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Thermoelectric effects in superconductors began to be studied about 50 years ago, but until recently the
opinion was widespread that they completely vanish in the superconducting state. Yet as far back as 1944
attention was called to the fact that distinctive thermoelectric effects should arise within the framework of
the two-fluid concept (allowing for the possible existence in a superconductor of a normal current as well
as a superconducting current). Concretely, in an isotropic but inhomogeneous superconductor, or else in a
homogeneous but anisotropic one, a thermocurrent and a magnetic field associated with it should arise in
the presence of a temperature gradient. Generally these effects are small, yet in recent years they have

become accessible to measurement, and a number of pertinent experimental studies have appeared. On the
other hand, progress has also been made in the field of theory, in particular, in understanding the nature
and various features of thermoelectric phenomena in superconductors. This article is devoted to a general

physical and more detailed theoretical analysis of the problem of thermoelectric effects in
superconductors. The content of the article in greater detail is evident from the table of contents.

PACS numbers: 74.30. — e, 74.20.De
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INTRODUCTION then in the presence of an emf, the current in it should

Thermoelectric effects in superconductors began to
be studied as early as 50 years ago (see Ref. 1 and the
literature cited there). In the first stage it was con-
cluded that “all thermoelectric effects vanish complete-
ly in the superconducting state”,! and this conclusion
remained widely held until recently.?"® We shall explain
what the problem was using the example of measuring
the thermo-emf (the Seebeck effect). I one has a cir-
cuit of two different metals existing in the normal state,
with the junctions 1 and 2 being at different tempera-
tures T, and T,, then a thermo-emf ¥ arises in the open
circuit (Fig. 1a). In the same circuit when closed (Fig.
1b, a certain current I = /R flows. Here R is the re-
sistance of the circuit. However, let both metals in the
circuit under consideration be superconductors cooled
below their critical temperatures T, and T,;. (That
is, the two temperatures 7T, and T, are both below the
lower of the temperatures T,,and T ,,, and thus the en-
tire circuit is superconducting.) Heretofore no one has
succeeded under these conditions in detecting an emf in
the open circuit nor a current in the closed circuit.! In
any case, the effect is many orders of magnitude weak-
er than in a normal circuit. Moreover, if we treat a
superconductor as a conductor having zero resistance,
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grow and hence become considerable after a certain
time. Yet, to a high degree of accuracy, experiment
shows that no such growth of current is observed!+’
This circumstance has also been interpreted as proving
the absence of a thermo-emf in superconductors. This
conclusion agrees also with the behavior of a mixed
circuit containing a normal (nonsuperconducting) part;
in such a circuit (Fig. 2) the current or the emf (for an
open circuit) is determined by the normal part, as if the
superconducting (unshaded) part of the circuit contri-
buted nothing to the current nor to the emf. Experi-
ments have also given no indication of the appearance
in a superconducting circuit of a Peltier heat nor of a
nonzero Thomson coefficient.!

Nevertheless, thermoelectric effects by no means
vanish in superconductors, and in principle they can be
observed. This fact was noted more than 30 years
ago®? on the basis of the two-fluid model of supercon-
ductors, according to which the total current density in
a superconductor j=j, +j, is the sum of two quantities.
Here j, and j, are respectively the superconducting and
the normal current densities. In the presence of a tem-
perature gradient v7, the normal current generally
differs from zero, but can be compensated by the
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FIG. 1, Thermoelectric circuit made of normal metals. a)
Open circuit (§—thermo-emf); b) closed circuit (I—thermo-
current),

superconducting current. However, complete compen-
sation (so that the total current j=0) occurs only in the
simplest situation, e.g., in a homogeneous and isotropic
superconductor. Yet in the case of an isotropic but in-
homogeneous superconductor, e.g., for a bimetallic
plate (Fig. 3a), a nonzero resultant (total) current I and
a corresponding magnetic field H, arise near the junc-
tion. However, Refs. 8 and 9 paid major attention not
to the case of an inhomogeneous superconductor, but to
a homogeneous but anisotropic superconductor (of
course we refer to homogeneity apart from the effect of
the temperature gradient). In this case, when V7T and
the symmetry axes of the crystal do not coincide, a re-
sultant current should also arise with a corresponding
magnetic flux ,. This effect is extremely small (spe-
cifically, the magnetic field intensity H, that arises is
small), though perhaps it has already been observed
(see Sec. 4). At the same time, the conditions for ob-
serving a thermoelectric current have proved more fav-
orable in isotropic inhomogeneous superconductors,
especially if one employs a bimetallic superconducting
ring (Fig. 3b) or the topologically equivalent but prac-
tically more convenient superconducting circuit made
of two different metals (Fig. 4). The possibility of ob-
serving the effects in a ring (circuit) was noted only in
1973 in Ref. 10 (see also Ref. 11), but in them the con-
cept was employed of the appearance of a phase differ-
ence of the wave function in an inhomogeneous super-
conductor in the presence of a temperature gradient.
Hence it was thought'® that the effect discussed there
differed completely from the effect described in Refs.

8 and 9, where the treatment was based on the London
theory without any introduction of the phase of the wave
function, nor even of this function itself. Yet Refs. 8
and 10 in fact deal with exactly the same effect, as has
been stressed in Ref, 12, At present we can consider
the appearance of a current (and of the corresponding
magnetic flux) in a completely superconducting circuit
(consisting, of course, of different superconductors and
in the presence of a temperature difference) to have
been established experimentally.}?"** Yet substantial
uncertainties still exist here, and we cannot even con-
sider it proven that precisely the effect discussed here

4

FIG. 2. Mixed circuit; the
thermocurrent I is deter-
mined by the normal region
N (hatched).
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FIG. 3. a) Bimetallic superconducting plate (the field Hp
arises in the region of the junction); b) bimetallic supercon-
ducting ring (the magnetic flux ¢, arises in the aperture; &
=HpS, where § is the area of the aperture).

has been isolated from the background of possible “par-
asitic” phenomena,'®

In addition to those cited, an entire series of other
papers (references given below) is also devoted to
thermoelectric phenomena in superconductors. Our
view is that this field of studies is potentially highly in-
teresting and will be developed. At the same time, the
literature contains contradictory opinions on thermo-
electric phenomena in superconductors, not to speak of
the lack of even a single review. Hence we hope that
the publication of this review will prove justified. Be-
low, in Chap. I we present a simple phenomenological
theory of thermoelectric effects in superconductors
based on the two-fluid model and the London equations.
The treatment in Chap. II involves the complex order
parameter ¥. In both cases we pay special attention to
methodological problems. Such an approach seems
justified in view of the history and the current state of
the problem. In particular, we can suppose that the in-
sufficient attention to the experimental study of the per-
tinent effects is due not only to their smallness, but
also to an insufficient understanding of the physical na-
ture of thermoelectric phenomena in superconductors
and of their potential importance for studying supercon-
ductivity. We shall turn to the latter problem again at
the end of the article (see the concluding remarks).

I. SIMPLE PHENOMENOLOGICAL THEORY (THE TWO-
FLUID MODEL, LONDON EQUATIONS)

The present state of the theory of superconductivity is
such that thermoelectric effects, just like most other
phenomena in superconductors, can be treated on the
“highest level”, on the basis of a highly refined micro-
theory. Yet we are convinced that we should preface
such a treatment with a phenomenological description,
and moreover, should begin with as simple a system as

FIG. 4. Examples of a completely superconducting thermo-
electric circuit. a) Plane geometry, &= &+ &;; b) circuit
containing a solenoid L, ® ;= &,+&; . The heavy line indi-
cates a narrow gap between the superconductors.
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possible. The problem of the microtheory then consists
both in substantiating such a system and defining its
limits of applicability, and in calculating (or estimating)
the kinetic and other coefficients that enter into the
equations. Starting with the foregoing, we shall begin
with a phenomenological approach, and with the sim-
plest one that could be used and actually was applied to
the problems of interest to us®?® prior to the creation of
the modern theory of superconductivity. Concretely,
we have in mind the two-fluid model and the London
theory, on which we shall base our treatment in this
section.

1. Initial relationships

The theoretical scheme that we have just mentioned
as applied to homogeneous superconductors in the ab-
sence of a temperature gradient reduces to the follow-
ing system of equations for the current densities j, and
. (see, e.g., Refs. 9 and 17):

curlAj,:-%H, (1.1)
2 _g, (1.2)
jn = 0E. (1.3)

Here A is a coefficient that depends on the temperature,
while ¢, is the conductivity of the “normal” electrons in
the superconductor, which of course also depends on the
temperature. In an isotropic metal or in crystals of
cubic symmetry, A and ¢, are scalars, while in crys-
tals of lower symmetry we must introduce in place of

A and ¢, the corresponding second-order tensors (see
Sec. 4). When not expressly stipulated, we shall as-
sume below for brevity that the metal is isotropic {apart
from Sec. 4, which is concerned with the anisotropic
case).

We note that the system of equations (1.1)-(1.3) also
holds for alternating fields; hence we must supplement
it with the complete system of electrodynamic equa-
tions:

curlH=—?—i+—:—%, curlE=-—%—oT§1—, (1.4)
divH =0, divE = 4mp. (1.5)
Equations (1.4) and (1.5) give rise to the continuity
equation
S+ divi=0, (1.6)
and moreover we have for superconductors
=1+ ine (L.7)

Above, E and H are the electric and magnetic field in-
tensities (we do not distinguish the magnetic field H
from the induction B, which actually figures in all

the equations; moreover we assume in Eq. (1.4) that the
component of the dielectric constant that is not asso-
ciated with the current j is unity). Here the expres-
sions (1.1)—(1.3) play the role of “material equations”,
as they are sometimes called. Of course, here the den-
sities j, and j, have a macroscopic meaning (in the case
of j, this involves statistical averaging by using the cor-
responding distribution function for the “normal” elec-
trons). Below we shall be mainly interested in the
steady -state case or in processes of sufficiently low
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frequencies that we can neglect the displacement cur-
rent 9E/9¢ in Eq. (1.4).

It is useful to recall the very simple meaning that the
London equations (1.1) and (1.2) have from the hydrody-
namic standpoint. Actually, the equation of motion of
an ideal charged fluid of mass density p, and charge
density p, has the form

dv. av,
Pm-d_t'=p"‘ a; +pm (VV) V-=PeE+-e:—[V‘_X H],

(1.8)
where v, is the velocity of the fluid.
Taking into account the identity

- 1
(V)v,= - Vvi — v Xcurly, |

we see that the condition (as generalized to the case of
presence of a magnetic field) for possible superfluid
movement has the form

(1.9)

curl vy= — pp”c H.
'™

If we introduce the superconducting current density j s
=p,v, and assume the quantities p, and p,, to be indepen-
dent of the coordinates, then the condition (1.9) trans-
forms into the fundamental London equation (1.1), with

0o = (1.10)
Here we have set p, =mn_=m*n} and p,=en = e*n¥ and
have used the notation e*=2¢, m*=2m, in line with the
notion of bound Cooper pairs; n:=ns/ 2 is the pair den-
sity; n, is the density of “superconductive” electrons

(e is the charge of an electron, and m is its mass).
Thus we can treat the charged superconducting fluid as
consisting of particles of mass m*=2m and charge e*

= 2e.

Under the condition (1.9), Eq. (1.8) acquires the form

oMLy _ gy A2
e

: A (1.11)

js=env, =e*niv,,

i.e., it transforms into (1.2), if we neglect the last term
on the right-hand side of (1.8). Generally this term is
small and one usually can actually neglect it. Yet it
arises in a quite natural manner, has been introduced
in the past (see, e.g., Refs. 9 and 17), and has recently
attracted interest anew (effects involving this term are
discussed in greater detail in Sec. 9).

Above, we stipulated that the superconductor is taken
to be homogeneous. Also we did not allow for the pos-
sible existence of a temperature gradient or the pres-
ence of other nonequilibrium situations. Let us pose the
problem of what will happen if we reject these assump-
tions.

