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The definition of turbulence and the differences between turbulence and random wave motions of liquids
or gases are discussed. The Landau scheme of the generation of turbulence with increasing Reynolds
number as a result of a sequence of normal bifurcations that creates a quasiperiodic motion is considered;
several examples are discussed, including flow between rotating cylinders, convection at small Prandtl
numbers, and the boundary layer at a flat plate. Results obtained in recent years from the ergodic theory
and associated with the discovery of strange attractors in the phase spaces of typical dynamic systems are
described. Flows with inverse bifurcations are considered, including the plane Poiseuille flow and Lorenz's
example with idealized three-mode convection at large Prandtl numbers. In the latter case, the results of
numerical calculations are analyzed and point to the existence of a strange attractor with the structure of
a Cantor discontinuum; other examples of systems with strange attractors are also considered. It becomes
clear that strange attractors in the phase spaces of systems with few modes may explain their nonperiodic
behavior, but cannot explain why turbulence has a continuous spatial spectrum.
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1. INTRODUCTION

According to existing conceptions the c has tic, ran-
dom appearance of turbulent liquid and gas flows is
explained by the excitation of a very large number of
degrees of freedom in these flows. As mechanical
systems, such flows represent an aggregate of a very
large number of vibrating and interacting oscillators.
The point representing such a system in the corres-
ponding phase space (whose number of dimensions is
very large, but still finite in the case of flows in
limited volumes) moves during the generation of tur-
bulence along a path that makes an asymptotic approach
to a certain limiting cycle that can be called a quasi-
periodic attractor: here the time (t) functions that de-
scribe the turbulent fluctuations are quasiperiodic,
i.e., they have the ίοπη/ί ,ω^, . . . , u>Jt), where η is
very large, / has a period of 2π in each argument uikt,
and the frequencies ωΙι with different subscripts k are
generally not commensurable. This concept of deve-
loped turbulence was proposed already in 1944 by
Landau1 (see also § 27 of the Landau and Lifshitz
book2). It was used in description of data on the
generation of turbulence by Monin and Yaglom3 and in
§ 2 of their book,4 which appeared in 1965.

Several years ago, Ruelle and Takens5 (see also the
later paper of Ruelle5) advanced the hypothesis that
strange attractors, i.e., sets that differ from station-
ary points and limiting cycles and are approached
asymptotically, in sensitive dependence on the initial
conditions, by certain phase paths of the flows, exist
in the phase spaces of liquid or gas flows. Flows

evolving on strange attractors, which are the ones
that Ruelle and Takens call turbulent flows, are not
quasiperiodic. The time functions that describe them
are pseudorandom and have correlation functions that
decay at infinity and continuous frequency spectra; at
the same time apparently these flows may also have
small numbers of excited degrees of freedom. A
number of laboratory and numerical experiments on
the generation of turbulence in various types of flows
indicate the possibility that psendorandom fluctuations
with a continuous frequency spectrum form abruptly as
the Reynolds number rises, without preliminary de-
velopment of a quasiperiodic flow or after the appear-
ance of only a very small number of periodic com-
ponents in the flow. This might be taken as evidence
favoring the strange attractor hypothesis. It is to a
review of these materials that the present paper is
devoted.

2. THE DEFINITION OF TURBULENCE

Turbulence is a convenient name for a phenomenon
that is observed in a very large number of liquid and
gas flows involving eddies in nature and in engineering
systems, in which the thermodynamic and hydrodyna-
mic properties of the flows (velocity vector, tempera-
ture, pressure, impurity concentrations, density,
sound velocity, electrical conductivity, refractive
index, etc.) undergo random fluctuations created by
the presence in the flows of numerous eddies of various
sizes and, as a result, vary extremely irregularly in
space and time, with broad frequency ranges corres-
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ponding to the Fourier components with fixed propaga-
tion vectors in the spatial distributions of these pro-
perties (i.e., there are no unique dispersion relations),
while the phase shifts between the oscillations of dif-
ferent characteristics at fixed points in space vary
randomly with the frequency of these oscillations.

According to this definition, the chief criterion of
turbulence is the chaotic, random nature of the spatial
and temporal variations of the thermohydrodynamic
properties of the flow. However, it is not useful to
refer to every flow of this kind as turbulent; for a
number of purposes it may be necessary to distinguish
turbulent flows from other types of random liquid and
gas motions that exhibit some degree of regularity.
Foremost among these other types of motions are
waves that appear in a fluid because various restoring
forces develop when fluid particles are displaced from
their equilibrium positions in the fluid: the pressure
force in acoustic oscillations of a compressible fluid,
the force of gravity in oscillations of the free surface
of a heavy liquid, surface tension in capillary waves on
the free surface of a liquid, the buoyant force in inter-
nal gravity waves in a stratified fluid, the vortex part
of the vertical Coriolis force component in meridional
displacements of particles in a rotating spherical
layer of liquid, etc.

The superposition of a large number of waves of one
type or another with different propagation vectors and
random amplitudes and phases may result in forma-
tion of a flow with highly irregular variations in space
and time, but in many cases it can, in principle, be
distinguished from turbulence by the properties of its
elementary wave components—a definite (say, longi-
tudinal or transverse) orientation of the particles dis-
placements relative to the direction of the propagation
vector, definite phase shifts between the oscillations of
various characteristics of the elementary wave at a
fixed point in space, or an oscillation frequency that
is uniquely determined by the propagation vector (a
so-called dispersion relation).

Flow vorticity plays a definite role in the mechanics
of turbulence, making possible a cascade process in
which small eddies are generated by large ones (if the
large eddies are hydrodynamically unstable) and, as
a consequence, a transfer of kinetic energy across the
spectrum of scales of motion in the direction of
smaller scales (for this reason, attempts to derive
equations for the dynamics of turbulence from the
equations of the kinetic theory of gases, in which in
the lower approximations only potential random fluctu-
ations of flow velocity appear,7 are unsatisfactory).
We have therefore defined turbulence as random fluc-
tuations of the thermodynamic characteristics of vor-
tex flows, thereby distinguishing it at the outset from
any kind whatever of random irrotational i.e., potential
flows (in which the velocity vector u= V<J> is the grad-
ient of a certain scalar potential Φ) and, consequently,
from all waves in an ideal fluid that are generated by
potential forces, including all linear acoustic and sur-
face waves and all nonlinear potential surface waves.

3. DIFFERENCES BETWEEN TURBULENCE AND
WAVES

Because of the viscosity of water, real waves on the
surface of an ocean show moderate vorticity (of the
first order of smallness with respect to the slope of
the waves in the boundary layer at the free surface,
which is very thin for a clean surface and much
thicker in the presence of a nearly incompressible
surface film, and of the second order below the surface
layer; see § 3.4 of Phillips' book8). The fluctuations
created by the random field of these waves in the upper
layer of the ocean differ from turbulence both in their
small vorticity and in the dispersion and phase rela-
tions for the elementary wave components of which
they consist. These wave-induced fluctuations are co-
herent with the surface waves themselves, and if
these waves are registered they can be filtered out of
the total-fluctuation records, at least approximately
(a mathematical technique for this filtration has beea
developed by Benilov and Filyushkin9; see also
Benilov's paper10 and § 3.8 of the book by Monin,
Kamenkovich, and Kort11).

Differentiating between internal waves in a stratified
ocean and turbulence is a much more complex matter.
Firstly, registration of internal waves separately from
the total fluctuations is impossible. Secondly, internal
waves are not potential waves—they are strongly ro-
tational in vertical planes containing the direction of
propagation of the wave, and also in horizontal planes
in the range of low frequencies comparable to the
inertial frequency (i.e., with the so-called Coriolis
parameter /= 2Ω sin<,o, where Ω is the angular velocity
of the earth's rotation and φ is the geographic latitude).
Thirdly, nonlinear effects may often be significant in
internal-wave dynamics, and the internal waves may
then be transformed into turbulence, as will be ex-
plained a little farther on.

