i)J exp ( —j Seat0) ,

t

A.(t, f)=—L\dts0-·(ί, ηwt(t)s0(t, i'), (19)

Δ2(ί,ί') = [A.C- >')!' '— f jdtSj 'C, f)ft,(t)S0(t, «'),·..

(20)
In the zeroth approximation in ωτ, in which we have

S"S0, the transition amplitude is written as follows,
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aside from an inconsequential phase factor:

(21)

In terms of the quantum density operator, the probability
is thus

(22)

Let us examine in particular that jarring case which is
most common in practice, in which we can assume that
the system acquires a definite momentum 6p as the re-
sult of a collision. Under this assumption, in zeroth or-
der in ωτ, the action of the operator So(+°°,-°°) on the
function \f) reduces to simply a displacement 6p in mo-
mentum space:

(/| •§„(+*>, - o o ) = < / | e x p ( — i a p - r ) . ( 2 3 )

Accordingly [see also Refs. 2 and 12 regarding Eq. (24)],

9n?, = </|exp(—1δρτ)|ί>, (24)

^(i) = (/|exp(—ί-δρτ)ρ;βχρ(-ίδρ.Γ)|/>. (25)

Equations (24) and (25) follow directly fromEqs. (21) and
(22) if we set

V(i)=f(i)r, δρ= j dif(t),

where t(t) is the perturbing force.

If the quantity f(f) falls off rapidly [say, exponentially,
when the perturbation theory of (17)-(20) in powers of
ωτ is applicable in any order] outside the time interval
τ, the question of the corrections to the zeroth approxi-
mation in ωτ can be solved in a quite general case. Let
us assume that the Hamiltonian of the unperturbed sys-
tem incorporates a momentum-independent potential
term:

Then the evolution operator of this system takes the fol-
lowing form when an external perturbation V(,t)=t(t)r is
imposed (the instant of jarring is adopted as the origin of
the time scale; t0 = 0):

— oo)-exp (iqr) [/+Δ,

- ^ - τ f dttH(t)\U(r),P],

where

q ==q(+<x>).

(26)

(27)

(28)

(29)

If f(f) =f(-f), the quantity Δχ becomes a purely imagin-
ary c-number, which is independent of the coordinates,
and there are no corrections of first order in wr in the
probabilities for transitions stimulated by the perturba-
tion f(f)r.

There can be cases in which the time integral of the
perturbation V(t) is small, although the perturbation it-
self is not. If we knew only the equations of the zeroth

jarring approximation, we could not calculate the prob-
abilities for quantum transitions in such a case. We
would have to use equations for the next orders in ωτ in
the evolution operator in (17). Let us assume, for ex-
ample, that the time integral of V(t) is smaller than or
of the order of (ωτ)2. Then the equation for the transi-
tion amplitude in the limit ωτ - 0 takes the following
form ( | i>* I/»:

ι~-ρ-</Ι j dt(t-to)[V(t), St (30)

b. Scattering in the general case (£ ψ 0)

If the operators V(t) for different times do not com-
mute, Eq. (6) cannot be integrated as simply as in the
preceding subsection, even in the limit ωτ-O. Since we
are interested in values VT/K s i , it is pointless to seek
solutions of (6) or (7) by successive approximations. We
can take the following approach, however.

Using the group property of the evolution operators,

s(t,t) = s(t,f)S{f,e), (31)

we can write S(t, t') as the product

S (t, Ο = S (t, O 5 («„, «„_,). . . S (t s, h) S (<j, «')• (32)

Letting tk approach ίΛ+1 (more precisely, requiring δίΛ

= ίΛ+1 - th«τ), we can easily integrate Eq. (6) for each
of the factors in (32):

S(h+l, i*Hexp [--jj-iVitOfit,,]. (33)

We now collect all the terms in (32) in pairs, applying
the Baker-Campbell-Hausdorff (BCH) equation13 each
time:

-^[A, [A, B)\exp(i)exp(B) = exp

(34)
As a result, the finite-evolution operator in (32) leads to
the following exponential equation [in the standard meth-

od6.i3-i5 f o r deriving (35)-(38), a solution of Eq. (6) is
immediately sought in the form of the expansion in (35)]:

S{t, t>)*=e

t tl

=4 (-τ)' ί dt< I ^[^(ii). tf ('*)].
Γ l·

ι i

(35)

(36)

(37)

(38)

Equations (35)-(38) are called the "Magnus expansion"
and are seen to be the continuous analog of the BCH
equation (34). For completeness we note that the solu-
tion of Eq. (6) for the most general case is conveniently
sought by using the substitution16

S(t, f) = exp (B.) exp (B2) exp (B3) ... (39)

The recurrence relations for An and Bn, which are re-
fold integrals of (»- l)-fold commutators of the opera-
tors W(t) taken at different times, and other mathemati-
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cal details can be found in Refs. 6, 13-18.

In the zeroth order in ωτ one must make in expression
(35)-(39) the replacement W~W0 fcf. Eq. (14)]. Thus,
in this approximation An and Bn contain («- l)-fold com-
mutators of the operators V(t) taken at different times.
In the case when f =0 only At and §x differ from zero in
Eqs. (35) and (39) and this corresponds to the result of
the preceding subsection. If it should turn out that the
commutator ξ « 1, then within the framework of the ex-
pansions (35)-(39) it will be easy to write out the per-
turbation theory in powers of ξ.

The presentation of the solution of Eq. (6) in the form
of the expansion (35) or (39) is particularly convenient in
those situations when the («- l)-fold commutators con-
tained in An and Bn finally become c-numbers as η in-
creases. If this occurs, for example, at n=n* then all
Απ>π* s5B>«* =0 and> consequently, the scattering ampli-
tude can be written in finite terms. An interesting and
useful example of just such a situation is the harmonic
oscillator acted upon by an arbitrary external force (in
this case n* =2; cf. Sec. 5).

In conclusion we emphasize that since the operators
An are Hermitian no manner of breaking off the infinite
series in the exponent of (35) will violate the unitarity of
the evolution operator S(t, t').

c. "Jarring" with a change in the Hamiltonian of the system

Let us assume that at ;—-<*> the quantum system is in
one of the stationary states (we are now considering a
pure ensemble) which are the eigenfunctions of the Ham-
iltonian #",:

Near the time to, the system is subjected to a sudden ex-
ternal agent V(t), and in the limit f - + « the system is
accordingly in some stationary state of the (generally
different) Hamiltonian^:

(Fig. 3). The perturbation is "sudden" because the char-
acteristic time interval over which is acts is much short-
er than the reciprocals of the typical frequencies, ω"1

~K/Et ~H/Ef.

Let us redefine the perturbation operator in such a
manner that it vanishes at t — ±°°:

•-Mi ·+*Η ϊ
for

for
(40)

The probability amplitude for a transition between states
| t ) and \f) is found through the obvious transformation

<Φ(ί+)|ί7(ί+, t,)<7(t,,

The exact equation for this amplitude is

(41)
(42)

(4 ) ( ) h , —oo). (43)

The subscripts "i" and " / " on the wave functions and
operators in (41) and (43) mean that these quantities are

written in the interaction picture—once with the unper-
turbed HamiltonianJ", and once w i t h j ^ .

In the formulation of the collision process in which the
quantum density operator i s used (for a mixed ensemr
ble), the analogous equation for the probability for find-
ing the system in one of the eigenstates | /) of the final
H a m i l t o n i a n ^ is

(44)

We emphasize that the resu l t s in (42)-(44) a r e exact,
and they a re valid for any value of ωτ. If, on the other
hand, ωτ« 1, all the equations of the theory for j a r r ing
of the scattering type can be used immediately to evalu-
ate the evolution operators in (42)-(44).