It is evident by analogy with ordinary hydrodynamics
that a term of the type ~Vp, can arise on the right-hand
side of Eq. (1.8), where p, is a certain pressure. A
more detailed analysis of the equations of two-fluid
hydrodynamics indicates that the additional term in
question has the form —p,Vu, where g is the chemical
potential of the electrons. Bearing in mind applications
to nonequilibrium situations in which one must distin-
guish the chemical potentials of the superconductive and
normal electronic subsystems, let us denote the chem-
ical potential introduced above by p, and therefore
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write the corresponding generalization of Eq. (1.11) in
the form

0Aj,
at

Here we have

=E-Y (1.12)

Vie _ Ve , o AR,
=t Vg,

Taking into account the fact that j,=en,v, and A=m/e’n,
[see (1.10)], Eq. (1.12) is evidently equivalent to:

m-%"l-eE-Vu,, (1.13)
where we have
V= Vi + V25, (1.14)

However, we must remember that the two-fluid model
implies the conclusion®**"* that the quantity u_, itself
depends on v, Thus taking terms of the order of »? into
account requires a special treatment (see Sec. 9; we
shall neglect the role of terms of the order of 2 in the
rest of the sections).

Moreover we note that the equation
Ay _
o =E— VE,

where £ is an arbitrary scalar (and therefore, in par-
ticular, Eq. (1.12) as well), leads to the following re-
lationship in view of the field equation curl E= —¢"*8H/
at: :

% (curlAj,+(l/c)H) =0.

This latter expression is, of course, compatible with
(1.1). Thus, in any case Eqs. (1.1) and (1.12) do not
contradict one another.

For a metal in the normal state, we can account for
nonequilibrium in a certain approximation by replacing
Ohm’s law j= o E by the more general expression”

=0 (E—)+ovr. (1.15)

Here u is the chemical potential of the electrons in the
metal. In the case of a superconductor, it is therefore
natural to employ an expression similar to (1.15) for the
normal current j,. That is, instead of (1.3) we write

in =o”<E—Z‘;L)+anT. (1.16)
Here o,, u,, and b, depend on the temperature, and also
generally on the coordinates (for an inhomogeneous
superconductor).? It may prove convenient to use also
the doubled chemical potential of the normal electrons
p¥=2p,, which generally differs from u¥*=2u, (The
meaning of the quantities u¥ and u} is clarified in Sec.
5).

DThe flux of electrons is directed opposite to VT, i.e., in the
direction of decreasing temperatures, while the current flows
in the opposite direction. Thus the coefficient b and the coef-
ficient b, used below are both positive.

2)We note that, since a superconducting current does not trans-
port heat, therearenogrounds for introducing a term of the
type b’ VT into the right-hand side of(1.12) (additional argu-
ments in support of thig are found in Ref. 8; see also Refs.
4-6),
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In the steady-state case (i.e., when dv,/5¢=0), Eq.
(1.13) implies that

¢E = vp,.

Then we get from (1.16) the following expression for the
normal current density:

ja=o, vt b vT, (1.17)

If we neglect terms of the order of vi and the possible
difference between u, and u_ by assuming that u,=pu,
= 4 (as has been done in Refs. 8, 9, and 17), then the
equation for j, (1.12) is written in the form

8AJs _E
at =E e’

(1.18)

while the expression for j, acquires the especially sim-
ple form

n = bVT. (1.19)

Later on in Section I we shall treat the steady-state
conditions and base our discussion on Eqs. (1.18) and
(1.19) and Eq. (1.1) or their generalizations to the an-
isotropic case (subsection 4), The effects associated
with the appearance of a difference between the chem-
ical potentials 8= — p, and also those involving
terms of the type myZ/2 will be treated in Sec. 9.

2. Isotropic superconductors and superconducting circuit

Current cannot flow in the normal state in an open
conductor, and according to (1.15), the following elec-
tric field arises:

w b
Concretely, Fig. 5a illustrates the situation in a rec-
tilinear specimen (q is the charge density, which is
concentrated at the ends of the specimen).

As is evident from (1.19), a normal current j,arises
in a superconductor in the presence of a temperature
gradient. Here this fact does not contradict the ab-
sence of a total current j=j +],, since the current j,
can be fully compensated by the current j, (Fig. 5b).
With such a compensation, according to (1.18) and (1.19)
we have

i=iitin=0, E—£=0, j,=5,VT. (2.2)
Under conditions corresponding to Fig. 5b, precisely
this total compensation of currents occurs, whereby
the charge g=0. Of course, here the magnetic field H
is also zero, and Eq. (1.1) is satisfied. Actually, ac-
cording to (2.2) we have

curl Aj, = —curt{\\ (T) b, (T) VT}
= —Ab, cul vT — [V{A (T) b, (T)}, AT]= 0.

qif 5'4 s

FIG. 5. Inhomogeneously heated metals. a) Normal metal;
the charges + g arise; b) superconductor; the countercurrents
js=—13, arise.
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The opposing normal and superconductive currents
that arise in an open specimen (or circuit) are quite
analogous to the fluxes of normal and superfluid liquid
that arise in the presence of a temperature difference
in helium II (see, e.g., Refs. 6,9,18-20). At one time
the analogy with superfluid helium led one of the authors
to the idea®® of the possible existence of thermoelectric
effects in superconductors.

Whenever the total current is zero [see (2.2)], the
existence of the current j, affects only the heat trans-
port. However, the corresponding effect (convective
heat transport), which leads to an extra contribution to
the effective heat conductivity characterized by the co-
efficient %, is very small.*~% %

Yet if a superconductor, though isotropic, is inhomo-
geneous, i.e., the coefficients A and b, respectively in
(1.1) and (1.18)—(1.19) depend on the coordinates (in
addition to the variation caused by the temperature gra-
dient), then the solution (2.2) is generally no longer val-
id. In other words, a resultant current and its corre-
sponding magnetic field can arise. As we remarked in
the Introduction, such a case has been discussed in
Refs. 8 and 9 with the example of a bimetallic plate
(Fig. 3a). One must solve this problem on the basis of
Egs. (1.1), (1.4), and (1.19). Yet in Ref. 8 only an es-
timate was made of the field H, that arises, since the
case of a bimetallic plate was deemed “dirty”, and
thereby less interesting than the inhomogeneously
heated anisotropic superconductor (see subsection 4).

If we consider a continuous bimetallic plate, then this
configuration seems actually of little interest. How-
ever, one can make an aperture in the plate (Fig. 3b)
and also transform it into a topologically equivalent cir-
cuit that corresponds to an ordinary thermoelectric cir-
cuit (see Fig. 4). The main thing of interest in this cir-
cuit is not the current and field distribution, but the
total current I or the magnetic flux through the circuit.
But we can find this flux ¢, by a simple method that has
been widely used also in other cases (e.g., in proving
the quantization of the magnetic flux trapped by a super-
conductor; see Subsection 8).

Let us take up this problem in somewhat greater de-
tail. Evidently, we can write the solution of Eq. (1.1)

$Generally the major role in convective heat transport is
played by the breakdown of superconductive pairs as the cur-
rent j, arises at the temperature T, and by the production of
pairs from normal electrons (excitations) at the temperature
T,<T,, at which the current j, is converted into the current
—J;. This process is associated with the heat flux W ~j,8/e
=5,A(T)VT/e, where 24 is the energy per pair (the charge e*
=2¢), Hence it is evident that »_, <b,A(0)/e ~bkT,/e, where-
as the ordinary electronic thermal conductivity is »,
~ (r’k*/3e?)0,T. Moreover, the differential thermo-emf is
dg/dT=a=b/c ~3%10"ICGSE/°K ~10"%V /°K (see subsection
3; we give here the value for pure tin near T,; the earlier un-
certainty concerning temperature dependence of d#/dT for
T= T, has been eliminated in Ref. 24). In view of the fore-
going, \_nﬁre get the estimate (t,/%Jp. g < 10%(d%/dT)y,
~3 %107,
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in the form

Ajy= —+A+VL, (2.3)

where A is the vector potential (curl A=H), and f is
some scalar,

Staying within the framework of the ideas of classical
field theory, we can naturally consider the scalar ¢
(and also the vector potential A) to be a single-valued
function of the coordinates. Then, upon integrating over
any closed contour we shall have

$ve-a=o., (2.4)

Evidently under this condition we will not be able to de-
scribe the well-known vortex filaments in superconduc-
tors or in a superfluid liquid since the condition (2.4)

is not satisfied on passing around a filament. In order
to include vortices in superconductors in the discussion,
we must either replace (2.4) by the following more gen-
eral expression arising from a quantization condition
(such as the Bohr condition):*’

§v§.d1-n:‘—_=ni (2.5)

5o n=0,1, 2, ...

(k=277 is Planck’s constant), or we must go over from
the London scheme to a more general description of
superconductivity that employs the concept of a complex
order parameter (the macroscopic wave function ¥). In
the latter case the condition (2.5) is derived from re-
quiring the wave function to be single-valued and from
studying its phase. Since Bohr’s quantization condition
is grounded precisely in the requirement that the wave
function should be single-valued, we are dealing here
essentially with the same derivation of Eq. (2.5). It
will be used in Subsections 5 and 6, while here we shall
take as our basis Eq. (2.4) and analyze some conse-
quences that stem from the London equations without
taking vortices into account.

In the steady-state case we get the following equation
from Egs. (1.1), (1.4), and (1.5) with j_ =0

AH— 5 H=0, (2.6)
Ac? me? m¥c?
O = T = T, =~ T (2.7)

In particular, it has the solution H= H,e /%, where b
=0, is the London penetration depth of the magnetic
field into the superconductor. In the absence of a tem-
perature gradient, we have precisely j,=0, and hence
also j =0 in the interior of the superconductor (in par-
ticular, for a superconducting circuit that consists of

a material of thickness d>>5). Hence, upon integrating
(2.3) over a contour lying in the interior of the material

Y)Here we conduct the discussion as follows. In the case of
superfluidity, we have v,=V¢, and Bohr’s quantization condi-
tion gives § m*v - dl=nh, whence we get § Vr - d1=nh/m* is
the mass of the corresponding particle (e.g., a helium atom).
According to (1.10) and (2.3), a superconductor has m*v,/e*
= - (A/c)+ V¢, and the condition of quantization

e'
$roa= & (mve + Ta)ar=e Hvear = m

leads to (2.5).
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and taking into account the fact that
§ad = Scutl AdS = S H.dS = O,

we see that, in the absence of vortices or of a “frozen-
in” flux [see (2.4)], the magnetic flux through the con-
tour under consideration is
D = 0. (2.8)

In an inhomogeneously heated superconductor we now
have j,+0 and j, #0 in the interior of the metal, and at
least in a region of homogeneity, j,= ~j,= -b,VT [see
(2.2)]. Hence, except for the region of the junctions,
we have the following relationship everywhere on the
contour indicated by the dotted line in Fig. 3 [see (2.3)
and (2.7)]:

—cAjy=cAb VT =22 b, (1) 62 (1) VT = —A—cVL. (2.9)

Integrating (2.9) over the stated contour and taking (2.4)
into account, we obtain the flux of the magnetic field
through this contour:
T,
Q=0 =2 | (b (1) 8 (1) — o () 81 (D)) dT. (2.10)
Tl
Here the subscripts I and II refer to the different met-
als I and IL

Thus, in an inhomogeneously heated circuit made of
different kinds of superconductors, i.e., when
b, T)8YT) #b,,(T)63,(T), a certain superconducting
current flows of magnitude I =c&,/L,, where &, is the
flux (2.10) and L, is the self-induction coefficient of the
superconducting ring.

Of course, the current I flows over the inner surface
of the ring in a layer of thickness of the order of § near
the surface of the superconductor. Indeed, we have
neglected thus far the region of the junctions (double
cross-hatching in Fig. 3b). Yet evidently the effect of
(2.10) is an integral one, and for a sufficiently large
contour the role of the junctions can be made arbitrarily
small.

Although the effect under consideration has perhaps
already been observed (see subsection 3) yet it is very
small in comparison with the thermocurrent in a normal
metal. In fact, for the sake of simplicity let us study a
circuit that consists of a circle of radius » formed of a
nonsuperconducting wire having different values of b,
but everywhere having the same conductivity ¢ and
cross-section S=7p®. The current in this circuit is

. € ~ p3 . b 2ar __2r
L=g™ —;—(§>de, Ea=§ o dl, R,=

oS~ op*’

cpn~mz1{~"_£"’_.

