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All the diverse types of liquid-crystalline states can be described in a unified manner by analogy with the

group-theoretical description of the symmetry and properties of crystals. The symmetry properties of

liquid crystals with respect to the orientation of the molecules, and the conditions for the appearance of a

modulated orientational structure, are considered. The phase diagrams in liquid crystals are described,

and a general scheme of the phase transitions between liquid-crystalline phases is given. The problem of

the ferroelectric state in liquids is considered, and the classes of anisotropic liquids that possess

ferroelectric and piezoelectric properties are demonstrated. A thermodynamic description is given of the

ferroelectric phenomena observed experimentally in smectic liquid crystals. The question of the physical

nature of the low-symmetry smectic phases is discussed and the character of the phase transitions in liquid

crystals is considered.
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1. INTRODUCTION

Liquid crystals are one of the forms of existence of
living and inanimate matter, discovered less than a
hundred years ago.1 Regarded originally as a curiosity
of Nature, in the last ten years these surprising sub-
stances have become the subject of thorough scientific
investigations and a component of numerous practical
developments. A component part of the most diverse
systems, from electro-optical displays to biological
membranes, liquid crystals exhibit a wealth of struc-
ture and properties. The so-called thermotropic liquid-
crystalline modifications can be extremely sensitive to
electromagnetic fields and mechanical stresses, with
distinct phases existing in temperature intervals from
fractions of a degree to hundreds of degrees. Multi-
component lyotropic liquid crystals, which perform
important biological functions (e.g., bile), can undergo
a series of structural changes as the concentrations of

the different components are varied. In practical appli-
cations it is usually the lability of the physical proper-
ties of the liquid crystals that is used, but there are
opposite examples, e.g., the liquid-crystalline structure
of solutions of polymers predetermines the ultrahigh
strength of certain artificial fibers.

A. The traditional classification

Experimental observations have shown that liquid
crystals are anisotropic liquids, consisting of molecules
of elongated shape. At present it is customary2"4 to
classify the thermodynamic states of such mesophases,
i.e., phases intermediate between solid-crystalline and
isotropic-liquid states, by the form of the functions for
the density p(r) and local orientation n(r) of the mole-
cules. The unit vector n(r), called the director, indi-
cates the direction along which the long molecular axes
point, on the average, at the given point r. A phase
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with ρ = const and η = const is called a nematic liquid
crystal (NLC). The mesophases in which the function
p(r) is periodic along a distinct axis ζ and constant in
the xy planes are called smectic liquid crystals (SLC)
and are characterized by a layer structure. In their
flow properties, NLC are most similar to an ordinary
isotropic liquid with ρ = const. SLC possess fluidity
within the layers and behave almost as solids under uni-
axial stress perpendicular to the layers. Media with ρ
= const and a macroscopically modulated structure n(r),
called cholesteric liquid crystals (CLC), form a special
category. The molecules of a CLC possess unique
properties: they are chiral1 ', i.e., they do not contain
any symmetry planes and are found in one of two pos-
sible enantiomorphic forms.

B. Correlation functions in liquid crystals

The traditional classification is not adequate for the
description of the above-mentioned multiplicity of liquid-
crystalline structures and the possible structural trans-
formations.5 A more complete analysis of the symmetry
properties of LC is possible on the basis of the study of
the mutual correlations between the positions of the dif-
ferent atoms.6 Here one frequently encounters situa-
tions in which it is sufficient to investigate only the point
symmetry of the correlation functions, just as in the
case of crystals it is found to be sufficient to consider
the corresponding crystallographic classes.7 The pos-
sibility of investigating the modulated structures in
systems with chiral molecules is assured by taking into
account the Lifshitz invariants,8 which play the same
role here as in ordinary crystals.8

The description of the structure and symmetry of
liquid crystals requires, generally speaking, an analy-
sis of many-particle correlations in the disposition of
the atoms.2 ' Sometimes it is recommended6 to use the
pair correlation function p1 2(r1 2), where r 1 2 is the dis-
tance between atoms 1 and 2, and p12dV2 is the probabil-
ity of finding atom 2 in the volume dV2 when atom 1 has
a given position. However, structures not having a cen-
ter of symmetry cannot be described by means of the
function p ^ r ^ h since this function possesses even
parity.9 Therefore, to describe chiral structures,
more-complicated correlation functions, e.g., four-
particle correlations between the positions of the atoms,
are necessary. The presence or absence of a center of
symmetry in a system of molecules can be character-
ized by the pair correlation function p™2 ( r 1 2 , l 1 J l 2 ) , which
depends on the distance r u between the centers of
gravity of the molecules and on the orientations lj, and
12 of the long axes of the molecules 1 and 2. From the
three vectors r1 2, \, and 12 we can form the pseudo-
scalar [lj x 12] «r12; however, we should expect that the
pseudoscalar

' 'The term "chiral" (from the Greek word for "hand")is used
to describe the symmetry of right-handed and left-handed
helical structures.

2)We note that in ordinary crystals it is sufficient to consider
only the density function p(x, y, z); however, the axes are
assumed to be fixed, which is equivalent, in effect, to taking
many-particle correlations into account.

will appear in the function p™, inasmuch as the axes lj
and 12 are not polar and the function p^ should be in-
variant under the replacement of \ by - l x and 12 by - 1 2 .
Liquid crystals whose molecules possess well defined
short axes require a still more complicated discription.
In the group-theoretical approach, which will be con-
sidered below, the structure of a liquid crystal can be
described in a unified manner in the language of the
representations of the corresponding symmetry groups,
and this makes it possible, in principle, to take into
account all the possible changes in the degrees of free-
dom in phase transformations.

2. SYMMETRY WITH RESPECT TO THE ORIENTATION
OF THE MOLECULES

A. The order parameter

The most symmetric phase of a LC is the isotropic
liquid. Its symmetry group does not contain transla-
tional-symmetry elements and is a well defined point
group. The point symmetry of the LC is most clearly
exhibited at short distances, where it can be interpre-
ted as the point symmetry of the molecular groups (sub-
units) forming the LC. The symmetry group of an iso-
tropic liquid, as is well known, can be either the full
orthogonal group (the group Kh) or simply, in the case
of chiral molecules, the full group of rotations about a
point (the group K), which differs from the group Kh by
the absence of a center of symmetry. The lowering of
the symmetry of the isotropic liquid as a result of phase
transitions usually leads to the appearance of a nematic
or centrosymmetric smectic-^4 phase (the transition
Kh — D«,h), a smectic-^4 phase without a center of sym-
metry (the transition K—£>«), or a cholesteric phase.
All the known uniaxial LC of the above types correspond
to the symmetry groups D«,h and D*. In such LC, the
two directions along the axis of full axial symmetry
(i.e., along the director n) are equivalent.3'

For the order parameter in these cases we can use
the tensor with components

?i* (r) «i* = Q (r) [n, (r) nh (r) - i 6th] , (2)

which are local averages of bilinear combinations
formed by projections of the unit vector 1 of the long
molecular axis. The quantity Q(r) defines the fraction
of molecular axes pointing along η at the given point.10

In the isotropic phase Q=0.

B. Modulated orientational structure

We emphasize that in a liquid (p = const) a phase tran-
sition from a state with symmetry Κ to a state with a
spatially uniform order parameter Qn is impossible,
since this uniform state is unstable against spatial mod-
ulations of n(r). The presence in CLC of macroscopic
nonuniformity of n(r) over distances large compared

3>Uniaxial LC with the axial-symmetry groups C , C«^, and
Cwh, which would correspond to the presence of an electric
polar axis (the groups C e and C^J) or an axis of magnetization
(the group C^), have not been observed experimentally.
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with the molecular sizes is connected with the existence
in the expression for the free-energy density F of an
invariant of the form

-i-Â fa + nrotn)2; (3)

here K2~Q2 is an elastic constant, dependent on the
temperature, and the quantity q has the dimensions of
the wave number of the nonuniform structure. In (3)
the Lifshitz invariant n· rotn is present, and corres-
ponds, as is well known,8 to the formation of a modula-
ted (in the present case, helical3) structure. A choles-
teric helical structure with director components

nz — 0, nx = cos qz, ny = sin qz (4)

minimizes the expression (3). It arises at the limiting
phase-transition temperature below which Q=0.

