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1. INTRODUCTION

Created about half a century ago, quantum mechanics
immediately sprouted two mighty offshoots. One of
them—quantum many-body theory—became the theoret-
ical foundation of spectroscopy, quantum chemistry,
solid-state physics, nuclear physics, and other sci-
ences with a direct practical importance for humanity.
The other—quantum field theory—provided the basis of
the physics of elementary particles, by opening up ways
of describing the fundamental regularities of the struc-
ture of matter. During their time of coexistence, these
two very important physical theories have had a signifi-
cant influence on one another, and this mutual influence
has become particularly clear in recent years, becom-
ing one of the sources of current progress in elemen-
tary-particle physics.

From the thirties to the fifties, the approach based on
quantum field theory reigned undisputed in the theory of
elementary particles. In this way, theory achieved a
number of outstanding sucesses; the prediction of anti-
particles and processes of production and annihilation
of pairs, the prediction of mesons, the elimination of
divergences in quantum electrodynamics, the creation
of the theory of radiative effects, and so forth.

Despite these successes, at the end of the fifties seri-
ous doubts arose as to the very possibility of a quan-
tum-field description of elementary particles; these
doubts arose because of a number of difficulties then
encountered by the theory. We may include here the
impossibility of eliminating divergences for certain
classes of interactions (including the weak interactions),
arguments suggesting the vanishing of the interaction
itself between particles ("zero charge") in all the then
known field-theory models, and the difficulties of de-
scribing the strong interaction outside the framework of
perturbation theory.

Simultaneously, a number of old "confounded" prob-
lems that had as a rule been forgotten during the peri-
ods of successful development of the theory resurfaced,
strengthening doubts in the applicability of the ordinary
quantum-field approach. These questions refer primar-
ily to the problem of measurements in relativistic quan-

tum physics: Is it meaningful to speak of the develop-
ment of a process of interaction of particles in time or
is it only permissible to consider the transition from an
initial to a final state of the system; is it permissible
to assume that the interaction between particles is a
point interaction (local) or is this an unjustified ideal-
ization, etc.?

It therefore seemed that one must take seriously an
aphorism propounded in those years: "The Hamiltonian
method is dead but we must bury the corpse with all the
respect it deserves." And, indeed, the successes in
elementary-particle theory in the following sixties were
almost entirely associated with directions far from
quantum field theory—the group, dispersion, and axio-
matic approaches, the phenomenological Regge theory,
and so forth.

However, in recent years—to the delighted surprise
of many theoreticians of the older generation—we have
witnessed a genuine revival of quantum-field directions
in the theory of elementary particles. At the same time,
the theory appears in a new garb, less formalized and
with evermore direct physical content. The gulf be-
tween elementary-particle theory and other branches
of theoretical physics, still keenly felt until very re-
cently, has now closed significantly, giving way to mu-
tual understanding and mutual enrichment.2)

One of the most significant achievements to be reck-
oned to the revived quantum-field approach is the cre-
ation of models in which the weak, electromagnetic,
and (in a preliminary form) strong interactions of the
elementary particles are treated in a unified manner.
In the framework of these models, the divergences of
the weak interaction, the bugbear of earlier renormal-
ization procedures, has disappeared. The theory of the
weak interaction has now achieved the standing of quan-
tum electrodynamics in the sense that one can now cal-
culate any effect of higher order in the interaction. At
a more practical level, the unified theories of the par-
ticles predicted neutral currents of the weak interac-
tion, these leading to elastic processes already in the
lowest order in the weak interaction. In addition, the

1 ' Extended text of report at the seminar of the Department of
Theoretical Physics at the P. N. Lebedev Physics Institute
in April 1977 dedicated to the memory of I. E. Tamm.

2 ' It is sufficient to point out that a lecture on the modern theo-
ry of elementary particles to an audience of solid-state theo-
reticians now stimulates a lively interested reaction, from
which the lecturer himself can benefit, rather than the polite
silence of earlier years.
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unified theories have strengthened the conjecture that
there exists a new property of elementary particles;
charm. Both charm and neutral currents were dis-
covered after their prediction.

We see that quantum field theory, far from dying,
"slept" like the Sleeping Beauty in a state of lethargy.
But of course something more than the kiss of Prince
Charming was needed to reawaken her. Many factors
combined, among which one of the most important was
the adoption of physical ideas taken from many-body
theory and, in particular, the theory of superconduc-
tivity.

It bears repeating that the phenomenon of supercon-
ductivity is not merely one among numerous effects in
solid-state physics but is, without exaggeration, the
most striking physical phenomenon in which quantum
laws are manifested on a macroscopic scale. Accord-
ingly, the theory of superconductivity is not merely just
another model in solid-state physics but much more it
is a fundamental physical theory based on deep and very
general ideas, which have already found application in
other branches of solid-state theory, in nuclear theory,
and in theoretical astrophysics. It was not for nothing
that we had to wait several decades for the microscopic
theory of superconductivity.

In this paper, an attempt is made to sketch the gener-
al picture of the mutual influences of many-body theory
(in particular, the theory of superconductivity) and ele-
mentary-particle theory during the last quarter of a
century. The main attention is devoted to that line of
mutual contact of these theories which leads directly to
the modern unified theories of elementary particles.
Other important lines relating, for example, to the the-
ory of phase transition near a critical point, will hard-
ly be touched. On the other hand, it has been the inten-
tion that the material of the paper, which straddles the
junction between many-body theory and quantum field
theory, should be accessible to specialists in both fields.
For this reason, the exposition does not contain many
significant details and is presented at a semiqualitative
level, having as its main aim a general representation
of the essence of the ideas and of their evolution. Fur-
ther details about the questions discussed can be found
in the cited literature.

2. QUANTUM-FIELD METHODS IN MANY-
BODY THEORY

The successes of radio spectroscopy in the immediate
post-war years led to the experimental discovery of ra-
diative effects (effects of higher order in the interaction
of electrons and photons) in quantum electrodynamics—
the Lamb shift of atomic levels and the anomalous mag-
netic moment of the electron. In the same years, the
first accelerators capable of producing elementary par-
ticles (pions, etc.) were commissioned.

All this stimulated a powerful development of the
formalism of relativistic quantum field theory. The
"old" formalism, which copied nonrelativistic quantum
mechanics in its basis, was found to be ill suited to the

calculation of effects of higher order and for carrying
through the program of renormalization, i.e., the ex-
traction of the physically meaningful part of infinite ex-
pressions.

The methodological progress achieved in elementary-
particle theory by the middle of the fifties was enorm-
ous (see the collections of original papers1 and courses
of quantum-field theory2). Physicists—both the theoret-
icians and the experimentalists—were endowed with the
simple, perspicuous, and capacious Feynmandiagram.3'
The calculation of effects of higher order was reduced
to the almost completely automatic application of simple
and unified rules. In his classical work,3 Weisskopf had
needed tens of pages to calculate the electron self-ener-
gy in the lowest order of perturbation theory (and more-
over the result appeared only as the outcome of the al-
most complete compensation of many terms—longitud-
inal, transverse, magnetic, and other energies), but
now the calculation of the same quantity can be given to
a student in the form of a problem at the blackboard.
A number of " exact" methods was also proposed; these
made it possible to go beyond the framework of pertur-
bation theory and to carry out investigations of a gen-
eral nature—the methods of Green's functions, of func-
tional integrals, of the renormalization group, etc.

These successes did not long remain restricted to the
theory of elementary particles. From the middle of the
fifties, the new methods of quantum field theory began
to be applied to many-body theory. Not many years
were needed for the creation of a flexible, economic,
and effective formalism suitable for the solution of a
large number of problems of macroscopic and micro-
scopic physics (see, for example, Refs. 4 and 5).

It should be pointed out that the very possibility of
using the technique of quantum field theory is based on
the use in many-body theory of the method of second
quantization, which was initially proposed in many-body
theory but then was used for many years only in ele-
mentary-particle theory. In the framework of this
method, the differences between a system consisting of
a fixed number of nonrelativistic particles and a rela-
tivistic quantized field become unimportant. The meth-
od of second quantization deals directly, not with par-
ticles, but with a quantized field, which creates or an-
nihilates particles at a given point of space; the parti-
cles themselves appear as the quanta of this field. For
this reason, a system of many particles and a quantized
field of elementary particles are described in the same
way. This similarity goes very far: For example, the
important process of excitation of a Fermi system
(transition of a particle from an occupied level to a
higher vacant level) takes the form of the process of
creation of a pair—a particle and a "hole" in the Fermi
distribution; the opposite process corresponds to an-
nihilation of this pair.

3) A forerunner of Feynman diagrams (In particular, the im-
portant condition of backward motion in time of an antiparti-
cle) had appeared already in the pre-war papers of Zisman.6
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As in elementary-particle theory, the quantum-field
methods to a considerable extent simplified and auto-
mated the calculations of effects of higher order in dyn-
amical, statistical, and kinetic problems relating to
many-particle systems. In the "old " many-body theory,
many approximate methods were used (Hartree-Fock,
Debye- Hiickel, and many others), each of which was
justified in its own way and had an insufficiently clear
region of applicability. These methods now obtained a
unified basis and were seen as different approximations
to the exact field equations corresponding to small val-
ues of appropriate dimensionless parameters. It then
became possible to improve these methods and to ex-
tend their applicability.

The "exact" methods already mentioned, in particu-
lar, the method of Green's functions, were also widely
used in many-body theory. These functions contain ex-
tensive and many-sided information about a many-body
system relating both to the internal properties of the
system (probability distributions of physical quantities,
energy spectrum) and also to the results of the influence
on the system of various external fectors (scattering
cross sections, excitation probabilities, etc.).