As mentioned above, in contrast to j a r r ing of the scat-
ter ing type, the transition amplitude, even in zeroth or-
der in ωτ and VT/H,

and the corresponding probability

u»?°(i) = </1 Ρ* I/>

a r e generally not small in this case .

(46)

d. Example: spin flipping in a magnetic field

In this subsection we will i l lustrate certain aspects of
the ja r r ing approximation by calculating the probability
for the flipping of the spin of a part icle in a varying mag-
netic field. In part icular, we will demonstrate that the
simple result in (21) is not applicable when the perturba-
tion operators taken at different t imes do not commute.
We can obtain this result because this problem can be
solved exactly in the nonrelativistic limit.

We assume that a part icle with a spin H/2 and a mag-
netic moment μ is in a constant and homogeneous mag-
netic field Ho, which is directed along the ζ axis. At
time 1 = 0, a homogeneous magnetic field H,(/) is applied;
this field i s in the x, y plane and i s rotating in it at an
angular velocity Ω . This field is removed at the t ime t
=τ. In the time interval 0 < t< τ the part ic le is in the r e -
sultant field

Η = {/̂ ! cos Ωί, # ι sin Ωί, Ηο}. (47)

Let us assume for definiteness that the spin of the par-
ticle at t< 0 is directed along the positive ζ axis, i.e.,
that the wave function is (J). The wave function which de-
scribes the state of the particle at any time in the inter-
val (0, τ) is

la (t) s
* ( < ) = \b(t)

«(<) =
_ (μ/Γρ — 8q> t)exp(ioiit)+(toi — μ.Ηρ) ex

*<«>,_<»,)

(48)

. /40)

where

(51)

The probability for spin flipping by the tittfe'f=τ is

Now let us assume that the time interval r is so short
that the jarring condition holds:
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£«1. (53)

We also assume that inequality (53) is so strong that it
would be sufficient to use the zeroth approximation in
βΗοτ/Κ under normal conditions. Since, however, the
interaction operator

0 exp( —ίΩί)
0

(54)

does not commute with itself at different times,

i={V(t), ν'(ί')) = 2ίμί//;σί5ίη[Ω((-ί')] (55)

(σ, is the Pauli matrix), the theory of Subsection a) is
not applicable, and it is generally necessary to take into
account all the terms in the Magnus expansion in (35) or
the Fer expansion in (39) for estimating the time-evolu-
tion operator.

A calculation of the probability amplitude for spin flip-
ping from Eq. (21) yields

.m» 1 —βχρ(ίΩτ) . / 2u/f, . ΩΤ \ (56)

The commutator in (55) depends on the parameter Ωτ.
Physically, this parameter determines the angle through
which the variable field Hj(f) manages to rotate during
"jarring". For arbitrary values of Ωτ, the probability
|2R°,t|

2 has nothing in common with the exact result in
(52), even in the limit on· —0. If, on the other hand, the
field H1(i) does not have time to change direction sub-
stantially, i.e., if Ωτ « 1, then it is easy to see that un-
der condition (53) the probability |3»% | 2 is equal to its
exact equivalent in both the zeroth and first orders in
Ωτ.

3."JARRING" IN THE CASE OF A NEARLY RESONANT
EXTERNAL EFFECT ON A QUANTUM SYSTEM

If the atoms or molecules are excited by a varying ex-
ternal field instead of in a fast collision, the jarring con-
dition ωτ « 1 is not easily satisfied since the necessary
interaction times τ become too short. Conversely in
most cases in which a quantum system is excited by an
external field the adiabatic condition ωτ » 1 holds, and
the transition probabilities are small. An exceptional
case (although again in this case the condition ωτ » 1
holds) is that in which a resonant laser field is used to
pump the system; this is the most effective pumping
method presently available. The jarring-theory explana-
tion for this situation is that the problem of a nearly
resonant excitation of a quantum system in an electro-
magnetic pulse of finite length reduces to a jarring prob-
lem although the frequency of the external agent is com-
parable to the internal frequencies of the unperturbed
system. We will now show that whether the jarring-
theory approach is applicable depends on whether the
product Δ · τ is small, where Δ is the frequency differ-
ence in the case of a nearly resonant excitation, and τ
is the pulse length of the external agent. In this sense
the zeroth jarring approximation (Δ · Τ - 0 ) is equivalent
to the resonant approximation.

Experimentally, molecular systems are usually quite
complicated, so that the parameter Δ·τ can take on
arbitrary values. As soon as it reaches values of the
order of unity or higher, however, the probabilities for

the allowed transitions to the corresponding levels fall
off rapidly, and the entire spectrum break up into
separate groups of levels, for each of which the reson-
ant-excitation problem can be solved separately.

We therefore consider an arbitrary w- level system in
which the level spacing is nearly uniform and approxi-
mately equal to the photon energy of the external field
(#£ is the Hamiltonian of the system, and £ s and \k) are
its eigenvalues and eigenvectors):

ha ~ £j,+ 1 — Eh, * = 1, 2, . . ., n.

Let us assume that the external perturbation 7<p(<)cosw<
causes transitions only between adjacent levels, that the
operator V is independent of the time, and that the pulse
envelope φ(ί) is confined primarily to the time interval
τ near the instant t = 0. The maximum value of the func-
tion φ{t) is unity, and, of course, the condition ωτ » 1
holds.

Solving the Schrodinger equation by means of the sub-
stitution

)= 2 C»(«)eip(-««M)I*>
»«1

(57)

after the high-frequency terms are eliminated in the
standard manner (we assume \Ek-Kku\«Hu), we find
the system of equations

+ cp (ι) (!',,, ^ C V i ^ - 1 ' * . Λ (58)

These equations describe the time evolution of a quantum
system which is different from the original system and
which has the quasi-Hamiltonian

~ - ~ /Cft\
cS" = 3i?;-|-V(p(t)· yaa)

The energy spectrum of#O' is a set of quasilevels Eh

- Kku. If the adiabatic condition ωτ » 1 holds for the
original system, with the Hamiltonian

~ ίαί\\
<5ΐ? = 8£Λ-\- V(B ft) cos ωί , ^OU/

then the jarring condition can hold for a quantum system
with quasi-Hamiltonian (59) provided that

| f i l l_*h,|-i-<i. (61)

Inequality (61) means that, because of the finite time in-
terval τ, all the levels are actually excited in a resonant
manner. In jarring-theory terms, the resonant approxi-
mation is equivalent to the zeroth order approximation in
Δ · τ. The methods of Section 2 can thus be applied to the
quantum-transition problem.

The transformation to the interaction picture used in
Section 2 corresponds in this case to a transformation
from the amplitudes Ct(i) [see (57)] to the amplitudes
ak(t), which are determined from the expansion

?(i |=^n(i)npl—~T~) ' *'• (®^

In place of (58) in the interaction picture we have

(63)

The only nonvanishing elements in W(t) are those which
are near the main diagonal:

W».»+i = V t , h + , exp (—iAfct), ufe, *-i = V*.,,-, ex
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Equation (63) has precisely the same form as the equa-
tion for the time-evolution operator in (6), and it is
solved in precisely the same manner. In the zeroth or-
der approximation in Δ ·τ, we find

(-<*>)• (65)

The only nonvanishing elements in the time-independent
operator V are K M + 1 and Vlltll.1.