In a CLC the quantity n(r) is a slowly varying function
of the coordinates: ql« 1, where I is the molecular
length. The distribution of the molecular axes about the
local orientation of the director (4) is described by the
symmetry group £>„. Such a uniaxial distribution is
reminiscent of the situation in NCL; however, the cor-
responding correlation function p™ should have in the
CLC a pseudoscalar contribution δρ™ of the form (1).
The interaction potential v™2 of the molecules also con-
tains an analogous correction 6f™. Assuming that, as
in the NCL, the function p™ has a sharp maximum for
collinear l(r) and n(r), while the potential i>™ falls off
rapidly over distances of the order of I, it is not diffi-
cult to obtain the Lifshitz invariant from microscopic
considerations. Since, with the assumptions made,
we can put lj =n(r),l2 =n(r) +(r 1 2 · V)n(r), the extra terms
δρ™ and 6v™2 change the free-energy density by an
amount

δ/1'" = 4" Ρ™ + P™ " rot n.

Orientational symmetry gives rise to the most funda-
mental properties of LC, but does not exhaust all the
symmetry properties. There exist various layered LC,
to describe which we need to take translational symme-
try into account.

3. SMECTIC-/4 LIQUID CRYSTALS

A. The free-energy density

The formation of a smectic-A phases with the symme-
try groups Dnh and £)„ corresponds to the appearance of
a density wave11

= Po + Ι Ψ (kz + ω)

(\φ\ and ω are the amplitude and phase of the wave, and
£ = 2ττ/1), and of orientational order (2), the director η
being parallel to the ζ axis. Generally speaking, to
describe the phase transitions in SLC it is necessary to
consider the space symmetry groups. Nevertheless, in
a number of cases, as for ordinary crystals, it is suf-
ficient to confine oneself to considering the point sym-
metry: 1) if the space group is symmorphic, i.e., does
not contain screw axes or glide planes and is a product
of a point group with a group of translations, and 2) if
the phase transitions in the SLC occur with preservation
of the smectic layers (analogously to phase transitions

in crystals with no change in the number of atoms in the
unit cell7).

The free-energy density F in the case under consider-
ation includes invariants formed from the order param-
eters \φ\ and Qiit and can be written in the form

F = FN {Qu} + FA {| φ |) + FNA {<?„, | ψ I}. (5)

The quantity Ff,{Qu} is the free-energy density of the
uniaxial nematic phase. Since from the tensor compo-
nents Qu it is possible to form the combination QijQjpQpi,
which is invariant under the transformations of the
group Kh, the expansion of FN in powers of Q contains a
term of third order in Q:

FN = a^ + b,Q3 + <:,<?' + . . . (6)

We shall put aL = a[(T - Τ J , b^O, c^O. In this case the
expression (5) describes a first-order phase transition
from the isotropic phase (/) to the nematic phase (ΛΓ) at
a temperature TIN:

with a corresponding discontinuity in the parameter Q:

<?(Γ,.ν) = ρ = - Α
2c,

The quantity FA{|^|} describes a one-dimensional
crystal—a system with the two-component order param-
eter |ψ|βχρ[ί(£ζ +ω)]—and contains only even powers of

1*1:
ί Ά { Ι Ψ 1} = a, | ψ |s + c2 | φ I4 + . . . (7)

The mixed term FNA can be written in the form

FSA = -Ι Ψ I2/ «?), / (0 > 0, (8)

where f{Q) includes invariant combinations of the type
kfkjQij-Qdkl^k), Q2ij~Q2, etc. The fact that the quan-
tity fl.Q) is positive means physically that additional or-
ientational order induced by the appearance of the den-
sity wave corresponds to an increase in the forces of
attraction between the molecules, i.e., it decreases the
energy of the system.

Using (5)-(8) it is not difficult to investigate the LC
phase diagram, which is determined by the relative
sizes of the coefficients in the expansions (6)-(8).
These coefficients are parameters of the substance and
depend on the structure of the molecules, e.g., on the
molecular length I.

We shall suppose that a,>0 and c2<0, since, experi-
mentally, SLC of all types possess orientational order
(Q*0), and SLC with Q =0 are unknown. Minimizing F,
as given by (5)-(8), with respect to the amplitude |ψ|,
we obtain

(9)

Thus, phase transitions to a smectic-A phase are pos-
sible only under the condition that these transformations
are accompanied by sufficiently high orientational order
Q. In this case transitions to the A phases are possible
from both the nematic and the isotropic phase.

N— A phase transitions, at temperature TSA, can,
generally speaking, be both second-order and first-
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FIG. 1. Phase diagram describing the phase transformations
between the isotropic (/), nematic (JV), and smectic 04) modifi-
cations of an LC. The dependence of the phase-transition
temperatures TIN, Tm, and T M on the length I of the mole-
cules (from Ref. 12) is typical for a homologous series of sub-
stances.

order. Putting Q(TKA)» Q or 1^(7^)1» a, one can
show that the phase transition, at a temperature TM de-
termined from the equation

/ «? (TNA)) = a2 (TKA),

is a second-order transition if the inequality

(10)

'< r->l· (11)

is fulfilled. The equality in (11) determines a critical
point Tc on the phase-transition line Tm. At the point
Tc the character of the N~ A phase transition changes
(Fig. 1): the second-order transition becomes a first-
order transition when the inequality (11) is reversed.

If the discontinuity in the orientational order param-
eter Q is sufficiently large, the lines of I —N andJV— A
phase transitions come together and, when the condition
/(Q) =«2 is fulfilled, the lines TlN and TM intersect (see
Fig. 1). With further increase of the parameter Q,
fiQ) ^ (h, the smectic-yl phase is formed directly from
the isotropic phase as a result of a first-order / ~ A
phase transition, the transition temperature TIA being
determined from the equation

(12)

The general pattern of the phase transitions between the
/, JV, and A phases is depicted in Fig. 1.

The exhibited results generalize phenomenologically the
conclusions reached by McMillan12"14 in an analysis of a
microscopic model, and supplement the investigations
of de Gennes3·11 on second-order phase transitions des-
cribable by a two-component order parameter
\ip\exp[i{kz + ω)]. Relations analogous to (9)-(12) are
also valid for phase transitions from the isotropic liquid
to the cholesteric and smectic-A phases. It can be seen
from (9)-(12) how the phase diagram of a substance
changes as a function of the microscopic properties of
the system. In particular, the coefficients in the expan-
sions (6)-(8) should depend strongly on the length I of
the molecule, or, in other words, on the position of the
substance in its homologous series.1 2 All the situations
enumerated have been observed experimentally, as also
have the dependences of the temperature and heat of the
phase transitions on the length of the molecules (see
Fig. I ) . 1 2 " 1 7

B. Stability of the smectic phase

The question of the stability of smectic-A LC against
violation of the macroscopic uniformity of such liquid-
crystalline modifications and against the "smearing-
out" of the periodic function p(z) by thermal fluctuations
is of interest. Smectic-A LC with the symmetry group
Ζ>«,Λ, like NLC, are stable against the formation of a
modulated structure, since here Lifshitz invariants
are absent. Smectic-zl LC with the symmetry group
Dm, like CLC, permit the existence of a Lifshitz in-
variant of the type[cf. (3), (4)]

if the director η deviates from the ζ axis of the one-
dimensional crystal. However, such deviations of the
director are possible in the case when the coefficient
of the invariant

which is also present in the expansion of the free energy,
is negative. In practice this situation corresponds to a
phase transition as a result of which the symmetry of
the smectic layer is lowered (see the Table I below,
and Fig. 3). Such phase transitions with a two-compo-
nent transition parameter ~&x,ny) will be described
below.