It is especially important that Green's functions cor-
respond directly to the important concept of a quasi-
particle, whose introduction led to numerous achieve-
ments in many-body theory. Because of the interaction
between particles, it is possible to speak not of the
states of individual particles but only of the state of the
system as a whole. However, if certain conditions are
satisfied, it is possible to go over to the language of
certain collective formations, or quasiparticles, which
behave to a considerable extent in an independent man-
ner. They have the same quantum numbers as the or-
iginal particles, but their spectrum (the connection be-
tween the energy and the momentum) depends on the law
of interaction, the temperature, etc.

The quasiparticles also include collective formations
with different quantum numbers, these representing,
so to speak, bound states of two, three, etc, "ordinary"
quasiparticles; for example, an exciton in a solid can
be regarded as a bound state of an electron and a "hole."
If one knows what the quasiparticles are in a system
and also their spectrum—and it is just this information
that is contained in the Green's functions—one can ob-
tain a fairly complete description of a many-body sys-
tem (for more detail, see Refs. 4 and 5).

As a result of the penetration of quantum-field meth-
ods, not only the computational formalism but also the
system of concepts and the language of many-body the-
ory were significantly improved. This all led to impor-
tant progress in many branches of the theory. The most
perspicuous example of achievements in recent years is
provided by the successes in the solution of the problem
of phase transitions near a critical point (see Ref. 7).

What we have said also applies in full measure to
superconductivity theory. Quantum-field methods
played an important role in the creation of the mic-
roscopic theory of superconductivity (the methods of
Bogolyubov and Gor'kov and Nambu), especially in its

further development.4'8 Today, it is hard to find a
paper or a monograph in this subject in which one does
not encounter Feynman diagrams, Green's functions,
etc.

Quantum-field methods were a loan that many-body
theory received from elementary-particle theory.
Later, we shall consider how many-body theory is re-
paying this debt. And the debt is being repaid with, one
might venture to say, a more valuable currency—new
physical ideas.

3. HEISENBERG'S UNIFIED THEORY OF
MATTER

We have already said that at the end of the fifties
doubts arose as to the possibility of a quantum-field
description of elementary particles. Many people who
considered at that time the fate of the theory of elemen-
tary particles came to wonder whether the difficulties
were not to be sought in our attempt to construct inde-
pendent theories of individual types of interactions
(electromagnetic, strong, etc.) instead of a unified the-
ory combining all particles and their interactions. In
other words, they hoped for a mutual compensation of
the difficulties inherent in the theories of the individual
types of interaction when they are combined in the
framework of an all embracing particle theory.

This is probably one of the reasons for the enthusiasm
with which a program for constructing the unified theory
of matter proposed at that time by Heisenberg (see Ref.
9) was greeted. He set himself the task of embodying
an unequal, "aristocratic" principle in the structure of
matter—the introduction of certain primary particles
from which all the remaining particles are to be ob-
tained as bound states of different numbers of the pri-
mary particles. In other words, all the elementary
particles in nature should appear as quasiparticles in
the system of interacting primary particles (see Sec. 2).

The primary particles must have spin \ (in order to
obtain the complete set of spins 0, | , 1...) and they must
interact with one another (in order to produce bound
states of them). Therefore, the fundamental equation of
Heisenberg's theory that must be satisfied by the field
of the primary particles has the form of a nonlinear
equation for a spinor field ψ. Starting from the ordin-
ary Dirac equation4'

(iyd - m) ψ = 0 (1)

(γ are Dirac matrices, m is the mass of the particle,
and θ is the four-dimensional gradient), we give Heis-
enberg's equation in its simplest form

liyd - 0, (2)

where λ is a coupling constant.

It must be emphasized particularly that Eq. (2) con-
tains no term with the mass of the particle [see (1)].
The result is not only a simplicity of the equation. The
point is that Eq. (2), as the fundamental equation of
nature, must have the highest possible symmetry (see

4'We use a system of units In which h - c-1.
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also Sec. 8 below). But a term with a mass would des-
troy the invariance of the equation under numerous
transformations (the transformation φ—γ5φ, where y5

is the fifth Dirac matrix, the scale transformation
ΛΓ—θχ, ψ—θ'1/2φ, where θ is some number, and others).
Anticipating, we may point out that it by no means fol-
lows from this that the primary particles whose field
satisfies Eq. (2) must necessarily be massless; this
question is specially discussed in Sec. 8.

The implementation of Heisenberg's program en-
countered great difficulties associated above all with
the impossibility of eliminating the divergences inherent
in Eq. (2) by means of the ordinary method of renormal-
ization. Therefore, despite individual successes (for
example, the derivation of a value near to the experi-
mental value for the fine structure constant), Heisen-
berg's program was not realized (however, see Sec. 8
below). Nevertheless, it had considerable conceptual
influence on the subsequent development of the theory
of elementary particles and served as one of the links
in the chain of events that led to the current progress
in this theory. One of the most important ideas of this
kind relates to the problem of symmetry.

From the very start, Heisenberg encountered the fol-
lowing difficulty. Everything would have been compar-
atively simple if all types of interaction of the elemen-
tary particles were to exhibit the same degree of sym-
metry. It would then be necessary for the fundamental
equation of the theory to satisfy this symmetry; simul-
taneously, the same symmetry would be manifested in
the interaction of all quasiparticles. But it is well
known that the interactions of elementary particles are
characterized by different degrees of symmetry; on the
transition from the strong interaction to the electromag-
netic one the isotopic symmetry is lost, on the subse-
quent transition to the weak interaction the law of con-
servation of parity ceases to work, and so forth. Heis-
enberg clearly understood that it would be inconceivable
to invent some fairly simple fundamental equation that
would automatically exhibit different degrees of symme-
try in the interactions of quasiparticles of different
types.

But not for nothing was Heisenberg the creator of the
theory of ferromagnetism and made (admittedly, un-
successful) attempts to create a theory of superconduc-
tivity. It is just these theories that suggested the way
out of his difficulty, which was to use the idea of spon-
taneous symmetry breaking, which had already been
developed long ago in the branches of many-body theory,
in which one studies ordered states, phase transitions,
etc.

We must now make a rather long detour into the region
of many-body theory and consider with the degree of de-
tail required for what follows the general theory of
spontaneous symmetry breaking and its concrete real-
ization in superconductivity theory. We shall return to
Heisenberg's theory once more in Sec. 8.

4. SPONTANEOUS SYMMETRY BREAKING

Many-body theory considers a particular class of or-

dered states of many-particle systems in which there
arises a certain macroscopic quantity (the order param-
eter) that lowers the symmetry of such states. The
simplest example of an ordered state is a ferromagnet;
its total magnetic moment, which plays the role of the
order parameter, distinguishes a definite direction in
space, and therefore destroys the rotational symmetry.
Another example is the crystalline state of a solid, in
which the order parameter is the deviation of the density
of the ions forming the crystal lattice from a homogen-
eous distribution. In this case, because of the disting-
uished position in space of the lattice sites, the trans-
lational (and also rotational) symmetry of the system
is lost. The example of a superconductor, which is
more important for what follows but also more compli-
cated, will be considered separately in Sec. 7.

It is important that the symmetry of the ordered state
is lower than the symmetry of the Hamiltonian of the
system. Thus, in the simplest case, the microscopic
equations in the theory of ferromagnetism and the the-
ory of crystals are completely homogeneous and iso-
tropic. Therefore the ordered states correspond to so-
lutions of the dynamical equations that are less symme-
tric than the equations themselves.

That this is possible can be seen by the following ele-
mentary example. Consider Newton's equation for a
free material point: x = 0; it is obviously translationally
and rotationally invariant. However, its solution χ =XQ
+νί distinguishes both a definite point in space (x,,) and a
definite direction (n=v/v). Here, to one and the same
energy of the particle there corresponds a complete set
of possible motions differeing by the values of x,, and n.
Taken as a whole, this set is symmetric with respect to
translations and rotations, but the initial conditions
"select" from the set a motion with distinguished values
of x0 and n.

In the case of an ordered state of a many-particle
system, we are dealing with degeneracy of the state of
the system (at zero temperature, the ground state, or
vacuum), which is one of a complete set of states of the
same energy. Taken as a whole, this set has the com-
plete symmetry of the Hamiltonian, but under a given
symmetry transformation the states of this set do not
remain unchanged but go over into other states of the
same set. It is under conditions of degeneracy that a
system is unstable and anomalously sensitive to small
external perturbations that lift the degeneracy.5> There-
fore, there exists such a perturbation that, despite its
smallness, leads to very appreciable consequences—it
distinguishes and realizes just one of the states of the
complete set, and this state has lower symmetry than
the Hamiltonian itself.

In the case of an isotropic ferromagnet, this set

5 'This can be seen formally by using perturbation theory to
consider the response of the system to a small perturbation:
to transitions within the indicated set there correspond small
energy denominators whose magnitude is determined by the
level splitting, i.e., by a quantity which is of the order of the
perturbation itself.
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combines states with all possible directions of the mag-
netic moment: A freely suspended ferromagnet can be
given any direction without energy having to be expended
on rotation, and this reflects the degeneracy of the
state of the system. A small external magnetic field
lifts the degeneracy and realizes a state of the ferro-
magnet in which the direction of the magnetic moment
coincides with the field direction. In the case of a crys-
tal, its states corresponding to all possible positions of
the lattice in space are combined in a set. A weak ex-
ternal electric field lifts the degeneracy and fixes the
position of the lattice.

We therefore arrive at a picture of spontaneous sym-
metry breaking that arises, not because the dynamics
of the system is asymmetric, and not because the mac-
roscopic external influences are asymmetric, but be-
cause only one of the set of states of equal energy (which
as a whole is symmetric) is realized.

At first glance, the phenomenon of spontaneous sym-
metry breaking contradicts P. Curie's general law:
"The symmetry of an effect is not lower than the sym-
metry of its cause." But if we regard the spontaneous
symmetry breaking itself as the effect, then the cause
is not only the symmetric dynamics but also the small
perturbation that distinguishes one of the states of the
complete set. No matter how small the perturbation in
the energy sense, it plays the role of a "trigger" and
has appreciable consequences.