In spite of these complications, the problem of dis-
tinguishing between the random field of these waves
and turbulence can be solved in the case of linear
internal waves because even the random field of linear
internal waves exhibits a number of regularity proper-
ties that turbulence does not have. In fact, the random
field ζ(χ,ζ,ή of vertical fluid particle displacements
at a depth ζ in linear internal waves, which is statis-
tically homogeneous in the horizontal coordinates χ
and stationary in time t, can be represented in the
form

ζ (χ, z, ί) = f β'*»-»» ζ (it, 2, ω) dZ (k, ω), (1)

where k are the horizontal propagation vectors, ω are
the frequencies (in the range /« ω «ΛΓ where/ is the
inertial frequency referred to above andNis the so-called
Brunt-Vaisala frequency, which is defined by N2

= gdpjp jiz where g is the acceleration of gravity and
p+ is the potential density of the medium), £(fe,2,o>)
are regular (nonrandom) functions of ζ that satisfy the
linear internal-wave equation and one of the boundary
conditions on the ocean surface 2 = 0 and on its bottom
z=H:
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0: (^-P)^. 0.
(2)

Also substituting ζβ,ζ,ω) into the second boundary
condition, we obtain for a fixed horizontal wave number
k an equation for ω that has a denumerable number of
roots—the eigenfrequencies ω = ωη(&) of the various
internal-wave modes η = 1, 2, . . . . Therefore, the
random spectral measure Z(k, ω) in (1) is concentrated
on dispersion surfaces ω = ωπφ);

dZ (k, ω) ω — ω π (ft)] deo dZn (k). (3)

The velocity components u, v, and w and the fluctua-
tions of the pressure p and density ρ in the field of the
linear internal waves are represented by formulas of
the type (1) with £(£,«,ω) replaced respectively by the
functions

(4)
p

ρ, άζ PoJV« -

where £x and fc2 are the Cartesian components of the
propagation vector and po(z) and co(z) are the unper-
turbed density and sound velocity.

Thus, to determine the nature of the measured
fluctuations it is necessary first of all when the func-
tion pj^z) has been measured (approximated, say, by
some convenient analytic expression) to use (2) to find
the eigenfrequencies ωπ(£) and the corresponding eigen-
functions tn(k,z) = t;[k,z,ω„(!?)] orthonormalized, for
example, to the total energy of the internal waves,
i.e., satisfying the condition £„„£„= 6mn, where the
functional scalar product is given by

(5)
Then, for example, expansion of the measured field
t(x,z,t) in terms of the functions eitxtn(k,z) will enable
us to verify that the dispersion relation for linear in-
ternal waves are satisfied, while expansions of the
measured fields in terms of the functions exp{i[k-x
- <i)n(k)]t} enable one to verify relations (4).

The phase differences between the oscillations of
any two hydrodynamic characteristics a and 6 at a
fixed point in space can be estimated by calculating
their cross-correlation function ^>b(r)=a(t+ r)b(t) (here
and everywhere below, the overbar indicates the sta-
tistical mean value, i.e., the mathematical expecta-
tion), representing its Fourier transform (the cross
spectrum) in the form Ctb(u) -t'Qet(a>) (where Cat is
the cospectrum and Qat the quadrature spectrum) and,
finally, constructing the spectrum of the phase shift

For linear internal waves it should agree with that
calculated from formulas (4) (for example, at ω »/,
the oscillations of u, ν, £, ρ, p, and Τ are phase-
shifted by π/2 with respect to those of w), while no
phase-shift regularities would be expected in turbul-

ence.

In weakly nonlinear internal waves, the dispersion
relations and phase shifts turn out to be slightly
spread out around the values predicted by the linear
theory. In the nonlinear case, interactions take place
between internal waves with different three-dimen-
sional propagation vectors x 1 ( and H 2 which, firstly,
are resonant interactions in which the resultant wave
with propagation vector κ=κ 1 ±γ^ has a frequency
ω (χ·) so^Hj) ±ω(κ2) and the typical time of such an in-
teraction is of the order of T~(X 1 W 1 )" 1 / 2 (X 2 «; 2 )" 1 / S

»N~l and, secondly, are nonresonant interactions,
which give rise to so-called forced modes, i.e., in-
ternal waves with propagation vectors χ = y^ ±x2 and
frequencies ω = ω(·μ.ι)± ω(χ2) that do not satisfy the dis-
persion relation [i.e., ωΦω(χ.)]. The amplitudes of
the forced modes are small when r » ^ " 1 , but when
τ~Ν"1 they are comparable to the amplitudes of the
original waves and may be large, and the interactions
of these forced modes with one another and with free
internal waves will generate a spectrum of vortex type
oscillations that do not satisfy any definite dispersion
relation, i.e., a turbulence spectrum. According to
a proposal of Miropol'skii and Filyushkin,12 the inter-
action time can be estimated from the formula τ
= [k3E(k)Yl/2 where E(k) is the spectral density of the
kinetic energy of the fluctuations per unit mass. E(k)
can be regarded as the spectrum of the interacting
internal waves when τ »N'i, and as a turbulent spec-
trum when

4. NORMAL BIFURCATIONS AND LANDAU
TURBULENCE

Information as to how turbulence arises can assist
us greatly in understanding its nature. We introduce
several concepts for discussion of this problem:
degrees of freedom and the phase space of the fluid
flow, decomposing the latter into elementary com-
ponents whose states are characterized by the values
of a small number of parameters and the sum of whose
energies equals the energy of the flow as a whole.
Mathematically, this reduces to the expansion of the
velocity field in the volume occupied by the fluid in a
suitable orthogonal system of functions of the space
points. The coefficients of this expansion will serve
as the generalized coordinates of the flow. The num-
ber of these coordinates that are capable of varying in
time will be the number of degrees of freedom of the
flow. The set of values of all of the generalized coor-
dinates, which forms a point in a certain multidimen-
sional space known as the phase space of the flow,
will be a complete characteristic of the instantaneous
state of the flow. The evolution of the flow is
represented in phase space by a certain line—the
phase path of the flow; it will consist of a single point
for a stationary flow and will form a closed line (cycle)
for a periodic flow.

Let us examine the process by which turbulence
arises as a result of stability loss by an initial laminar
(stationary) flow u,,(x) when perturbations are superim-
posed on it. The velocity field corresponding to a
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small (infinitesimal) perturbation can be found as the
solution of the linearized equations of hydrodynamics,
which has the form

u' (x, t) = A (() i0 (x), A(t)=e>>>, λ = γ ± (6)

We then find that at small Reynolds numbers Vte-LU/v
(L and U are the length and velocity scales typical for
the laminar flow being analyzed and ν is the kinematic
molecular viscosity) all eigenvalues λ of the linearized
equations have negative real parts y< 0, so that all
small perturbations (6) are damped in time and, con-
sequently, the laminar flow is stable under small per-
turbations. As Re increases, however, the real parts
y of some of the eigenvalues increase and we find a
critical value Re l c r of the Reynolds number at which
one of the eigenvalues \(Re) of the linearized equations
first crosses the imaginary axis in the complex λ-
plane, i.e., y(Re ler) = 0; the corresponding perturbation
(6) will neither damp nor increase with time, i.e., it
will be neutral. At Re >Re l c r there will exist eigen-
values λ with positive real parts y>0, i.e. perturba-
tions (6) that increase with time, so that the laminar
flow being analyzed will be unstable under small per-
turbations.

The Hopf bifurcation theorem,13 according to which
there exists a single-parameter family of closed flow
phase paths for values of Re in a certain neighborhood
of Re l c r , is important for further inferences as to the
behavior of perturbations (Hopf proved this theorem
for dynamic systems of a rather general type; its
applicability to fluid dynamics was demonstrated by
Brushlinskaya," see also the papers by Sattinger,15

Ruelle and Takens,5 Joseph and Sattinger,16 and Chen
and Joseph17). We shall first discuss in detail the case
of "normal bifurcation," in which a family of closed
phase paths exists for Re>Re l c r . They are then
limiting cycles to which time-periodic flows corre-
spond. Landau1 described the transition from an
unstable small perturbation (6) to a periodic flow (see
also the book by Landau and Lifshitz2). While the
perturbation (6) is small, its amplitude A(t) satisfies
the equation

(7)

but at finite \A | the right-hand side of this equation
must be supplemented with subsequent terms of its
expansion in powers of A and .A* (where the asterisk
denotes the complex conjugate). Here it is helpful to
exclude the high-frequency oscillations in (6) (those
with frequencies 1^ | »y) | by smoothing in time (over
a period τ from the range 2ir/ |ωχ | « τ « 1/y); then
terms of the third degree drop out and only the term
proportional to \A | 4 remains of the terms of fourth
degree, and to this accuracy we obtain in place of (7)
the Landau expansion in the form

(8)

Let us now consider the case δ >0 (we shall return
later to the opposite case δ<0). In this case the solu-
tion of (8) has the form

Ο)

so that with a small initial value Ao, the amplitude
\A(t) j first rises exponentially (as Aoe

rt, in accor-
dance with the linear theory) and then more slowly,
tending as f— <*> to a finite value .A» that does not de-
pend on Ao and is proportional to V Re - Re l c r at small
values of the radicand (since as Re —Re lcI. we have
y~ R e - Re l e r and δ *Q). At small R e - Re l c r >0, there-
fore, the perturbation (6) tends with increasing t to a
periodic oscillation ^(x , i) with a certain finite ampli-
tude and an arbitrary phase that is determined not by
fixed external conditions, but by the random initial
phase of the perturbation, and is therefore a degree of
freedom of the limiting flow.