But if a circuit having the same values of », p, and b
and constant penetration depth 6 is completely super-
conducting, then according to (2.10) we have

®T~nr3H~—4c162(§de, H~t L 1~$§>de. (2.12)

’

Thus in the case under consideration we have
QT I ( 8 )z

~——~ | —

T~ Tn o (2.13)

This ratio is usually very small (e.g., for wires of ra-
dius p~0.1 cm and for §~10-° cm, the ratio (2,13) is
of the order of 10°%),
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1t is highly important to understand what happens upon
breakdown of the condition (6/p)?<«<1, upon which we
have relied above. If we do not take into account the
action of the magnetic field that is created by the ther-
moelectric current itself (this seems allowable, at least
for a weak enough thermocurrent), the transition from
the superconducting to the normal state is a second-
order transition. Hence we should expect upon an ap-
propriate temperature increase a continuous transition
from a pure superconducting circuit to a partially nor-
mal circuit (Fig. 2). Concretely, let us imagine a com-
pletely superconducting circuit of the type depicted in
Fig. 1b, and let the temperatures T, and 7, of the junc-
tions rise (for simplicity we can conveniently assume
the difference T, - T, to be constant). Then as the tem-
perature T, reaches the value T, (the critical tempera-
ture of metal I; we assume that T ,,>T,,), the transi-
tion begins to take place to a mixed (partially normal)
circuit (see Fig. 2), for which the thermoelectric cur-
rent is already considerable (as compared with the
thermocurrent in the completely superconducting cir-
cuit). Such considerations force us to assume that when
T—T,,, the thermoelectric current in the supercon-
ducting circuit I approaches the current I, in the cor-
responding normal circuit. Yet when T~ T_;, the depth
of penetration &7~ T_,) ~ =, and of course, the esti-
mate (2.13) is inapplicable (this estimate, though not
explicitly, is based on the assumption that (5/p)* «<1).

The foregoing is confirmed upon more detailed treat-
ment. Thus, we consider a plane, thin film of thickness
d under conditions in which (d/8)* «< 1. In this film we
can consider in the first approximation that the current
densities j, j,, and j, are independent of the z coordi-
nate directed perpendicular to the film (z=0 at the cen-
ter of the film; of course we also assume the current
densities to be independent of the coordinates x and y).
In the absence of an external magnetic field, the mag-
netic field of the current I =jd that flows through the
film and is directed along the x axis is H(z)=8nc™jz
(for |z| £d/2). Outside the film we have H=H,=4xI/c
=4yjd/c. At the same time the total current density is®’
j=j,+i,= -A/cA+b,VT. Here the vector potential A is
directed along the y axis, and in magnitude is equal to
A=4nc'jz%. Thus we have j,= —A/cA= —cA/4n%= 2%/
6%, and evidently we must have j, <j, since under the
discussed conditions z%/5% <d?/8*<«1. However, this
means that j=j,=b (T, VT, i.e., the total current ap-
proaches its value in the normal state. Thus, in the
immediate vicinity of T, (i.e., as 8~ =), we shall have
&,/ %,~1 instead of the estimate (2,13),

3. The thermocurrent in a superconducting circuit (relation
to experiment)

Although the thermocurrent in a superconducting cir-
cuit is generally small in comparison with the current
in a normal circuit, it is quite measurable with modern
apparatus (superconducting quantum interferometers,

5)CE. (2.2) and (2.3); we can easily see that we can set V=0 in
(2.3).
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etc.). Moreover, as we have noted, the thermocurrent
in a superconducting circuit has apparently been mea-
sured experimentally'®* '® (see also Refs. 25-27). Yet
the problem of comparing theory with experiment re-
mains open. In particular, the role is uncertain of the
masking effect'® caused by the relationship of the depth
of penetration 6 to the temperature. Moreover, we do
not know a number of the details of the experiment,
and primarily, we are not competent to discuss the
methodology of the measurements. All this impels us
to refrain from discussing the performed experiments
in any detail, We shall only give several simple ex-
pressions that bring Eq. (2.10) to a more specific form,
and shall make some estimates and remarks.

The thermoelectric coefficient b,(T) in the supercon-
ducting state rapidly declines with falling temperature.
Of course, this is quite understandable, since the num-
ber of “normal” electrons declines with falling 7. Un-
der the assumption that the scattering of the “normal”
electrons is governed by impurities rather than by pho-
nons (i.e., in the region of residual resistance), with
the mean free path being substantially longer than the
coherence length, we can use the following expression
for b,(T):®

3 ¢ y2 dy (3-1)

bn<T)=b<Tc)~W§—“;sh2—M—2;.

Here b(%,)=oqa is the coefficient in the normal state (¢
is the conductivity, and o =d%/dT is the differential
thermo-emf)”?, and x=A(T)/kT, where A(T) is the
"width of the superconducting gap., Figure 6 shows the
b{T)/b(T,) relationship according to (3.1). We note that
whenever the scattering amplitude does not depend on
the momentum we have

b(_T)-'zE;;i el::T "%[T(E)V(e)sle:u=%zesz:T[TV02]e=u. (3-2)

Here we must take the absolute magnitude of the charge
of the electron e (i.e., e>0), 7(g) is the relaxation time,
=g, is the chemical potential (energy at the Fermi
surface), and in transforming to the last expression we
assume the energy ¢ to be £=mv%/2 (see Refs. 10, 29,
and 30); under the same conditions o=(1/3)e?[Tvo?]
and hence®+*° we have

b n2kT

==

a 3e

€= u?

(3.3)

'Ed;,T [In (tvo3)e=pl.

For free electrons scattered by impurities, we have
T=1/v, where I does not depend on u,»=v2u/m, and v
=m%/7°k°% Hence we have

(3.4)

diu (I (wee=y] =':T’ =T -
Under the same conditioris, the conductivity o does not
depend on the temperature, and b=oq ~7T. Thus, for

8)Cf, Refs. 10, 15, 23, and 28; here the coefficient in (3.1) has
been chosen to agree with Ref. 15, whence we have also taken
Fig. 6.

"’The thermo-emf associated with a given normal metal (in a
circuit like that depicted in Fig. 2, but open) is €= [2V (¢
“p/e) 'd1=f,-1T2 (b/0) dT [see (1.15) and (2.1)]; hence
d#/dT=a=b/c.
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FIG. 6. Dependence of the
thermoelectric coefficient
b, on the temperature T.
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the normal state, the coefficient b near T, depends
weakly on T, and we can set it equal to 5(T,). Accord-
ing to (3.4), @ ~10"°T(°K)/ u(eV), or for T~3°K and u
~10 eV, we have g =3 x10"!* CGSE/°K~10"% V/°K.
Acutally in tin near 7,=3.72°K one observes® g attain-
ing values as high as 5x10® V/°K upon adding a cer-
tain amount of impurities. Tin was used in Ref. 13 for
which

b =54 V/°’K - ohm - cm=1.62.10"* CGSE/°K,

and another specimen having a value of b smaller by a
factor of 27. The value of ¢ can increase substantially
in the presence of magnetic impurities (by two-three
orders of magnitude), Perhaps this situation can be
conveniently exploited®® for studying thermoelectric ef-
fects in superconductors.

We stress that one must undoubtedly use the experi-
mental value of 5(T,) in analyzing thermoeffects in
superconductors, rather than undertaking any calcula-
tions whatever of this quantity, which can introduce only
an additional uncertainty and inaccuracy. But the coef-
ficient 5,(7) cannot be measured independently, and
therefore we must resort to using Eq. (3.1); apparently
we should not expect substantial errors in this method.
Moreover, the temperature range of greatest interest
is that directly adjoining T_, where we can simply set
b(T)=b(T,) in Eq. (2.10), as we shall do below.

Apart from b,(7T), the formula (2.10) that is now of
interest to us contains only the depth of penetration
8(T), which approaches infinity as T-~T,. As we know,
near T, (when AT= T,-T< Tc) we can assume that

8 (T)= (3.5)

N
T = @/Tal *

Sometimes the semiempirical formula 6= 6%0)[1 - (7/
T,)*]™* is also used which holds approximately through-
out the temperature range; evidently here §,= 5(0)/2.
Now let us study the case in which we have in (2.10)

b 103> b 4y; 03y, which holds near the critical tempera-
ture T,; of metal I (we assume that T, > T, or more
exactly, that T, - T ;> T ;; - T, where T is the tem-
perature in question, which lies between T, and 7,).
Then Eq. (2.10) takes on the form

T,
o=~ 3 bur (T) 8Y(T) dT =22 b(T,) 8 In
T

Tc—Tl
T.—T, *

(3.6)

Here the values of b, §,, and T, pertain to the metal 1.

Evidently, when AT=T,- T, <T,-T,, we obtain from
(3.6) the following linear temperature dependence in-
stead of a logarithmic one;

4 AT
Op=Z50(T) 8 52 =2 4(7,) 62(T,) AT.

(3.7)

For tin we have §,= 2.5 X107° cm and good specimens
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show b(T,) ~10**-10'% Hence, according to (3.6) we
have

Can-0 1. Te—T I.—T
Or ~10°1n T:-—T: ~ 10~2@, In 7.:__1.: .

(3.8)

Here &,=hc/2e=2X10"" gauss:cm? is the quantum of
flux.

For values T,—T,~102°K and T, T, ~0.1 K, or in
general, when In[(T, - T,)/(T,~ T,)] ~1, the flux &, is
as much as 10" %p,, and hence, it is quite amenable to
measurement. Currently, so far as we know, one can
measure fluxes ¢ = 10™%¢, with quantum interferom-
eters,

An experiment*® performed with Type I superconduc-
tors (Pb and Sn) has on the whole confirmed the exis-
tence of the flux (3.6) and its temperature dependence.
Here both a linear dependence (3.7) at low AT was
found, and a more rapid increase in &, as T,~ T, [see
3.6)]. An experiment'® performed with hard semicon-
ductors (Nb and Ta) traced more distinctly the logarith-
mic growth of &, according to (3.6). However, for AT
«1, the magnetic flux did not tend to zero, but took on
a constant value that substantially exceeded the value
obtained from the theoretical estimate (3.7). In this
regard it was noted in Ref. 16 that one can obtain this
result when the circuit at T, = T, contains a residual
“frozen-in” flux (moreover, the latter is quite possible
in the case of a circuit made of the hard superconduc-
tors Nb and Ta). Indeed, when we take the “frozen-in”
field into account, the flux through the circuit under
consideration is [see Eq. (7.7) below]:

D = Oy ~ n®,, ®, = hc/2e = 2.10""gauss'ecm®, n =0, 1,2, ...
and at large values of » one can probably explain the
anomalies observed in Ref. 15.

It was also found in the experiments of Refs. 15 and
26 that near T, the magnitude of the thermoelectric flux
in the circuit increases more rapidly than is predicted
by Eq. (3.8), and immediately near T,, the thermoelec-
tric flux exceeds by several orders of magnitude the
value estimated by Eq. (3.8). According to Ref. 16,
one can understand this result if the ring contains a
large “frozen-in” flux and the latter becomes redistri-
buted in the circuit owing to local changes in the depth
of penetration upon inhomogeneous heating of the super-
conductor.

In this regard we should recall Refs. 33 and 34, which
take into account the effect of the external field on the
thermoelectric effect in superconductors. It was
shown®**** on the basis of a kinetic treatment that one
should take into account terms quadratic in », in the ex-
pression (1.19) for the current in the presence of an ex-
ternal field. This causes an extra field-dependent term
to appear in the coefficient  in (1.19). Under certain
conditions this term can be large in comparison with
the main term in (1.19), as a result of which one can
observe a substantial amplification of the effect. Per-
haps the anomalies observed in Refs. 15 and 26 can be
explained also in the light of the remarks made at the
end of subsection 2 that a continuous transition to the
case of a normal metal should occur as T~ T, with a
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FIG. 7. Thermoelectric pile of m links. The current in the
circuit is m times as large as with a single circuit.

corresponding increase in the thermoelectric flux.
However, on the whole, both from the experimental and
the theoretical standpoint, the problem of the tempera-
ture range close to the critical temperature remains not
completely elucidated and requires further analysis.

We note in connection with the discussion of the ex-
periments that the observed effect can be amplified con-
siderably if one uses a thermoelectric pile® instead of
a single thermoelectric circuit like Fig. 3 or 4. The
pile amounts to a closed superconducting circuit of sev-
eral links whose ends are maintained at different tem-
peratures (Fig. 7). We can easily see that the resultant
current in a circuit of m links is m times larger than in
the case of a single circuit. Here one can conveniently
observe not the flux §, directly, but the field in an aux-
iliary superconducting coil L. For a given flux in the
circuit, the latter can also be larger than the field in
the main circuit. One can get an additional amplifica~
tion of the thermoelectric current by inserting into the
thermoelectric circuit (of inner radius R) a supercon-
ducting core S (Fig. 8), which crowds the field into the
narrow gap (of width d) between the core and the main
thermoelement. Here the flux &, does not vary, while
the field in the gap is increased by a factor of R/2d (in
proportion to the areas of the total aperture and the re-
sidual slit; we assume that d>> 8). In the case of a nar-
row slit, the field and the current circulating in the cir-
cuit can be enhanced by several orders of magnitude
{(e.g., when R~1 cm and d~10"% cm, we have R/2d
~10%. Hence a circuit optimal for observation should
have the smallest possible inner area (of the type of
Fig. 4b).