5. PHENOMENOLOGY OF ORDERED STATES
AND PHASE TRANSITIONS

Macroscopic (and strong) external influences can
change the degree of ordering of a many-body system.
Some of these factors directly influence the order pa-
rameter, changing its magnitude in both directions,
i.e., increasing or decreasing this parameter in the
ordered state, and they also lead to the appearance of
the order parameter in a state of the system that would
be disordered without the external influence (induced
symmetry breaking). An example of this is the effect
of a strong magnetic field on a ferromagnet. Other
factors do not directly influence the order parameter
but, by changing the characteristics of the system,
ultimately affect the order parameter as well. The
most important example is the effect of a sufficiently
high temperature T»TC (Tc is the critical temperature),
which leads to the disappearance (because of thermal
fluctuations) of the order parameter and the restoration
of symmetry. This follows directly from the condition
of a minimum in the free energy F=E -TS: At large T,
irrespective of the form of the energy E, an increase
in the entropy S, i.e., disordering of the system, is ad-
vantageous.

Such a phase transition from an ordered to a dis-
ordered state, like the states themselves, can be con-
veniently described in the language of a simple phen-
omenological model. We consider the free energy F(*),
as a function of the order parameter Φ, which has a
minimum with respect to Φ in the equilibrium state; at
Τ =0 it is necessary to speak of the energy of the sys-

tem. As we are interested in spontaneous symmetry
breaking with respect to some transformation, we must
compute a dynamical characteristic of the system—the
value of Fty)— that does not change under such a trans-
formation, i.e., depends only on the invariants, ex-
pressed in terms of the order parameter, of the trans-
formation. We aim to construct the simplest expression
for F(*) that under certain conditions leads to a dis-
ordered state with Φ =0 but under others to an ordered
state with breaking of the symmetry under consider-
ation. The same expression will obviously describe
the phase transition itself from one such state to an-
other.

The simplest case corresponds to symmetry under
reflection: Φ—-Φ, where* is a real scalar quantity.
Assuming first that Φ does not depend on the coordi-
nates, there is a single invariant of the transformation;
Φ2. If its values are sufficiently small, we can restrict
ourselves to an expansion of the function ί"(Φ) in a ser-
ies:

F (ψ) = F0 + οψ> + pr: (3)

Assuming j3>0, we readily see that when a>0 the equi-
librium value of Φ is zero and we are dealing with a
disordered state (curve 1 in Fig. 1). However, for a<0
the state of the system is degenerate with respect to the
sign of Φ—there are two minima of equal depth corre-
sponding t o * =±(-α/2β)1/2 (curve 2, Fig. 1). A small
external perturbation that makes one of the minima only
slightly deeper than the other realizes a state with spon-
taneous breaking of the original symmetry. For the
case when* is a slowly varying function of the coordi-
nates, the invariant (V*)2 is added, and instead of (3)
we have the expansion

F (f) = Fo + αΨ1 - βψ» + γ (νψ)1. (3')

More important for what follows is symmetry under a
"global" gauge transformation Φ—Φ εχρ(ίχ), where χ is
a constant real phase; one can speak of such a symme-
try if Φ is a complex order parameter. This transfor-
mation, which, in contrast to reflection, is a continuous
transformation, has the invariants |Φ| 2 and | ν Φ | 2 . Ac-
cordingly, the expansion (3') is replaced by

F = F0 - 11 ψ ι* + β ι ψ |* + γ Ι νΨ l!; (4)

here, there is degeneracy with respect to the phase θ of
the order parameter, Φ =|Φ| βχρ(ϊθ), and the spontan-
eous symmetry breaking corresponds to fixing this
phase. Geometrically, we must now consider the figure
of revolution obtained by rotating the curve in Fig. 1
about the vertical axis. Curve 2 in Fig. 1 now corre-
sponds to a circular through ("base of bottle") whose
depth does not depend on the azimuthal angle, which is
the phase Θ. A small dip in the bottom of the trough at

FIG. 1.

Ψ
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a certain value of the angle fixes a corresponding value
of the phase Θ.

Such considerations provide the basis of Landau's
phenomenological theory (see Ref. 10), which describes
a large class of phase transitions of the second kind.
In this theory, a is taken equal to the simplest function
a(T-Tc) (a>0), which goes over with increasing Τ from
negative values to positive values at the point T = TC.
As this point is approached, the order parameter tends
smoothly to zero, remaining equal to zero at higher
temperatures. This means that the transition is of the
second kind (Fig. 2a).

An alternative description of the phase transition is
obtained when curve 1 in Fig. 1 at Τ = 0 is an effective
potential energy of the system. A maximum of this
curve corresponds to an unstable disordered ground
state of the system, and the minima to a stable ground
state rearranged by the appearance of the order param-
eter; the depth of these minima determines the energy
gain resulting from the rearrangement. As long as
T>TC, the average energy of the system, with allow-
ance for its thermal component, lies above the central
hump of the curve and a symmetric state with Φ =0 is
realized (the system spends equal times in the states
that differ by the sign of Φ). But when T<TC the energy
sinks below the central hump and the state of the system
settles in one of the minima of the curve, and this cor-
responds to spontaneous symmetry breaking.

Landau's theory, which is based on a small value of
Ψ, is not valid far from the critical point. It is also in-
valid in the immediate neighborhood of Tc. This is be-
cause the ordered and disordered phases of matter here
differ so little that fluctuations of the order parameter,
which are not taken into account by Landau's theory and
lead from one phase to another, become decisive. It
was in the description of these fluctuations that many-
body theory achieved the success mentioned in Sec. 2.

Fluctuations of the order parameter can transform a
phase transition of the second kind (smooth disappear-
ance of Φ, absence of latent heat of the transition) into
a phase transition of the first kind (abrupt disappear-
ance of Φ, existence of at least a small latent heat).
In the simplest case, this reduces to a violation of the
implicit assumption that the function Fty) is analytic
(made above when this function was expanded with re-
spect to invariants), this being manifested in the ap-
pearance on the right-hand side of (3) of an additional
term (ψ2)3'2 with negative coefficient. Because of this,
the function F(*) acquires an additional minimum (Fig.
3), which touches the abscissa at a finite value of*.
This then leads to an abrupt disappearance of the order

FIG. 3.

T<TC

parameter at the point Tc (Fig. 2b). We shall encounter
an effect of this kind later.

To conclude this section, we note that spontaneous
symmetry breaking with respect to a continuous trans-
formation is accompanied by the appearance of a quasi-
particle whose energy vanishes together with its mo-
mentum. One also speaks of an acoustic (gapless) quas-
iparticle spectrum or, having in mind the relativistic
formula Ε =Jp2 + m2 , of a vanishing mass of the par-
ticle. This is the well-known Goldstone's theorem (see
also below). In classical language, the Goldstone parti-
cle corresponds to oscillations of the parameter with
respect to which the energy of the system is degenerate.
This is why the production of such a particle with van-
ishing momentum does not require expenditure of en-
ergy.6) For aferromagnet, the Goldstone particle is a
spin wave (oscillations in the direction of the magnetic
moment); for a crystal, sound (vibrations of the posi-
tions of the lattice ions).

It is sometimes said that the appearance of the Gold-
stone particle restores the spontaneously broken sym-
metry. This must be understood as follows. As we
have already said, the essence of spontaneous symme-
try breaking is the distinguishing of one of the states in
a set symmetric as a whole. But the Goldstone particle
corresponds to transitions within this set, and its ap-
pearance leads to mixing of the states in the set. Gold-
stone's theorem can be readily illustrated by the ex-
ample of an ordered system with complex order param-
eter (see above), for which the Goldstone particle cor-
responds to oscillations of the phase θ of this param-
eter. Degeneracy with respect to θ means that the free
energy does not depend on a constant phase θ and, there-
fore, when the free energy is expanded in terms of the
small deviations of the phase δθ, it contains the term
(V60)2, but not simply (δθ)2. Minimization of F with re-
spect to δθ gives the static (corresponding to vanishing
energy) equation V250=O for the oscillations, which
leads to the conclusion that the quasiparticle momentum
is zero.

6. BOSE CONDENSATION

We encounter the simplest example of an ordered state
with a complex order parameter in the phenomenon of
Bose condensation of an ideal nonrelativistic gas con-
sisting of a large but fixed number of Bose particles
(see Ref. 10). When we have considered this phenomen-

J> FIG. 2.

η τ

6'Goldstone's theorem may be invalid for systems with long-
range (Coulomb) forces, for which the importance of interac-
tions between particles becomes important precisely at small
momenta.
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on, we shall turn to the related but more complicated
phenomenon of superconductivity.

We introduce the operator of the Bose field:

(5)

where ap is the operator of annihilation of a particle in
the state with momentum ρ and energy Ep =p2/2m. The
population of the levels at an arbitrary temperature Τ
is given by the occupation numbers

[ e x p ( l £ l i ) _ l ] - \ (6)

where μ, the chemical potential, is determined by the
equation £}>w# =^> where Ν is the total number of par-
ticles. The symbol

, Sp[...exp(-ff/r)]
* · · · ' Sp[exp(_///r)l

denotes averaging over the Gibbs ensemble (H is the
Hamiltonian); at T=0, this symbol goes over into the
expectation value with respect to the ground state of
the system: ( 0 | . . . |0), where |0) is the wave function
of this state.

The essence of the phenomenon of Bose condensation
can be seen by letting Ν tend to infinity and following
the behavior in this limit of the fraction of the total
number of particles vp =np /N in each level. Examin-
ation of Eq. (6) reveals the following: a) at all tem-
peratures, the lowest level p = 0 contains more parti-
cles than any other; b) at all temperatures, vp tends to
zero for each of the upper levels p * 0; c) for T^TC (Tc

is the critical temperature of Bose condensation) the
limit v0 for the lowest level is also zero; d) for T< Tc a
finite fraction of all the particles accumulates on the
lowest level, v0—const, and simultaneously μ —0 [it is
only under this condition that no<*N~°°; see (6)]. This
is the phenomenon of Bose condensation at T<TC, which
is due to the "overfilling" of the upper levels, which
taken together are no longer capable of containing a
number of particles that tends in the limit to N. It is
for this reason that the lowest level is populated by a
macroscopically large number of particles, comparable
with N; it is frequently said that these particles together
form a Bose condensate.