Another critical value of the Reynolds number,
Re 2 c r, may be reached as Re increases; at this point,
there is a second bifurcation, and the periodic flow
UQW + U^X,^ becomes unstable under any perturbation
of the form β^'ί^χ,ί), where ft is a periodic function
of t with period 2π/ω1 and the eigenvalue λ has an
imaginary part±£a>2. At small Re-Re;,,.,., this per-
turbation will increase with time to a finite limit—
a quasiperiodic oscillation with two periods 2ττ/ω1

and 2π/ω2 and two degrees of freedom (oscillation
phases).

According to Landau's hypothesis, more and more
normal bifurcations will occur as Re increases fur-
ther, and as t increases the phase path of the flow will
approach a limiting regime with a corresponding
quasiperiodic flow u[x, φ^ί),.. . ,φβ)] that has a
period of 2ir with respect to each of the arguments
<pt(f) = t«V + otk. This limiting cycle will occupy a
phase- region and corresponds to all possible
sets of initial phases a , , . . . a,, and the phase path
wound onto it will, with time, pass through practically
all points of this region (indeed, at the time tn

= 2τη/ωι,η=0, 1, 2 , . . . at which the phase φ ι (t)
assumes the value α 1 ; the phase <p2(i) of any other
oscillation will assume values (2π«ω2/ω1)+ α2>η
= 0, 1, 2 , . . . that contain, after reduction to the
interval (0,2ΤΓ), numbers as close as we please to any
preassigned number from this interval, since the
frequencies ωχ and ω2 are, generally speaking, not
commensurable). It is the quasiperiodic flow
u[x, <Pi(i),... <Pn(t)] with a very large number of de-
grees of freedom n, which is ergodic in this sense,
that is the developed turbulence according to Landau
(we note, however, that here the time correlation
functions of the velocities do not, generally speaking,
tend to zero at infinity). Hopf18 constructed a mathe-
matical example of this kind.

5. FLOWS WITH NORMAL BIFURCATIONS

A number of laboratory and numerical experiments
on the generation of turbulence in a Couette flow
between rotating cylinders, convection at small
Prandtl numbers, in the boundary layer near a flat
plate, in the mixing zone between flows with unequal
velocities, in the wake of a fluid flow around a cylin-
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der, and in multilayer models of atmospheric circula-
tion has to a certain degree confirmed Landau's hypo-
theses concerning the development of quasiperiodic
flow, but only a few successive bifurcations could be
detected in these experiments, and then the flow essen-
tially abruptly became highly irregular in time (with
a continuous frequency spectrum), although the wave-
number spectrum still remained discrete and turned
continuous apparently only after a further increase in
Reynolds number.

The evolution of a flow between coaxial rotating
cylinders, which was measured in greatest detail
by Gollub and Swinney,19 is a striking example of a
bifurcation sequence. In their experiment, they mea-
sured the radial velocity ur(t) in the middle of the gap
between an inner rotating cylinder with a radius rL

= 2.224 cm and an outer nonrotating cylinder with an
inside radius r2 = 2.540 cm (the measurements were
made by an optical method, using the scattering of
light by a volume with a diameter of about 5% of the
gap width; see the paper by Gollub and Freilich20).
Here it is convenient to express the velocity of the
inner cylinder in units of R*=Re/Rec r, where Re
= 2irrl(r2 - r^/ντ, where τ is the period of rotation
and Re c r = 2501 is the critical Reynolds number for
transition to the nonperiodic regime. The flow was
laminar at R*<0.051. At R* = 0.051 there was a tran-
sition to a new stationary flow (of the form (6) with
0^ = 0; the effect is called stability succession)—
toroidal Taylor vortices with a wavelength of 0.79 cm
along the cylinder axis.

The bifurcation observed at R*= 0.064 resulted in
the formation of the first periodic regime—standing
or traveling transverse expansion-compression or
bending waves on the Taylor vortices (four waves on
the circumference), with the dimensionless frequency
/*=/ tT= 1.30 (this frequency and six of its harmonics
can be seen in the spectrum of Fig. la against a back-
ground of instrumental white noise). The second per-
iodic regime appeared at R*=0.54±0.01—low-fre-
quency modulation of the transverse waves with fre-
quency f2 (see spectrum in Fig. lb), which decreases
as R* increases further, to zero at R*=0.78±0.04
(this time with a simultaneous increase of the real
continuous spectrum instead of the instrumental spec-
trum). At this point a third periodic regime appeared
with the dimensionless frequency f* = f3T=0.87(2f*/3)
(see spectrum in Fig. lc).

Just before the transition to the nonperiodic regime
(R*= 0.982, Fig. Id), the discrete peaks on the spec-
trum still contained 90% of the energy of the oscilla-
tions, and the fluctuation correlation function of ur(t)
was of periodic undamped form. Immediately after
the transition (R*= 1.022, Fig. le), the discrete
peaks had vanished, leaving a continuous spectrum
with a broad maximum Β (which was noticeable even
before the transition) containing 60% of the energy,
and the correlation function had become damped. The
bifurcation at R* = l was abrupt, reversible, and with-
out hysteresis within the resolution limits of the ex-
periment 6R* = 0.01, i.e., 6Re=25 (although it is

P(f)

10 Γ |<V
\lfi

if,
/if,

\Sf, \Sf>

10'' -

IP'0

If,

FIG. 1. Spectra of radial
velocity component P(J)
(cm^ec^Hz·1) in Couette
flow between rotating cyl-
inders at various Reynolds
numbers.'9 a) R*
= Re/Recr = 0.504; b) R*
= 0.595; c) R* = 0. 841; d)
R* = 0.982; e) R* = 1.022.

i

ιοf.Hz

naturally not possible to exclude condensation of the
bifurcation points in this interval on the Re axis).

A similar sequence of normal bifurcations was ob-
served in the experiments of Willis and Deardorff21

on the generation of convection in a layer of liquid or
gas heated from below with a small Prandtl number
Pr= ν/χ, where χ is the kinematic molecular thermal
conductivity (air with Pr=0.71 was used in these ex-
periments; we recall also the experiments of
Krishnamurti22·23 with air and mercury, Rossby24 with
mercury, Ahlers25 with classical liquid helium (Pr
= 0.86) and Moller and Riste26 with a liquid crystal).
It is known (see § 2.7 of the book by Monin and
Yaglom4) that centrifugal forces in a curvilinear flow
whose velocity of rotation decreases with increasing
distance from the center of curvature and buoyant
forces in convection have a similar (destabilizing)
effect on the flow.