The result in (65) is valid for arbitrary values of
R, i.e., for an arbitrary intensity of the electromagnetic
pulse stimulating the transitions. We will not write out
the solutions of Eq. (63) for high-order approximations
in Δ ·τ. Let us examine some illustrative calculations
of the probabilities for stimulated transitions on the ba-
sis of Eq. (65). In the case of a two-level system which
is in one of its stationary states at /--<*>, the probabil-
ity for a transition to the other state at / — +°° is given
by the familiar equation (cf., for example, Ref. 12)

f (66)

Analogously, for a three-level system which is initially
in, say, its lowest-lying state, |1), the transition prob-
abilities are

Μ · 1 3 Γ - Γ |

I r,., [-sin-Φ

Ί ΐ ' ι 3 Ι 2 ~ Ι ΐ" 2 , Γ-' φ = - ί
(67)

dt<?(t).

Calculations for the probabilities of nearly resonant
transitions are frequently carried out in the resonant
approximation, which can be used to transform from the
original Hamiltonian in (60) to the quasi-Hamiltonian in
(59) and then to take the limit Δ · τ - 0 . To evaluate the
limits of applicability of this approach it is necessary,
for example, to compare the exact equation for the tran-
sition amplitude in the simple harmonic oscillator [see
Eq. (79) and (80) below] with the corresponding ampli-
tude in the resonant case, in which the equation for /(o>)
contains the time integral of (p(t)exp(-iAt) or a time in-
tegral of φ(ί) instead of (p(t)exp(-iu>t). We immediately
see that the high-frequency terms in the Fourier com-
ponent/(ω) which have been discarded make an exponent-
ially small contribution.

4. THE "JARRING" PARAMETER Ν

An examination of the various models for many kinds
of fast collisions of interest in physics shows that most
of them are formulated in one of two ways: either the
corresponding perturbation operators V(i), taken at var-
ious times, are assumed to commute, or (most frequent-
ly) the results of the collision can be interpreted as a
fast transfer of momentum to the quantum system.

In the second case, in the zeroth order in ωτ, it is
easy to see that no restrictions are imposed on the com-
mutation relations for the operators V(t). This fact can
be understood most simply if we interpret the momen-
tum transfer as a "turn-on" jarring, i.e., if we consider
the displacement in momentum space in (23) to be a con-
sequence of the transformation to the wave functions of
a different Hamiltonian.2·12 Since no assumptions are

made about the commutation relations in the derivation
of (45) and (46), the results which follow from these
equations, (24) and (25), are also valid for any jarring
processes in which there is a fast momentum transfer.

This circumstance considerably expands the range of
interactions for which Eqs. (24) and (25) can be used to
determine the probabilities of the corresponding quan-
tum transitions. Much of the present paper is devoted to
an analysis of processes involving a fast momentum
transfer and to an identification of the common features
of these processes, which actually stem from the gener-
al nature of the results in (34) and (25).

We first recall some results from Ref. 1. It was
shown there that various elementary processes which in-
volve the transfer of a large momentum 6p to an electron
and which occur in a laser field stimulate the absorption
and emission of photons of this field (we will refer to
reaction channels with definite sets of such photons as
"satellites"). The first stage of this process (for exam-
ple, the scattering of an electron by an atom, the motion
of an electron in an inhomogeneous medium, the emis-
sion or absorption of a photon by an electron, the Comp-
ton effect, β decay, or the photoelectric effect) occurs
in several cases in a time τ which is much shorter than
the period of the low-frequency motion of the electron
caused by the external field, 2π/ω. The second stage
(stimulated emission or absorption) does not depend on
the physical nature of the first stage and is a universal
stage, regardless of the process.1 The problem of stim-
ulated effects of this type can be solved once and for all
as the problem of the jarring of an electron in an extern-
al field.

In nonrelativistic external fields in which the additional
variable velocity of the electron, ν is small in compar-
ison with the speed of light, the probabilities for the
stimulated reaction channels are governed by the param-
eter1

JV !
ha (68)

which is a measure of the rms number of emitted or ab-
sorbed photons.

The intensity of the transitions stimulated by the jar-
ring should of course be governed not only by the time
interval over which the external perturbation acts on the
system but also by the intensity of this perturbation,
i.e., its magnitude. It can be seen from (68) that Ν in-
creases with increasing intensity of the laser beam,
since there is an increase in the value of v.

In the limiting cases N»l and JVS 1, the jarring prob-
lem can be solved by classical and quantum-mechanical
methods, respectively. In the Compton effect, with
5p=^(k 1-k 2), and also in jarring due to emission ac-
companying absorption of a hard photon, with δρ =Kk,
the parameter Ν does not contain Planck's constant. The
appearance of satellites in the emission spectrum can
thus be explained from the purely classical standpoint
for any value of N.

The parameter Ν is equal in order of magnitude to the
ratio of the amplitude of the electron oscillations in the
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external field, 6R (5R=eE0/mw2 in a laser field), to the
de Broglie wavelength of the electron calculated from
the momentum transfer, λ =Η/δρ. In this case, in which
we can speak in terms of the directions of the quantities
δρ and 5R, the jarring parameter is determined by the
scalar product

JV i-]6p-6R|. (69)

Up to this point we had in mind the low- frequency mo-
tion of an electron which is caused by an external laser
field. We have also stated that the physical reason for
the low-frequency motion of the electron which is jarred
is inconsequential for our purposes. The fact that a la-
ser field is present is not the crucial consideration;
similar motions can occur without laser fields, e.g., in
the vibrations of nuclei in molecules or cyrstals. The
electronic shells naturally follow the motion of the nu-
clei in an adiabatic manner, much as the electrons move
in a laser wave. The basic distinction between the oscil-
latory motion of the electronic shell together with the nu-
clei and the corresponding motion in a laser field is that
in the former case the motion is quantized. The prob-
lem of stimulated transitions in this case thus reduces
to the problem of the excitation of a quantum oscillator
which receives a momentum δρ in a collision. The un-
certainty in the coordinates, δΛ, is due to the motion of
the nuclei, which are involved in vibrations and rota-
tions. In the most complicated situation, in which 6R is
not a well-defined vector, the value of Ν can still be
estimated from

(70)

where 6p0 is the momentum spread corresponding to the
low-frequency motion of the electron.

The essential reason that the parameter Ν is universal
is the fact that the equation for the transition amplitude,
(21) or (24), is universal. In by no means all cases,
however, does this equation appear explicitly in the prob-
lem; it is usually masked by other, faster, processes.
This is the case, for example, in problems involving the
effect of nuclear vibrations on the cross sections for col-
lisions with the electronic shell of a molecule (see Sec
tion 7 below). Separating the electronic and nuclear mo-
tions by means of the adiabatic principle, and calculating
the electronic part of the amplitude, we can reduce the
calculation of the probability for the excitation of vibra-
tions or rotations to a calculation of an amplitude like
that in (21) or (24).

In the simplest cases, a study of these effects reduces
to a solution of the problem of the jarring of a linear
oscillator or rotator. In the case of a simple harmonic
oscillator which is subjected to an arbitrary external
force, the Schrodinger equation can be solved exactly.
The transition amplitudes can also be found exactly (see,
for example, Refs. 19-21). If exact equations for the
transition probabilities under the influence of an extern-
al force are found with the help of the Magnus and Fer
expansions, it is possible to draw a close analogy be-
tween the exact result and the jarring-theory result and
to find the range of applicability of the approximation of
zeroth order in ωτ (see Section 5 for more details). The

model of a simple harmonic oscillator subjected to an
arbitrary external force can be used to trace the trans-
formation from the problem of the excitation of a quan-
tum oscillator to the problem of the excitation of a clas-
sical oscillator.