We consider the role in SLC of thermal fluctuations,
which, theoretically, forbid the existence of unbounded
three-dimensional substances with a density function
that is periodic in one dimension only.6 We shall show
that in layers of sufficiently small (but macroscopic)
thickness L the elastic interactions that exist in
smectic-yl LC oppose the "smearing-out" of the function
p(z) by thermodynamic fluctuations. Admitting the pos-
sibility of a displacement uz of the smectic layers and
assuming that, for small deformations, the director η
remains normal to the smectic layer, it is easy to ob-
tain the following relations:

Taking into account the relations (11') and the in-
variance of the free energy under a change of sign of n,
in the expansion of the quantity A.F in terms of the dis-
placements ut we must keep the following terms 1 8 :

where /£\~Q2 is the Frank constant, and B~ \φ\2 is the
elastic modulus of the SLC for a uniaxial deformation.
The presence in the expression (12') of the derivatives
dut/dx and Bu,/dy (in the terms of third and higher order
in M,) is connected with the fact that bending of the
layers, without changing the number and sizes of the
layers along the «-axis, gives an additional dilatation
(Fig. 2)

-(nl + ̂ /2. (13)

The expressions (12') and (13') correspond to invariance
of the quantity F under rotations of the SLC as a whole
about the χ and y axes.
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FIG. 2. Mechanical instability of smectic layers under condi-
tions of uniform stretching along the crystal axis, a) No
stress; b) bending of the layers under stress (the arrows). The
dilatation of a selected element of volume, induced by the di-
rector deviation r^, is shown.

Using (12), we obtain for the mean square displace-
ment vector

• L_

(14)

where L is the layer thickness of the SLC. Since KY

-lO^dyne, T-300 K~4xlO" 1 4 erg, and JK~jB~ 1-10^
cm, the root mean square displacement V(û ) can amount
to a quantity of order 1 ~ 10"7 cm only when L~e50l!

Weak external perturbations, e.g., mechanical, lead
to the appearance of instability of smectic-A LC with
respect to violation of their macroscopic uniformity, as
attested by experiment.19"21 We emphasize that this type
of mechanical instability is not connected with the exis-
tence of Lifshitz invariants. The modulated structure in
this case consists of periodically curved smectic layers
(Fig. 26) , with preservation of the local symmetry of
the SLC (the director is perpendicular to the plane of the
smectic layer).

Starting from (12'), one can show18 that there exists a
critical value u'c of the constant deformation u =dut/dz
above which perturbations of the type

2 ~ ut sin ^j- · sin px. , = 0 at z = 0, i (15)

begin to grow without limit. In fact, when (13) is taken
into account the change in the free energy (per unit
area) associated with the fluctuation (15) is

6F = j Δί dz — BL = -§- {B [ (£) 2 - px.

(16)

The quantity 5F«0, if

, ^ , 2n -, /"Κι 2π! / J \ 1 B / i l l / I / I \ 1/2 1

»>"·=-r V -F—r· ^ = ( Ί Γ ) (ΤΕΤ) ~br) <~-
(17)

Thus, a small but finite uniform stretching of SLC lay-
ers along the ζ axis leads to instability of the macro-
scopically uniform state.

In the absence of external perturbations the layer
structure of the smectic-A phase is relatively stable.
Similar stability is also displayed by SLC with lower
orientational symmetry.

4. THE PROBLEM OF THE FERROELECTRIC STATE
IN LIQUIDS

The study of ferroelectric phase transitions in liquid
crystals has a special aspect. Until recently, liquid

ferroelectrics were unknown. Evidently, the interaction
of the constant electric dipole moments rigidly attached
to the molecules is weaker than the van der Waals
forces of attraction between molecules with a high mo-
lecular weight. Therefore, as the temperature is low-
ered the liquid phase can be transformed to the solid be-
fore the transition to the ferroelectric state becomes
possible. There can be an insignificant dipole moment
per molecule if in the liquid the polar molecules form
groupings or clusters in which the constant dipole mo-
ments are compensated.

The hypothetical ferroelectric phase transitions from
the isotropic liquid are enumerated in the monograph of
Ref. 22 and in Ref. 5. In particular, phase transforma-
tions with the symmetry change if— C«, and Kh~ C^, (the
so-called proper ferroelectrics, in which the spontan-
eous polarization Ρ is the true transition parameter)
are discussed. Since a liquid in which a center of sym-
metry is absent admits the existence in F of the in-
varient (cf. Ref. 8)

Ρ rot P,

a if— C . phase transition should be accompanied by the
appearance of a helical ferroelectric structure, re-
sembling a CLC [cf. (4)]. As a result of a if,- C^,
phase transformation a uniform polar phase could be
formed. However, it has been shown by Khachaturyan23

that an unshorted sample of such a liquid ferroelectric
should break up into domains with broad intermediate
zones similar to smeared-out Bloch walls, forming,
as a whole, a structure similar to a helical ferroelec-
tric. Neither of these two types of ferroelectric liquid
crystals has yet been observed experimentally.

Meyer predicted24 the possibility of the onset of spon-
taneous polarization in special smectic phases—the
so-called chiral SLC of the smectic-C and smectic-//
types, and this has been confirmed experimentally.24"28

It should be noted that measurement of the spontaneous
polarization indicates a small effective dipole moment
Po per molecule: Po~10~3-10~2 debye. This means
that the dipole-dipole interactions certainly cannot be
determining the observed phase-transition temperature
Tc~350cK. In Ref. 24 this phenomenon is associated
with a phase transformation, observed in SLC, that is
accompanied by a lowering of the maximum symmetry
O«, (the A phase) to the symmetry of the crystallo-
graphic class C2 (the polar C phase). Rather than the
polarization, another physical quantity, describing the
orientation of the director in space, can serve as the
transition parameter in this case. Owing to the linear
relationship between this transition parameter and the
polarization, there arises, as a secondary phenomenon,
a macroscopic distribution of the electric dipole mo-
ment.

The effects enumerated become comprehensible if the
structure and properties of the liquid-crystalline phases
are analyzed on the basis of constructing representa-
tions of the corresponding symmetry groups,5 in accor-
dance with the well developed techniques of the theory
of polymorphous phase transformations.6 "7 We note that
for LC with correlations whose point symmetry is
described by one of the 32 crystallographic classes,

491 Sov. Phys. Usp. 21(6), June 1978 S. A. Pikin and V. L. Indenbom 491



the phase transitions are analyzed entirely in analogy
with the treatment in Ref. 7. The various representa-
tions of the initial group correspond to different degrees
of freedom in the transition to a phase with lower sym-
metry. The greatest interest lies in the analysis of the
phase transitions from the high-symmetry smectic
phases (the symmetry groups Dn and C»).5

Since the theory predicts the existence of a whole
series of new phases, we shall need to introduce some
notation for them. We shall retain the usual notation
A, B, C, etc. for the centrosymmetric SLC, and we shall
distinguish the new modifications that appear by means
of extra symbols: an asterisk for noncentrosymmetric
phases, a tilde for modulated structures, a prime in the
case of ordering of the transverse aces of the molecules,
and a bar for polar phases.