A formal manifestation of Bose condensation is the
possibility of regarding the operators a0 and αζ [see (5)]
as classical quantities. This is clear from the fact that
their commutator [a^, a0] = 1 vanishes compared with
their product «0 = (aJa)0«:JV-°o. For this reason, one
can set (a0) =a0, (ap) = 0 (p* 0) and Gibbs averaging of
the field operator (5) gives (φ) =α0. From this, we ob-
tain a splitting of the field operator into the condensate
and "above-condensate" parts

+ =<•> + Ψ', (7)

where ip' has the form (5) but with summation only over
levels with p* 0. The appearance in the field operator
of a classical term is also a characteristic of the phen-
omenon of Bose condensation in the general case when
there is an external field, interaction between particles,
and so forth. It is the presence of such a term that de-
scribes, for example, the superfluidity of liquid 4He at

sufficiently low temperatures.

For the case of Bose condensation, * = (ψ) then
serves as a complex order parameter. In this case too,
there is spontaneous breaking of the symmetry of the
Hamiltonian of the Bose system with respect to the
gauge transformation ψ-~ψ exp(»x). And here too there
is degeneracy with respect to the phase of the order
parameter, the symmetry breaking consisting of the
fixing of this phase. Physically, the appearance of the
order parameter in Bose condensation which, essen-
tially, is a classical coherent de Broglie wave of the
lowest state of the system, is associated with the
matching of the phases of the particles settled in the
lowest level—they form a state with a single fixed phase
and not a random set of quanta.

It is sometimes said that as a result of Bose conden-
sation there is a violation of the law of conservation of
the particle number, which is directly related to the
gauge transformation.7' This, of course, does not mean
that particles are being created "out of nothing" or are
being destroyed. The point is that it is only meaningful
to speak of a Bose condensate in the limit N~ », and
the condensate then plays the role of an infinitely large
reservoir of particles that "does not notice " the loss or
addition of a finite numbe£ of particles. The vanishing
of the chemical potential μ = 9F/9N, where F is the free
energy of the system, is saying the same thing.

We have already noted that in the case of the system
under consideration with a fixed number of particles
Bose condensation comes about because of the "over-
filling" of the upper levels of the system. Accordingly,
in a system in which the number of particles can change,
Bose condensation is by no means necessary; it does
not occur, for example, for a system of photons in
thermal equilibrium. However, even in a system with a
variable number of Bose particles the dynamics of the
interactions of the particles may "induce" Bose con-
densation, when macroscopic population of the lowest
level becomes energetically advantageous. This at
least is the case if Landau's expansion (4) is valid and
if there is a range of temperatures in which the coeffi-
cient α is negative. A simple example of " induced "
Bose condensation (on a level with ρφΟ) is the gener-
ation of a coherent laser wave for photons in a medium
with population inversion. Below, we shall consider
other examples relating to superconductivity and to
scalar models of field theory.

7. SUPERCONDUCTIVITY

We now consider the phenomenon of superconductivity,
which is directly related to Bose condensation.4·8 The
electrons of a metal (or the nucleons in a nucleus) satis-
fy Fermi statistics and cannot by themselves condense.

"indeed, reading the left-hand side of the inequality φ \ψ |0> * 0
from right to left, we see that if we apply the annihilation
operator to the ground state, i.e., if we reduce the number of
particles in it by unity, we nevertheless return to the original
state.
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However, if certain conditions are satisfied,8' they are
capable of forming pairs (Cooper "pairing"), and these
pairs, which have the properties of Bose particles, can
condense on the lowest level. It only needs to be em-
phasized that Cooper pairs should not be taken too lit-
erally—they are not bound complexes such as mole-
cules but simply strongly correlated states of a pair of
particles.

A large part of what we have said above about a Bose
system can be applied to the case of a superconductor.
The order parameter in this case is the expectation val-
ue of the operator of a Cooper pair:

Ψ = (,|Γ+ψ_), (8)

where φ is the operator of the Fermi field of the elec-
trons, and the indices (±) correspond to momenta ±p
and spin projections ± | (the total momentum and total
spin of a pair in the absence of a current are zero).
The microscopic equations that provide the basis of
superconductivity theory and, in particular, the fre-
quently used equation corresponding to contact interac-
tion of electrons:

are invariant under a gauge transformation. The ap-
pearance of the order parameter (8) with fixed phase
destroys this invariance. Oscillations of this phase
correspond to a Goldstone particle in the superconduc-
tor ("sub-gap" sound; see however footnote6' in Sec. 5).

The Bose condensation of the Cooper pairs radically
affects the electron-quasiparticle spectrum near the
Fermi surface (energy EF, momentum pF), where basi-
cally the formation of pairs takes place. Transforming
Eq. (9) to the momentum representation, we find the
relation£ F =(pF/2m)+X( φφ), and by means of it the
symbolic equation

Ε 2m

Squaring both sides, averaging, and remembering that
in accordance with Wick's theorem ( ( # ) 2 ) - ( φφ)2 = | * | 2

[see (8)], we find, making near the Fermi surface the
replacement (p2 -pF)/2m -υ(/> ~pF), where v=pF/m is
the velocity on the Fermi surface,

Ε - EF = ± W (p - pFY + λ* | Ψ |2. (10)

Here, the sign in front of the radical is determined by
the sign of the difference p -pF, which corresponds to
either an electron in an unfilled energy range or a "hole"
in the Fermi sea.

Equation (10) shows that the allowed energy regions
are separated by an "energy gap" 2Δ = 2λ | * | . Physical-
ly, this quantity corresponds to the binding energy of a
Cooper pair: This is the energy which must be expended
to break the pair and obtain an electron in a free state.
The presence of the gap implies a definite "rigidity" of
the state of the electrons in a superconductor, and their
lack of response to external disturbances that are not

8)Roughly speaking, if there is an attraction between the par-
ticles.

too strong. In this way one can then understand the re-
markable properties of a superconductor; the absence
of Joule losses, the Meissner effect, which will be dis-
cussed below, and others.

The "rigidity" is due to the fact that in order to excite
the electron component of a superconductor one must
expend at least the energy 2Δ. In fact, this excitation
reduces to the creation of an electron—"hole" pair
whose total energy is equal in accordance with (10) to
the arithmetic sum of the radicals in Eq. (10), which
correspond, respectively, to an electron and a hole.
We emphasize that the ratio of this excitation energy to
the total momentum of the electron and the hole has a
finite lower bound equal to &/pF. This means that in a
superconductor Landau's well-known criterion for su-
perfludity (see Ref. 10) is satisfied, and superfluidity
of electrons is none other than superconductivity.

If certain conditions are satisfied (in particular, at
temperatures near Tc

9)) superconductivity can be de-
scribed by the phenomenological theory based on Eq.
(4) with the order parameter (8). In the presence of
an external magnetic field Η (with vector potential A) it
is necessary to make in this equation the substitution
V —V - ieA, where e is the total charge of the Cooper
pair, and to add the energy of the magnetic field:

ί '=^ 0 + α|Ψ| ί + β|Ψ|4 + ν|(ν — ieA) Ψ |2 + ~ . (11)

This expression (with replacement, by analogy with the
formula for the kinetic energy, of γ by l/2w, where m
is the mass of a pair) is the basis of the semipheno-
menological Ginzburg-Landau theory (see Ref. 11, and
also Refs. 4 and 12). Adding to the expression (11) the
energy -j · A of the external currents j , and varying
with respect to Φ and A, we find the Ginzburg-Landau
equations

[(V - ieA)V2m - a - 2β | Ψ |a] ψ = 0,

V'A - 4 π ' ' ^ Ψ ' Ά = 2nie (ΨνΨ - V ΨΨ) - 4n).

(12a)

^ (12b)

It follows from this, in particular, that a spatially
homogeneous distribution of the current j leads to dis-
tributions of Φ and A that are also independent of the
coordinates, and A = m j / e 2 | * | 2 (the equivalent of Lon-
don's equation; see Ref. 12). Substitution of this rela-
tion in (12a) shows that a positive term mj 2/e21Φ!4 is
added to a. It is clear from this that with increasing
current the value of the order parameter decreases and
at a sufficient strength of the current the symmetry is
restored. Thus, a current, like the temperature, des-
troys the superconducting order. This is due to the in-
crease in the electrodynamic energy of the condensate
[the term e 2 | * |2Λ2 in (11)], which ultimately swamps
the gain in the energy due to the Bose condensation it-
self (see Sec. 4).

It can be seen from what we have said that for j = 0
there is no magnetic field within the superconductor
(far from its boundaries). Near the boundaries, Eq.
(12b) has a solution exp(-n#), which is exponentially

9 >This critical temperature, above which there is no supercon-
ductivity, is equal in order of magnitude to the energy gap Δ.
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damped within the superconductor; here χ is the dis-
tance from the boundary, and κ2 = 4ττβ2|Ψ| 2/tn deter-
mines the penetration depth of the field. This nonpene-
tration of the field into the superconductor is the Meis-
sner effect12 mentioned earlier. Physically, it is ex-
plained by the fact that when the field is switched on in-
duction currents [the second term on the left-hand side
of (12b)] are induced in the superconductor, and these,
in accordance with Lenz's rule, screen the external
sources of the field and, in contrast to a normal metal,
are not damped with the time.

The Meissner effect leads to an inhomogeneous field
configuration, which is energetically disadvantageous.
Therefore, as in the just considered case of an external
current, an external magnetic field reduces the order
parameter. If the field is sufficiently strong, the su-
perconductivity (and the Meissner effect itself disap-
pears, and the field fills the complete volume of the
superconductor.