For molecules, the model of a simple harmonic oscil-
lator is satisfactory for only the first few vibrational
levels, for which the anharmonic component of the nu-
clear motion is small. For large values of the jarring
parameter N, however, higher-lying vibrational levels
(with ν ~N) are also excited appreciably, and to describe
these levels it is necessary to take into account the dif-
ference between the harmonic-oscillator potential and the
actual interatomic potential. Accordingly, in Section 5
we derive equations for the probabilities for quantum
transitions in the jarring of certain nonlinear oscillators.

In collisions involving molecules, an important feature
of the total cross section (the total cross section for all
the stimulated reaction channels) is the radical change
in its interference attributes in that range of scattering
parameters in which Ν reaches values of the order of
unity and larger, when the nuclear vibrations are taken
into account (Section 7). This interference behavior
stems from the fact that the electron density in molecu-
les is distributed around more than one center, but this
behavior is found only in the region N« 1; for other pa-
rameters, the collisions are completely smoothed out.
In speaking of a change in the interference of the emitted
or scattered particles, we can assign the jarring param-
eter Ν a simple and graphic meaning: the uncertainty in
the phases of the interfering particles which is due to the
uncertainty in the nuclear positions.

We have seen that the scattering actually occurs at
stationary atoms, whose positions are "smeared out" in
space in some manner. The nature of the cross section
is governed by the nature of the interference pattern,
which depends on the spatial distribution of the electron
density, which is turn depends on the positions of the nu-
clei. The phase relations for the interfering particles
play the dominant role in this interference pattern. For
simplicity we will speak in terms of scattering by an
electron shell which is bound to a single "smeared out"
nucleus. The parameter governing the effect of the vibra-
tions should reflect the appearance ofuncertaintiesinthe
phases of each interfering particle,

«<pj = |p j»R. ( 7 1 )

due to the uncertainty in the nuclear position, 6R (we are
now considering the simplest case, in which 5R is a vec-
tor).

Let us examine the changes in the phase relations
when a particle is scattered from state \i) to state |/>,
as shown in Fig. 4. The displacement of the nucleus
from position A to A' leads to a phase difference be-
tween points af and a'f (the phases are measured from the
points at and a't)% this difference is

(72)

This parameter which we are seeking, as a measure of
the "smearing out" of the nucleus, should evidently be
independent of the sign of δφ. From (70) we have
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FIG. 4.

Χ =Ε|δφ|=— |6p-6R|. (73)

Although we have been speaking so far in terms of the
effect of nuclear vibrations on the scattering cross sec-
tions, similar arguments concerning phase relations
can be made to characterize other effects when the
spatial uncertainty 5R is due to a completely different
factor, say the motion of an electron in an atomic shell.
In this case 6R is no longer a vector, but we can still
use an estimate like that in (70):

Ν s Ι δα: Ι ~±6
η

(74)

A good example, which shows that the simple interfer-
ence picture is not directly applicable but that the uncer-
tainty in the position of the nucleus (δΛ) nevertheless af-
fects the total momentum transferred to the nucleus (δρ),
is the photoelectric effect at a molecular electron. In
the absorption of a hard photon (k, Ω) by an atom which
is vibrating in a molecule or in a crystal, the equation
for the jarring parameter follows immediately from (70)
if we set δρ = Rk - p, where ρ is the momentum of the
photoelectron. This result is found in the plane-wave
approximation for the wave function of the emitted elec-
tron, with the help of (24).

In discussing the effect of nuclear vibrations on the
cross section for the molecular photoelectric effect, we
should emphasize that the corrections may not be at all
small in this case; instead, they may substantially
change the overall behavior of the cross section. A
study22 of the relativistic photoelectric effect at the H2

molecule shows that, as the photon energy Hii increases,
the number of oscillations in the plot of the photoelectric
cross section as a function of the electron emission angle
increases without bound if the nuclear vibrations are
ignored (this behavior is the primary molecular aspect
of the cross section, due to the multicenter nature of the
electron cloud). When the vibrations are taken into ac-
count correctly, the oscillations in the angular distribu-
tion of the photoelectrons are smoothed over an angular
range which increases with increasing energy of the inci-
dent photon. Thus, it is these vibrations which shape the
characteristic angular distribution of the photoelectrons
at high energies of the absorbed photons.

The cross section for the photoelectric effect at a
molecule oscillates as a function of δρ only under the
condition N« 1. The angular dimensions of the oscilla-
tion region (the angles between δρ and δΚ) decrease with
increasing photon energy ΗΩ, since the boundaries of
this oscillation are governed by the condition JV*1. The
nuclei of the molecule can be assumed fixed only if Ν
« 1 . This inequality determines, for example, the
range of applicability of a familiar approach in calcula-
tions of the photoelectric effect at large molecules:
that in which the wave function of the photoelectron is

constructed from combinations of the wave functions of
the electrons which would be emitted by each of the
atoms in the molecule.

5. EXCITATION OF AN OSCILLATOR

a. Simple harmonic oscillator

For all the processes studied in Ref. 1, the expres-
sions for the relative contribution of a satellite as well
as the jarring parameter Ν are universal functions. The
reason for this universality is that the entire discussion
in Ref. 1 dealt with the jarring of a classical harmonic
oscillator: an electron in a light wave. For a fast mo-
mentum transfer (ωτ« 1) to such an oscillator, the
structure of this fast stage and the nature of the interac-
tion Hamiltonian corresponding to it are unimportant,
as mentioned earlier. The result depends only on the
vector representing the resultant momentum transfer.

In problems involving nuclear vibrations there is a
universality of an analogous type, because we are actu-
ally always dealing with the jarring of a quantum oscil-
lator. Let us examine this problem in detail for the
case of a harmonic oscillator.

We adopt a one-dimensional model in which the oscil-
lator acquires a momentum 6p in a short time. The am-
plitude for a transition from vibrational state | v) to the
state \v,+n) is, according to (24),

TO-.+,. = {i> + /i|exp ^-J-6p-x)\V). (75)

What is the range of applicability of the jarring approx-
imation in (75) for calculating the transition amplitude
Wv-»„+„? To answer this question we must either calcu-
late the corrections of higher orders in ωτ by using Eqs.
(18)-(20), or we must completely discard the jarring
concept and attempt to find the transition amplitude by
means of the Magnus expansion in (35) or the Fer expan-
sion in (39).

Fortunately, the latter approach rapidly leads to the
exact solution of the problem in which a harmonic oscil-
lator is subjected to an arbitrary external force fit).
The reason is that the operator xf(t), when written in the
interaction picture, in which the unperturbed Hamilton-
ian is the harmonic-oscillator Hamiltonian, has a struc-
ture such that the commutator [W(t), W(t')] is independ-
ent of both the coordinates and the momenta. According-
ly, all terms in the Magnus and Fer expansions begin-
ning with the third vanish identically, and the second
terms, A2 and B2, lead only to an inconsequential phase
factor in the exact amplitude. We shall in future discard
these factors, writing

OP

—i- j dtW(t)]\v). (7.6)

Equation (76) simplifies considerably if we also single
out and discard one more unimportant phase factor.

To demonstrate how to do this, we rewrite Eq. (76) by
expanding the exponential function in a Taylor series and
introducing a sum over the intermediate states \ Sj), for
computational purposes:

SI, (77a)
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dtW(t)}"\v)

2 dtW(t)\v)}.

(77b)
The nonvanishing factors in (77) are

<i±l | I dtWQ)\l) = (l±l\x\r> j Α/(ί)βχ
— oo — c c

={ί±ιμμ>|/(ω)|βχρ(±ΐΦ).