5. AN EXAMPLE. PHASE TRANSITIONS FROM A
SMECTIC LIQUID CRYSTAL WITH £>„ SYMMETRY

As the initial phase, we shall consider first a smectic
liquid crystal of the type A*, formed by nonpolar mo-
lecular groupings that exist in one of two possible enan-
tiomorphic forms and possess an axis of infinite order,
oriented at right angles to the layers (Fig. 3a). The
point symmetry of the binary correlator p£ (and the
point symmetry of each layer) corresponds to the group
£>„. This group contains the following generating sym-
metry elements: rotations C(cp) through an arbitrary
angle φ about the longitudinal infinite-order axis C ,
and rotations U2 through an angle ν about the transverse
second-order axes. The representations of the group
D . are given in Table I, which shows the characters of
the representations, the components of the polarization
vector P, director η and unit vector n' perpendicular to
the director that serve as the transition parameters,
and also the groups that arise in the corresponding
phase transformations which are subgroups of the initial
group £>„.

TABLE I.

FIG. 3. Phase transitions in smectics with chiral molecules.
The symmetry of the subunits in one layer is shown schematic-
ally for the initial phase (a) and the phases induced by the rep-
resentations Λ2 ft>) and Ex (c), together with the further change
in the space symmetry group on the formation of a modulated
structure (ώ. The point symmetry of the subunits and the pro-
posed notation for the phases are indicated.

Repre-
sentation

A,

Ε,

Em

Transition parameters

Characters of the
representation

c (Φ) I Us

P,

(P* Py)

(cos mtf, sin m(p)

i
1

2 cos φ

2 cos 2φ
2 cos π φ

1
—1

0

0
0

Subgroup

c,

Dm

Using Table I in accordance with the usual rules we
can analyze the invariant combinations of the transition
parameters, confirm the possibility of a second-order
transition (for this, third-order invariants should be
absent), and ascertain whether the transition occurs to
a uniform or to a spatially modulated phase (in the latter
case, Lifshitz invariants exist). A calculation shows
that second-order transitions are not forbidden any-
where here, and Lifshitz invariants arise for all the
two-dimensional representations.

The one-dimensional representation y^ is the identity
representation and corresponds to the symmetry of the
initial phase. The one-dimensional representation A2

is a vector representation and induces a ferroelectric
phase transition with the appearance of polarization
along the ζ axis. This hypothetical transition is possible
if the molecular groupings are polar and possess dipole
moments along the long axes of the molecules. Order-
ing of the orientation of such subunits would lead to the
appearance of a smectic polar phase with lowering of
the point symmetry of the binary correlations (and the
symmetry of the layers) to C (Fig. 36), such that the
sequence of polar layers would correspond to the "head-
to-tail" rule.22 The two-dimensional representations
Em for m * 2 describe a lowering of the symmetry of the
subunits in which the latter, while losing the C« axis,
i.e., acquiring a certain azimuthal asymmetry, retain
a finite-order axis Cm and transverse second-order
axes. The symmetry of the layers is lowered to £>„. In
this case, in the subunits we can distinguish transverse
axes n' whose orientation becomes ordered (Fig. 4a
and 46). Since, here, invariants of third order in the
transition parameter are absent and Lifshitz invariants
exist, the possible second-order phase transitions
should be accompanied by a helical twisting of the trans-
verse axes of the molecule, of the type in Fig. 4c. In
the case m =2 the strucutre of the smectic-A phase that
arises should be analogous to that of a cholesteric phase
in the sense of the spatial distribution of the orientations
of the unit vector n'.

The two-dimensional representation Ελ is a vector
representation and corresponds to the appearance of
polarization in the plane of the layers. This ferroelec-
tric transition is possible if the subunits have dipole
moments perpendicular to the long axes of the mole-
cules. However, there exist other, more realistic pos-
sibilities of appearance of electric polarization in the
case of loss of stability with respect to the representa-
tion #!· These variants are analyzed below.
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FIG. 4. Symmetry of the chiral subunits in the phases induced
by the representations E^a) and Ee(jb), and the helical twisting
of the short axes n' (c).

6. PSEUDO-PROPER FERROELECTRICS

Since, according to Table I, the components Px and
Py of the polarization vector transform according to the
representation Eu these components can serve formally
as the parameters of the phase transition induced by the
representation £ x . Physically, however, the transition
parameters may turn out to be entirely different quan-
tities.

In particular, it is not difficult to see that the bilinear
combinations η/ιτ and njty of the director components
rij also transform according to the representation Ex.
Here the phase transformation is associated with a tilt
of the molecular axes through a certain polar angle β,
lowering the symmetry of the layers to C2 (see Fig.
3c). Since the molecular groupings in smectic liquid
crystals have not been observed to have appreciable
transverse dipole moments, the tilt effect is the deter-
mining factor and for the transition parameters we
should choose not Pz and Py, but

ξι = nznx, ξ2 = nzny
(18)

We note that, under rotations C(q>) and U2 the compo-
nents Px and Py transform like ξ2 and -ξ,, respectively.
Therefore, there exist an invariant

PA-PAi ( 1 9)

and an analogous invariant with the components of the
polarization vector replaced by components of the elec-
tric-field intensity, and, consequently, the symmetry of
the liquid crystal permits a piezo-effect of the type

Px = Dnznx, Pu^—Dn,nx. (20)

Owing to the piezo-effect (20), electric polarization can
be induced by the spontaneous tilt of the molecules in
the layers.

As is well known,8 in the crystallographic classes D2,
D4, and De there exist Lifshitz invariants

— P.y dz (21)

which, as was pointed out in Refs. 7 and 8, could give
rise to stratification (helicity) of the ferroelectric
structure. Subsequently, in analogy with the investiga-

tions of modulated magnetic substances,29 theoretical30

and experimental31·32 investigations of modulated ferro-
electrics have been carried out over a number of years,
but until recently no reliably established examples of
helical ferroelectric crystals have been found.

In our case, the maximal symmetry group !)„, cor-
responding to the point symmetry of the initial liquid-
crystalline phase A*, also permits the existence of the
variant (21) and the analogous invariant

owing to the relation {E2

1} = A2, which states that the anti-
symmetric square of the two-dimensional vector rep-
resentation £, contains the one-dimensional vector rep-
resentation A^. The presence of the invariant (22) in-
duces a helical twisting of the molecular axes, of the
type in Fig. 3d, i.e., the phase transition from the
smectic phase A* occurs not, in fact, to the C* phase
but to the so-called chiral phase C, which possesses a
helical ferroelectric structure.

According to (20), the ferroelectric and orientational
analyses of the A*—C transition are formally equiva-
lent; however, the above-mentioned absence of an ap-
preciable dipole moment on the subunits and the cor-
responding small value of the coefficient D make the
orientational treatment of the transition preferable.
Since polarization is not the true transition parameter,
the ferroelectric that arises cannot be regarded as
normal. It could be compared with the new classifica-
tion, predicted in Ref. 8, of ferroelectrics in which
polarization cannot be the transition parameter. At
present these ferroelectrics are called improper,33 and
the electric polarization in them is proportional to the
true order parameter raised to a power greater than
unity. Since, in the given case, the polarization is pro-
portional to the transition parameter, the ferroelectric
might be called "pseudo-proper" (see, e.g., Ref. 34).

We note also that the symmetric cube of the represen-
tation El does not contain the identity representation
([.E3] =E3 +3BJ, so that the given phase transformation
can be a second-order transition. By constructing the
invariants associated with the representation Ελ one
can investigate the thermodynamics of the phase trans-
formation A* — C.

7. FERROELECTRIC PHENOMENA IN SMECTIC LIQUID
CRYSTALS

A. The free-energy density of chiral smectic liquid crystals

Besides the piezo-effect of the type (20), an important
piezo-effect of another kind can be found in SLC; polar-
ization appears as a result of bending and twisting of the
director in space, because of the relationship

(23)

which, simultaneously with the invariant

ρ j?ii_ , ρ aU (24)

is permitted in the group D« because of the relation
A2'xE1 =E1. The existence of an analogous piezo-effect
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(the so-called flexo-electric effect) in the nematic phase
was predicted by Meyer35 and has been observed experi-
mentally.36·37 It is not difficult to convince oneself that
in an A*~- C phase transformation the piezo-effect (23)
gives rise to the phenomenon of pseudo-proper ferro-
electricity.