If the aperture (slit) in the bimetallic ring is made to
approach zero, while a continuous transition is made to
the case of a bimetallic plate (compare Figs. 3a and b),
then the field is ultimately localized in a region of the
order of 5~10°° ¢m on both sides of the junction. In or-
der of magnitude this field will amount to H~10"* gauss,
as was estimated in Refs. 8 and 9. This, in particular,

FIG. 8. Thermoelectric circuit with a superconducting core.
The field in the gap and the current flowing around the circuit
are increased by a factor of R/2d.
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also makes evident the physical equivalence of the ther-
moelectric effect in a bimetallic plate®® and in a bi-
metallic ring.'°

4. Anisotropic superconductors

A thermoelectric effect (the circulation current and
the corresponding magnetic field) should arise not only
in an inhomogeneous super conductor, but also in a homo-
geneous but anisotropic superconductor. Indeed, the
current differs from zero only when the temperature
gradient does not coincide with the symmetry axes of
the crystal. This effect was treated in Refs. 8 and 9 on
the basis of the London theory generalized to the an-
isotropic case. The latter is achieved, as was men-
tioned in subsection 1, if we take the parameter A to be
the second-order tensor A,,. Here, since the super-
conducting current does not decay, A,,=A;,. To ab-
breviate the notation, let us introduce here the symbol
(st),= A, Then Eq. (1.1) is written in the form

(4.1)

For isotropic superconductors or for crystals of cubic
symmetry, A,,=AS,,, and (4.1) reduces to (1.1). Inthe
approximation used in subsection 2, in which gy =p =p,
we have the following result in the anisotropic case in-
stead of (1.9):

Jn. i=’bn,ij-:z£"- (4.2)

curl Aj, = -—ic H.

We can write the solution of Eq. (4.1) in the form Aj,
= —c"'A+ V¢ [cf. (2.9)]. Henece, in virtue of (4.1) and
(4.2), we have the following expression for the total
current j=j +j,:

Aj= —L A4 vi+Pvr, (4.3)
where ', ;= A,b, ..

We get from (4.3) and from the equations curl A=H,
curl H=4nc™1j%6.97;

H=H; —ccul Aj, Hp==ccudl (IV7), (4.4)
curl curl Aj 4 %jzl“,, Fr =curl curt(T'V 7). (4.5)

Evidently these are the equations that define the current
j and the field H induced by the temperature gradient.
In a homogeneous and isotropic medium we have rvr
=I(T)VT=Ab, VT, and the terms H, and F, are zero.
Hence, in a ring made of an isotropic material, the
only entities that can exist are the current j=j_and the
field H caused by the magnetic field (external field or
field associated with the “frozen-in” flux). It is also
evident that H,, = F,=0 in the anisotropic case when-
ever VT coincides with the symmetry axes of the crys-
tal.

Now let us consider a crystal plate under the condi-
tions evident from Fig. 9 (x’ and z’ are the symmetry
axes of the crystal); for the sake of simplicity we as-
sume that V7 lies in the x’z’ plane with the z axis lying
in the direction of V7. Moreover, we shall be inter-
ested only in the range of temperatures close to 7, in
which the effect is maximal. Here n,~T.- T, and we
can set

4762 -1
Ay=hey, Ao=——="5-, 8=8{1—+)""

z (4.6)
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Here a;;=m/m, or in the principal axes system we
have a,.,, =a,=m,/m and a,.,, =a, =m,/m. Inthis
region (neat 7_) we can most probably neglect the weak-
er temperature dependence of the coefficients o, and

b’l- i§°

Finally, let us assume that v7= const (in the absence
of heat sources div #VvT=0, and since the components
of the heat-conductivity tensor =, ,(T) remain finite when
T~T,, we can probably neglect the temperature depen-
dence and anisotropy of the heat conductivity in most
cases to a good degree of approximation).

With the foregoing having been taken into account,
evidently the quantity H,. [see (4.4)] varies only slowly
with z owing to the relationship T=7(z). Let us assume
that H,=const and F,=0. Then, as we can easily con-
vince ourselves, the solution of the system (4.4), (4.5)
has the form H=H,+H', j=j,e"*/®, where H’ and j de-
cline exponentially with x inside the specimen (see also
the solution given in Ref. 8). At the boundary with the
vacuum we have H=0, i.e., we find that the field H+#0
only inside the specimen; of course we assume that an
external field is absent and that

P ¢ dlyy dT
J=1e ™ Inf @ @& *
Now let us take into account the departure from zero
of the term F,. The increment to the current asso-
ciated with it is

c? dWye dT

~

Gn  de®  dz °

Hence the role of the term F, is small under the condi-
tion
8 ar

fon—amar? & <t
The latter is satisfied even when d7/dz ~0.1°K/cm and
1-7/T,~10"* (for tin we have 5,= 2.5 x107° cm).
Hence, under more realistic conditions, e.g., when 1
—(T/Tc)~10' 2, we can fully assume that in the interior
of the superconductor (with Ax > 6) the total current j
=0. Then according to (4.4), the field in the interior of
the superconductor in the case under discussion is

H=H.=c¢ dlxye dT _ 41 :axxbn.xz‘l‘“xzbn.u(ﬂ)z
T dz

dz dz ¢ 0 T,(A—(T/T)P
_ 2n §3(a,b,—a,.b,)sin2g (ﬂ)z.
Te T (I~ TP da
(4.7)

Here evidently «,., «,., b,., and b,, are the corre-
sponding principal values of the tensors a,; and b, ,,
that correspond to the symmetry axes x’ and z’. For
tin (6,=2.5x10"° cm, T, =3.27°K), when
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(0 by —0tyr, bye) sin 295b (T ) ~ 104—1012 CGSE
.we find

109 — 1010 f T \2
HS n—amr (%)

Hence, when 1 —(7/7,)~10"2 and dT/dz ~0.1°K/cm, the
field is H<10°7-10"° gauss.

Equation (4.7) coincides (apart from notation) with Eq.
(19) in Ref. 8, but it has been derived® more simply
and yet under more general assumptions. The estimate
given in Ref. 8 indicated small values of H in agree-
ment with the foregoing. For a reliable estimate of the
field in a concrete experiment, not even contemplating
a quantitative test of Eq. (4.7), one must use the ex-
perimentally determined values of the coefficients a,,,
b.., ay, b., and 8, for the material employed. This
especially pertains to the coefficients b,,, since ¢,,~1,
while the depth §, is usually well enough known, And
yet, in the only experiment to observe a thermoeffect
in an anisotropic superconductor,*® the observations
were compared with theory by using the values of b,
calculated in Ref. 39. However, the estimate made in
Ref. 39 was actually too high by several orders of mag-
nitude.'® Hence the conclusion appearing in Ref, 38 that
theory does not agree with experiment is based on a
misunderstanding. However, neither can we speak of
agreement with theory, since we do not know the values
corresponding to experiment of the coefficients of (d7/
dz)? in (4.7).®’ Moreover, we must bear in mind the
fact that under real conditions one can observe various
“parasitic” fields, in addition to the effect of (4.7). In
addition to the factors cited in Ref. 38, we stress the
role of inhomogeneities of the crystal (e.g., those due
to deformations). As is already evident from (4.4), in
an inhomogeneous specimen in which the components
I',, depend on the coordinates, a field H can arise that
is proportional to VT, as has been observed in Ref. 38,
at least in certain cases.?’

1t is evident from Ref. 38 that apparently the field H,
can be directly measured, and thus Eq. (4.7) can be
tested. However, it is natural to seek also other pos-
sibilities.% In this regard we stress, first, that the
total current I flowing through the specimen

I=joY6=1=HrY, (4.8)
can be quite large if the thickness Y of the crystal is

large enough (j, is the current density at the surface

8)n Ref. 28 it is concluded that the theory apparently agrees
with experiment, 3 but in doing so a value of b, is used taken
from other studies, and of course, for other specimens.

9Ypon isolating the temperature factor f (2) =(1—T/T)"'and
writing ¢ TVT =af (2), we have H=curl af=f curl a+ Vf Xa,

In the case of a homogeneous, anisotropic superconductor,

we find that the vector a=const and Hyp=Vf xa ~ (VT)?, In the
inhomogeneous but isotropic case the vectors a and Vf are
parallel, as a result of which Hp=f curl a~VT. In the gener-
al case both terms differ from zero. We note that, in a homo-
geneous anisotropic metal existing in the normal state, the
existence of a temperature gradient also generally gives rise
to a circulating current,'®*! but one proportional to VT,
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of the crystal, and X, Y, and Z are the dimensions of
the crystal. Here we assume that its thickness Y is
large enough in comparison with 8; see also Fig. 9). In
this regard, it is convenient to measure the current
rather than the field H,, employing a doubly connected
crystal for this purpose. Then, integrating the rela-
tionship (4.3) over the circuit with j= 0 (dashed line in
Fig. 10), we obtain the flux

O = §>A-dl = ®p + n®,, Or=HXZ, ®,=hcl2,

n=20,12.... (4.9)

Here we have taken Eq. (4.4) into account and have as-
sumed in the integration that $v¢-dl=nh/2e [see (2.5)],
i.e., we have at the outset taken into account the quan-
tization of the frozen-in flux, so as not to have to re-
turn to the anisotropic case in Subsection 8, Evidently,
when n=0 we have

© = O, = H XZ, (4.10)
Of course, here and in (4.9) the field H, is determined
by Eq. (4.7). In effect we have thus given another de-
rivation of this formula; but if we accept (4.7), then we
arrive at (4.10) simply by multiplying the field by the
area XZ of the specimen.

Such a method (current measurement) is convenient,
secondly, also because one can cut apart the crystal
and pass the current through an auxiliary superconduct-
ing coil L (Fig. 10)., The field in a coil having a large
number of turns can be made considerably stronger
under certain conditions than the field H, in the main
circuit. One can get an additional amplification of the
effect (increase in current) by inserting a supercon-
ducting core into the aperture in the crystal (Fig. 10).
(As we have stressed in subsection 3, these remarks
hold also for an isotropic, inhomogeneous supercon-
ducting circuit.) Finally, the total flux & or the flux &,
can in principle prove to be so substantial that one can
measure the emf that arises upon opening the circuit.

The thermoeffect in an anisotropic crystal discussed
here differs from the thermoeffect associated with an
inhomogeneity primarily in the quadratic dependence on
vT (i.e., the effect (4.7)-(4.10) is proportional to (VT)?,
whereas the field and flux in anisotropic, inhomogeneous
circuit are proportional to V7). Moreover, the flux
(4.9)-(4.10) is proportional to the dimension X, while
the dimension of an ordinary superconducting thermo-
electric circuit (see Fig. 4) in the direction perpendicu-
lar to V7 plays no role (it does not increase the flux).
Consequently, as we can easily see, the flux (4.10) can
quite possibly prove to be larger than the flux through
an inhomogeneous superconducting circuit (see subsec-
tions 2 and 3).

2

FIG. 10, Anisotropic cir-
cuit (the field H ; exists in
the aperture).
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Il. GENERAL MACROSCOPIC THEORY BASED ON
STUDYING THE ORDER PARAMETER

Above we have treated thermoelectric effect in super-
conductors on the basis of the two-fluid model and the
London equations. It is instructive to trace how these
effects are described within the framework of a more
general macroscopic theory of superconductivity*? in
which the concept of a complex order parameter ¥ is
introduced. Within the framework of this scheme, we
shall also discuss the problem of what role the phase of
the order parameter plays in describing thermoelectric
effects.

5. Fundamental equations

We can conveniently base the treatment on a time-de-
pendent phenomenological relaxation-type equation for
the order parameter (cf. Refs. 43-47):

v (g +iwien) V=g (AT~ T A) Y+ a¥+p VPV,
(5.1)

Here, as we repeat for convenience, uY¥ is twice the
chemical potential of the normal electrons,'® ¢* = 2¢,
and m* = 2m are the charge and mass of the Cooper
pairs, and A and ¢ are the vector and scalar potentials
of the electromagnetic field. We can represent the
right-hand side of Eq. (5.1) in the form 8%/5¥, where
Z is the free energy of the macroscopic theory,*? and

« and g are the parameters that enter into this theory.
An equation of the type of (5.1) in the special case of an
impure, gapless superconductor is obtained from the
microscopic theory,*®"° and here one determines also
the value of the dimensionless parameter y. In the gen-
eral case one must treat phenomenologically both Eq.
(5.1) and the parameters that enter into it.'"’