(78)
where ω is the oscillator frequency. In any term in the
sum in (77) we can single out the same phase factor
exp(tn$), as is easily shown. Omitting this factor, we
finally find

—-i| /(ω) | χ) 11;)

/(ω)= \ dt/(t)exp(-i(oi).

The exact equation for the amplitude 2Kt .„.+

(79)

(80)

, thus dif-
fers from the amplitude in the zeroth order in ωτ,
3K °-,„+„, only in that the modulus of the Fourier compon-
ent |/(ω)| is replaced by the momentum transfer δρ, so
that calculations from Eqs. (75) and (79) are identical.
Substituting into (79) the wave functions of the unper-
turbed harmonic oscillator, we find [cf. Refs. (19)-(21)]

where L"(z) are the Laguerre polynomials, and
oscillator mass.

(82)

is the

In the zeroth order approximation in ωτ, 3R° _v+n dif-
fers from Wlv_^,+ n only in thatX, is replaced by the jar-
ring parameter

if.- J L - . (83)

The subscript on No (as well as that on Jfo) means that if
we write the jarring parameter as in (70) the corres-
ponding oscillation amplitude SR0 sV<6/l')0 refers to the
ground state (v = 0) of the oscillator. For an arbitrary
state we would have to set

(84)

(85)

All these conclusions remain valid for the stimulated
transitions in a classical oscillator. The classical limit
corresponds to infinitely large values of υ in Eqs. (81),
(84), and (85). The amplitude in (81) is transformed to
the limit ν »1 by using the expansions23

Σ -

large values of v, the amplitude Wlv-.v+n can thus be
written as a combination of Bessel functions with differ-
ent indices, and in the limit w-« we have

Appearing in (87) is the classical value of the parameter

X
jr ^ VΟ'·», (88)

which, together with the corresponding classical value
of the jarring parameter Ν (for which the equation is
precisely the same as that derived in Ref. 1), is found
from (84) and (85) by taking the limit v—<*>.

The problem of determining the range of applicability
of the zeroth order approximation in ωτ reduces to com-
paring the parameters ^"and Ν in this case. For small
values ωτ, the corrections inJ^to the value of Ν are
strongly governed by the time variation/(i). As a rule,
these corrections are of the order of (ωτ)8 or smaller
[see the discussion in the text regarding Eqs. (26)-(29)].
However, if the tails in the f(t) distribution are import-
ant, as they are in the case of a Lorentzian pulse, the
corrections become comparable to ωτ and sometimes
even larger.

b. Parametric "Jarring" of a harmonic oscillator at an
arbitrary temperature

Let us assume that there are changes in the mass, ml

— mf, and in the frequency, ω, — ω/( in a very short time
τ ( ω τ « 1) (corresponding, for example, to the absorp-
tion or emission of a neutron by a vibrating light nucleus
in a molecule or to the β decay of such a nucleus). The
probability of finding the oscillator in a particular quan-
tum state |/> after this parametric jarring is given for
an arbitrary temperature by Eq. (46).

This problem can be solved completely for the jarring
of a harmonic oscillator. The quantum-density operator
for a one-dimensional harmonic oscillator, written in
the χ representation, is

*, x')
. / ϊπω Γ

"V 2πΛ8Μ«ω/Γ) ^ L ~ ST C O t h Τ

(89)

where m and ω are the oscillator mass and frequency,
and Γ is the temperature (in energy units).

Using this equation, we obtain the probabilities for
finding the oscillator in any of the even states,

(2n)l

and in any of the odd states,

(91)

(86) The subscripts on w correspond to the usual indexing of

where a,, = 1, a, = 0, <% = (n +1)/2, and the other coefficients the oscillator levels; F is the hypergeometric function;

are found from the recurrence relation « = 0,1, — ;

(/ + 2) al+z = (I + η + 1) α, — (2v + η + 1) o M , I = 1, 2

For values of N/v which are not too small, and for

2 *" -coth
hat

2Ash
b'
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In particular, the probabilities for the filling the ground
and first excited states after jarring are

(92)

( 9 3 )

c. Anharmonic oscillators

With the ultimate goal of applying the problem of the
jarring of an oscillator to real molecular systems, we
will briefly discuss some particular features of stimu-
lated transitions when the nuclear vibrations are anhar-
monic. We mentioned above that the anharmonicity must
definitely be taken into account at large values of the
jarring parameter N, at which the high-lying vibrational
levels are excited efficiently.

The most important distinguishing feature of the real
interatomic potential U{R) (for definiteness, we assume
a diatomic molecule) is that it is asymmetric with re-
spect to the equilibrium nuclear separation Ro. To avoid
"losing" this asymmetry, we must study the expansion
of V(r) in powers of 1/R or (β -Ro)/R instead of in the
traditional power series in (R—Ro) (see, for example,
Refs. 24-27).

Using even the simple potential

we can take into account the anharmonicity of the vibra-
tions in molecules relatively easily. It is also important
to note that the Schrodinger equation with a central poten-
tial like that in (94) can be solved exactly for arbitrary
vibrational—rotational states [by changing the constants
in (94), we can convert this problem to the hydrogen-
atom problem]. By using potential (94) we can thus rig-
orously analyze the vibrational—rotational interaction in
a molecule, while this could not be done on the basis of,
for example, the harmonic potential.

As in subsection a), we consider the excitation result-
ing from the jarring of a one-dimensional oscillator with
a potential energy of the type in (94):

<χ, β > 0 . (95)

We denote the quantum states of the discrete spectrum of
this oscillator by the integers f= 0,1,2,... . The cor-
responding energies are

1 / 1

and the corresponding wave functions are

2pm 0 (96)

- " · 2a:

where F is the degenerate hypergeometric function.

The "smearing out" of the ground-state momenta of the
oscillator in (95)-(97) is of the order of Hq. In the prob-
lem of the excitation of this oscillator as momentum is
rapidly transferred to it a jarring parameter like that in
(70) or (83) should accordingly arise:

N« = %- (98)

In fact, the probability for excitation involving the 0 — υ
transition is calculated from Eq. (24) to be

We can also find a simple equation for the probability
that the oscillator of (95)-(97) does not become excited
when it is jarred:

|№o-oP= (l +^T-)~2" ' . ίΙΟΟί
ι u ι y 4 j \1\J\J)

By way of comparison we note that the probability for
this event in the case of a harmonic oscillator decreases
exponentially with increasing Ν [see Eq. (81)], while in
the case of the one-dimensional Morse potential

it is given by

|TOo-oP= 111 1 +1 ," ' • Y]'\ (1C\2)
ι "I l i t Μ η+ε—1 / J \l\)£il

n-0

Ν0 = ±δρ.χι), E = -Lxo/2moi7o. ( 1 0 3 )

It can be seen from these examples that the probabil-
ities for the stimulated transitions in very different situ-
ations are governed by the same jarring parameter,
given in (70). This jarring parameter is thus a principal
characteristic of these problems.

6. "JARRING" OF ELECTRONS FROM ATOMIC SHELLS

a. Collisions of neutrons with light atoms

Apparently the first direct application of the jarring
concept in calculating the amplitudes of quantum transi-
tions was in the problem of the ionization of atoms in
collisions with neutrons.2 8 If the atomic nucleus ac-
quires a momentum hq in a short time τ, the transition
amplitude in zeroth order in ωτ can be calculated from
Eq. (24) (here Κω is a typical electron energy).