Assuming the degree of order Q of the long axes of the
molecules to be constant, we can write the free-energy
density of the smectic phase with allowance for the in-
variants (19), (22), and (24) in the form

(-§r)2]

(25)

where ^ and ξ2 are defined by (18), a = a'(T-T0),
b>0, K3 is an elastic constant, μ, and μ2 are the piezo-
constants, and χ is the dielectric susceptibility. The
ferroelectric phase is characterized in the given case
by a tilt of the director through an angle θ from the z-
axis and by a helical twist of the director about this
axis. Minimizing the expression (25) with respect to
the polarization Ρ and substituting the values

ξ, = -i- sin (2Θ) cos (qz), & = y sin (2Θ) sin (qz),

we obtain for |0|« 1

- ^ , (26)

The expression (26) has meaning only for sufficiently
small values of the piezo-constant μ2: χμ|«Κ3· For
χμ\ £K3 the last term in (26) becomes negative and the
minimum of the quantity F should correspond to large
values of q~ I"1. But in this case (ql~ 1) the expansion
(26) is incorrect, since it is necessary to take gradient
terms of higher order in q into account. Typical esti-
mates (Kj-lO""6, χ - 1 , μ 2 -10" 4 incgse units3) show
that χμΙ«Κ3.

From (26) it can be seen that below the transition
point Tc, determined by the relation

the appearance of a finite angle of tilt of the molecular
axes leads to the development in the t phase of a
pseudo-proper polarization with amplitude

Ι Ρ I ~ Χ Ι μι - μ·? Ι Θ. (27)

According to (26), the direction of the polarization is
perpendicular to the ζ axis and rotates about this axis
with pitch 2ir/q.

If |μ2"3Ί>4) the effective dipole moment per mole-

4 ) Apparently, this situation Is observed in experiment: cf.
B. I. Ostrovskif, A. Z. Rabinovich, S. A. Sonin, B. A. Stru-
kov, and S. A. Taraskin, in the book of the Fourth Interna-
tional Conference on Ferroelectricity, Leningrad, 1977, Re-
port 4F-5; see also Zh. Eksp. Teor. Fiz. 74, 1748 (1978)
[Sov. Phys. JETP 47, 912 (1978)].

cule in the liquid helical ferroelectric is proportional to
the wave vector q and should amount to a small fraction,
of order q I, of the magnitude of the constant dipole mo-
ment (of the order of a debye) rigidly attached to an in-
dividual molecule. The measure electric polarization
per molecule amounts to hundredths of a debye, which
agrees with the typical value ql~ 10"2 in such an SLC.

We note that, generally speaking, a modulated struc-
ture arises because of the presence in the expression
(25) of two Lifshitz invariants, which correspond to
different physical effects. If the piezo-effects (20) and
(23) play the dominant role, we can neglect the contri-
bution of the invariant (22) and put λ =0. In this case,
from (26) we find

q -̂ jjp-, D~tHi, ΙλΚχΙμ,μϋΙ. (28)

In the opposite case, when the flexo-electric effect (23)
is small, we can put μ2 =0. Now the helical twisting is
determined by a cholesteric effect, characterized by the
quantity λ, and from (26) is follows that

Χ|μι|μ!<|λμ,|<|μ,|Λ:3. (29)

Under the condition

λ + χμ,μ, = 0 (30)

the contributions of the two Lifshitz invariants cancel,
and the existence of a macroscopically uniform ferro-
electric state is possible:

? = 0, ξ, = θ, ξ, = 0, Ρ, = 0, Py = -χμ,θ. (31)

Apparently, this effect can be realized experimentally
by forming LC mixtures whose components are charac-
terized by different relative sizes of the cholesteric and
flexo-electric effects.

It should be noted that in the cholesteric phase and in
smectic phases of the A type, for which the expressions
(19), (20), (23), and (24) are valid, the phenomenon of
pseudo-proper ferroelectricity is impossible, since the
equality n, = 0 or n', = 0, respectively, forbids the exis-
tence of polarization.

B. Change of the pitch of the helical structure

In the approximation considered, the pitch of the helix
is a constant quantity, independent of temperature.
This result can change when thermal fluctuations are
taken into account. Using (25) we can calculate the
mean square fluctuation of the pitch of the helix:

V(K,—χμ!)θ«(7·) · (32

From (32) it can be seen that the variance of q in-
creases like Θ'2 as T— Tc.

It is not difficult to see that allowance for long-wave-
length fluctuations near the phase-transition point Tc

does not give rise to a singularity in the temperature
dependence that appears in the average q(T) when an
anharmonic term of the form

6-9*, (33)

where the sign of the coefficient b' is arbitrary, is in-
cluded in the expression (26). From (26) and (33) it can
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be seen that the inclusion of invariants depending on the
wave vector q leads, in fact, to a corresponding re-
normalization of the coefficients a and b in the effective
Hamiltonian:

(34)
) = Θ + 6Θ(Γ), δθ(Γ)

= 0.

As is well known,6 such a renormalization does not
change the critical indices pertaining to the singular
temperature dependence of the quantity F.

Thus, the singular part of the free energy can be
written in the form

T<TC. (35)

From the extremal condition for the quantity 6F, we
find

- _ a'b'R1 jTc-T)
-0. (36)

(2—a)RK, τ-*τί

We note that, according to (35) and (36), the average
q =qc if 6' =0. As the temperature is lowered the devia-
tion q -qc can become of the order of magnitude of qc

when

Τ Τ .-. ι -fl̂ sgc
1 ' * a'b'FT '

i.e., in the immediate vicinity of the point Tc, if qcl
« 1. The experimentally observed25 temperature be-
havior of the pitch of the helical structure agrees qual-
itatively with the estimates obtained above: the pitch of
the helix changes in a narrow temperature interval (of
roughly a few degrees), q varies linearly near Tc, and
there is no singularity. Since the pitch of the helix can
change substantially near the transition point, accord-
ing to (27) the temperature dependences of the polariza-
tion and angle of tilt of the molecules do not, generally
speaking, coincide. As regards the dependence θ
~ ( T C - T ) e , according to (18) the phase C, like the phase
C can be modeled in practice by a system of planar ro-
tators (the Vaks-Larkin38 model), which has been analy-
zed numerically39 and is characterized by the critical
indices a =0.C2 and /3 =0.33. The latest experimental
data28 state that 0= 0.31, and that the temperature de-
pendences of the quantities θ = |P | are different.

C. Piezo-effect in the A * phase

Above the temperature Tc, in the smectic-A* phase,
the piezo-effect of the type (20) leads to a corresponding
tilt of the director η away from the ζ axis under the ac-
tion of an electric field Ε parallel to the smectic planes:

d*Ex
(37)

A uniform external field Ε gives rise to a uniform tilt
of the director n. In this case the free-energy density
can be written in the form

(38)

where EX=E, Ey = 0, nv = 0, andn y = 0. Minimizing the
expression (38) with respect to the order parameter Θ,
we obtain

(39)

We emphasize that, according to (37) and (39), by virtue
of the inequality lqc« 1 the temperature dependence of
the coefficient d* is close to the Curie law. However,
near the transition point Tc the quantity d* remains
finite:

d' = ^ , r > r c . (40)

The equality (40) is valid if the correlation length rc,
which is proportional to (T - T c)~" 2 in the approxima-
tion under consideration, is greater than the pitch of
the helix: r, .»^" 1 . At temperatures corresponding to
the inequality rc< q'1 the response of the system to an
external perturbation is similar to the response of a
spatially uniform medium (the Curie law). The linear
effect (39) has been observed experimentally.40

D. Behavior of the helical structure in an external field

An experimental proof of the existence of spontaneous
polarization in the C phase is the unwinding of the helix
in an external field Ε as a result of the interaction of
the dipole moments with the electric field.21·28 Putting
ET = 0, EV=E, &ndq=d(p/dz, we write the free-energy
density of the system in the external field in the form
[cf. (26)]