The development of this process depends essentially
on the relative magnitude of two lengths characteristic
of the superconductor; the field penetration depth κ"1

(see above) and the effective size of the Cooper pair
(ma)'1'2 [the characteristic distance over which Φ var-
ies; see (12a)]. It can be shown that the ratio of these
lengths—the Ginzburg-Landau parameter—determines
the sign of the surface energy on the boundary between
the normal and superconducting phases of the matter.
If this parameter is less than unity (type I supercon-
ductor), then the surface energy is positive and even a
comparatively weak magnetic field penetrates uniform-
ly into the superconductor, destroying the supercon-
ducting order. But if the Ginzburg-Landau parameter
is greater than unity and the surface energy is negative
(type Π superconductor), then it is energetically ad-
vantageous to have an alternation of the normal and
superconducting phases in space. The field in this case
penetrates into the superconductor and is localized
within special vortex filaments [Abrikosov's vortices;
see Sov. Phys. JETP 5, 1174 (1957)], forming a regular
lattice within the metal. Each filament has a radius of
the order of the length of a Cooper pair (and therefore
"swells" as the temperature approaches Tc or the mag-
netic field is increased) and carries a magnetic flux
equal in magnitude to 1/e. Physically, the occurrence
of the filaments is due to the Meissner effect: The ex-
pulsion of the magnetic field leads to its concentration
in a minimal (for given flux) volume. In the space be-
tween the filaments superconductivity is preserved, and
its final destruction occurs in fields that are so strong
(up to several hundred kilogauss) that the filaments
themselves come into complete contact with one another.
This is the basis of the wide practical use of type Π
superconductors in superconducting magnets of accel-
erators, MHD generators, and other devices.

8. "SUPERCONDUCTING" MODELS OF
ELEMENTARY PARTICLES

Having now completed our somewhat extended but nec-
essary detour into many-body theory, we return to
Heisenberg's theory (see Sec. 3). At least in principle,

the idea of spontaneous symmetry breaking does enable
one to solve the difficulty in this theory associated with
the different degrees of symmetry of the elementary-
particle interactions. For this, it is necessary to
choose the fundamental equation of the unified theory of
matter with maximal degree of symmetry, and the nec-
essary violations of this symmetry for the interactions
of the corresponding quasiparticles must come about
spontaneously by the realization of solutions with in-
complete symmetry. The resulting Goldstone particles
could then be identified with the massless particles ob-
served in nature (for example, with the photon as a re-
sult of spontaneous breaking of isotropic symmetry; in
this connection see Ref. 13).

One of the most important mechanisms of spontaneous
symmetry breaking in the framework of Heisenberg's
program was proposed at the beginning of the sixties by
Nambu and Jona-Lasinio14 and Vaks and Larkin.15 It
was taken from the then recently discovered micro-
scopic theory of superconductivity of Bardeen, Cooper,
and Schrieffer (abbreviated BCS; see Refs. 4 and 8).

Heisenberg's equation (2) and Eq. (9), on which the
theory of superconductivity is based, have a strong
similarity. Accordingly, in Heisenberg's theory as
well, in the case of attraction between the primary par-
ticles there will be a spontaneous symmetry breaking
due to the formation of Cooper pairs of the primary
particles and their Bose condensation with the appear-
ance of an order parameter, as in (8). This conclusion
is reached by application to Eq. (2) of the standard for-
malism of superconductivity theory, which gives rela-
tions that are a relativistic generalization of the ordin-
ary "superconducting" formulas. It is only necessary
to "cut off" divergent integrals at a certain limiting
energy. It is interesting to note that a similar "cutoff "
also occurs in the ordinary theory of superconductivity,
in which it has a direct physical meaning corresponding
to the limiting energy (Debye energy) of the phonons
that transmit the interaction between electrons. This
mechanism of spontaneous symmetry breaking (referred
to in what follows for brevity as the BCS mechanism)
solves the important problem of the mass of the pri-
mary particle. As was already noted in Sec. 3, the re-
quirement of maximal symmetry of the fundamental
equation (2) has the consequence that this equation con-
tains no mass term, which would be noninvariant under
scale and y5 transformations. On the other hand, the
same requirement means that the interaction of the pri-
mary particles must have maximal symmetry. There-
fore, the lack of mass of the primary particle would be
a serious difficulty for Heisenberg's program—the only
particle we know with zero mass and spin | (the neu-
trino) does not participate in the most symmetric inter-
action—the strong interaction.

The appearance of the nonvanishing order parameter
(8) as a result of the BCS mechanism results in spon-
taneous breaking not only of the gauge invariance, as in
the nonrelativistic theory of superconductivity, but also
of the scale and y5 symmetries characteristic of Heis-
enberg's theory. One may therefore expect that not on-
ly the symmetry breaking but also the mass of the pri-
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mary particles arises spontaneously. The same con-
clusion is indicated by a comparison of the spectrum
(10) of electrons in a superconductor and the relativis-
tic formula Ε = V/>2 + m 2 , which reveals a physical sim-
ilarity between the concepts of quasiparticle mass and
energy gap.

This is confirmed by a direct repetition of the cal-
culation that led to (10) in the case of Eq. (2); the cal-
culations are even simplified since now we are inter-
ested in the vacuum, and not the ground state of a met-
al, and therefore Er=Q, pF = 0, (Ο|ψψ|Ο) =0. Equation
(2) in the momentum representation gives the relation
yp =λ(Ίρφ), and squaring this with allowance for Wick's
theorem (see Sec. 7), we obtain the equation (/>)2=λ2 |Φ|2.
It can be seen from this that the spontaneously arising
mass of the primary particle is λ | φ | . As in the case of
superconductivity, it is determined by the energy needed
to break a Cooper pair and obtain a particle in a free
state.

In the papers of Nambu and Jona-Lasinio, the role of
the primary particles was assigned to the nucleons, and
the corresponding Goldstone particle was similar to the
pion. This can be regarded as a definite step in the im-
plementation of Heisenberg's program.1 0 ' However, in
subsequent years the interest in this program decreased
considerably, and it is only very recently that investi-
gations have begun to appear (see Ref. 16) in which
Heisenberg's program using the BCS mechanism is
formulated in connection with quantum chromodynamics
("color" model of quarks interacting by the exchange
of gluons). We should also mention the use of the BCS
mechanism in quantum electrodynamics,17 which enables
one to examine renormalization in this theory from a
somewhat different point of view.

9. SCALAR MODELS OF SPONTANEOUS
SYMMETRY BREAKING

Heisenberg's program and the "superconducting"
models of elementary particles that it stimulated gave
rise in the first half of the sixties to a burst of interest
among field theoreticians in spontaneous symmetry
breaking.11' This interest was fanned by the understand-
ing at that time of the fact that the world of elementary
particles is characterized by a certain breaking of the
majority of the symmetry types (excluding relativistic
invariance, the law of conservation of electric charge,
etc). It was at that time that we saw the formulation of
the problem of spontaneous symmetry breaking in quan-
tum field theory,21 Goldstone's theorem,22 and so forth.
This, in its turn, led to a deeper understanding of spon-
taneous symmetry breaking in many-body theory, and,
in particular, in the theory of superconductivity.

l 0 )Note that these papers were one of the sources of the im-
portant direction in elementary-particle theory known as
PCAC (partial conservation of axial current).1 8

11'Spontaneous symmetry breaking was one of the principal
themes of international seminars on the unified theory of ele-
mentary particles at Rochester (I960, 1963) and Munich
(1965)19; see also Ref. 20.

Goldstone introduced into quantum field theory a new
mechanism of spontaneous symmetry breaking that dif-
fers from the BCS mechanism in that there is an induced
Bose condensation, not of Cooper pairs, but of "ready
made" Bose particles (see Sec. 6). Goldstone's model
corresponds to a self-interacting scalar field ψ with
negative square of the mass, and is described by the
Lagrangian

L = | θφ | s + μ· | φ |2 - λ | φ |«. (13)

The structure of this expression was suggested by the
so-called sigma model (see Ref. 23), which served as
another source of PCAC theory. However, using (13)
to find the corresponding energy of a static field:

£ = I V<p I1 - μ! I <P I1 + λ | «US

we see that Goldstone's model is simply a concrete
realization of Landau's phenomenological theory [see
(3') above]. The negative sign of the square of the mass
of the particle corresponds to the negative sign of a in
(3').

In Goldstone's model, there is an ordered state (Bose
condensate) with complex order parameter Φ = (φ). In
the case of weak coupling, λ « 1, the calculations can be
carried through to the end. Restricting ourselves for
the moment to the case Τ = 0, we write down the field
equation that follows from (13):

[as — μ2 + 2λ | Φ |2] <f = 0, (14)

and, as in the case of a nonrelativistic Bose system
[see (7)], we set

φ = Ψ + φ' , Ψ = (0 Ι φ Ι 0). (15)

Substituting (15) in (14), taking the vacuum expectation
value and omitting expectation values of the type
(0|(^')n(<p')m |0) withm*«, we find the equation for the
order parameter:

ψ [μ« _ 4λ <0 i| φ' |2 I 0) — 2λ Ι Ψ |2] = 0. (16)

The second term in the brackets, which describes
fluctuations of the field about its mean value Φ, has to
be taken into account only when ΤΦ0 (see below).
Therefore, there arise the two following solutions of
(16): Φ =0 and |Φ| =μ/V2\. The first corresponds to a
disordered state (the maximum in Fig. lb), and the sec-
ond to a Bose condensate (minimum in Fig. lb). As can
be seen from the expression given above for the energy,
the ordering of the system is associated with an energy
gain of μ4/4λ.