We shall write the expressions for the current in the
system in the form

(5.2)
(5.3)

— M 10,97, (5.4)

j =j,+ jm
jy= ok (FVY —¥VT) - o |V PA(r, 1)
$e =30 - = Rl

*c

jn=0y4 (E+E(e’;))y =““1"a-é"‘vq)» Egrl‘) =

Here j, is the ordinary superconducting current, while
i, is the current of the normal excitations, with ¢, and

10We note that equilibrium is established rather quickly in the
system of normal electrons, so that in the discussed situa-
tions we can assume that p,=p, where u is the chemical po~
tential of the electrons in the equilibrium or quasiequilibrium
steady states. A thermodynamic analysis yields the relation-
ships

U U oU
thoa= (-Z—n')n’sal‘n=(§";)ﬂ"s, ps:(.g_ﬂ;)nn.s'

Here U is the internal energy per unit volume, and S is the
entropy of the system. The quantity 6u =pg —p, vanishes at
equilibrium, and it plays the role of the chemical potential
in a system having an indefinite number of particles (e.g., a
system of Cooper pairs).

1)we note that we actually do not use the concrete time-de-
pendences for the order parameter. Hence we need Eq. (5.1)
only as an example of a closed gauge-invariant scheme,
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a, being analogous to the conductivity and to the differ-
ential thermo-emf of a normal metal. (Above we have
used the notation b,= 0,0, and have written the thermo-
electric current in the form j,=5,V7.) In the general
case the term E'™ in (5.4) arises from nonequilibrium
or inhomogeneity of the metal, and it can be interpreted
as an extra emf of non-Coulombic origin (see Ref. 51).

Under nonequilibrium conditions in which the right-
hand side of (5.1) differs from zero, as we have men-
tioned, we must introduce into the system under con-
sideration also the chemical potential u¥= u¥+ opu*,
which differs from u¥ (see, e.g., Refs. 52-56). The
potential u¥ involves the phase 8 of the order param-
eter ¥ = Re'® via the following relationship (cf. Ref. 57):

{(5.5)

Under equilibrium conditions (u¥= p¥= u*=2u,¢=0)
we have —7d8/dt=2u, and the wave function (order pa-
rameter) is characterized by the simple phase factor
et= g~ 2i8t/M (gee Ref. 58).'%

48 -
-ﬁ-dt-=p,+e‘q>.

Evidently the expressions (5.1)—(5.5) are invariant
with respect to the gauge transformations

RN AUR)]

A A+ Vil 1), c ot

(5.6)

with an arbitrary (but single-valued®’) function x(r, ¢)
that fixes the gauge of the potentials of the electromag-
netic field.’®* We see from the last transformation in
(5.6) that the phase of the wave function of the super-
conductor varies under a gauge transformation and can
be made equal to any preassigned function. The exis-
tence in (5.6) of a function x that is arbitrary over wide
limits reflects the fact that the potentials of the field
and the phase are to a certain extent nonphysical quan-
tities that we can alter for reasons of convenience. Yet,
of course, the physical quantities (fields, currents,
etc.) do not depend on the choice of gauge.

Q> g— Y5 Yeietx (r, t)/he

The relationship (5.5) allows us to establigh the gen-
eral form of the wave function of a nonequilibrium
superconductor:

t
¥ (r, t)=exp| —i S BE el dt' +10@) | R G, 1)
0

(5.7)

Here 6(r) is a function solely of the coordinates, while
R(r, ) is the real amplitude. The representation of the
wave function in the form (5.7) is convenient in the
sense that the phase automatically varies in accordance
with (5.6) when the potentials of the field undergo a
gauge transformation.

Substituting (5.7) into (5.1) and (5.3) and separating
the real and imaginary parts, we obtain the equations

2)we note, besides, that the potential y} in (5.5) can in prin-
ciple depend on vi However, as we stipulated in subsection
1, we shall nowhere write out the terms of the order of »2,
except in subsection 9.

13%e need the requirement of single-valuedness because the
potentials of the electromagnetic field are considered to be
single-valued functions of the coordinates.

V. L. Ginzburg and G. F. Zharkov 391



2= ARL 2R R aR4BRY (5.8)
— 2y (us — ) B2 =div jy, (5.9)

e*

B ) =eny(r, )V, Vo=—5-VO (1) +

m*

%
[ E+E®)ar, (5.10)
0

nt(r, t)=%n,=%nm(r, t), E& =—237’. (5.11)
(Here, as above, n} is the pair density, »n, is the den-
sity of “superconducting™ electrons, and n=n,+n, is
the total electron density.) One must supplement the
above equations with the field equations (1.4) and (1.5),
which give rise to the continuity equation (1.6) for the
total current,

At equilibrium (when j,=0) we have under steady-
state conditions div j,=0, i.e., according to (5.9), we
find that the quantity du= u* — u*=0. Under nonequi-
librium conditions the normal and superconducting cur-
rents can be interconverted, and then a non-zero value
of bu* arises. We shall see below (Subsection 9) that
certain small dissipative effects are associated with the
quantity du*.

A quasiclassical kinetic equation for the distribution
function of the normal electrons (excitations) in a
superconductor has been formulated® that holds for
perturbations that vary slowly enough in time and space.
The results obtained by using the kinetic treatment (see
Refs. 60-68 and also Refs. 52-56) justify to a certain
extent the phenomenological equations (5.1), (5.8), and
(5.9), and they allow one to refine the meaning of the
quantities that enter into them. In the case of rapidly
varying processes, the phenomenological scheme pre-
sented above is apparently inapplicable. Then we must
turn to the exact microscopic equations (see, e.g.,
Refs. 48-50). Since we shall be interested in slow pro-
cesses, e.g., such as occur on heating a superconduc-
tor, it is convenient to start with the phenomenological
equations presented above and to conduct the discussion
on their basis.

6. On the meaning and role of the phase of the order
parameter in the macroscopic theory of superconductivity

As we have mentioned, thermoelectric effect are
sometimes associated with the phase of the order pa-
rameter. Nevertheless, we have shown in Sec. I that
one can describe these effects without any use of this
concept. In order to discuss in greater detail the role
of the phase in the origin of the thermoelectric current
in superconductors (see Subsection 7), it seems appro-
priate to analyze the problem of the phase in a more
general form,

As we see from (5.7), the phase of the order param-
eter contains a certain time-independent function &(r).
Generally this function is not single-valued, since upon
integrating around any vortex line {filament) we have
(6.1)

§V&dl=2nn, n=20,1,2,....

Here the number » characterizes the amount of mag-
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netic flux &=nd, trapped in the vortex,'*’ where &,=hc/
2e is the quantum of flux. We can isolate® from the
phase (5.7) a non-single-valued component 8,(r) by
writing 6= 6,+ 6,, where 6, and 6, are any functions that
satisfy the conditions

(6.2)

We can always set the single-valued component 6, (r) of
the phase to zero by a suitable choice of the time-inde-
pendent gauge function x(r) [see (5.6)]. In particular,
this implies that this component of the phase has no
physical meaning. We shall assume below that 6,(r)=0,
and that 6=6,. Of course, this corresponds to a special
choice of the gauge of the vector potential A, in which
the nonphysical part of the phase does not enter into the
equations.

We see from Eq. (5.10) that the current j, = e*n'v, in
a superconductor in the general case consists of two
components, with

§ Vopdl = 2an, & VOl = 0.

Vo (1, 8) =V (1) Vg (1, ),

t

s 6.3
Vo) = W00 (1), Vi (r, =53 | (B+ER) ar (6.3)
0

Upon assuming formally in (6.3) that e*=0 (i.e., v,
=0), we can understand the meaning of the component of
the velocity v,(r)—this quantity describes the velocity
distribution in an uncharged “seed” vortex (i.e., in a
vortex that would exist in an uncharged fluid). Here
there is a full analogy with a vortex in superfluid He
II,° whose velocity distribution is described by the re-
lationship V,=#M3lV6,, where My, is the mass of the
helium atom.

This reveals the meaning of the phase 8= 6(r) in (5.7)
as the potential of the velocity of the seed vortex in the
“uncharged superconductor”. It is convenient to use
cylindrical coordinates, in which

Yo (l‘)=n% %, curl v, = 25nh (p) . (6.4)
Here s is a unit vector along the lines of flow of the
“seed” vortex, p is the two-dimensional coordinate
which measures the distance from the axis of the vor-
tex, and h is a unit vector along the axis of the vortex.
The delta function on the right-hand side of (6.4) fixes
the position of the axis of the vortex, while the velocity
distribution in it is inversely proportional to the dis-
tance from the axis. When the charge e* is “switched
on”, the term v,  appears in (6.3), and a Meissner ef-
fect is manifested in the superconductor that leads to
shielding of currents. Consequently the true velocity
distribution in the vortex as found by using the field
equations will no longer be described by the simple law
v,~1/p, as in superfluid He II, but is determined by an
exponential factor of the form v ~e™/®, which is char-

4nye treat the general case in which the vortex (or an aper-
ture in a multiply connected superconductor) can contain »
quanta of flux. Eq. (6.1) plays an essential role in introduc-
ing the concept of a “vortex filament” or “vortex”.
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acteristic of a superconductor,

Now let us turn our attention to the time-integrated
term in the phase (5.7) and the component v,, in (6.3).
We shall assume that there are no vortices and that the
non-single-valued part of the phase that describes the
vortices is zero (8,(r)=0, i.e., v,=0). Here, in the
gauge that we have adopted [6,(r)=0], the only compo-
nent that remains in the phase of (5.7) and in Eq. (5.10)
is the one containing the time integral. According to
(5.10) or (6.3), the equation of motion for the velocity
v,, thus acquires the form

m*vy=e* E4EX), Eof=—vp',

(6.5)
This agrees with Eq. (1.13) if we take into account the
fact that the chemical potential u¥ in (6.5) includes the
term m*v?/2 (see footnote 12). Evidently the velocity
v,, describes the motion of the superconducting compo-
nent under the action of the applied forces E+E{.

Let us rewrite (6.5) in another form:
vy == IV (3 + et0). (6.6)
If there is no inductive field (i.e., 8A/8¢=0), then the
velocity does not increase (steady -state condition) if

¥ fetp=const, V(ug +erp)=0, (6.7)

The condition of constancy of the electrochemical po-
tential (in this case, the potential u¥+ e*¢) is commonly
used as a condition of local quasiequilibrium in systems
containing charges (see, e.g., Ref. 70).

Evidently, whenever the relationship (6.7) is obeyed,
the superconducting component will be accelerated only
by the inductive component ~c~*8A/8¢ of the electric
field. This reduces the expression for the supercon-
ducting current of (5.10) [we assume that A(¢=0)=0] to
a form that was adopted at one time by London and Lon-
don™

fo D= =S n (DA, 0. (6.8)

m*c

In the more general gauge in which 6(r) #0, the expres-
sion for the superconducting current of (5.3) and (5.10)
with account taken of (6.7) acquires the usual form

(6.9)

s D=t ( wwo—L_ A).
The expression for the current of the normal excitations
in the superconductor (5.4) with account taken of (6.7)
acquires the form

1 0A | vip*
= Gt avT) Bt

(6.10)

jn'—“on(_

Evidently the expression (5.10) reduces to (6.8) or
(6.9) only under the condition u¥*+ e*¢ = const [see (6.7)).
Otherwise a component appears in the current that de-
pends on the time, and is not associated with the mag-
netic field. Hence the choice of Eqs. (6.8) and (6.9) for
js is permitted only under the condition of constant
electrochemical potential for the pairs u} -+ e*o.

It is interesting to compare (6.6) with the expression

MoV =Vigie, (6.11)

which Landau’® used in the phenomenological descrip-
tion of the superfluidity of liquid He II. According to
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(6.11), the force that makes the superfluid component
move is the gradient of its chemical potential, whereas
in a superconductor, even when V(u¥+e*¢)=0 (i.e., at
quasiequilibrium), acceleration of the superconducting
component of the fluid takes place (when 3A/9¢#0).
Thus, under conditions of quasiequilibrium, the super-
conducting component of the current is accelerated only
by the inductive component of the electric field —¢~*8A/
dt [see (6.6)].