Varying the expression (41) with respect to φ , we obtain
an equation describing the distribution of the angle φ(ζ)
in the external field:

^- + WiE sin φ = 0. (42)

In a weak field Ε«Κ3£θ/χμ1, the solution of Eq. (42)
has the form

(43)

which corresponds to the appearance of a spatially
uniform electric-polarization component

SrX«. Ι-μιλΚχΙμ.ΙμΧίμ.Ι*,,

(44)

At a certain threshold value E=EC of the electric field,
complete unwinding of the helix occurs: φ = jr. From
(41) we find that

(45)

We note that from the experimental data on the pitch
2-n/q of the helix, on the threshold field Ec~6, and on
the uniform polarization component \bV\~E and spon-
taneous polarization |P|~0 in the C-phase, and also
from the data on the piezo-effect θ ~Ε in the A*-phase,
the material constants λ, μ1, μ2, χ, and K3 that appear
in the expressions (26), (27), (39), (44), and (45) can,
in principle, be determined.
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FIG. 5. Phase transitions from a centrosymmetric A phase.
The symmetry of the subunits in one layer is shown schema-
tically for the initial phase (a) and the phases induced by the
representations Eu (b), Eu (c), and E^ (d), together with the
further symmetry change Deh—Cy, induced by the representa-
tions Eu (e) and Eit (fi.

8. GENERAL SCHEME OF THE PHASE TRANSITIONS
BETWEEN LIQUID-CRYSTALLINE PHASES

By analogy with the case considered above, in which
the initial (high-symmetry) phase had Z)«, symmetry,
phase transitions from liquid-crystalline phases with a
different initial symmetry can be investigated. If the
initial phase is a centrosymmetric smectic-A crystal
(Fig. 5a), the point symmetry of the correlations cor-
responds to the group D«,A. The irreducible representa-
tions of this group are found from the irreducible rep-
resentations of the group D«, and are divided into two
classes: the symmetric representations, which possess
the same characters for operations of the first and
second kinds, differing by an inversion, and the anti-
symmetric representations, in which the characters for
operations differing by an inversion have opposite signs.
Modulated structures do not arise in this case, since
Lifshitz invariants do not exist. Therefore, the phen-
omenon of pseudo-proper ferroelectricity is absent.
Amongst the representations of the group D«h we note
the following:

The one-dimensional antisymmetric representation
A2u, which induces a transition to the noncentrosymmet-
ric phase A* considered in Sec. 3;

the two-dimensional symmetric representation Eu,
describing the experimentally observed second-order
phase transition to a C phase, with lowering of the sym-
metry of the layers to C2h (Fig. 5ft);

the two-dimensional symmetric representation E2f,
describing a hypothetical second-order transition to an
A' phase (Fig. 5c), with lowering of the symmetry of
the layers to D2h;

the two-dimensional symmetric representations £ w

with w 5= 3, which induce phase transitions analogous to
the observed phase transformation of an Α-phase to a
B-phase,3 if this is interpreted as the corresponding
lowering of the point symmetry of the subunits (Fig.

Further lowering of the symmetry of the smectic
phases, e.g., for a B-phase with the symmetry group

FIG. 6. General scheme of the possible phase transitions from
a uniaxial smectic-^4 phase (point symmetry group D^J. The
symmetry changes induced by one-dimensional representations
(the straight lines) and two-dimensional representations (the
double lines), including the formation of helical structures (the
wavy lines), are indicated.

Deh, is treated in analogy with Ref. 7 and gives a wealth
of possible transformations. For example, Z)e»—C2A

transitions of two types are possible: a first-order
transition, induced by the representation Eu, to a phase
of the type of the observed smectic E41 (Fig. 5e). and
a second-order transition, induced by the representa-
tion Eu, to a phase of the type of the observed smectic
H42 (Fig. 5/). The general scheme of the possible
types of lowering of the symmetry of the initial phase
with the maximal symmetry group D^h is shown in Fig. 6.
It follows from this scheme that the possibilities for
experimental discovery of liquid-crystalline structures
of different types are still far from exhausted.

9. PHASE DIAGRAMS IN LIQUID CRYSTALS

One type of phase diagram has been described
above (see Fig. 1). We shall discuss another example
of the phase diagrams recently observed experimental-
ly.43 Figure la depicts schematically JV— A, A-~C,
a n d # ~ C phase-transition lines that intersect at one
point T*, corresponding to a certain intermediate con-
centration M* in a liquid-crystalline mixture. To des-
cribe this pattern of phase transitions, it is necessary
to include in the expansion of the free-energy density F

FIG. 7. Phase diagram describing the transformations between
the nematic (N) and smectic (4 andC) modifications of mix-
tures of LC with different concentrations Μ. α) Τ,ΛΑ> and
TKC are lines of second-order phase transitions; *) Tt is a line
of first-order A —•• C (for Mc <Μ<ΜΛ) and Ν —• C (for Μ > Μ0)
phase transitions. T2 and T3 are lines of ΛΓ—A and A—-C
phase transitions, with an intersection point Τ*, Μ*) in the ab-
sence of interaction between the corresponding order param-
eters.
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the invariants that can be formed from the order param-
eters characterizing the A and C phases. The one-di-
mensional crystalline order is described by a function ψ
(and its conjugate function φ*): φ = |i/)|exp[t'(k· r +ω)],
k· r =kz. Assuming the degree of orientational order Q
to be constant in the N, A, and C phases, we shall dis-
tinguish the smectic modifications A and C by the value
of the angle θ formed by the wave vector k and the di-
rector n. In the A phase, the angle θ =0; in the C phase,
θ Φθ. Thus, the A and C phases can be characterized
by the following order parameters:

a) ψ—phase A

b) (n· k)[nxk]<|>—phase C
(46)

We note that the order parameters (18) and (46b) coin-
cide to within an unimportant constant factor in the case
when the crystal structure (k, |ψ|,ω) is fixed and only
the orientation of the director varies.

Putting |0 |« 1, |[nxk]|=fe|0|, andk = const, and using
(46) we write an invariant expression for the free-
energy density F in the following form

(47)

here the coefficients c2, c3, a4, e2, and ν are positive
quantities, depending weakly on the temperature. The
last term in (47) describes the interaction of the order
parameters a) and b) from (46). Physically, the fact
that the coefficient ν is positive means that a uniform
tilt of the molecules in the C phase corresponds, on the
average, to an increase of the attraction between the
molecules in the layers and, correspondingly, to an in-
crease of the amplitude | φ | of the density wave.

The coefficients Oj and a3 depend strongly on the tem-
perature :

α2(Γ) = ο;(Γ-Γ2), β,(Γ) = ο;(Γ-Γ,), <χ;>ο, «;>ο,

where the quantities Τ2 and Τ3 are functions of the con-
centration Μ of the mixture and, at a certain value Af
= M*, are equal: T2(M*) = T3(M*) =T*. We shall assume
that T2>T3 for M<M*.

Minimizing the expression (47) with respect to the
parameters |ψ| and Θ, it is not difficult to analyze the
possible phase transitions in the given system. If Μ
<M*, the second-order phase transitions from the
nematic phase to the smectic-yl phase and then to the
smectic-C phase occur, as depicted in Fig. Ία, at
temperatures T m and TAC determined from the equations

a* (TNA) = 0.
v a 3 ( T A C ) +2c,_a3{TAC) = 0 .

(48)

When Μ =Μ* the points ΤΜ and TAC coincide with T*.