In the case of appearance of convection, just as in
the flow between rotating cylinders, there is first a
stability succession—at a certain value Ra l c r of the
Rayleigh number Ra. = agH36T/i'x (a is the thermal ex-
pansion coefficient of the medium, Η is the layer
thickness, and δΤ is the temperature difference be-
tween its upper and lower boundaries), a new stationary
flow arises out of the quiescent state, taking the form
either of two-dimensional rolls periodic in the horizon-
tal coordinate and resembling toroidal Taylor vortices
(if the variations of the material properties of the
medium (α, ν, χ) with height in the layer—chiefly
those due to temperature—are negligibly small, see
Whitehead27) or of hexagonal Benard cells (if the mat-
erial properties depend on temperature, see Schluter,
Lortz and Busse,28 and Busse.29 Here we shall discuss
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the stability of two-dimensional rolls, taking the direc-
tion of their axes as the y axis and describing their
stream function ψ and the deviation θ of the tempera-
ture from the linear profile in the (x,z) plane by three
modes (Busse30 demonstrated that in the case of in-
finitesimal perturbations, the amplitudes of the other
modes are small quantities of higher order; this is true
in particular at small Pr), which are conveniently
written in the form

(10)

(these modes correspond to the case in which both
boundaries of the layer are free surfaces, but this
limitation is evidently immaterial, see, for example,
the paper by Palm, Ellingsen, and Gjevik31). It was
established in experiments with air21 that transverse
oscillations of the rolls—standing waves or waves
that travel along their axes (which are approximately
in phase and have relatively constant amplitudes
everywhere except in the neighborhood of the boundar-
ies, i.e., are rather insensitive to the boundary con-
ditions)—appear when Ra2cr is approximately three
times Ra^,.. These oscillations were calculated in the
framework of the linear theory by Busses30 and of the
nonlinear theory by McLaughlin and Martin32 (who also
discussed the strange-attractor hypothesis in general
terms). They began by computing an eight-mode mo-
tion containing nonstationary rolls (10) and one har-
monic along the y axis, for which Ra2cr was deter-
mined analytically, and by constructing the Landau
expansion (8), showing that δ>0 in it, i.e. the case is
one of normal bifurcation.

Secondly, they computed, this time numerically, a
39-mode motion containing nonstationary rolls (10)
and four harmonics along the y axis with parameters
similar to those of Ahlers' liquid helium experi-
ments.25 Here it was convenient to express the tem-
perature difference causing the convection in units of
R*= (ft2//) x [1+ (ftyT2)]'3Ra and it was assumed in the
calculations that fe2/w= 0. 1*Χ/ΙΓ= 0.072 and Pr= 1; here
Β*Άτ*> 1.25. Calculations with R*= 1.4 and 1.45 yielded
periodic and slighly nonperiodic regimes, respectively,
while R*= 1.5 and 1.55 again produced a periodic re-
gime (due to the disappearance of the mean motion,
which contributes to an increase in perturbations with
high wave numbers), and R* = 1.6 gives a sharply non-
periodic regime (Ahlers observed the transition to it
at R*=2.18). However, if the fourth harmonic is left
out calculations with R*= 1.6, 2 and even 20 gave
periodic regimes.

A similar sequence of bifurcations has also been
observed in the generation of turbulence in boundary
layers, e.g., in the experiments of Klebanoff,
Tidstrom, and Sargent33 on the flow over a smooth
flat plate. In this case, the Reyonlds number in-
creases along the χ axis in the downstream direction,
so that when a vibrator was used at a fixed distance
# l c r from the leading edge of the plate (which corres-
ponds to Re l c r) to set up a neutral perturbation—a
two-dimensional Tollmien-Schlichting wave propagating

along the flow—, the experimenters observed sequen-
tial bifurcations at various distances from the vibrator.

Initially, the amplitude of the twodimensional wave
increased downstream. Then, at a certain value Re2cr,
a secondary three-dimensional wave was superimposed
on it with periodic variations in the transverse y di-
rection generated by longitudinal eddies with axes
along the flow, which brought about a sudden redistri-
bution of the intensity of the longitudinal pulsation of
u' in the y direction. This secondary wave had a group
velocity along χ that was close to the phase velocity of
the primary wave. It built up very rapidly downstream
(Fig. 2) and became nonlinear. This resulted, first of
all, in space-time focusing of the secondary wave
packet on the crest of the primary wave and, secondly,
in the disappearance of secondary-wave segments with
positive longitudinal-velocity anomalies w'>0, leaving
only the segments with negative anomalies—pulses
with u' <0 (Landahl34 offered a theoretical explanation
of these effects of nonlinearity). First, a single pulse
per cycle of the vibrator was observed, then two down-
stream, and so forth (for this see also the observations
of Kovasznay, Komoda, and Vasudeva,35 and turbulence
apparently arose after the regime with four pulses per
cycle.

It was possible to observe the small-scale flow forms
that lead to the generation of turbulence in the bound-
ary layer near a smooth solid wall by using precision
methods to make water flows visible—chains of
micron-size hydrogen bubbles generated periodically
by a voltage on a platinum wire and microinjections
of a dye (Kline et αί.36"44; see also Corino and
Brodkey's experiments43 with visualization of a tri-
chloroethylene flow in a glass tube by the use of su-
spended micron-size magnesium oxide particles).

It was established that streams of decelerated liquid
of widths 5y*= 10-30 and a transverse spacing of about
Ay*~ 100 form in the viscous sublayer under the in-
fluence of the above longitudinal eddies in the troughs
of the transverse waves (longitudinal-velocity minima)
at heights of the order of z*=2.5- 10 (the plus super-
script identifies lengths measured in units of v/u*,
where u* is the "friction velocity" at the wall) and

-4.0 -

0.01 0.05 0.05 0.07
O/O

FIG. 2. Downstream growth of longitudinal -velocity fluctua-
tions In secondary wave In boundary layer over a flat plate."
1—*=7.6 cm; 2—*=15.2 cm; 3—x=19cm.
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FIG. 3. Hydrogen-bubble field (topview) generated by a trans-
verse filament in a boundary layer at a flat plate (upper edge
of photograph, flow from top to bottom) at height z* = 4.5.39

move downstream, floating slowly upward under the
influence of the longitudinal eddies (see the example
of the hydrogenbubble field in Fig. 3, which was gen-
erated by a horizontal transverse filament at a height
2* = 4.5). Such a stream behaves as a miniature boun-
dary layer and separates and moves upward into the
rapidly flowing liquid under the action of the negative
pressure gradient created by the transverse-axis eddy
passing above it (concerning which see below), creat-
ing a curvature with an inflection point on the instant-
aneous velocity profile (in Fig. 4, see the example of
bubble isochrones generated by a vertical filament).
Then oscillations appear on the stream at heights
2*=8-12, and soon its end "explodes" (mostly at
heights z*= 10-30 and at distances δ** = 1000-1500
from the point of separation), creating an extremely
irregular small-scale motion. The frequency of the
"explosions" per unit width of the flow is F- (u\/v2)F*,
where 2nF*&y*~ 0.06. It was established41 that prac-
tically all the turbulent energy production- u'w'dvi/dz
occurs in the "explosions."

According to Offen and Kline,44 and eddy with a
transverse axis and the sign corresponding to the
main-flow vorticity du/dz is bound to the stream of
decelerated liquid in a reference system that moves
with the velocity of the main flow at the height at
which the stream originates (Fig. 5). When the stream
separates, the central part of this eddy floats upward
and moves away downstream, so that the eddy is
stretched out and acquires a horseshoe shape (a long-
itudinal section through a "leg" of such a "horseshoe"

FIG. 5. Formation of a
horseshoe vortex.44

is seen in the isochrones of Fig. 4). Overtaking
on the upper side the decelerated stream next in the
downstream direction, the top of the "horseshoe" pro-
duces a negative pressure gradient on it and causes
it to separate (Fig. 6, b and c) with formation of a new
"horseshoe." Superposition of two "horseshoes"
causes them to combine to form a single larger eddy,
but much more often the eddy lines do not combine,
but intersect, creating "explosions" and breaking up
into smaller eddies; both "randomization" and transfer
of turbulent energy along the spectrum of scales takes
place in this manner.

A sequence of bifurcations was observed with in-
creasing Reynolds number also in the experiments of
Miksad,46"47 who introduced (using a loudspeaker)
vibrations of fixed frequency into the zone between air
flows of various velocities (from two fans) and detected
the successive appearance of new discrete frequencies,
and then a continuous spectrum. Similar phenomena
are also observed in the wake of a fluid flow past a
cylinder (see, for example, the description in Chap. 41
of the book by Feynman, Leighton, and Sands48): a
stability succession takes place at Re~10, and a pair
of stationary vortices forms behind the cylinder; at
Re> 40 they began to separate one by one from the
cylinder, are replaced by new eddies, and move off
downstream, forming a Karman vortex chain; at
Re> 100 the vortices are replaced by rapidly turbulized
regions of successively separating boundary layers;
at Re>105 the boundary layers are turbulized even
before separation, the separation point moves down-
stream, the turbulent wake narrows, and the resis-
tance drops (resistance crisis); at Re~ 106, the tur-
bulent wake broadens and the resistance rises; finally,
at Re~ 107 the wake begins to oscillate as a single
entity. Finally, we mention the numerical experiments
of Lorenz49 with a two-layer twelve-mode model of the
general circulation of the earth's atmosphere, in
which, with two and three degrees of freedom, per-

FIG. 4. Bubble isochrones (i.e., lines of constant time; side
view) generated in boundary layer at a flat plate by a vertical
filament (left edge of photograph, flow from left to right).41

100

50

FIG. 6. Evolution of two successive streams of decelerated
fluid.44 a) Separation of first stream; b) start of interaction
with second stream; c) separation of second stream; d) "explo-
sion. "
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iodic motions were obtained with two and three per-
iods, respectively, while four degrees of freedom
give a nonperiodic pseudorandom motion.