Although the electrochemical potential is constant in
space under conditions of quasiequilibrium, it can de-
pend on the time. Hence the phase factor of the wave
function of (5.7) should be written in the form

exp[—{—j (u:+e‘¢)dt']. (6.12)

[
We recall that above we have been dealing with a state
without vortices. Hence we have assumed in (5.7) that
6(r)= 6,=0. However, since the time integral in (6.12)
takes into account the history of the process, this term
can describe the creation and disappearance of vor-
tices. Therefore, even if we start with a vortex-free
state, then because of the multiplier (6.12) an increment
8,(r) can appear in the phase that corresponds to a
newly formed vortex. We shall be interested below in
processes in which motion of vortices is absent (in par-
ticular, their number does not change). Hence we can
set 8,=0 for n=0. Under equilibrium conditions (u*
= u¥=u*=const and ¢ =0), the wave function of (5.7) is
characterized by the usual factor e i#*t/h= g 2int/n
(see Ref. 58).

We can summarize what we have said above as fol-
lows. In the absence of magnetic vortices, the phase
is a single-valued function of the coordinates. How-
ever, in view of the arbitrary gauge, this function has
no direct physical meaning. In particular, one can al-
ways transform to a special gauge in which the phase of
the superconductor is everywhere zero the London
gauge of (6.8).'>) This condition fixes the value of the
vector potential A. In the presence of vortices, the
phase contains a non-single-valued component that can
be interpreted as the velocity potential of a “seed” vor-
tex. Moreover, under equilibrium conditions there is
always the phase factor e”##*t/"; in the non-steady-state

case the phase factor has the more complex form
(6.12),

7. On the nature of the thermoelectric current in
superconductors

The assumption (6.7) that the pair electrochemical
potential p¥ + e*¢ is constant is the basis of the con-
clusions that one sometimes encounters that thermo-

15)We note that an analogous situation oceurs in the quantum
theory of gauge fields with spontaneous symmetry breaking.
There a particular gauge in which the wave function becomes
real also exists, while the nonphysical variables drop out of
the description (the so-called Higgs phenomenon; see Refs,
73, 14).
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electric effects do not exist in superconductors.!™®

Actually, if we neglect the dissipative term 6u* ~div Js
[see (5.9)], we can write the equation for the variation
in entropy per unit volume in the form?*-¢

';—f+div-‘T1~=—§—. (7.1)
Here q is the heat flux, Z is the production of entropy,
and we have

(7.2)
(7.3)

q= —%VT —Gnenl (E—T‘_- vit),
E=j,.-(E——:7Vpg)-(q-vT)lT.

Under steady-state conditions we get the following from
(7.2) and (7.3) taking (5.7) into account:

q=-—%VT, Z=-(q¢.vD/T, (7-4)

i.e., the heat flux and the entropy production in the
superconductor arise solely from the ordinary heat
conductivity. This means that heat effects (the Thom-
son and Peltier heats and Joule losses) are absent in a
superconductor. Yet, according to (6.7), the emf v(u¥
+e*¢) that acts on the superconducting component is
zero. Therefore also no potential difference exists in
a heated superconductor. That is, the ordinary See-
beck effect (thermo-emf) and the associated thermo-
electric current do not exist. Thus the impression can
actually arise'~® that practically all thermoelectric ef-
fects do not exist in superconductors [apart from the
small dissipative effects in (7.1)—(7.3) that involve the
nonequilibrium term 6u*, and which lead to the convec-
tive heat transport mentioned in Subsection 2].

Moreover, we have shown in Subsection 2 that, in an
inhomogenously heated closed circuit consisting of
superconductors of different types, an electric current
I arises together with the associated magnetic flux &,.
Outwardly, this phenomenon recalls the classical See-
beck effect in a normal circuit and hence the question
can arise: is there not a contradiction between the
statements of Refs. 1-6 and 8-15, and what is the phys-
ical nature of the superconducting current that flows
around the circuit?

Before we discuss this problem, let us show that,
just as in subsection 2, the existence of this effect
stems from treating the expression for the total cur-
rent j=j,+J,, where j, has the form [see (1.19)] j,
=0,a,VT, while j, can be taken in the form of (6.8),
(We assume that the frozen-in flux is absent in the ring
and hence we set §,=0, and moreover, that the gauge
of A is defined by the condition 8, = 0; thus we describe
the superconductor by a real function having a phase
equal to zero throughout the specimen.) Let us take
into account the fact that, owing to the Meissner effect
the total current is zero on a contour C lying inside the
massive ring (Fig. 3b)'®": j,+§,=0, i.e.,

- ,::c 7oA+ Onan VT =0, (7.5)

€)1 other words, we assume that the temperature T is not too
close to T, as a result of which the condition 5 <« d holds,
where d is the thickness of the specimen.
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Upon integrating this relationship over the stated con-
tour we get

m*c § Tnon VI

<D=<§Adl=®r. D= 2 Zn (7.6)

dl £ 0,

i.e., we see that actually a magnetic flux arises ina
nonuniformly heated bimetallic ring, with a current
flowing around the ring I=c®,/L,, where L is the self-
induction coefficient of the ring. The expression (7.6)
for the magnetic flux, which was derived within the
framework of the macroscopic theory that employs the
concept of the order parameter ¥(r), coincides (when
b,=0,a, with the corresponding expression (2.10) de-
rived within the framework of the London theory. The
latter is evidence of the complete equivalence of the
two descriptions,'”’

If we start not from (7.5), but from the more general
expression for the current (6.9) and the condition (6.1),
then we get the following expression for the flux inside
the ring instead of (7.6):

O =n®y+Dp, o,:-é‘f-, (7.7
i.e., in the general case the flux inside the ring con-
sists of two components, namely, the flux »n$, that cor~
responds to a certain number 5 of flux quanta (vortices)
frozen into the aperture, and the additional flux &, [see
(7.6)} that arises from the temperature gradient. Evi-
dently we can associate the first term in (7.7) with the
phase of the wave function, while the thermoelectric
flux &, is not associated with the phase, and it has [see
below) a classical interpretation (moreover, we note
that Planck’s constant doesn’t enter into the expression
(1.6) for &)

Nevertheless a number of articles'®*+"" have asso-
ciated the thermoelectric current that arises in the cir-
cuit with the phase difference of the order parameter,
which is assumed to arise between any two points of a
heated superconductor. This interpretation is based on
applying the expression (6.9) for the superconducting
current and writing it in the form

e*h

C‘
T3 nive, VOmVO—-A. (7.8)

Here we introduce the so-called “gradient-invariant
phase” ©. Here it is assumed that the appearance of

1DThe latter also pertains to the anisotropic case that we treat-
ed in subsection 4, Upon introducing the order parameter ¥
for an anisotropic superconductor, "¢ we have
e*h - ¥ 24
To,p= Timy —aa;;'—w 'jg*;;
Here we have chosen the gystem of principal axes of the
crystal x’, 3', 22 —k=1, 2, 3, and of course, we do not sum
over k; in the isotropic case m}=m§=m¥=m*=2m, and (5.32)
transforms into (5.3). Upon writing ¥ in the form ¥ =va,/2¢*®,
we can easily reduce (5,3a) to the form used in subsection 4
[cf. @. 3) withouttheterm I'VT and with ¢ =6%/e*; see also
Ref. 36)l. As we know, Eqs. (5.3) and (5. 3a) generally hold
only near T,, while at lower temperatures the relationship
between j, and A is nonlocal. However, the thermoeffects
are at all significant only immediately near T,. Hence the
use of the expressions (5.3) and (5.3a) is justified in practice.

| Rt { (5.3)

-
myc

V. L. Ginzburg and G. F, Zharkov 394




the nonzero current of (7.8) in the circuit and of the
flux of (7.7) is due tothe appearance of adifference in the
“phases” © and it is proposed to measure experimen-
tally the “phase advance” or the “thermoelectric angle”
that arises on heating. In this terminology, the dis-
cussed effect acquires a quantum-mechanical ring,
while the “phase” itself here appears as some really
existing physical quantity, and as the reason for the
appearance of the current. However, the analysis per-
formed above (see Subsection 6) implies that no phase
(and hence also no phase difference) exists as a physi-
cal quantity in the absence of vortices, and hence the
cited terminology is an unfortunate choice. The fact of
existence of the magnetic field and of the vector poten-
tial A cannot be described by a scalar function (8 or
©).!*) The key physical quantity in the combination ©
[see (7.8)] is precisely the vector potential. This is
revealed especially clearly in transforming to the Lon-
don gauge with =0 and writing the current in the form
(6.8). Besides, the methodological remark that we have
made does not affect the essence of the results obtained
in Refs. 10, 34, and 77.

Thus, the above discussion allows us to conclude
that the thermoelectric current in a superconducting
bimetallic ring does not arise from the existence of a
phase difference in the circuit, but precisely from the
existence of the temperature gradient in the inhomo-
geneous circuit.'> However, the problem remains un-
answered here of the mechanism of appearance of the
current, i.e., the problem of the forces that have set
the superconducting component in motion.

We can easily understand the source of the super-
conducting current if we write (6.8) in the form
t
BO=tent [Ear, Bo_104. (7.9)
[
[We recall that here V(u*+ e*¢)=0.] The following is
evident from (7.9). If a field and current are initially
absent in the ring [A(¢=0)=0 for T,=T, and j,=0], then
a superconducting current can subsequently arise only
because of the appearance of the inductive accelerating
force E= —c"'8A/8¢, i.e., because of nonstationarity.
The only nonstationarity under the studied conditions
involves the change in temperature of one of the ends
of the specimen, e.g., T,. Evidently, when the speci-
men is being heated and the temperature Tz(t) varies in
time, nonequilibrium sets in in the normal subsystem,
and a force arises that is proportional to the tempera-
ture gradient. This force acts on the normal compo-
nent and sets it is motion. Here a weak variable elec-
tric field E(¢) is induced in the ring, and it acts on the
superconducting component and causes it to accelerate.
Consequently, in the ring by the time ¢, the current of
(7.9) arises, which coincides with the London expres-
sion (6.8), together with the magnetic flux of (7.6).

1®)1ndeed, in the literature the so-called “current state” is
sometimes considered in which there is a current j, but the
field H=curl A=0, since A=V¢. Evidently this description
formally contradicts the field equations.
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Pey se the field E(¢) is negligibly small (an estimate
gives the value € (f)=$E dl~c™'8&/8t~ 10"V for ~ &,
~10"° gauss*cm® and d7/dt~10"2 °K/sec). However,
precisely this weak field acting throughout the heating
cycle (integrated over the time!)*® accelerates the
superconducting fraction of the electrons, and this cur-
rent reaches the final value of (7.9) [or (6.8)]. Subse-
quently this current flows by inertia without losses,*’
and in the final state no forces act on the supercon-
ducting component. As for the normal component, we
can neglect the action of the weak inductive field as
compared with the normal thermo-emf E{"’ =,V T [for
tin near T, we have the estimate " =§4,vT-d1~10"* V
(see subsection 3), i.e., actually &€ <#'”]. Thus, by
the time £, the normal current will be

n (N =0nER (1) =0p2n VT,

(7.10)

Thus the qualitative arguments presented above al-
low us to conclude that the complete circumferential
current that arises in a nonuniformly heated bimetallic
superconducting ring is inductive in nature.®’ In this
regard, there is an evident contrast with the analogous
effect in a normal circuit (the Seebeck effect). Here,
so to speak, the thermoelectric current is of a diffu-
sion nature,™ is directly involved with dissipative pro-
cesses, and requires an emf to maintain it. Thus,
there is actually no contradiction between the state-
ments of Refs. 1-6 and 8-15, and, in fact, the effects
discussed therein are different. The thermodynamic
arguments'~® that neglect convective heat transport
actually do lead to the conclusion that there is no dif-
fusion thermo-emf nor any heat effects in supercon-
ductors, yet they do not forbid the existence in a closed
ring of a nondissipative inertial current®!® caused by
inductive electric forces. Evidently the ordinary
Meissner current in a superconductor is also inductive
in nature [cf. (6.8) and (7.9)] and is due to the insertion
of the superconductor into a region that contains a field.
In this regard, the remark we made at the end of Sub-
section 3 on the possible amplification of the thermo-
electric current by the introduction inside the ring of
a superconducting core agrees fully with the assertion
of the inductive source of the discussed effect.??’