Of practical interest are the ionization probability,
integrated over the momentum directions of the emitted
electron,

"1012. (104)

and the total ionization probability for a given q,

(105)

If the question is posed in such a manner that we can
also introduce some distribution function g(q) [the quan-
tity g(q)dq determines the probability for the transfer to
the nucleus of a momentum between q and q + dq], then
the ionization probability is

w = \ dq g (q) w {q). (106)

For a hydrogen-like atom, in which case the electrons
are jarred from the Κ or L shell, the probability dm/dp
can be found analytically. The jarring parameter, which
is a measure of the transition probability in this prob-
lem, can be defined as follows:

(107)r nq nqh2

where n is the principle quantum number of the shell from
which the electron is ejected, Ζ is the nuclear charge,
and m is the electron mass. We also introduce the di-
mensionless ratio γ=ηρ/Κη. The probability for the jar-
ring of an electron from the Κ shell is28

iwK _ 28'jVIv 3 W + V ! —
dy

1—exp( —2n/v)l
•H - ' i Z ) , (108)

[4a ( a + ν)]2"' [(2a'+V)'+*a'iVjî « • (99) where a = JV2-y2 + l , and the function tan"1 is defined to
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FIG. 5. Spectrum of electrons "jarred" from the Κ shell-

be η +taaml(x) for x<0 or tan" 1^) for x*0 .

Figure 5 shows the spectra of electrons jarred from
the Κ shell for fixed values of N. Figure 6 shows the
total probability as a function of N.

The probabilities for the jarring of electrons from any
of the L subshells are found from the general equation
(it is shown below that the mathematical problem of cal-
culating dw/dp is equivalent to the problem of calculat-
ing the cross section for the nonrelativistic Compton ef-
fect28-31)

dy

2»JV«Y p e
15κ>

l—(4/Y) lan"' (2y/q))
1 —exp( —4π/γ)

(109)

The equations for the function S in (109) are different
for the different subshells. For the 2s state, for ex-
ample,

SIS = 5x' (3ΛΤ* + v* + 4)
2· 15χΛΓ« {Ν' + 1) . .

For the jarring of an electron initially in the 2f>(±1) level,
we have

S & " = 4κ (γ* + 4) (5ΛΤ* + V

2 + 1 ) ·

Finally, for a 2P<°> electron, we have (β -y2 -rf-

S& = β2 (7γ4 + 40V2 + 4») + 4 β (Υ2 + 4) (4P (Y2

15

(1Π)

(112)
The results calculated from Eqs. (109)-(112) are shown
in Figs. 7 and 8. The cases in which electrons are
jarred from the Κ and L shells can be distinguished ex-
perimentally by detecting the radiation emitted by the ex-
cited ions which are formed when the electrons are
jarred from the different inner shells.

b. Compton effect at a weakly bound electron

In the scattering of a photon by a bound electron, a
jarring situation arises if the electron energies in the

/Imf/j

FIG. 6. Probability for "jarring" of electrons from the Κ shell.
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FIG. 7. Spectra of electrons "jarred" from the if and L shells

initial and final states are small in comparison with the
photon energy RSI. In this case the jarring time is esti-
mated as follows: The absorption of the incident photon
leads to a deviation ΔΕ ~Kii from energy conservation,
so the scattered photon must be emitted in a time τ -%/

That the elastic scattering of χ rays by light atoms is
a jarring process was emphasized by Trammell32 in con-
nection with the difference in the Debye-Waller factors
for the resonant and nonresonant scattering of radiation
in crystals. For the case in which the energies of the
incident photons are not relativistic, and the corrections
of second order in ωτ and KQ/mc2 are negligible, the
cross section for the Compton effect can always be writ-
ten in the nonrelativistic jarring form for any scattering
channels, accompanied by both bound-bound and bound-
free transitions of the electron.30 As an example, for
the ionization channel involving the ejection of an elec-
tron from an arbitrary nS shell, in first order in ωτ and
KSl/mc2, we have the usual result [in Eqs. (113)—(116),
we use the relativistic units, with k = c -1]:

d'os r«(l+cos«e)
•pm\{f\e**\l)\* (113)

Here k =k 1-k 2,k 1 > 2 are the wave vectors of the incident
and scattered photons, Ω 1 > 2 are their frequencies, θ is
the scattering angle, ρ is the momentum of the emitted
electron, pk = pkt,re = e2/mc2 is the classical radius of
the electron, άθ2 is the element of solid angle containing
the vector kj, and the wave function of the final state of
the electron is assumed normalized to a unit volume.
For the Compton effect at nP electrons, it is convenient
to write30

r't (l+cos'S) (114)

(115)

For subshells with different angular momenta and differ-
ent angular-momentum projections {ηΡ^,ήΡ^^,
MP 3 / 2 # S / 2 ) , the vector ρ has the components (1,1,1),

FIG. 8. Probabilities for "jarring" of electrons from the Κ
and L shells.
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FIG. 9. Angular distributions of scattered photons in the
Compton effect at a free electron at rest (solid curves); other
curves-the same, for the electrons of the/ί and L shells of
the carbon atom (Zu = 6). The energy of the incident photon is
20 keV.

( l//2)(- l ,-1,2), and vT572~(l,-l,O), respectively.
Here Rp is the radial part of the wave function.

To calculate the cross sections for the Compton effect
at A" and L electrons from Eqs. (113)—(115), we can
clearly use the results of (108)-(112). For example, in
the case of a2^3/2,3/2 electron we must use Eq. (109), with
Eq. (I l l ) for S. For electrons from the 2Pl/2 and
2P3/2A/2 subshells, we must use (109) with the combina-
tions (25^")+S^5>

)/3 and (S^p* + 2S2

i$,)/3. As an example,
Fig. 9 shows the angular distributions of the Compton
photons in scattering by free electrons and by Κ and L
electrons.

The states of the electrons in the 2P shell could of
course also be classified according to the usual nonrela-
tivistic scheme, as in the preceding section. In this
classification, the Compton cross sections are directly
related to the probabilities for the jarring of electrons
from the if and L shells, in (108)-(112):

d2a _2,, , , m £2?m_ ί£ (116)

Figure 10 shows the angular distributions of the Compton
photons found by integrating (116). The interpretation of
the scattering as a jarring process has a special heuris-
tic value for the range of collision parameters such that

aZmc"· > ΗΩ > \Eb\

(a is the fine-structure constant, Ζ is the effective nu-
clear charge, and Eb is the electron binding energy in
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FIG. 10. The same as in Fig. 9, according to an integration
of Eq. (116).

the atom). For this energy range, the Compton cross
section is strongly affected by the interaction of the elec-
tron with the ion core in the final state, since the emitted
electron has a relatively small momentum, on the aver-
age. As a rule, there is no hope of taking this effect into
account exactly, but this is not the case in nonrelativistic
calculations of the cross sections for ionization involving
the ejection of electrons from inner shells. We will now
show how these exact calculations can be used to test the
jarring approach: a principal characteristic of the angu-
lar distribution of the scattered photons in the Compton
effect at a bound electron should again by a jarring pa-
rameter N, chosen in an appropriate manner. The be-
havior found here remains the same in other, more com -
licated situations, which are not amenable to a rigorous
analysis.

In the limit of an infinitely heavy nucleus, momentum
is not conserved in the Compton effect at a bound elec-
tron, and we are dealing with precisely that case in
which the quantity δρ, which is incorporated in the cor-
responding jarring parameter, becomes indefinite in the
calculation of the amplitude in (24). Nevertheless, in
the Compton effect it is possible3 0·4 1 to introduce a jar-
ring parameter of the type in (70),

τν~δΑ·.δΛ~-^, (117)

if we take into account the fact that the Compton line for
a weakly bound electron is relatively narrow [K6k in Eq.
(117) is understood as the rms value of the momentum
transferred to the electron in the scattering].