6. THE HYPOTHESIS OF STRANGE ATTRACTORS

The equations of fluid dynamics are mathematically
complex and thus far they have yielded only a very
few concrete conclusions as to the nature of the phase
paths of a viscous fluid, which describe the evolution
of its states in time at various Reynolds numbers (one
of the important results that have been obtained can
be found in the paper by Brusklinskaya that was cited
above14). However, significant indications of existing
possibilities can be extracted from an analysis of the
phase paths of dynamic systems of various general
forms (see, for example, Smale's review50 and
Nitecki's book51). Even dynamic systems with phase
spaces Μ of a small number of dimensions may be of
interest for fluid dynamics, since the phase paths of
a fluid lie in finite-dimensional subspaces of phase
space after a small number of normal bifurcations.

The concept of the nonwandering phase point—a
point any neighborhood of which intersects a certain
phase path at least twice—is highly useful for in-
ferences as to the nature of the phase paths of a
dynamic system. The simplest particular cases are
stationary points, which correspond to stationary
solutions of the dynamic equations, and periodic
points, which lie on closed paths and correspond to
solutions that are periodic in time. A stationary point
χ of the transformation/ of phase space Μ after a fixed
time t is called hyperbolic if the bounded linear oper-
ator Df that serves as the differential of the trans-
formation/at this point [which maps the subspace Tx

tangent to the space Μ at the point χ onto the tangential
subspace Tf(x) at the point/(#)] is hyperbolic, i.e., its
spectrum does not intersect the unit circle; a per-
iodic point of the transformation/ is called hyperbolic
if it is a hyperbolic stationary point of a certain degree
of the transformation/. A stable manifold of a sta-
tionary hyperbolic point Λ: is a set of points p of phase
space for which the sequence /""(£) of iterations of the
transformation/ converges to χ as m — °°; a stable
manifold with respect to/" 1 is called an unstable man-
ifold of the point χ with respect to /. Intersection
points of stable and unstable manifolds that differ from
the point χ itself are called homoclinic points (Poin-
care first encountered such points in the three-body
problem).

Kupka and Smale (see51) proved that dynamic systems
(on a smooth compact manifold) all of whose periodic
points are hyperbolic are typical in the sense that they
form in the space of all possible dynamic systems a
so-called Baire subset that can be represented as a
denumerable intersection of everywhere open dense
subsets (we note, incidentally, that this definition
of typicality is perhaps only conventional, since a set
of nontypical systems may have a nonzero measure).
Dynamic systems in which the set of nonwandering
points consists only of a finite number of stationary
points and closed paths, with all periodic points being

hyperbolic (and the stable and unstable manifolds
corresponding to any two of these points being trans-
versal), are called Morse-Smale systems. Peixoto
showed that these properties are typical for dynamic
systems whose phase space is a circle. However,
these properties are found to be nontypical for dynamic
systems with phase spaces of higher dimension. The
existence of an infinite number of periodic points is
then possible in the transformation /after afixedtime
t, and the set Ω of nonwandering points may contain a
Cantor discontinuum (i.e. a nowhere dense closed set
without isolated points).

A model of such a system is obtained if all two-sided
sequences {..., a , , ^ , ^ , . . .} of η elements a = \, 2,
. . . , η are taken as the points of the phase space (open
sets will consist of sequences with fixed elements at a
finite number of positions). Such a phase space is a
Cantor discontinuum; it can be brought into one-to-one
and mutually continuous correspondence with the set
of numbers from the segment [0,1] whose ternary ex-
pansions do not contain ones. We take the so-called
"Bernoulli shift" ak^ak.l as the transformation/.
Sequences consisting of repeating blocks of finite
length will be periodic points of this transformation.
They are everywhere dense in phase space, so that
Ω coincides with the entire space and is, therefore,
a Cantor discontinuum. Smale showed that in a broad
class of typical dynamic systems, every homoclinic
point belongs to a certain closed subset Λ of the set
of nonwandering points Ω that is invariant under the
transformation/ and is a Cantor discontinuum, with
a certain power/"of the transformation/ being
topologically equivalent to the Bernoulli shift on Λ.

Of special interest for the problems considered in
the present paper are cases in which Cantor subsets Λ
of sets of nonwandering points Ω are attractors, i.e.,
have neighborhoods such that the phase paths appearing
in them asymptotically approach Λ; attractors that
differ from stationary points and closed paths are
called strange. No exact proofs of the existence of
strange attractors in the phase space of viscous liquid
or gas flows have as yet been obtained, but this hypo-
thesis can be recognized as plausible if the presence
of strange attractors is generally typical for dynamic
systems. The most general result in this area at the
present time51 is Robbin's theorem, according to
which any dynamic system (on a compact manifold
Μ without an edge) is structurally stable (this means
that such systems form an open set in the space of all
possible dynamic systems) if the transformations / of
the phase space Μ that it brings about satisfy "axiom
A", i.e., for each/ the set of nonwandering points
Cl(f) is hyperbolic and the set of periodic points is
dense in Ω (and if, further, each stable manifold in-
tersects each unstable manifold transversally). A set
Λ will here be called hyperbolic if the ensemble TA (M)
of tangential subspaces Tx can be decomposed on it
continuously and invariantly with respect to Df into the
sum of a set E' that is compressed by the operator Df
and a set E" that is stretched by this operator (a finite
hyperbolic set is simply a finite set of hyperbolic
points; the Cantor set is hyperbolic in the model with
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the Bernoulli shift).

Let us now consider a situation in which all the
generalized coordinates of the dynamic system ω
are quasiperiodic functions of time with m fixed non-
commensurable periods; then the phase paths of
system ω are found to lie in a certain w-dimensional
torus Tm in phase space and the system itself can be
represented as a constant vector field on this torus.
Ruelle and Takens5 demonstrated that for m 2 3 there
exists in each set of dynamic systems obtained from
ω by small perturbations (i.e., in every small neigh-
borhood of ω, with, of course, the "small neighbor-
hood" concept precisely defined) an open subset of
dynamic systems that are not Morse-Smale systems,
namely, with m = 3 there are systems on T3=T2x Tl

such that the transformations of the two-dimensional
torus T2 that they induce have sets of nonwandering
points that contain a Cantor set, while for m i 4 there
are systems that contain strange attractors in their
phase spaces.

In particular, at m = 4 there is in every small
neighborhood of ω an open subset of dynamic systems
ω' with strange attractors of the following type. Let
Σ be a three-dimensional subset in T4 that is inter-
sected transversally by the phase paths of an ω'
system. We define the mapping of P(x) of the subset
Σ onto itself (called a Poincare succession mapping)
as the point of the next intersection of Σ by the phase
path originating from the point χ of this subset. We
can then take systems ω' for which P(x) maps the
interior U of a two-dimensional torus embedded, in Σ
onto itself in such a way that P(U) is the interior of
the single-loop torus embedded in U that appears in
Fig. 7. The circle S, which is a cross section of the
solid U, is then transformed into two circles P(S)
within S. The next iteration /^(S) gives two small
circles within each of the circles P(S), and so forth.
The intersection of all iterations P"(S) gives a Cantor
point set in S, so that the intersection of all iterations
P"(U) is a Cantor line set (a so-called one-dimensional
Williams solenoid), while the dynamic system ω' itself
has in its four-dimensional phase space a strange
attractor that is a local Cantor set of two-dimensional
surfaces.

The Ruelle-Takens theorem indicates that the
appearance of strange attractors in the phase spaces
of dynamic systems after a few normal bifurcations
(as few as four or even three, not counting stability
successions) should be a typical effect (in the sense
indicated in the formulation of the theorem). Whether
or not liquid and gas flows have such typical properties
remains to be clarified, both analytically taking into

P(S)

account the specific form of the hydrodynamic equa-
tions and experimentally by following successive
bifurcations in the loss of stability by laminar flows.