In order to elucidate the stability of the solutions ob-
tained without reference to energy arguments, it is nec-
essary to find the spectrum of the quasiparticles (be-
cause the field is complex, there are two species of
quasiparticles). The field oscillations δφ exp(ipx) cor-
respond to them. In accordance with (14)12)

K/')2 + M21 S<f = 4λ ] (f j 2 6cf + 2?.cf26<7. ( 1 7 )

For the state with Φ =0, the right-hand side of (17) can
be omitted, from which we see that real and imaginary
parts of δφ oscillate in accordance with the "tachyon"

1 2 'Here and below, the symbol (p)2 denotes the four-dimension-
al square E1 -p2.
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law E =V/>2 - μ 2. Therefore, long-wavelength quasi-
particles (ρ<μ) have imaginary energy and, according-
ly, the field oscillations will increase with the time in
accordance with the law βχρ[νμ2 -p21 ]. Thus, we
again arrive at the conclusion that the disordered state
of the system is unstable (in this connection, see Ref.
24).

In the ordered state * = |*l exp(z0)*O, the two possible
types of quasiparticles have different spectra. In this
case, the normal modes correspond to oscillations of
the modulus, δ<ρ = δ|*|*/|*|, and the phase, δφ =ΐδθΦ,
of the order parameter. Substituting these expressions
in (17), finding the vacuum expectation value with ne-
glect of the fluctuation term, and comparing the result
with (16), we obtain (ρ)2 = 2μ2 for the oscillations of the
modulus and (p)2=0 for the oscillations of the phase.
Thus, in the stable state of the system the spectrum of
quasiparticles is "corrected" (they acquire a positive
or vanishing square of the mass), and this corresponds
directly to the sign of the curvature at the extrema in
the curve 2 in Fig. 1; in addition, we again arrive at
Goldstone's theorem. We therefore see that the cor-
rect treatment of Goldstone's model obliges us to "shift"
the field operator to the equilibrium point of the system
[see (15) and curve 2 in Fig. 1]. Of course, this could
be regarded as a purely formal operation, but it is
much more fruitful to approach it on the basis of physi-
cal considerations and regard it as the manifestation of
a real Bose condensation of a scalar field.

The generalization of Goldstone's model to the case of
interacting scalar and vector (electromagnetic) fields
was considered by Higgs.25 Instead of (13), one must
now consider the expression

L = — ϊ ^ ( Μ ν - < Μ μ ) + |(0--ί«4)φ|» + μ·|φ|»-λ|φ|\ (18)

where the first term is the Lagrangian of a massless
vector field.13' Going over here too to the static limit,
we can readily see that the Higgs model is completely
analogous to the Ginzburg-Landau theory, being its
relativistic generalization [see (11) and Refs. 26 and
27]. As it happened, this conclusion had significant
heuristic value, making it possible to establish direct
analogies between the theory of superconductivity and
theories of elementary particles, including the Higgs
model.

With the first appearance of analogies of this kind,
we encounter the question of the mass of the vector
field. In the expression (18), this mass is taken equal
to zero. However, the appearance of a nonzero order
parameter leads to the spontaneous occurrence of mass
of the vector field, this being equal to V5Fe | * | . Indeed
the Lagrangian of a vector field with mass m is equal to
the first term of (18) plus the term m2A2/8ir. But pre-
cisely this term appears in (18) because of the presence
in this expression of the term e2\cp\2A2. This new me-
chanism (differing from the BCS mechanism) for the

appearance of mass when there is spontaneous symme-
try breaking is called the Higgs mechanism.

However, if we recall what we said in Sec. 7 about the
Meissner effect, it becomes clear that in a supercon-
ductor we are in fact dealing with a massive photon,
whose mass arises because of precisely the same Higgs
mechanism.25 Equation (12b) is the static limit of the
equation (a2 + κ2)Α = 4π; for a photon with mass x, and the
exponential law of decrease of the field within the su-
perconductor is Yukawa's law for a plane field source.
Therefore, the Higgs mechanism could with equal right
be called the Meissner mechanism.

In Sec. 7, we have already said that the Meissner ef-
fect is explained physically by the appearance of induc-
tion currents in the metal, which screen the field
sources and are not damped under the conditions of the
superconductor. In exactly the same way, the mass of
the vector field arises in the Higgs model because of
induction currents in the Bose condensate. And these
currents too are not damped with time, and we can
therefore say that in the Higgs model we encounter the
phenomenon of superconductivity at the level of elemen-
tary particles. This conclusion is directly confirmed in
the language of the Landau criterion (see Sec. 7): The
ratio of the energy of the quasiparticle to its momentum,
which, in accordance with what we have said above, is
equal to τ/ρ2+2μ2/ρ, has a nonvanishing lower limit.28

In this last argument, it is not fortuitous that we have
used the expression for the spectrum of the oscillations
of only the modulus of the order parameter and not its
phase. The point is that when a scalar field interacts
with a gauge-invariant vector field (which means that
the fields A and Α +νΦ, where Φ is some function, are
physically indistinguishable) the Goldstone particle be-
comes unphysical and can be eliminated by a gauge
transformation. Indeed, taking the function Φ equal to
θ/e, we can, after the substitution (15), completely
eliminate the phase θ of the order parameter from the
Lagrangian (18).14)

This conclusion is important in connection with the
following question. It is well known that a massless
vector particle (for example, the photon) has two de-
grees of freedom—two polarizations— at a given fre-
quency. On the other hand, the number of polarizations
of a massive vector particle is three. Where does the
vector field acquire its extra degree of freedom if its
mass arises spontaneously? The answer is clear from
what we have said above: After the spontaneous sym-
metry breaking, the scalar field loses one degree of
freedom corresponding to oscillations of the phase of
the order parameter.

10. MODERN UNIFIED THEORY OF ELEMENTARY
PARTICLES

Although Heisenberg's "aristocratic" unified theory

>3>For simplicity, we restrict ourselves here and below to an
Abelian theory and do not introduce Yang-Mills fields.

1 4 'See Ref. 30 for an analogous conclusion and its consequences
in superconductivity theory.
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did play an important role in the conceptual evolution
of the theory of elementary particles, modern hopes of
creating a unified theory of particles are associated
•with a different, "democratic" approach. We eschew
the introduction of a distinguished species of particles,
similar to Heisenberg's primary particles, and attempt
to combine on an equal footing the particles which par-
ticipate in different interactions and to treat them in a
unified manner.

In what follows, we shall restrict ourselves to con-
sidering the most developed theory, which combines the
weak and electromagnetic interactions of elementary
particles (see, for example, the reviews of Ref. 29).
Both these interactions exhibit a remarkable universal-
ity for a large class of processes in which very varied
particles participate. The universality of the electro-
magnetic interaction is due to the existence of its single
carrier—the photon—which interacts with charged par-
ticles, and has a single coupling constant. The carrier
of the weak interaction—the intermediate vector, boson,
or W meson—can fulfill an analogous function. It has
much in common with the photon, differing from it in
the following respects. The weak interaction, in con-
trast to the electromagnetic, has a finite range, and
therefore the W meson must have a nonzero mass. In
addition, the majority of weak processes correspond to
exchange of charge between the interacting particles
and therefore the W mesons (or at least some of them)
must be charged.

The " democratic " principle of unifying the weak and
electromagnetic interactions requires that the particles
that participate in these interactions be combined into
two groups (two multiplets). One of them must include
the leptons (electrons, muon, neutrino and the corre-
sponding antiparticles)—light particles with spin \ that
do not participate in the strong interaction. The other
must combine the intermediate vector particles (photon,
W mesons), which transmit the interaction between the
leptons.

It must be emphasized that we are speaking not of a
purely mechanical but a group-theoretical unification,
which would enable us to justify the structure of the
multiplet, elucidate the form of the interactions of the
particles in it, and so forth.15' For ordinary spectro-
scopic multiplets, the approach based on the rotation
group gives such information. The use of group-theo-
retical methods presupposes that there is at least ap-
proximate invariance under a group transformation,
i.e., at least approximate degeneracy of the multiplet
(coincidence of the masses of the particles in the mul-
tiplet). But in the groups of particles listed above there
is nothing of the kind—they contain both massive and
massless (neutrinos, photon) particles. Accordingly,
we encounter here the first reason why the existence of
mass of the elementary particles is an obstacle to the
creation of a unified theory of them.

A second reason is that the nonvanishing mass of the
vector W meson is the source of divergences which can-
not be eliminated by mass and charge renormalization.
The point is that the Green's functions of massless and
massive (of mass m) vector fields have the following
form, respectively (in a particular gauge):

The worse asymptotic behavior of the Green's function
in the limit f> — °° in the second case is the origin of the
nonrenormalizable divergences of the weak interaction.
Until we have eliminated this difficulty, we cannot ex-
pect to " raise" the weak interaction to the level of the
electromagnetic interaction, in which this difficulty is
not present, and we are therefore unable to obtain a us-
able unified theory.

Therefore, hope of success in the creation of such a
theory would be justified only if the particles have no
mass in the original dynamical equations. There would
then be no obstacle to combining the particles into mul-
tiplets using group-theory principles and implementing
the renormalization program. But in the final expres-
sions, which are compared with the experiments, the
particle masses must of course reappear. All that we
have said above indicates that if this program is to be
realized we must exploit the idea of spontaneous sym-
metry breaking by taking the original dynamical equa-
tions in massless form, and must attribute the appear-
ance of particle masses in the final expressions to the
BCS and Higgs mechanisms.

The first variants of such a unified theory of the weak
and electromagnetic interactions were proposed by
Weinberg and Salam.31 Their decisive element con-
sisted of the use of the Higgs model, in the framework
of which the spontaneous symmetry breaking takes place
(see Sec. 9). Referring to the reviews29 for details, we
give below a very schematic expression (which omits
many important details) for the corresponding Lagrang-
ian, which is intended to illustrate, not so much the
actual unification of the particles, as rather the spon-
taneous appearance of their masses. Such a model,
which will be used in the following section to describe
the results of external influences on the elementary
particles, is obtained by adding to the Higgs Lagrangian
(18) the Lagrangian of the field φ of the leptons, which
interact with the scalar field (coupling constant g),16)

+ μ21 φ | 2 -λ | <pI' + ft [if (d-ieA)-g\ φ|]•*).
(19)

From this we obtain first an equation for the scalar
field:

. g (ibtf) (p fnn \

which is a generalization of (14) to the case of interac-
tion with electromagnetic and leptonic fields. Further,

1 5 ) I t is the group considerations, in fact, that necessitate the
existence of the neutral W meson, which corresponds to the
neutral currents mentioned in Sec. 1.