It is simplest to seek 6k in first order in aZ, using
the Compton equation for this purpose:

Ω, = (118)

For example, if the electron initially occupies an atomic
shell with the principal quantum number n, we can con-
veniently write the result of the calculations for any en-
ergy of the incident photon, # Ω 1 ( in the following form
fcf. Refs. 30 and 31 and Eq. (107)]:

(119)V _- "nQi Κ Τ + ί ι ' — 2ί) cos 6
aZmc"b '

The magnitude of the parameter Ν is governed by the
difference between the angular distribution of the scat-
tered photons in the case of a bound electron and the
Klein-Nishina distribution:

dar (120)

As shown in Refs. 30 and 31, the ratio of the cross
section for the Compton effect at a free electron, dvj
do2, to the Klein-Nishina cross section in. (120) is in
fact a convenient measure of the parameter in (119).
This conclusion is in complete agreement with the jar-
ring interpretation of the scattering process. All the
diagrams like Figs. 9 and 10 can be described by a few
curves for the ratio άα^/άσκ.κ, depending on the value of
the jarring parameter Ν (see Figs. 11-15). The reason
for this universality is that the cross section is governed
primarily by the peak of the Compton line, whose width
becomes smaller as ωτ becomes smaller. Here we are
seeing the profound analogy between the behavior of
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da J do κ. Ν and w [see subsection a)] as functions of the
corresponding jarring parameters, in (119) and (107).

The jarring approach is convenient for finding a sys-
tematic arrangement for the experimental data on the
scattering of hard γ rays by atomic electrons. The the-
ory for the angular distribution of Compton photons for
relativistic y-ray energies (£Ω£ me2) is extremely
fragmentary and unreliable (the best discussion of this
question is in Ref. 33). Even numerical estimates are
very laborious,33 so all the situations which arise exper-
imentally cannot be analyzed, and general aspects of the
behavior cannot be discerned.

The jarring interpretation of Compton scattering by
weakly bound electrons, in contrast, yields the most im-
portant aspect of the behavior: that the parameter Ν is
a measure of the cross section. The product ωτ must of
course be small. Figures 11 and 12 show the experi-
mental values of the ratio daJdaK. „ as a function of N,
found from data on the scattering of y rays with energ-
ies between 279 keV and 1.12 MeV by the Κ shell of Sn
and Sm atoms, through angles θ between 2(fand 16CP.
In the calculations of Ν from Eq. (119), here and below,
the screening of the nuclear field by other electrons is
taken into account by the Slater rules. The theoretical
curves in Figs. 11 and 12 are taken from Ref. 31; they
correspond to nonrelativistic y-ray energies, KU«mdi.

The theoretical curve required for analyzing the ex-
perimental data on scattering by the filled L shell can be
found from the results for other subshells. Yudin30 has
studied the behavior of dajdag.,, as afunctionof the jar-
ring parameter Ν for scattering by subshells, classified
in accordance with relativistic theory. The results are
shown in Fig. 13. The corresponding results for the
nonrelativistic level scheme can be found in a straight-
forward manner (Fig. 14). The average Compton cross
section, divided by the Klein-Nishina cross section, is
shown in Fig. 15, along with experimental data on the
Compton effect at Pb and Th atoms.

On the basis of Figs. 11, 12, and 15, we can state that
the nonrelativistic theoretical curves generally agree
well with the experimental results. There are some dis-
crepancies, caused by several factors. We are con-
cerned here primarily with those factors which affect the
theoretical calculations.

First, the inequality ω τ « 1 is barely satisfied, so it
would improve the situation to take into account the high-
er-order corrections to the zeroth-order jarring approx-

FIG. 11. Compton effect at the Κ shell of Sn (Zs= 50). Experi-
mental data: 1) Ref. 34; 2) Ref. 35; 3) Ref. 36; 4) Ref. 37; 5)
Ref. 38.

FIG. 12. Compton effect at the if shell of Sm (2^=62). Ex-
perimental data: 1) Ref. 39; 2) Ref. 36; 3) Ref. 40; 4) Ref. 41;
5) Ref. 38.

imation. Furthermore, we recall that Eq. (119) for the
jarring parameter is derived in the first approximation
in az/n (the results for the approximations of zeroth
and first order in az/n are the same). The higher-or-
der corrections can be taken into account in the follow-
ing manner.

The scattering of a photon by a weakly bound electron
at a large value of Ν can be interpreted as scattering by
a free electron which has precisely the same momentum
distribution as the bound electron. The cross section
for the Compton effect at a free electron which is moving
with the 4-momentum (E,p) is

•τ[-
, Γ ra«c*(l

+ l a ( E - p c

ra«c*(l—•cos6)12 a 1
-l)mc' / '

(121)
where a-E-pccos02 [the quantity 6 is defined in (118)],
and θ1ι2 are the angles between ρ and the wave vectors
of the incident and scattered photons, k1>2. The angular
distribution of the γ rays in the Compton effect at the
bound electron should be compared with the cross sec-
tion in (121), averaged in the appropriate manner, rather
than with the Klein-Nishina cross section. It would also
be a simple matter to refine the parameter Ν to take into
account the corrections of the various orders in otZ/n in
the equation for 6k.

However, it is not necessary to pursue this point theo-
retically at present, because of the large errors and the
discrepancies found even in identical measurements by
different investigators. The difficulties confronting the
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FIG. 13. Ratio of the cross section for tire Compton effect at
L -shell electrons to the Klein-Nishina cross section as a
function of the "jarring" parameter N.
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FIG. 14. Ratio of the cross section for the Compton effect at
L -shell electrons to the Klein-Nishina cross section as a
function of N.

experimentalists are related to the complex nature of
the measurements of the cross sections for ionization
events involving the ejection of an electron from a spec-
ific atomic shell. The lifetime of the vacancy left in an
inner shell when an electron is ejected is f ~10'Ιβ sec.
This vacancy is then filled by an electron from an outer
shell, and the χ ray emitted in the process is measured
in coincidence with the scattered γ ray. Unfortunately,
it is difficult to arange these coincidence measurements,
since some of the γ rays and some of the χ rays are ab-
sorbed in the target, and there is also the additional
background bremsstrahlung of the Compton electrons.
These and other side effects make the measured ratio
dab/daK.M very sensitive to the shape of the sample, the
scattering angle, and other specific experimental condi-
tions [the errors reported by many investigators, shown
in Figs. 11, 12, and 15, frequently refer only to the
counting of detected events; the experimental angular
distributions of γ rays in scattering by Al (Z,,= 13) or
Be (ZM = l·) are used as daK.H/do2].

7. OTHER COLLISION PROCESSES

a. Emission from a nucleus in a molecule or crystal

Stimulated transitions in processes involving a vibrat-
ing atom occur in collisions not only with an electronic
shell but also with the nucleus itself. Familiar examples
are the absorption, emission, and scattering of neutrons
by atoms in a crystal lattice44 or in a molecule.45

Far more important in practice than the capture of
neutrons by atoms in a crystal is the Mossbauer effect,
which is an equivalent effect from the theoretical stand-
point.48'48 In reviewing the basic features of this effect,
we distinguish among three very different time intervals:
1. the collision time τ, which is the time required for
an element of the wave of length l~c/il to traverse the
nucleus, whose dimensions are far smaller than / in all

w
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FIG. 15. Compton effect at the L -shell of Pb (ZH = &2) and
Th (2^=90). Experimental data: 1) Ref. 42; 2) Ref. 43.

real cases. ThusT~l/fl; 2. the characteristic time of
the motion of the nuclei in the molecule or the solid, 1/
ω; 3. the lifetime of the excited state, Γ - 1 / Γ , where Γ
is the Mossbauer line width. The average times 7 usual-
ly lie between 10"7 and 10"9 sec.