7. FLOWS WITH INVERSE BIFURCATIONS

Let us return now to the discussion of Sec. 4 and
examine the case of "inverse bifurcation," in which
the single-parameter family of closed phase paths
predicted by the Hopf bifurcation theorem13 appears
even at Re<Re l o r . In this case, the coefficient δ in
the second term of the Landau expansion (8) for the
smoothed squared amplitude \A | 2 of the flow velocity
field perturbation u' (x,t)=A (t) £„ (x) must be nega-
tive (the case 6<0, discussion of which was postponed
in Sec. 4), while the coefficient γ~ Re - Re l c r will be
negative for Re<Re l c r and positive for Re>Re l c r .
Here Eq. (8) is found to be suitable for study of the
behavior of the perturbations u' in the range Re<Re l c r ,
in which it assumes the form

(ID

It is clear from this that at Re< Re l c r the limiting
cycle that exists in the phase space is unstable be-
cause, firstly, phase paths lying within it are wound
onto a stationary point (or, in other words, perturba-
tions with small amplitudes \A | <At = V2 | y | / | 6 | decay
with time) and, secondly, phase paths lying outside
of this limiting cycle unwind from it and lead into
other regions of the phase space (i.e., perturbations
with finite amplitudes \A \>A1 build up in time, so
that at Re l c r >Re>Re > l c r =Re 1 < . r - a2 \A \2 the motion
becomes unstable under finite perturbations with amp-
litudes \A\ >AJ.

The limiting cycle contracts with increasing
Re< Re l c r, and vanishes after Re passes through the
value Re l c r . At Re>Re l (. r, Eq. (8) (with the coefficients
y>0, δ<0) has the solution

A\A\
(12)

FIG. 7. Mapping of succession P(U) of the interior V of a two-
dimensional torus onto itself giving rise to a strange attractor.

which increases without limit after a finite time
/= (l/2y) \n[\ + (A\/A\)}, but it is clear that Eq. (8)
fails even before this and must be supplemented by
succeeding terms of the Landau expansion. The avail-
able examples indicate that in cases of inverse bifur-
cation, motions with Re>Re lc. r apparently quickly be-
come nonperiodic; it is possible that there are
strange attractors with phase paths wound onto them in
the phase spaces of these flows.

One of the most thoroughly studied examples of
viscous fluid flows with inverse bifurcation is perhaps
the plane-parallel channel flow (see the reviews in §
2.9 of the American edition of Monin and Yaglom's
book52 and Stuart's paper53). Here for the laminar flow
(the so-called plane Poiseuille flow, which has a para-
bolic velocity profile) the linear theory predicts an
instability region y>0 in the plane of the Reynolds
number Re and the dimensionless longitudinal pertur-
bation wave numbers k, as indicated by the solid line
in Fig. 8; we note that as Re increases, both branches
of this "neutral curve" asymptotically approach the
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FIG. 8. Instability regions of plane Poiseuille flow. The solid
line bounds the instability region of infinitesimally small per-
turbations (γ> 0); the dashed line bounds the region δ > 0 . M

axis of abscissas k =0. The smallest critical Reynolds
number (calculated from the maximum velocity and the
half-width of the channel) on this curve has a value of
about 5800. However, both the early experimental
data of Davies and White55 and Tilman's recent data,
which are cited by Stuart,53 indicate appearance of
turbulence in the plane Poiseuille flow at much smaller
values Re~ 1000-2500, so that we must suspect inverse
bifurcation and instability with respect to finite-ampli-
tude perturbations.

Indeed, calculations made by several authors and
cited in the above reviews52'53 predicted a negative
sign for the coefficient δ in the Landau expansion (8)
and, consequently, instability under finite perturba-
tions at values of Re> Re c r i i n l , = 2500-2900, in satis-
factory agreement with the experimental data. More
precisely, Pekeris and Shkoller54 and Reynolds and
Potter5 6 calculated values of δ for various k and Re.
The "neutral curve" 6{k,Re) = 0 from the first of these
papers is indicated by the dashed line in Fig. 8; it and
the "neutral curve" y(fe,Re) = 0 of linear stability theory
divide the (k, Re) plane into four regions with different
combinations of signs of the coefficients γ and δ.
Reynolds and Potter56 also obtained similar results
for a combined plane Poiseuille-Couette flow with a
velocity profile U(y) = (4-a)y - (4- 2a)y2, 0 « y « l
(where a= 0 for the Poiseuille flow and a = 2 for the
Couette flow).

It is curious that the Poiseuille flow in a round pipe
(with parabolic velocity profile) and the plane Couette
flow (with a linear velocity profile) should behave
totally differently with respect to perturbations; they
are apparently stable to arbitrary infinitesmal per-
turbations (i.e., Re l c r=°°), so that normal bifurcations
cannot occur in them. However, experimental data
indicate that these flows are unstable under finite per-
turbations; it appears that "neutral surfaces" that
bound the instability region exist for them in the
three-dimensional space (k, Re, A). For the plane
Couette flow, this surface was calculated approximate-
ly by Kuwabara57 and Ellingsen, Gjevik, and Palm,58

and for the Poiseuille flow in a round pipe by Davey
and Nguyen.59 However, we note that when there is a
rod or string on the axis of the pipe (on whose surface
the flow velocity should be zero), both the region of
linear instability and the region of inverse bifurcation
reappear in the (k, Re) plane of the flow in the result-

= rX-Y-XZ, \

= -bZ+XY, J

ing "coaxial pipe."

Another interesting ezample of a system with in-
verse bifurcation is the idealized three-mode roll
convection in a layer of fluid with a large Prandtl
number, which can be described by formulas (10).
If we neglect the interactions with all other modes, the
hydrodynamic equations in the Boussinesq approxima-
tion yield the following equations for the dimensionless
amplitudes X, Y, and Ζ of these three modes;

(13)

where the prime indicates the dimensionless-time
derivative with respect to τΐΙΓ2 x [1+ (fef/i2)]xi, σ
= Pr, 6 = 4[1 + (kl/rr1)]-1 and r= Ra/Ra^,., with Ra l c r

= π4^1/π)"2[1+ (kl/t2)]3. The smallest Ra l c r is obtained
at fe^ff/vTand equals (27/4) JT 4 «657.5, as established
long ago by Rayleigh; the resulting value b = 8/3 will
be used below in analyzing solutions of Eqs. (13).
More general equations for finite-mode two-dimen-
sional convection, abridged in accordance with a
recipe proposed by Lorenz,60 were derived and
numerically integrated by Saltzman,61 and it was found
that in some cases all of the unknown functions except
X, Y, and Ζ tend to zero with increasing time, while
the quantities X, Y, and Ζ vary nonperiodically in
time. This is apparently what moved Lorenz62 to make
a special study of Eqs. (13), in the course of which he
found them to have the surprising properties that we
shall discuss in the next section.

The three-dimensional space (Χ, Υ, Ζ) is the phase
space of system (13). When Ζ is replaced by Z1

- Z—r-σ, Eqs. (13) become a system of the hypro-
dynamic type63; in consequence of these equations, the
sum X2 + Y2 + Z\, which attains rather large values,
should decrease with time. Therefore all phase paths
remain within a certain bounded region at large times.
Further, their divergence (&X'/dX)+ (dY'/dY)
+ (BZ'/dZ) has a constant negative value - (σ + 6 +1),
so that every small phase volume decreases with time
and all the paths tend to a certain subset of zero
volume. A t r < l , the system (13) has one stationary
point 0= (0,0,0), and this point is stable (it is an at-
tractor). At r > l , this stationary point becomes un-
stable and two more stationary points appear:
C = (/ft(r-l), V6(r-1), r- 1) and C = (-Vft(r-l),
- Sb(r- l), r - 1), which are equally valid because
system (13) does not change on the transformation
(Χ, Υ, Ζ)~(-Χ,-Υ, Ζ). For σ< 6+1, the points
C and C are stable, but if σ>6 +1 they are stable at
l<r<rCT=a(a + b+2)(a -b - l ) n , and become unstable
for r>rcr This latter case will be of special interest
to us.