If M>M* the N— A phase transition does not occur,
since in this case the appearance of the density wave is
accompanied by a spontaneous tilt of the director
through an angle θ at the temperature THC:

(49)

Thus, the given second-order phase transition is char-
acterized by a continuous variation of the amplitude |ψ|
of the density wave that arises along the ζ axis, which
makes a finite angle with the orientation of the director
n. We note that the quantity 6(TWC) grows with increase
of the concentration Μ, and Θ(Τ*) =0.

The expressions (49) have meaning only for sufficient-
ly large values of the parameters a4> lojl and c2>v2/4c3.
The role of the mixed invariant FAC in (47) becomes ex-
tremely important if the parameter c = c 2-(y 2/4c 3)<0.
We note that the quantity δ is the renormalized coeffi-
cient c2 in FA, which arises after minimization of the
free energy (47) with respect to the angle θ under the
condition |<5|c3» a4e2. For negative values of the coef-
ficient 5, which depends on the concentration M, the
character of the N~ C and .A— C phase transformations
changes: they become first-order transitions.

If the quantity δ changes sign when M>M*, then, on
the line Tsc(№) determined by (49), there exists a
critical point TNC(MC), where the value Μ ~MC satis-
fies, in order of magnitude, the relation c 3 | i(M c) |
~ a4e2. A different situation arises if δ<0 when M<M*.
We shall discuss this case in more detail.

We shall assume that c(M) « 0 for Μ »MC, and that

c» \7(M*) | c3
~c (Mc) = 0, M*. (50)

1c
Mc--Μ· (Μ

Μ —Μ*
Μ*

In this case a critical point Tc arises on the line of
A— C phase transitions; for M<MC the line of second-
order phase transitions is determined by Eq. (48), while
for M>MC the A— C phase transformation occurs, as
a first-order transition, at the temperature

(51)

According to (48) and (51), the phase-transition lines
TSA(M) and Tt<JM) intersect at a point (Mo, To): M*
-Μα~ΐ2. For M>M0, in the approximation under con-
sideration, the formula (51) defines a line of first-order
N~~C phase transitions. The phase diagram described
is depicted in Fig. 1b.

The discontinuities in the density |ψ| and tilt angle θ
on the first-order phase-transition line Tt(M) are given,
according to (47), (59), and (51), by the expressions

ο, M>M0, T>Tt,

(52)
2 _ ν ΙΊΊ' — °3 for r < r , .

Since |θ3(Τ ()|« ν\φ\2 for M>M0, on the line otN~C
phase transitions, according to (52), the quantity Θ2 is
approximately equal to Θ2 = v/2c3, and with increase of
Μ grows linearly with v{M).

We note that the experimental data of Ref. 43 evidently
correspond to a situation with MC<M*. A detailed study
of the thermodynamics of the phase transitions in the
vicinity of the points (Mc, Tc) and (Mos To) would be of
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great interest In particular, the existence of first-
order A~C phase transitions in the concentration
range MC<M<MO, together with the possibility of
second-order ΛΓ—C transitions for M*<M<MC, has
"fundamental significance.

10. SMECTIC-5 AND SMECTIC-// PHASES

A. The A *-*• Β phase transition

We mentioned above that the observed phase transi-
tions from a smectic-^4 phase to a smectic-B phase can
be regarded as transformations induced by symmetric
representations E w (with m » 3) of the group Dmle In
such phase transformations the point symmetry of the
sub units undergoes a lowering associated with a well
defined ordering of the orientation of the short axes of
the molecules, corresponding to the acquisition by the
molecular groupings of a certain azimuthal asymmetry
(see Fig. 5d). The correlation function p^ir^), which
can be determined from x-ray data, should acquire the
corresponding asymmetry at short distances. Treating
the function φ Α = φ as the order parameter in the A
phase, on the basis of the table of irreducible represen-
tations of the group £)«,λ (see Table I) we choose as the
order parameter in the Β phase the functions

!>8' = |1>|.Slexp[i(ta + 6q>)], ψί," = |ψ|.5θχρ[ί(&*-6φ)], (53)

where the quantity S is a measure of the orientational
order in a £ phase with point symmetry group D6h.

Using the functions (53) it is not difficult to write for
the free-energy density F an invariant expression ana-
logous to the formula (47) with a4=0, in which we must
substitute the quantity S for Θ.

It follows from experiment that A— Β phase trans-
formations are first-order transitions, but in a number
of substances these transitions are accompanied by
comparatively small entropy and volume discontinuities:
the latter have the same order of magnitude as in phase
transitions from the isotropic to the nematic phase.44

With the assumption that v2>4c2c3, i.e., for sufficiently
strong coupling of the positional and orientational order
parameters, such behavior of a system in the vicinity
of a line of A— B phase transitions is described by
formulas analogous to (51) and (52).

It is necessary to note that there exist hypotheses45"48

according to which a smectic-.B phase can be repre-.
sented in the form of a set of independent or weakly
correlated hard planes, i.e., the A— B phase transition
is treated as a two-dimensional solidification with the
development of long-range positional order, or as a
transformation to a plastic crystal. X-ray structural
analysis49"52 and other experimental data53"57 do not give
any clear indication of the existence of long-range order
in the smectic planes, while at the same time, they do
indicate the presence of short-range order in the dispo-
sition of the molecules. The size of the discontinuities
in the first thermodynamic derivatives can correspond
both to the idea of a two-dimensional solidification and
to that of an orientational phase transition. There are
also experimental data58 indicating the presence in the
Β phase of a special shear vibrational mode (hyper-

sound), which admits an interpretation on the basis of
the concept of subunits whose angle φ of orientation os-
cillates as in an amorphous solid, if the period of the
action of the external forces is small compared with the
corresponding Maxwell relaxation time.59

B. Smectic phases with low point symmetry

McMillian47·48 has made an attempt to interpret the
structure of low-symmetry smectic phases when the
presence of ferroelectric or antiferroelectric ordering
of the constant dipole moments in the smectic layers
is assumed. These conclusions do not yet have experi-
mental confirmation57·60 and come up against the above-
mentioned problem of the existence of proper ferro-
electricity and antiferroelectricity in a liquid. We
emphasize that, in the framework of the phenomenologi-
cal theory described in Sec. 8, the structure of the
smectic phases possessing the same physical properties
as the observed mesophases by no means requires the
existence of spontaneous polarization with long-range
order in the arrangement of the dipole moments of the
molecules.

At the same time, phase transitions accompanied by
the appearance of electric quadrupole moments in the
subunits or molecular clusters are permissible in SLC.
The phase transitions with lowering of the symmetry of
the subunits that were discussed in Sec. 8 can be inter-
preted as the result of the appearance of the correspond-
ing quadrupoles and multipoles. In this case the smec-
tic-B phases should possess a well defined electric
structure in which the point symmetry of the layer cor-
responds to the appropriate spontaneous quadrupole mo-
ment. For example, by assigning to the figure in Fig.
5d a structure of the type depicted in Fig. 8a we see
that such a B phase has the lower symmetry D3n and is
induced by the irreducible representation E3u of the
group D«,v

The phase transition from the smectic-C phase to the
so-called Β phase with tilted molecules49·61 can serve as
another example. From the point of view of the change
in the point symmetry, such a phase transformation can
be interpreted as a C 2 4 - C, transition induced by the
one-dimensional representation B, with the formation of
an electric structure of the type depicted in Fig. 86.
We note that the above-mentioned smectic phase of the
Η type (see Fig. 5d) can also possess the lower sym-
metry C|, and coincides essentially with the above vari-
ant of the Β phase.

FIG. 8. Symmetry of the subunits in one layer for the low-
symmetry smectic phases induced by the representations E3u

of the group D^h (a), Bt of the group C2h (b), and Β of the
group C2 (c). As above, we use the notation adopted in Ref. 72
for the irreducible representations.
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Finally, there recently appeared a report6 2 of the dis-
covery of a chiral smectic-S phase with tilted mole-
cules, which might also be called the chiral Η phase.
This phase arises experimentally from a chiral C phase,
and this can be interpreted as a phase transition with a
change in the point symmetry of the smectic layer from
C2 to C r The spatial structure of this phase should con-
sist of shapes of the type depicted in Fig. 86, twisted
helically about the normal to the layers. Unfortunately,
at the present time there are practically no x-ray struc-
ture data that would permit us to establish the symme-
try groups of the smectic-B and smectic-H phases and
the more complicated modifications.