It is not difficult to establish the relations among these
times:

x«-i-«r. (122)
ω

The first inequality in (122) means that the emission pro-
cess can be treated as a jarring process with respect to
the slow nuclear motions. In this case the parameter Ν
is

JV = | k«R| ~kSR. (123)

Since this parameter does not contain Planck's constant,
it is of purely classical origin.1 The probability for the
emission from a vibrating nucleus, with any change what-
ever in the vibrational state of this nucleus, is deter-
mined in the harmonic approximation from the results in
(81) and (83) for quantum vibrations or (87) for classical
vibrations.

The second inequality in (122) figures in the resonant
scattering of the Mossbauer radiation^ The long lifetime
of the nucleus in its excited state, in comparison with τ
and l/oi, means that two steps of the process—the reso-
nant absorption and the recoilless emission—can be
treated as absolutely independent. As a result, the prob-
ability for resonant scattering is proportional to the pro-
duct of the probabilities for the transitions due to the
two independent jarrings. For a crystal, this probability
is proportional to the product of two Lamb-Mossbauer
factors, which contain the jarring parameters Jv\ = |kj6R|
andJV2 = Ik^Rl.

Up to this point we have been talking about the "natur-
al" vibrations of y-emitting nuclei in molecules or crys-
tals and the appearance of satellites in the γ spectrum
against the background of this relatively slow motion.
Recent advances in the field of lasers are drawing at-
tention to the effect of strong fields on the pumping of
atomic and molecular systems, usually through stimu-
lated internal transitions under the influence of a reso-
nant field. It is thus pertinenet to examine jarring tran-
sitions against the background of the stimulated slow mo-
tions of a quantum system as it is pumped in an external
field.

For selective pumping with, say, an increase in 6Λ
for a certain type of motion, we can arrange a situation
such that the corresponding jarring parameter N~6p6R/
ft and the transition probabilities undergo changes far
greater than in the absence of the laser field. It is thus
possible to distinguish some particular channel in a nar-
row spectral interval (the width of this interval is gov-
erned by the resonant-excitation conditions, in particu-
lar, the wavelength spread of the laser beam). Note-
worthy among the studies in this direction are Refs. 49
and 50.

b. Collisions of molecules with electrons and heavy particles

Among the stimulated effects in a laser field, the one
that has been studied in greatest detail is "stimulated
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bremsstrahlung,"1·51 which is an emission or absorption
of laser photons which is stimulated by electron scatter-
ing. A direct analog of stimulated bremsstrahlung is
quasielastic scattering of an electron by a vibrating
atom. If the atomic vibrations are classical, this scat-
tering is very similar in nature to stimulated brems-
strahlung. In most cases, on the other hand, there is a
quantum analog of stimulated bremsstrahlung, in which
the nucleus is in quantized motion, for example, in a
molecule.

However, there is also an important distinction be-
tween these processes: in the quantum case, the fact
that the incident electron is identical to the target elec-
trons comes into play. The presence of δρ in (24) does
not prove that the amplitude depends only on the momen-
tum transfer. Differences should evidently be expected
in collisions of atoms or molecules with electrons in
those cases when exchange effects must be taken into ac-
count in calculating the cross sections.

On the example of electron scattering by the Κ shell of
a homonuclear diatomic molecule it can be shown that
when the exchange interactions are taken into account
the influence of the nuclear vibrations (for, say, only
those scattering channels which involve the excitation
of vibrations) is characterized not simply by the single
parameter N, which contains the momentum transfer,
but also by three other parameters, which contain in-
stead of δρ, the combinations px, Pj, and Pi+Pj (p1 | 2 are
the momenta of the incident and scattered electrons).

To see how the jarring parameter Ν arises in the
most general case of a collision of a molecule with a
fast charged particle, we assume that the fast particle,
with charge Ze, mass m, and momentum p0, collides
with the target molecule and ionizes it. We denote the
energy and momentum of the ejected electron by E2 and
ft, while the momentum of the scattered particle in the
final state is p^ The triply differential cross section
for this process is written as follows in the first Born
approximation52:

<Ρσ ρ, if 2mZe \= , v , ipr

cPa

z dol

dEz

(124)

where Φ, and Ψ, are the wave functions of the initial and
final states of the scattering system, p = P!-P2, do1>2

are the elements of solid angle containing the vectors
p, i 2 , and the summation over j is carried out over all
the electrons in the molecule.

(125)
In the adiabatic approximation we have

•i !
Ψ = Φ (r, R) Λ (Q) &(*),]

where Φ(τ,Λ), A(q), iand θ(0) are the electronic, vibra-
tional, and rotational wave functions, respectively; r
and R represent the sets/of electronic and nuclear co-
ordinates; Q represents/ the coordinates of the normal
vibrational modes; kndje represents the Euler angles,
which define the spatial; orientation of the molecule.
The electronic coordinate wave function of the final state
is written as a linear combination of products of the type

»0(ϋ) = (Φ(ρ2)ΐΣ ,
i

11 Φι (Γ, Λ».

(126)

(127)

We are generally interested in the cross section sum-
med over all the final states of the resulting ion:

The notation Jt(R) is adopted to emphasize that the ma-
trix elements between the electronic states depends on
the set of nuclear coordinates. The variation with R in
(127) is governed by the vector δρ »?„ - Pi - P2, so the
characteristic parameter

Λ·~1δρ.δΛ

appears in the integration over the vibrational coordin-
ates in (126).

Let us consider the particular case of channels involv-
ing the excitation of vibrations in a diatomic molecule
without a change in electronic state; we assume that the
axis of the molecule is oriented along a definite direc-
tion. The cross section for a collision involving the
transition of the molecule to a fixed vibrational state,
\v)~\v + n), incorporates the characteristic two-center
factor

X = 1 + (δη, 21 ~ δπ, ,i+1) cos (qR0), ( 1 2 8 )

where Kq is the momentum transferred to the nuclei,
and R,, is the equilibrium nuclear separation. The cross
section for a collision involving the transition from \v)
to all vibrational states is given in the harmonic approx-
imation by

do» = da0[l + e-A'2ic(2A-")cos(qR0)]. ( 1 2 9 )

The oscillatory term in the cross section in (129) (the
quantity added to unity in brackets) is peculiar to mole-
cules and does not arise in the case of scattering by
atoms. It is seen from (129) that this specific feature of
the molecular case vanishes completely at large values
of the jarring parameter. Then there is absolutely no
manifestation of the multicenter nature of the electron
distribution in the molecule.

The authors thank V. P. Krainov, Β. Μ. Smirnov, and
M. V. Fedorov for useful discussions of these results.

Note added in proof. 1. The only modification of the
theory of sudden perturbations for the most general
case, in which the commutator [V{t), V(t')] is any arbi-
trary operator, is that the time-evolution operator
S0(i, t') is written in zeroth order in ωτ by means of the
Magnus or Fer expansion, which incorporates succes-
sive commutators of the operators V(t) taken at various
times, as mentioned earlier. The entire calculation
scheme and, in particular, the equations for calculating
the higher orders in ωτ, (19)-(20), remain the same.

2. All the results of Section 2 can be generalized di-
rectly to the case in which the unperturbed Hamiltonian
also depends on the time by formally replacing #£(*) by
J*dttfo(t) [provided, of course, that ffio(t),fr(t')]=0]. To
find the transition amplitudes in the case of sudden per-
turbations in this case it is more convenient to use the
Schrodinger picture, transforming back from the time-
evolution S(f, f) (calculated with the necessary accuracy)
to the operator U(t, f').
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