We acknowledge that the three-mode system (13) no
longer corresponds to any real convection at large
Prandtl (σ>6 + 1) and Rayleigh (r>rCT) numbers. The
experiments of Willis and Deardorff21 with silicone oil
(σ = 57) and Krishnamurti22'23 with water (σ=6.7) and
other liquids with large Prandtl numbers showed that
nonstationarity is manifested not in roll motions (10),
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but in the appearance of convective filaments that
grow out of the thermal boundary layer at the lower
boundary of the liquid. While it loses its hydrodynamic
content at these parameter values, the system (13)
nevertheless remains physically interesting: it differs
from the lasing equations only in the scales of mea-
surement of the variables X, Y, and t and in the
origin from which Ζ is reckoned (see, for example,
Haken's paper64).

According to the linear theory, neutral (neither
growing nor decaying, i.e. purely periodic infinitesmal
perturbations of the stationary roll motions (10) de-
scribed by the phase point C turn out to be possible
at r=rcr, and their frequencies wcr are determined by
the formula ω2

Γ= 26σ(σ+ 1)(σ - b - I)" 1; for the X coor-
dinate, this neutral perturbation can be written in the
form 5X=Acosoocrt. At values of r just below r just
below rCT, a small nonlinear correction with aprincipal
term of the order of A2 that contains a nonperiodic
term and the harmonic of frequency 2u>cr is added to
the perturbation of this kind, and A becomes a slowly
varying function of the time. McLaughlin and Martin32

derived the Landau equation (8) for the squared per-
turbation amplitude
in

A I with zeroth-order accuracy
r - 1 - J~rcr- 1. The values γ= (b/2fa)[fr - 1

- Vrer- 1], δ= - 37/72σ were obtained for its coeffici-
ents with accuracy of the order of σ"1, proving the
existence of inverse bifurcation.

8. THE LORENZ ATTRACTOR AND OTHER
EXAMPLES

Lorenz62 integrated Eq. (13) numerically with b = 8/3
and σ=10 (in this case rCT= 470/19 =24.74), using the
slightly supercritical value r = 28. It was found that
each path sooner or later arrives in the neighborhood
of one of the stationary points C or C, describes a few
unwinding loops around it, and moving away to a con-
siderable distance from it, crosses into the neighbor-
hood of the other one of these points, and so forth;
the sequence of these transitions is of irregular nature
and sensitively dependent on the initial data (see, in
Fig. 9, an example of a path of this type, for which we
are indebted to M. I. Rabinovich, who integrated Eqs.
(13) on an analog computer). Lorenz surmised that
all these paths fill a two-dimensional infinite-sheeted

FIG. 9. Example of path of system (13) obtained by M. I. Rabin-
ovich with an electrical integrator.

FIG. 10. Iterations of Poincare mapping of plane Z=27 accord-
ing to Lanford's calculations (from Ruelle's paper66).

surface whose intersection with a certain straight line
is a Cantor point set (since the phase paths cannot
intersect, it would appear that the phase space must
have no fewer then three dimensions for such an at-
tractor to exist; however, Plykin65 constructed an
example of a structurally stable transformation/ of
a two-dimensional phase space whose set of nonwan-
dering points consists of a one-dimensional Williams
solenoid and four stationary points).

Lanford, whose results are described in a recent
paper by Ruelle,66 applied numerical integration
methods to Eqs. (13) to calculate a series of iterations
of the Poincare mapping P(M) of the plane Z = 27, in
which the stationary points C and C lie—see Fig. 10,
which we have taken from Ref. 66. The iterations
P"(M0) of one of the points of this plane lie on the arcs
Γ and Γ ' ; the line Σ that intersects them consists of
points that do not return to the .£=27 plane (paths that
pass through points of Σ recede to a stationary point
Ο and from a two-dimensional stable manifold of this
point). In one iteration, the arc Γ is transformed as
follows: arc AB is stretched into AB' while BB' be-
comes Γ ' ; the point Β on the same side of Σ as C be-
comes B', and the one on the other side becomes B"
(points B' and B" belong to one-dimensional unstable
manifolds of point O, to so-called separatrices). Arc
Γ ' is similarly transformed.

The phase-space transformations brought about by
system (13) contain contraction in one direction and
expansion in the other (hyperbolicity), which is what
causes the sensitive dependence on the initial data;
however, Ruelle66 observes that system (13) still does
not, apparently, possess complete hyperbolicity in
the sense of "axiom A" because the uniformity of
hyperbolicity that is required by this axiom in dis-
turbed, to judge from the available calculations, by
the ability of the paths to pass arbitrarily close to Ο
and be detained there for an arbitrarily long time.

Henon and Pomeau67 integrated Eqs. (13) on an analog
computer, putting b = 8/3 and σ= 10 and varying r from
28 to values above 200; at r«220 they observed a
bifurcation that resulted in replacement of the strange
attractor by a limiting cycle, and they made a numeri-
cal study of formation of the attractor by iterations
of the Pointare mapping of a Z = const plane, assuming
for the latter the analytic model P = CB [which is
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possibly not adequate for Eqs. (13)], where

BX = 2X, BY=±- for

BX = 2 X _ 1 , BY = Z±L ,^

CX = X,

CY = -g- + -g- for

C y = T + T tor

(14)

This model mapping Ρ has a strange attractor con-
sisting of seqments 0 < X<1, Y= (1/8) Σ " α,/4",
where the α π are random sequences of the numbers
1 and 5. Another model of the Poincare mapping was
also proposed in this paper (see also Henon68); it
consists of the quadratic bending X\ = Χ, Υι= Υ+1
— aX2, compression along the axis of abscissas
X2 = bXx, Y2=Yl, and reorientation of the axes, X3

= Y2, Y3=X2, which eventually gives the "Cremona
transformation"

x » + 1 = y n + i - a x i , yn + l=6xn, (15)

which has a constant Jacobian(-b) and is the canonical
form of quadradic transformations with a constant
Jacobian. Numerical execution of n= 5·106 iterations
of the transformation (15) applied to one of the points
(X, Y) with a= 1.4 and b = 0.3 outlined, with various
details, a strange attractor in the (Χ, Ϋ) plane that
consisted of a set of lines of, to all appearances,
Cantor structure.

On the basis of results of numerical integration and
material from the general theory of dynamic systems,
Afraimovich, Bykov, and Shil'rikov89 indicate the
following sequence of bifurcations for system (13) with
6=8/3 anda=10:

1) For 1 *ir<ri = 13.92, there are three stationary
points O, C, and C , where Ο is a saddle point with
a two-dimensional stable manifold W (which consists
of paths meeting at O) and two one-dimensional un-
stable manifolds—the separatrices G and G' (paths
emanating from Ο and tending to C and C , respective-
ly, as /-»).

2) For r = rx, the separatrices become doubly
asymptotic to the saddle point Ο and periodic saddle-
point motions L and V are generated from their loops,
with the simultaneous appearance of a one-dimensional
invariant set fy of Cantor structure (including a
denumerable set of periodic saddle-point motions),
which, however, is not an attractor. This pattern per-
sists for r1<r<r2« 24.06, with G~C and G'-C(t~°°).

3) For r = r 2 , the separatrices G and G' tend as
f-°° to closed paths L' and L instead of to C and C,
and Ut is replaced by a two-dimensional invariant set

a Lorenz attractor Ω 2 , whose region of attraction is
bounded by the stable manifolds of the periodic motions
L,L' (so that the excitation of stochasticity is hard).
For r 2 < r < r 3 = 24.74, it is stable, as are the points
C and C (and includes O, G, and G' and is therefore
not structurally stable); in it the periodic motions are
everywhere dense (they can vanish as r varies only by
sticking in the loops of the separatices), and the paths
are dispersed exponentially on it; the set Ω 2 is not
hyperbolic.

4) For r = r3, the periodic motions L,L' contract to
the points C and C and the latter lose stability, so that
for r 3 < r < r 4 = 220 the Lorenz attractor is the only stable
limiting set.

5) As r decreases from r 4 to r 2 , the phase point re-
mains in the Lorenz attractor; it loses stability at
r = r2, and for r<rz it leaves the neighborhood of the
attractor and tends to C or C—hysteresis of this kind
is typical for systems with inverse bifurcation.