11. CHARACTER OF THE PHASE TRANSITIONS IN
LIQUID CRYSTALS

Depending on the type of irreducible representation of
the point or space symmetry group and on the relative
sizes of the invariants, the corresponding phase trans-
formation can be either a second order or a first order
transition. First-order phase transitions can also occur
in the absence of third-order invariants if a fourth-or-
der invariant is negative. When the system is described
by several parameters interacting with each other, in
practice the coefficient of an invariant of fourth order
in the corresponding parameter is renormalized, and
this coefficient becomes negative if the interaction is
sufficiently large.

On the other hand, the presence of third-order in-
variants does not always give rise to a first-order
transition, if the phase transformation is described by
a multi-component order parameter. In this case a
second-order phase transition is possible provided that
the principal components, responsible for the trans-
formation, appear only to an even power in the corres-
ponding invariants while the remaining components,
regarded as a perturbation, form invariants of odd
order. Such a situation is possible, e.g., in CLC when
the appearance of nonuniaxiality is taken into account.63

At sufficiently large values of the phenomenological
parameter proportional to the wave vector q of the
helix, the principal components, describing the phase
transition from the isotropic liquid to the cholesteric
phase, become the quantities

S sin [2<p (»)J, 5 co? [2φ {ζ)],

where the transition parameter S is the degree of orien-
tation of the transverse molecular axes along the direc-
tion n'(z) (see Sec. 5 and Table I). The tensor Qtj does
not now have the simple form (2). The presence of the
invariant QijQjpQpi does not rule out the existence of a
second-order transition, since the components indica-
ted can appear in invariant expressions as even powers
only, while the orientational order of type (2) appears
only as a perturbation.

There exist, however, physical reasons why phase
transformations classified as second-order transitions
in the framework of a given phenomenological theory
turn out, in reality, to be first-order (although close to
second-order) transitions. In all such cases the essen-
tial factor turns out to be the presence of additional in-
teraction between the generalized coordinates of the

system undergoing the phase transition64 (the thermo-
dynamic average value of these coordinates is the tran-
sition parameter in the system). Such degrees of free-
dom include uniform and nonuniform elastic deforma-
tions in SLC, and also perturbations of the orientation
of the molecules in LC.

A. The role of orientational fluctuations

The possibi l i ty of a f i r s t - o r d e r ΛΓ— Λ phase t rans i t ion
as a consequence of t h e r m a l fluctuations of the d i r e c t o r
orientat ion 5n(r) was pointed out by Halperin, Lubensky,
and Ma. 6 5 Allowance for s m a l l deviations of the d i rector
η from the ζ axis i s equivalent to changing the phase of
the bas i s functions ψ = |ψ|βχρ(±ί&2) by an amount ±fe(6nx · χ
+ 6wy· y). Since the quantity F should not change under
a rota t ion of the s y s t e m as a whole, the expansion of F
with gradient t e r m s taken into account has the form

(54)

Expanding the fluctuating quantity 5n(r) in a Fourier
series in a volume V,

δη = 2 δηρί·<", δη _ ρ = δη£,
ρ

we obtain using (54)

<55>

From (55) there follows an important qualitative result:
for K1=K2=K3=Kv/e obtain

<(6n)*>" = cons t- 1 - ; _ \ ~T~' (56)

Thus, according to (54) and (56), because of orienta-
tional fluctuations, in the expansion of F in powers of
|ψ| there appears a term of third order in |ψ| with a
negative coefficient:

ca>0. (57)

The expression (57) corresponds, as is well known, to
a first-order phase transition at the point

with temperature hysteresis of order δΤ ~ b\

B. The role of compressibility and impurities

The compressibility of the lattice in the smectic
phases can also give rise to a weak first-order phase
transition. Since the shear modulus in a one-dimen-
sional lattice is equal to zero, the isotropic model64

does not lead to the effect under consideration in such
a lattice. However, allowance for the small anisotropy
of the elastic properties should change the sign of the
effective interaction between the fluctuational oscilla-
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tions, as a result of which a first-order transition will
occur.66

The experimental data67 show that the temperature hys-
teresis, if it exists, is extremely small: δΓ5ΐΟ"3°Κ,
i.e., the effects mentioned are relatively weak. At the
same time, a sharp difference is observed between
the temperature dependence of the order parameter \φ \
and the behavior of the thermodynamic characteristics
near the point Tm as predicted by de Gennes11 on the
basis of the analogy between the ΛΓ— A phase trans-
formation and the phase transition to the superfluid
state in 4He. The experimental dependence |ψ(Τ)| is
found to be appreciably weaker.67 We note that this
weakening of the temperature dependences could be due
to the presence in the LC of various impurities; it is
well known84 that, at a sufficient concentration, these
change the character of a transition from first to second
order and damp the large-scale fluctuations in the
system, thereby weakening the singularities of the
thermodynamic quantities. Analogous experimental re-
sults68 and theoretical conclusions69"71 also exist in the
case of phase transitions from a cholesteric phase to a
smectic-A* phase. It may be thought that the role of
compressibility and defects is especially important in
the phase transitions between the different smectic
phases, e.g., A—-B, C — Η, Β—Η, andC — ff.

12. CONCLUSION

The attempt undertaken in this review to give a unified
description of the thermodynamic states of liquid crys-
tals not only demonstrates the possibility of a group-
theoretical analysis of the structure and symmetry of
LC, but also shows at the same time the difficulties
that arise. In place of the density function, which is
sufficient for the description of ordinary crystals, in
the case of LC we must use many-particle correlators,
and this complicates the identification of the physically
independent parameters of the phase transformations.
The actual set of symmetry groups necessary for the
description of LC remains unclear up to now, since the
structures of a number of smectic modifications are not
experimentally established. The question of the exis-
tence of two-dimensional crystalline layers remains
open.

In the review, examples have been given of the forma-
tion of spatially nonuniform structures in phase trans-
formations and as the result of the application of an ex-
ternal stress. In both cases the modulations of the
structure directly determined the most important physi-
cal properties of the LC. These examples are far from
excompassing all the types of spatial nonuniformities in
LC. Experimentally one observes diverse textures,
specific structural defects, and complicated domain
structures, which by no means always admit a unique
interpretation.

Amongst the phase transformations considered in the
review, transformations controllable by external fields
are of special interest. Interesting prospects arise in
connection with the discovery of liquid ferroelectrics.
It follows from the estimates given in the review that it
is theoretically possible to obtain not only helical, but

also macroscopically uniform ferroelectric LC. It may
be hoped that the group-theoretical approach to the des-
cription of the strucutre, symmetry, and properties of
LC will turn out to be just as fruitful as in the case of
ordinary crystals.

Notes added in proof'. To Sec. 7b. Phenomenological-
ly, the temperature dependence of the pitch of the helix
in the C phase is described by the expression q=qc

+ q'e* +q"0'i, where q <0 and q">0, which follows from
(26) when anharmonic corrections are taken into ac-
count.

To Sec. 10b. The possibility of first-order phase
transitions from a C phase with preservation of the
point symmetry C2H, as a result of which molecular
clusters of a different type are formed, is also permit-
ted. In C — Η transitions the corresponding clusters
order orientationally, while in C — F transitions such
ordering is absent. Further lowering of the symmetry
from C2h to C, corresponds to the formation of a G
phase50: F - G, H- G, and also £ - G; in this case the
subunits depicted in Figs. 86 and 8c correspond to
the phases G (6) and G* (c).
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