1 6 ) To avoid the introduction of "right-handed" and 'left-handed"
particles and other complications, we take this interaction in
an extremely unrealistic form. But this does not affect the
following conclusions.
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from (19) we obtain the equation

(<?· + 8πβ* | φ Is) A = -2me (i*p - 0φφ) - 4ne (**,), (20b)

which describes the electrodynamics of a "medium" in
which there are charged scalar and leptonic fields.
Equations (20a) and (20b) correspond to the Ginzburg-
Landau equations (12). Finally, an equation is also ob-
tained for the charged leptons, which interact with the
scalar field:

liy (d — ieA) — g\<p\li = 0. (20c)

In the Lagrangian (19), both the vector field and the
lepton field have zero masses. These masses become
nonzero because of the spontaneous symmetry break-
ing—the Bose condensation of the scalar field. The
mass of the vector field is equal, as in the Higgs model,
to VHFe | * | , where Φ = (φ), and arises through the Higgs
mechanism. Comparing (20c) and (1), we arrive at a
lepton mass equal to g\9\. Its appearance can be re-
lated to the BCS mechanism, although it is determined
in the given case by the expectation value not of the
same lepton field (or, more precisely, the value of φφ;
see Sees. 7 and 8), but of the scalar field, which is
dynamically coupled to the lepton field.

Like the Higgs model, the unified theory of particles
with spontaneous symmetry breaking has an intimate
and far reaching analogy with superconductivity theory.
The consequences of this analogy will be discussed in
the remaining sections of the review. Note that the an-
alogy with superconductivity would be complete if the
scalar field were not introduced artificially but arose
by itself as the field of Cooper pairs of leptons. At-
tempts in this direction have already been made, but
it is by no means easy to implement this program,
which would free us from the "redundant" field not ob-
served in nature.

11. MACROSCOPIC INFLUENCES ON ELEMENTARY
PARTICLES

In Sec. 4, we have already mentioned the existence of
external influences on ordered many-body systems that
reduce the order parameter and, when sufficiently
strong, lead to a phase transition to a disordered state
and to restoration of the broken symmetry. This con-
clusion can be completely extended to the systems of
elementary particles described by a theory which in-
cludes spontaneous symmetry breaking. The corre-
sponding influences (above all the temperature) alter
fundamental characteristics of the particles such as
their mass, the Fermi constant of the weak interaction,
etc., ultimately transforming massive particles into
massless particles, and the short-range weak interac-
tion into a Coulomb-like long-range interaction, etc.
This problem was posed in Refs. 26 and 32 and then de-
veloped by many theoreticians; we refer the reader to
the review of Ref. 33, which contains a detailed bibli-
ography.

We begin by considering the influence of temperature,
assuming that a system of fields is, like thermal radi-
ation, in a state of thermodynamic equilibrium at some
temperature T. We shall show on the example of Gold-

stone's model (Sec. 9) that, as in many-body systems,
the order parameter Φ = (ψ) decreases with increasing
X, vanishing for X 3=XC (see Fig. 2a). To this end, we
consider the expression (16), concentrating our atten-
tion on the second (fluctuation) term in the brackets.
Using the relativistic analog of the expansion (5) of the
field operator and omitting the contribution of the zero-
point fluctuations of the field (it leads to a renormaliza-
tion of the value of μ2), we obtain

(21)V

t1

where np are the occupation numbers (6), μ = 0, Ep

=Jp2 + m2, m is the quasiparticle mass, and summation
over all species of quasiparticle is understood. Ignor-
ing first in (21) the masses of the quasiparticles (at
small λ, they are small compared with the critical
temperature Tc), we find that the expression (21) is
proportional to X2. Therefore, the dependence of the
order parameter on the temperature actually does cor-
respond to the curve of a phase transition of the second
kind (see Fig. 2a) with r e « | * | r = 0

The temperature dependence of the masses of the
quasiparticles (Fig. 4) is nontrivial. The mass of the
Goldstone particle is zero over the complete range
from 0 to Tc, and the mass of the second quasiparticle
is proportional to the modulus of the order parameter
and decreases monotonically from the value /5μ at X = 0
to zero at X = Tc. At the point Tc itself, both masses
disappear, and this corresponds to a growth of fluctu-
ations (infrared singularities). When the symmetry is
restored (T>XC), one could expect that the square of the
quasiparticle masses would, as in the original Lagrang-
ian (13), be negative; this however would lead to insta-
bility of the system (see Sec. 9). Indeed, it can be
shown that the quasiparticles in this region acquire or-
dinary masses, which increase with increasing Τ from
the value zero at the point Tc. Here, we have manife-
station of a purely thermal contribution to the quasi-
particle mass, which exists independently of the spon-
taneous symmetry breaking. All of what we have said
can be readily deduced from Eq. (17) after if has been
averaged with allowance for the fluctuation term.

Speaking about this term earlier, we completely ig-
nored the dependence in (21) on the mass of the quasi-
particles. It can be shown that already allowance for
the first term of the expansion (21) with respect to the
ratio m/T [this reduces to the factor 1 - (3/ir)(»w/X)]
transforms the phase transition of the second kind into
one of the first kind (see Sec. 5). It is true that in the
Goldstone model with small coupling constant λ the cor-
responding latent heat of transition is small, and the
situation is changed only in the immediate proximity of

FIG. 4.
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Tc. However, in the Higgs model, to the consideration
of which we now turn, the picture of a phase transition
of the first kind is the more clearly expressed, the
larger is the ratio e2/\ of the two dimensionless con-
stants of this model.28

Indeed, in the Higgs model the fluctuations of the vec-
tor field, described by the term β2Α2ψ in (20a), are
added to the fluctuations of the scalar field. Their con-
tribution to the brackets in (16) is given by e2{A2),
which is expressed by the same formula (21) with
m ^e |Φ|. Taking into account in (16) the correction as-
sociated with the mass of the vector field, we do in-
deed arrive at the picture shown in Fig. 2b. In connec-
tion with Sec. 5, we add that this correction makes a
contribution to the Landau expansion (4) proportional to
|Ψ| 3 with a negative coefficient; the nonanalyticity of the
free energy as a function of |ψ | 2 is due to the appear-
ance in (21) of a term proportional to the mass mai\%\.

The effect of transformation of a phase transition of
the second kind into one of the first kind because of the
influence of the fluctuations of the electromagnetic field
must also occur in a superconductor.17' We did not men-
tion it in Sec. 7 since, being small, it is not seen in the
experiments, and its theoretical prediction was made
quite recently34 (after the similar effect was discovered
by A. D. Linde in the Higgs model).

Concluding here our consideration of the effects of
temperature, we now consider the effect of an external
magnetic field. In the Higgs model, as in a supercon-
ductor, such a field reduces the order parameter, lead-
ing ultimately to the complete restoration of symmetry.
Discussing this question in Sec. 7, we employed argu-
ments associated with an inhomogeneous field config-
uration, but in the presently considered case of an in-
finite vacuum these do not apply directly. Therefore,
we shall give a direct proof that in sufficiently strong
fields Η the order parameter must vanish. To this end,
we consider the vacuum expectation of Eq. (20a) in the
static limit and for g = 0. Our aim is to demonstrate
the fact that * vanishes already at a finite value of the
field. To this formulation of the problem there corre-
sponds the equation [(V - ieA)2 +μ2]Φ =0, which is an-
alogous to the Schr'odinger equation for an oscillator
and does not have nontrivial solutions above the field val-
ue Η = μ2/β (seeRef. 11).18)

As in a superconductor, the vacuum in the Higgs
model behaves in two different ways in the presence of
a strong magnetic field—either it remains homogeneous
or it forms a system of vortex filaments, in which the
field is concentrated. Whether the vacuum belongs to
a type I or type Π system (see Sec. 7) is determined by
whether the ratio e2/X is greater than or less than unity,
i.e., whether the ratio of the masses of the vector and

1 7 ' This effect is due physically to the long known fact that an
external magnetic field leads to just such a change in a super-
conductor .

18)Without going into details, we note that in this way one can
calculate only the "upper" critical field, which does not ex-
haust the problem.

scalar fields is greater than or less than unity.28

It should be emphasized that what we have said ap-
plies directly only to the simplest Higgs model with the
Lagrangian (18). In realistic models of the unified the-
ory of particles, the corresponding Lagrangian contains
an entire multiplet of vector fields, and only the mass-
ive vector fields, and not the true electromagnetic field,
interact with the scalar particles directly; it is for this
reason that the photon mass remains, as is required,
equal to zero. Therefore, all that we have said above
applies to the effect on the vacuum not of the the true
magnetic field, but rather of the "quasimagnetic " field
corresponding to the massive vector particles (which,
however, cease to be massive after the symmetry has
been restored).

Interest in the effect of a magnetic field took on a
practical nature in connection with the following propos-
al made by Salam and Strathdee.35 It is known that the
rate of weak decay of strange particles differs, under
otherwise equal conditions, from the same quantity for
particles with zero strangeness, this difference being
determined by the so-called Cabibbo angle. The actual
appearance of this angle breaks the symmetry of the
Lagrangian of the weak interaction. If it is assumed
that this breaking is spontaneous, then an external mag-
netic field of sufficient strength will annihilate the Cab-
ibbo angle and "stabilize" a strange particle with re-
spect to weak decay. In this connection, one can con-
sider, in particular, a possible influence of the mag-
netic field within Λ nuclei on the rate of decay of the Λ
particle.36 Referring to the review of Ref. 33 for de-
tails, we mention that the possibility of observing an ef-
fect of this kind seems to be very remote. In the frame-
work of realistic models, the influence of a true mag-
netic field on spontaneously broken symmetries is much
weaker than that of a quasimagnetic field, and the value
of the fields required to achieve an observable effect is
exceptionally high.