Strange attractors similar to those discussed here
apparently exist in the phase spaces of a number of
model dynamic systems that are described by simple
systems of equations (see, for example, the papers by
Rabinovich et aZ.70"72). It was possible to prove
stochasticity rigorously in the example of Pikovskii
and Rabinovich.72 This example is that of a self-excited
negative-conductance oscillator and a tunnel diode,
which can be described in terms of dimensional vari-
ables by the equations

x'=r-az,
y= -

μΖ'-Χ-
(16)

where μ « 1 and f(Z)= Ζ- Ζ3 or is of similar form.
As μ-O, the system phase space degenerates into two
half-planes Z = -l, X<1 and Z = l, X > - l with crossing
of the paths from one to the other only on the half-lines
S'(X=-l,Z=-l,Y>- 6) ana S*(X=1,Z= 1, Y<6). In-
vestigation of the motion reduces to analysis of the
Poincare mapping of the set S= S"+ S*, which is defined
by P1(S) = e2t*S for paths lying in only one-half plane and
by P2(S) = 26- u>(ctg r+x:),S= (ω/sin fie'" for paths that
cross to the other half-plane (where ω= -/ί -γ1 and
χ=γ/ω). For a fixed point of S, iterations of the Poin-
care mapping form a sequence P"iP![i x P'pP"*... ,
where mt and n, are integers; two symmetric at-
tractors exist in the phase space for paths in which all
nt are even, and one attractor for the other paths.
Since |9P/9S| >1, the Poincare mapping has no stable
stationary points. Moreover, it satisfies the ergodi-
city conditions (established by Kosyakin and Sandier7 3

so that here the attractors do not contain stable sta-
tionary points or limiting cycles and are ergodic.

A number of systems of the hydrodynamic type,
model equation systems from relativistic cosmology
and gasdynamics, and the perturbation-theory equa-
tions for fully integrable systems whose solutions
admit separatrix approximation and exhibit stochastic
properties were studied in a series of papers by
Bogoyavlenskil and Novikov.74"76 Finally, we note
the quasistochastic magnetic field polarity reversals
in the Bullard two-disk dynamo, in which the dimen-
sionaless currents xu x2 and the rotation speeds of
the disks y t and y2 are described by the equations

x\ = — μιΖι + ζ^ι, *2= — μ2*ϊ + *ιΪ2ι ϊ ί = ! ί = 1 - ϊ Λ (17)

(see, for example, Chap. 10 of the book of Ref. 77).

9. DISCUSSION

a) It was tacitly assumed only ten years ago that
only stationary points and closed or quasiperiodic
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orbits could be attractors for the phase paths of dy-
namic systems. Irregularity ("stochasticity") of
the behavior of such systems could be brought about
either by introducing randomness into their initial
data, or by applying random external disturbances
to them, or, finally, by increasing the complexity of
the limiting orbit to correspond to excitation of a very
large number of degrees of freedom of the system.

The discovery of strange attractors forces us to
abandon these intuitive assumptions, which simplify
reality too drastically. We then find that the structural
complexity of certain strange attractors, which fall
far short of filling the phase space (have smaller
dimensionality) and contain Cantor discontinua in some
of their sections, by no means implies that they are
pathological cases (abnormal exceptions). To the
contrary, it has been shown that the presence of such
strange attractors is a typical phenomenon, in a cer-
tain precisely defined sense of the adjective. Thus
it has now been established that most dynamic systems
are capable of generating pseudorandom functions of
the time without introduction of randomness into the
initial data or application of random external distur-
bances, and without excitation of a very large number
of degrees of freedom.

However, it is still unknown whether any liquid or gas
flows exhibit such properties.

b) Contrary to the proposal of Ruelle and Takens,5

it appears that a liquid or gas flow that evolves on a
strange attractor (if there is such an attractor) cannot
yet be called turbulent: the definition of turbulence
(Sec. 2) includes the requirement that the thermohydro-
dynamic characteristics of the flow vary irregularly
in space, i.e., that they be described by a large num-
ber of spatial modes (or, empirically, have continuous
spatial spectra).

When turbulence is imposed on a strong averaged
flow, small-scale segments of the spatial spectra on
the streamlines are found to be similar to the corre-
sponding segments of the frequency spectrum of the
fluctuations at fixed points of these streamlines
(Taylor's "frozen turbulence" hypothesis), so that a
flow with continuous frequency spectra and a discrete
spatial spectrum (one with few modes) is not yet tur-
bulence. From this point of view, roll convection
evolving on a Lorenz attractor in a fluid with a large
Prandtl number—convection that has a highly regular
and simple three-mode spatial structure (10)—is, of
course, not turbulence, just as the other flows with a
spatial structure involving only a few modes that were
mentioned above. Thus, multidimensionality is re-
quired of the turbulent attractor, and the notion of
turbulence as a system with a very large number of
excited degrees of freedom should remain in force.

This also leaves in force the problem of the develop-
ment in time of the spatial spectrum of the turbulence
or, in other words, of the sequence of bifurcations
that increase the dimensionality of the turbulent
attractor. This problem has not yet been investigated
within the framework of the strange-attractor hypo-

thesis. Hardly any experimental data are as yet avail-
able. In this context, we mention only the information
in section 5 on "explosions" at intersections of horse-
shoe vortices in the boundary layer near a smooth flat
plate, which result in the formation of an extremely
irregular small-scale motion in which pratically all
the turbulent energy in this flow is produced.

c) The experimental evidence in favor of the Ruelle-
Takens hypothesis of arrival at the strange attractor
from a four-dimensional torus (after four normal bi-
furcations) appears very shaky. It seems clear that
the nonperiodic motion in Gollub and Swinney's exper-
iments on the evolution of a Couette flow between rota-
ting cylinders actually appeared after the fourth bifur-
cation (not counting stability successions), but the
transition to this regime occurred not from a four-di-
mensional or even a three-dimensional torus, but
from a closed orbit on a two-dimensional torus. It
appears to be important to stress that the actual (not
the instrumental) continuous spectrum appeared here
and then built up progressively already after the
second bifurcation, and that the fourth bifurcation man-
ifested itself rather in the vanishing of discrete spec-
tral lines than in the appearance of a continuous spec-
trum (see Fig. 1).

In McLaughlin and Martin's numerical experiments
on the evolution of roll convection in a fluid with a
small Prandtl number, an essentially nonperiodic
motion actually arose after a four-period motion, not
immediately, but as a new bifurcation after a consid-
erable increase in the Rayleigh number. In the ex-
periments of Klebanoff, Tidstrom and Sargent on the
evolution of a flow in the boundary layer near a flat
plate, turbulence apparently appeared after the sixth
bifurcation (after the appearance of four nonlinear
Landahl pulses per vibrator cycle on a secondary
three-dimensional wave). In the evolution of the
wake of a fluid flow around a cylinder, turbulence
first appears after the second bifurcation (not counting
a stability succession), in rapidly turbulized regions
of boundary layers that separate successively from the
cylinder; the further evolution of this flow bears little
resemblance to a sequence of normal bifurcations.

We note that to distinguish experimentally between
the sudden appearance of nonperiodic motion with a
continuous spectrum and a sudden crowding of a
sequence of bifurcation points on the Reynolds-num-
ber axis is , of course, impossible; this can be done
only within the limits of resolution of the experiment
with reference to Re (which, for example, was 6Re
= 25 in Gollub and Swinney's experiments). Further,
the possibility of empirical verification of the expon-
ential damping of correlation-functions, which is
characteristic of the strange attractor, and its absence
in the case of quasiperiodic attractors, is limited by
the finite time of the measurements and by their dis-
creteness. Finally, yet another possibility for empir-
ical differentiation of motions on quasiperiodic and
strange attractors—the sensitive dependence on the
initial data on arrival at a strange attractor with few
modes—may be lost after a large number of bifurca-
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tions, which increase the dimensionality of the attrac-
tor.

d) The strange attractor example closest to fluid
dynamics, which was first studied by Lorenz, first
of all, does not, as we have already noted, correspond
to any real flow; secondly, because of its few modes,
there is no direct relation to turbulence; thirdly, it
has been investigated only numerically (among other
things, this turned up an original feature of system
(13) in which it does not resemble turbulence —a bi-
furcation at very large Ra, which results in replace-
ment of the strange attractor by a limiting cycle);
fourthly, according to Ruelle, it is apparently not quite
hyperbolic, so that the value of this unique example
from the standpoint of the general theory of dynamic
systems is somewhat compromised.

The author considers it a pleasant duty to thank
N. I. Solntseva for her work on the manuscript of this
paper.
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