19)The integral character of the action of these forces in (5.10)
and (6.3) corresponds to the situation in which the supercon-
ducting component moves without colliding with the lattice.
Hence the effect of the forces is summed over the time. In
the presence of collisions, the effective time of action of the
accelerating force is limited to the value 7, or the free
flight time, and the normal current will be proportional to
the field j=0,E+E®), o,=ent,/m, rather than to its inte-
gral,

20)Here we ignore dissipative effects in the superconductor that
involve the regions where div j = 0.

2D A detailed treatment of the mechanism of turning on the
field and the dynamics of acceleration requires us to turn to
the exact non-steady-state equations (5.1)—(5.7) and the
field equations (1.10)—{1.12), which seems to be a rather
complex problem.

22%e note in passing that one can explain analogously the
well-kmown experiment '® mentioned in connection with the
discussion of whether one can consider the vector potential
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In closing, let us take up briefly the experiment of
Steiner and Grassman,’ which we mention in connection
with the proof of the absence of thermo-emf’s in super-
conductors (see the Introduction). These authors sus-
pended a bimetallic superconducting ring by an elastic
filament in a weak magnetic field and then heated the
ring. If a thermo-emf were to arise in the supercon-
ductor (Seebeck effect), then it should give rise to an
acceleration of the superconducting electrons and to a
current in the ring that increases with time, which
would twist the elastic filament. However, no twisting
moment was found in the system upon lengthy observa-
tion. This allowed them to state with great exactness
that no accelerating force arises, and consequently they
concluded that a thermoelectric current is fully absent
in superconductors.!*® The negative result of this ex-
periment becomes understandable if we take account of
what has been said above. Actually, in Ref. 7 an in-
crease in the electric current in the ring with time
could not be observed, since an emf was actually lack-
ing under steady-state conditions. However, if the sen-
sitivity of the experiment’ had been higher, then it
might have been possible to detect a dc current and a
magnetic field in the ring, but now caused by the ac-
celerated electrons moving inertially. Apparently such
a current has been observed in Refs. 13-15.

8. On the quantization of the magnetic flux through a ring
(circuit)

The thermoelectric flux in the ring of (7.6) is propor-
tional to the temperature difference, and naturally for
this reason is not quantized. It seems expedient to dis-
cuss how this result fits with the well-known assertions
on the quantization of magnetic flux in superconductors.

The concept of quantization of macroscopic motion
was first introduced by Onsager for the case of super-
fluid He I (see Ref. 85, and also the work by Feyn-
man®*) and by London (Ref. 17, p. 152) for the case of
superconductors (we shall find it convenient to discuss
the problem of quantization for these two systems in
parallel). We can easily derive the conditions of quan-
tization by treating the expressions for the velocity of
the superfluid component:

i
T ¥ G0

(8.1)

V=

to be a physically observable quantity. 80,3t The experiment
of Ref. 79 observed a change in the current in the ring of a
superconducting interferometer upon changing the flux &

_=¢ A- d1 inside the ring (see also Refs. 82—84). Under the
conditions of the experiment,’® the flux & was fixed by using
a thin, long solenoid placed inside the ring in such a way that
the magnetic field at the interferometer was zero. Conse-
quently a rather paradoxical impression arose that the elec-
trons “sensed” directly the vector potential A. Yet it is
clear from what has been said above that the change in the
flux & in the solenoid was accompanied by the appearance in
space of a weak inductive electric field E = — c™'9A/5¢ that
accelerated the electrons. Thus the electrons of the super-
conductor reacted not directly to A, but to non-steady-state
inductive field E.
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and of the superconducting component:
(8.2)

] e*
Veg=2 FVB.,—-W A.

Here 6, is the non-single-valued component of the phase
of the wave function of the system, which can be inter-
preted as the velocity potential of the vortices (see Sec.
6). Since upon passing around the closed circuit we
have the following:

§ V8ydl = 2nn, (8.3)
then we find that in He II
§v,dx=2nn MZ: , (8.4)

i.e., the circulation of the superfluid velocity is quan-
tized, while in superconductors we find that

§[vs+ E*m*OA] - di =2mn L (8.5)

me

i.e., the so-called fluxoid is quantized.'”

Let us examine the case of He II, in which both the
normal and superfluid components of the liquid move.
Here the total flux density will equal the sum of the
fluxes of the two components:

R vt (8.6)

=3+ ¥, =0V In=p, e

Here p, is the mass density of the superfluid compo-
nent. Upon integrating (8.6) over a closed contour or
simply using (8.4), we obtain

@%-dl=2nn " (8.7)

Mye ©

This implies that if, e.g., the liquid contains no vor-
tices (n=0), then the following relationship holds:

n=0,

3 ¢ JIn
§E~dl= e, (8.8)
Let the normal flow in He II arise from the temperature
gradient J = bVT in such a way that the right-hand side
of (8.8) differs from zero. (To do this, it suffices to
take a closed, ring-shaped vessel having segments of
differing cross-sections; see Refs. 12 and 35.) Then,

if the temperature changes gradually, both sides of (8.8)
will vary smoothly. Here the circulation of the total
flow J/ p, proves to be unquantized. This situation fully
agrees with the condition (8.4), according to which it is
not the total flux that is quantized, but the circulation of
the superfluid velocity (i.e., the number of vortices).
Since the system departs from equilibrium when we ap-
ply a temperature gradient, and the fluxes J,and J=J,
+J,arise in it, then these fluxes should distribute
themselves in such a way as to satisfy the quantization
condition (8.4) and maintain the system, e.g., in the
state n=0. Here, if we neglect the temperature-de-
pendence of p,, circulation of the superfluid flux is also
absent, i.e., $J,d1l=0. Thus, the lack of quantization
of the total circulating flux J in He II indicates only that
the system is not in equilibrium, but continues to exist
in a2 quantum macroscopic state having n=0.%’

23%We note that, owing to the law of conservation of angular
momentum, a freely suspended ring-shaped vessel of vari-
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Analogously, in the case of a superconducting ring,
let us examine the law of quantization (8.5) as expressed
in terms of the circulation of the total current j= e*n¥v,
i

§ ( i—in +Te:c‘ A)~dl=2nn 7:7 (8.9)

e*n¥

Here, in contrast to (8.7), there is a term containing
the vector potential, and moreover, the Meissner effect
takes place, according to which the total current in the
interior of a massive superconductor is zero.*’ Con-
sequently, when n=0 and j,=0,a,VT, we shall have Eq.
(7.6) with an unquantized magnetic flux instead of (8.8).
Evidently the magnetic flux & in Eq. (7.6) is not quan-
tized because, according to (8.5), it is not the flux that
is quantized in superconductors, but the fluxoid (i.e.,
the circulation of the vortex velocity v = V6,/m*).
Only when the system is in equilibrium (i.e., when j,
=0) does the magnetic flux in a massive ring prove to
be quantized. Here we find from (8.9):

© = nd,.
Here &,= he/2e is the quantum of flux. (In the general
case we have $=nd,+ &,.) Thus the fact that the flux
&, in (7.6) and (7.7) is not quantized is characteristic
of a superconductor not in a state of equilibrium (how-
ever, here the number of vortices does not change,
and in this sense it is quantized as before).

As is well known, the flux is not quantized also in the
case of circuits (rings, cylinders) whose thickness is
of the order of or smaller than the depth of penetration
5 (see, e.g., Refs. 87 and 88). There is still another
possibility of getting an unquantized flux even in a
massive superconductor. Namely, if the superconduc-
tor rotates with the angular velocity ©, then at equilib-
rium we have

B=2"Cq (8.10)

€

Here e is the absolute value of the electron charge (i.e.,

able cross section containing He I should begin to rotate
when heated. This thermomechanical circulation effect has
been discussed in Refs. 12 and 35. (Here we need not intro-
duce the phase in the case n=0 for describing the flow of He
I, although this has been done in Ref. 12.) We note (see Ref.
36) that in *He and in neutron or proton fluids, when pairs
having a non-zero angular momentum are produced, we must
take into account the anisotropy of the fluid, especially in the
presence of boundaries or of a magnetic field. This can give
rise to new circulation effects caused by temperature inho-
mogeneity. Analogous circulation effects, though now not
having any specifically quantum features at all, can probably
also arise in ordinary liquid crystals.

*)This in particular manifests the contrast between the ther-
moelectric effect in superconductors and the thermocircula-
tion effect in He II. In He IT the total flux J in the bulk of the
liquid differs from zero [owing to the arbitrariness of the
contour of integration in (8.8)]. However, in the case of the
superconductor, the total current density in its interior j=j,
+Jj,=0, while the total current I circulating in the circuit is
superconducting and flows only in the surface layer (Meis-
sner effect).
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e>0). One can arrive at this result in different ways—
by applying the Larmor theorem (it is not evident how
to apply it in the given case) or by transforming in (1.8)
to a rotating system of coordinates. Here the condition
(1.9) transforms into

curl v =—&H—29,
ST pme
where with j =0, one gets Eq. (8.10).

In the theory*? that employs the macroscopic wave
function ¥, one can take rotation into account if one re-
calls that in a rotating system we have
Hence we must replace A in (6.9) by A+ cm* (Q xr)/e*.
Upon integrating over a contour for which j =0, we ar-

rive at the condition

*
2nhn=eT ©—2m*QS.

Here S is the area of the contour, and we assume that
Q=const. For the ground state in which =0, this
yields Eq. (8.10), since &= HS.

We can pose the question of how a nonequilibrium
magnetic flux will relax when left by itself after sud-
denly removing the temperature difference. One can
get a qualitative orientation toward this question by
keeping the inductive term —c~'8A/8¢ in the expression
(6.10) for the normal current, i.e., by writing total cur-
rent in the following form [ef. (6.8) and (6.9) with du*

=0}
o)

j:"%A"'O"(a”VT_?—aT (8-11)

The usual procedure of integration over a contour on
which j=0 gives the equation

u_,.AZ—?er:mT. (8.12)
Here o,A is a certain mean value of the parameter o
over the integration contour, & is the flux inside the
contour, and &, is the value of the nonequilibrium flux
of (7.6). (We assume that n=0; otherwise we must add
the term r, to the right-hand side of (8.12). We see
from (8.12) that if one creates a nonequilibrium flux &
in a ring, then if left to itself it will decay according to
the law & ~e™/7 with the characteristic relaxation time
T=g,A ~107° sec (for the values ¢,~10% sec™ and A
~107% sec?). Here the system will very quickly ap-
proach the equilibrium state with $=0 that corresponds
to the quantum state »=0 (or when 5 20, to the state
with &= nd)o).

We note that one can use an equation of the type of
(8.12) to describe a non-steady-state thermoelectric
flux generated in a ring by a time-varying temperature
difference (cf. Ref. 6, p. 381). Here, according to
(8.12), different types of resonance effects could arise
in the circuit. However, since it is hard to produce al-
ternating thermal gradients of high frequency (charac-
teristic value 7~107!° sec), then on this level a method
of generating an alternating magnetic flux in an inhomo-
geneous ring may prove more promising, for example
by irradiating it with a sequence of sound pulses. The
entrainment of the normal component that arises under
the action of the ultrasound would give rise to a non-
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equilibrium flux ¢, ... The problem of the steady-state
acoustoelectric effect has been discussed in greater de-
tail in Refs, 89-92. On the topic of generating a non-
equilibrium flux by light (photoelectric effect) or by a
flux of neutrinos, see Refs. 66 and 93.

As was noted above, in spite of the lack of quantiza-
tion of a nonequilibrium magnetic flux, the system tries
to conserve its state as characterized by a definite
number s of vortices in the ring (in particular, the state
with n=0). However, let us assume that we could in-
crease without limit the nonequilibrium magnetic flux
(e.g., by using a thermoelectric pile to amplify the ef-
fect;>® see subsection 3). Then, if the field inside the
ring exceeds the value H=H, (where H, is the critical
field that corresponds to the onset of penetration of vor-
tices into the superconductor), this configuration of the
field will prove unstable, vortices will begin to pene-
trate into the superconductor, and in the absence of
pinning forces they will move to the periphery of the
ring. Here, when the mean flux inside the ring has
reached the value .= H,S (S is the area of the hole in
the ring), it will no longer increase further, since the
“excess’ magnetic field will be “ejected” through for-
mation of a chain of moving vortices. This dynamic
pattern can arise also in a “weakly coupled” thermo-
electric circuit, i.e., in the presence of a Josephson
contact®™ (Fig. 11). In this case the value of H, is
small. Hence the possibility of realization of such a
non-steady state with moving vortices (see Ref. 95)
seems more real. (There is also another possibility of
decreasing the magnetic field in a circuit having &,
> &,, namely, by formation of vortices of the other
sign, &= &,+nd,,n<0. Here distinctive hysteresis ef-
fects can arise in the circuit; see Ref, 35).