The last type of influence that we consider arises
from the existence in the system of a lepton current
ϊ=β(ψγψ). Essentially, we repeat the arguments given
in Sec. 7 for a superconductor, but the result of the
arguments is now more interesting. We proceed from
Eqs. (20a) and (20b), setting g = 0; the direct influence
of the right-hand side of (20a), which is small compared
with the influence of the current j itself, would corre-
spond to induced breaking or restoration of the symme-
try (see Sec. 5). Calculations analogous to those made
in Sec. 7 have the consequence that one must add to - μ 2

in (20a), not a positive term, as in the case of a super-
conductor, but a term of variable sign: ( j ) 2 / ^ 2 ! * ! 4 ,
where (j )2 = ; 2 - j 2 is the four-dimensional square of the
current. As in a superconductor, the vector part of the
current reduces the order parameter but the zeroth
component of the current, i.e., the lepton density, in-
creases the symmetry breaking. It is clear that this
effect is related to the relativistic invariance of the the-
ory, which provides a rare example of a factor that
does not directly influence the order parameter [as an
influence determined by the right-hand side of (20a)]
and, at the same time, leads, not to restoration of
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symmetry, but rather increases the extent to which it is
broken.37

This leads one to ask whether there is not an analo-
gous effect in superconductivity. This is of interest
since we know of no direct influence on the supercon-
ducting order parameter fit would have to have the form
νψψ in the Hamiltonian (see (9)) and make is possible to
increase the symmetry breaking]. Therefore, a posi-
tive answer to this question would open up new possibil-
ities in the important and difficult problem of a radical
increase in the critical temperature of the supercon-
ducting transition (see Ref. 38).

Completing our discussion of external influences on
spontaneously broken symmetries in elementary-parti-
cle theory, we emphasize that an appreciable variation
of the order parameter requires very extremal values
of the external factors. For example, the critical value
Te of the temperature is of the order of the energy scale
of the weak interaction: μΑ/λΓ-Ι TeV~1016 deg. There-
fore, the effects could be manifested only under excep-
tional conditions; in a collision of particles of super-
high energies, in the early stages of the evolution of a
"hot" Universe, and so forth. The first of these possi-
bilities has only just started to be developed47; with re-
gard to the cosmological consequences of the effect,
quite a number of results, which make important cor-
rections to the standard cosmological scheme, have
already been achieved. We refer the reader to the
review of Ref. 33 and the investigations of Ref. 48,
where a detailed bibliography of cosmological applica-
tions can also be found.

12. VORTEX FILAMENTS, MONOPOLES, AND
MAGNETIC CONFINEMENT OF QUARKS

The analogy between the unified theory of particles
and the theory of superconductivity finds still other ap-
plications in elementary-particle theory. We are here
referring to the vortex filaments already mentioned
more than once above (Sees. 7 and 11), which, as Niel-
sen and Olesen27 have shown, really do arise as classi-
cal solutions of the equations of the Higgs model and
more complicated models of the same type, being
clearly expressed for e2«X (type II theory; see Sec.
11). As we have already said, each filament carries a
fixed magnetic flux and has an energy proportional to
the length of the filament. The magnetic field is local-
ized within the filament, but the order parameter in this
region is close to zero. 1 9 )

Nielsen and Olesen associated the vortex filaments
with "strings"—the linear relativistic objects intro-
duced some time ago in the theory of the strong inter-
action. Referring the reader to the review of Ref. 39
for details, we restrict ourselves to the following re-
marks. One of the promising directions in the theory of
the strong interaction—the dual resonance model-

makes it possible to describe in a unified manner the
asymptotic behavior of the scattering of strongly inter-
acting particles at high energies and the characteristics
of resonances at low energies. It was found that the
equations of the dual resonance model can be given a
dynamical meaning if one formally associated this model
with the Lagrangian of a "string." However, this con-
cept was introduced into the theory to a large extent at
the formally mathematical level and it is only the pic-
ture of vortex filaments that makes it possible to give
it a direct physical content. In addition, the quantiza-
tion of purely linear "strings" of zero thickness en-
countered serious difficulties, which make it necessary
to introduce spaces with a large number of dimensions.40

The identification of the "strings" with vortex filaments,
which have a transverse structure, removes these dif-
ficulties.

A picture of vortex filaments was also used by Nam-
bu,41 who proposed a special "magnetic" mechanism of
confinement of quarks to prevent their appearance in the
free state. Consider, for example, a meson consisting
of a quark and an antiquark coupled by a vortex filament.
As we have already said, the energy of the filament,
and, therefore, the interaction energy of the quark and
the antiquark, is proportional to the length of the fila-
ment, i.e., the distance between these particles. But
this means that it is energetically impossible for quarks
to appear separately (potential well with linearly in-
creasing walls). The mechanism of confinement of
three quarks within a baryon is more complicated, but
this too is possible (see Ref. 42).

It is important to note that a vortex filament carries
a magnetic flux and is similar in this sense to a mag-
netic line of force. Therefore, this mechanism of quark
confinement requires the quark to have a magnetic
charge (to be a Dirac monopole, see Ref. 43). More-
over, a vortex filament terminating at one end in a
monopole can be regarded as a physical realization of
a filamentary " ta i l " of a monopole, which arose as a
certain linear singularity of the Dirac solution and
caused much trouble to the theoreticians.20'

To conclude this section, we pose the question con-
cerning the fate of a strongly interacting particle com-
posed of quarks confined by the magnetic mechanism if
the temperature is raised sufficiently high. It is in-
tuitively clear that there must then occur a dissociation
and the break up of the particle into its constituent
quarks, as occurs, for example, when a molecule dis-
sociates in a hot gas. Indeed, as in a superconductor
(see Sec. 7), the vortex filament "swells" when the
temperature is raised and at the specific point TQ the
filament as such completely ceases to exist. At the
same time, the linear law of attraction, which does not
allow dissociation, is replaced by the ordinary Coulomb
law of attraction characteristic of the interaction of two
monopoles of opposite sign of the magnetic charge. And

1 9 ) Here and in what follows, we shall not, for simplicity, dis-
tinguish between magnetic and quasimagnetic fields.

2 0 1 Note that the monopole itself also arises as a classical solu-
tion of the equations of the unified theory of particles. 44
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for such a law, nothing can then hinder the breakup into
quarks. It is important to emphasize that this is ap-
parently specific for the magnetic mechanism, which is
based ultimately on spontaneous symmetry breaking. It
is therefore possible that the question of the quark con-
finement mechanism will be elucidated by data obtained
from collisions at high energies, from cosmological
data, and so forth.

13. CONCLUSIONS

Twenty years ago, the theory of elementary particles,
which was based on quantum field theory, was in a cri-
tical state. The way out of the dilemma was seen by
some in an increase in the mathematical "armament"
of the theory, by others in a transition to a description
of interaction processes less detailed than in ordinary
quantum mechanics, by a third group in the need for a
radical break with our ideas about spacetime, the caus-
al connection of events, etc.

However, we are today justified in saying that quantum
field theory has emerged from the crisis and has over-
come the difficulties with, so to speak, its own re-
sources. Today, we are no longer dismayed by the non-
renormalizability of the weak interaction—the unified
theory of particles has overcome this difficulty. We
have now overcome our fear of the "zero charge" prob-
lem—in the unified theory we encounter the opposte sit-
uation (asymptotic freedom, see Ref. 45). And, finally,
we are no longer particularly afraid of the difficulties
in describing the strong interaction on account of that
same asymptotic freedom (weakening of the interaction
with increasing energy) and other factors.

The quantum-field approach which has emerged has
led to impressive successes in many directions of ele-
mentary-particle theory (above, we have been able to
mention only some of them). This approach promises
even more in the future. It therefore appears that in
the theory of elementary particles a more or less pro-
longed stage of supremacy of the ideas and methods of
quantum field theory is once more beginning.

Of course, the history sketched above of the rebirth
of the almost buried quantum field theory demonstrates
clearly how dangerous it is to make predictions by ex-
trapolating to the future the modern tendencies in the
development of science. With this important reserva-
tion, the immediate future of the theory of elementary
particles would seem to be as follows.

The general line of development of the theory will tend
to the creation of a unified theory of all particles and
their interactions, including gravitation. Most probably,
essential use will here be made of the idea of the theory
of supersymmetry (unification of Fermi and Bose par-
ticles in a single multiplet; see Ref. 46), which repre-
sents a further step toward a unified theory and has al-
ready given clear examples of mutual compensation of
the difficulties inherent in the theories of individual
types of particles.

The theory will be based on relatively simple and
perspicuous field-theory models (of the type of quantum

chromodynamics; see Sec. 8), the transition from these
models to observable quantities being made by the
methods generally adopted in theoretical physics. In
this way, no need will be seen for a radical change in
the fundamental ideas or methods of description; indeed,
rather, we can expect that even more use will be made
of old and well tested ideas taken from macroscopic
physics. In brief, the tendencies for increasingly close
approach of elementary-particle theory to other branch-
es of theoretical physics will prevail.

If these expectations are fulfilled, we shall be con-
vinced once more of the unity of the physical picture
of the world in the sense that it is constructed in gen-
eral in accordance with a "standard model" principle
(if not from standard parts, at least according to stand-
ard design). On the other hand, this will amount to a
certain downgrading of the theory of elementary parti-
cles, which, though it will remain at the frontier of
theoretical physics, will occupy for a time an honored
but not the exceptional position of "first among equals"
among the other branches of theoretical physics.

Whether these expectations will be confirmed or ele-
mentary-particle physics will before then encounter new
fundamental laws is something that only the future can
show.
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