A “weakly coupled” circuit can also be used for de-
tecting a thermoelectric flux &,<®, For example, in
the inhomogeneous circuit drawn schematically in Fig.
12 (a so-called quantum interferometer), the maximum
steady -state current passing through the instrument de-
pends on the external flux &= &, in the ring according to
the law®"%

(8.13)

anD
co o

Timax =21,

In the presence of a temperature gradient, the total flux
is = &,+ &,. Hence the interference curve (8.13) (see
Fig. 13) will be shifted in proportion to the temperature
difference AT=T,~T,. Since one can measure the po-
sitions of the minima in Fig. 13 to a high degree of ac-
curacy, one could use such an apparatus in principle as
a precision thermometer. However, experiments of
this type have not yet been performed.

We note in closing that in principle one can observe
interesting interference phenomena also in a nonuni-
formly heated ring-shaped vessel containing liquid He
II (see Ref. 96).

?5)n passing we note Ref. 94, which treats the thermoelectric
effect in a homogeneous ring with a Josephson barrier caused
by a temperature drop at the barrier itself.
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\ FIG, 11, Thermoelectric
circuit containing a Jos-~
o ephson contact (schema-

tic).
A

2

9. The thermoelectric field and the Bernoulli potential in
superconductors

As before, we shall assume that the superconducting
subsystem is in a state of quasiequilibrium, i.e., u¥
+ e*¢ = const [see (6.7)]. However, we shall reject the
assumption that pu¥= u¥, which was in fact adopted
above. In other words, we shall deal with nonequilib-
rium effects involving the existence of the difference
Sui= u} — ¥ #0. The condition of quasiequilibrium (6.7)
does not assume the constaney of the electrochemical
potential pu¥+e*¢ for the normal component. Hence,
even when du* #0, as in subsection 6, we can assume
that Eqs. (6.8) and (6.9) hold, and also the emf for the
superconducting pairs is zero:

2

8;=S V (ud -+ e*p)dl =0
1

(the integration is performed over a line that connects
any two points 1 and 2). At the same time, the emf for
the normal electrons differs from zero (we assume that
T= const);

(9.1)

2 2

Epem 5 V(s +etoydl= — | voprat 2.
1

(9.2)

A recent experiment®® very graphically demonstrates
the validity of the relationships (9.1) and (9.2). Figure
14 schematically shows an electric circuit that consists
of a normal metal N and a superconductor S that exist
at the same temperature 7. When the steady-state cur-
rent I is passed through the circuit, the normal and
superconducting currents are interconverted in the re-
gion of the contact, i.e., div j,#0. Here, according to
(5.9), a non-zero noneguilibrium chemical potential
difference arises: du%t=pu¥ - u* (the subscript I on 6u
indicates that the lack of equilibrium is caused by the
current). If we measure the current in the supercon-
ducting circuit 1, 2 by using the superconducting device
D (galvanometer) and the superconducting current leads
1 and 2, we get a negative result: no current passes
through D {in agreement with (9.1)]. However, if we in-
sert a normal region N, into the measuring eircuit (see

FIG. 12. Thermoelectric circuit containing two Josephson
barriers @uantum interferometer). The flux in the ring is &

=& p+&,, where &, is the external flux,
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FIG, 13. Maximum current through a symmetrical interfero-
meter as a function of the flux in the circuit (solid curve).
The curve shifts (dotted curve) upon applying a temperature
gradient.

Fig. 14), then a current passes through D (a voltmeter
in this case) and we record a nonzero potential differ-
ence [in agreement with (9.2)].%?

In the case in which only a temperature gradient is
present in the closed circuit, there generally also
arises a nonequilibrium difference in chemical poten-
tials 5u} (the subscript 7 of 6u indicates that the lack
of equilibrium is caused by the temperature). Taking
into account the fact that under steady-state conditions
we have div (j,+j,)=0 and adopting the expression (6.10)
for j,, we can write Eq. (5.9) for 6u% in the form®:

d¢ L 42T

==~ =P

Here we have denoted ¢ = 6u}, 1/12= e*% /o, and g

= —e*q,, and we have treated the one-dimensional case.
It is not difficult to obtain the solution of Eq. (9.3) by
approximating the temperature distribution over the
ring (Fig. 15a) as is indicated in Fig. 15b (we have un-
wound the ring into a rectilinear segment —L <x <L).
Assuming that

2
-g—f-: —asignz, i;J:—f.--—-a[(‘5(.r-{-L)—1—(5(:4:—1})—25(1)],
T,

a=.¢_z_l‘_>(),

(9.3)

(9.4)

we can find the solution ¢(x) in the following form®’;

L—jz] -1

¢ (x)==0u} =9, (wshT—wsh%)(smh—%)

y $r=ane*lia, (9- 5)

Owing to the inhomogeneity of the ring, the quantities
l, and [, can differ in different materials. Here the
solution takes on a more cumbersome form®’; Fig. 15¢
shows a graph of it for [, = 2[,,, Thus we find that the
nonequilibrium increment 6u%= ¢(x) arises near points
where heat flows in and out of the specimen (points of

%6)We note that only a total current is lacking in the supercon-
ducting measuring circuit (Fig. 14), but there is a normal
current {in view of (9.2)] and a compensating superconducting
current such that j;+j,=0. This compensation is associated
with the condition of quantization of the flux (see subsection
8): if flux is initially absent in the circuit, this state is con-
served. Thus the condition (9.1) implies only the absence of
a steady-state emf &, but does not forbid the existence in the
circuit of a superconducting current accelerated by inductive
forces.

2D The kinetic approach allows one to relate the decay length
1, lor the phenomenological parameter y in (5.9)] to the time
for establishment of equilibrium between the branches of the
quasiparticle spectrum of the electron-like and hole-like ex-
citations, 52-%6:61=85 According to a theoretical estimate, !
the length [, in the case of pure superconductors near T, can
attain values of [, ~0.1 cm,
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T
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FIG. 14. Schematic diagram of an experiment® to observe
nonequilibrium in an NS circuit containing a current.

)

¥
7
g

change of sign of the gradient of T), and it declines ex~
ponentially away from these points with the decay length
being equal to the value of /, of the corresponding ma-
terial.?”

Another nonequilibrium thermoelectric effect arises
in superconductors owing to the existence of the term
Su*.=¢ (x). Namely, if we take into account Eqs. (6.7)
and (9.5), we can find the electrostatic potential ¢ (x)
=const—-8u*, and the thermoelectric field (see Refs. 61
and 62)

V8ux
ET = Vq) =T

et

(9.6)

inside the superconductor, as well as the value of the
uncompensated charge that arises from the nonequilib-
rium temperature distribution: div E,=ab0u}/e*=47p.
Thus an electric field exists inside a nonuniformly
heated superconductor and a space charge arises (cf.
Refs. 52 and 61)., The appearance of the nonequilibrium
increment Sp%= u* - p* also leads [see (6.10)] to the
additional contribution ¢,Véu}. to the thermoelectric
current

in=0n [ =V (4 0) +anVT |=0n (VT + Vo).

This increment will be smaller by a factor of 7, /L than
the current caused directly by the temperature gra-
dient,”+™ but it is of definite interest. The point is that
if we join two points 1 and 2 having different values of
6p% by a circuit having a normal region (similarly to
what is shown in Fig. 14), then a current must flow be-
tween them. But if the connecting circuit is completely
superconducting and is made of the same material as
the main superconductor, then there will be no total

FIG. 15. Distribution of the nonequilibrium increment u’;.

in a thermoelectric ring. a) Ring; b) temperature distribu-
tion in the ring (spread out into the segment — L <x<L); c) dia-
tribution ¢(x)=4 u;. (x).
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current. We note that one of the contact must lie in the
immediate vicinity of the point where d*7/dx® #0.
Otherwise the difference 6u}, — 6u%, will be small, and
current will be practically absent. Insofar as we know,
the noted effect has not yet been observed,

We note also that the appearance of a nonequilibrium
increment 5u* arising from other causes should be
taken into account in interpreting experiments to mea-
sure the absolute thermo-emf of metals (cf. Ref. 98)
and also in discussing nonequilibrium effects in super-
conductors (see, e.g., Refs. 99-101). As is evident
from what we have said in subsections 2 and 7, the re-
gion having div j,= ~div j, #0 and 6u* #0 is responsible
for convective heat transport. In this region small con-
tributions to the Joule heat, the Peltier heat, and the
Thomson thermoelectric effect should also arise.

Thus far, as we have stipulated in Subsection 1, we
have not taken into account the term vmo*/2 that ap-
pears in (1.14), and essentially also in (1.11) and (1.12).
But the superconducting current density j, and its cor-
responding velocity v,= —-e*A/m*c generally depend on
the coordinates, and the term Vmov?/2 differs from
zero. Taking into account this term, or more exactly,
all terms of the order of V»2, leads to an interesting
observable effect, which we shall discuss now.

Consider a superconductor existing in a constant in
time external magnetic field and at a constant tempera-
ture T=const. For the latter reason a normal current
is lacking, and according to (1.13) and (1.14), a steady
state (condition 8v,/8¢=0) should occur under the con-
dition

E= —vp= Tty (ke 2y (9.7)

Moreover, as we know from the equations of two-fluid
hydrodynamics, that, when we take terms of the order
of v2 into account, the potential u, itself depends on »2
Concretely (see Refs. 18-20), when v,=0, we have

np, mo}

Hao (Ua)-Po—TT '

Bo=py0 (v, =0). (9.8)

The appearance of the term proportional to n"/n is as~
sociated with taking into account the law of conserva-
tion of momentum of all the electrons. In virtue of (9.7)
and (9.8), the field that arises in the superconductor is

(9.9)

E=—Vo="ttoy (Lo e 2E)_p 1 F,

n 2

In the case VT=v,=0, the equation for the normal
subsystem that is analogous to (1.13) has the form
mov,/8t=eE -V . We get from this in the steady-
state case (3v,/8t=0):

Ex= ko
e

(9.10)

Comparison of Egs. (9.7)—(9.10) allows us to conclude
that po= po+(1/2)mo?, ie., p,=u,, and 5u=0, with®’

281We can also derive the expressions (9.8) and (9.11) for ug
and p.0 directly by considering the equations of motion for v,
and v, (see Ref. 18, Sec. 2.5, and also Refs. 19 and 20) and
the conditions of equilibrium with the field E taken into ac-
count,
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. ng mvi
oo = pho - S* 5%,

(9.11)
Thus, under steady-state conditions and when H=v,
=v,=0, as (9.9) or (9.10) implies, the following electric

field exists in an inhomogeneous superconductor:

(Here p,= W= K= it is the value of the chemical po-
tentials when v,=v,=0.) Of course, we have E;=0 ina
homogeneous circuit. In the case of contact of two
homogeneous superconductors, the field E, is localized
in the narrow transition region, and is associated with
the appearance of a contact potential difference, in
analogy with the case of normal metals.

In the presence of an external field H, the velocity
v,#0, and we find from (9.9) or (9.10) that the follow-
ing additional field arises along with the field of (9.12):

(9.13)

This field is due to the difference in velocities at dif-
ferent points of the superconductor.

EB=%V(P31 TPB”'%. '

The potential ¢ 5 [see (9.13)] is analogous to the
Bernoulli potential in the hydrodynamics of an ordinary
liquid.™® Eq. (9.13), which contains the factor n/n, was
derived in Ref. 102 from hydrodynamic considerations
and in Ref. 103 from the microscopic theory. If we
neglect the dependence of u and w,, on v, [see (9.8) and
(9.11)] and make no distinction between u, and u,, while
assuming that p = p,= p o= {,0= o= i, and restrict the
treatment only to the condition of equilibrium of the
superconducting component of (9.7), then we obtain the
following expression for the field Eg:

Epg=Vog ‘PB"—”%i- (9-14)

The latter differs from (9.13) by the factor n/n,. Eq.
(9.14) was derived by London (Ref, 17, p. 56), who first
paid attention to the existence of the Bernoulli potential
in superconductors. (A discussion of the difference be-
tween expressions (9.13) and (9.14) is also found in
Refs. 104-109.)

Just like the field E,, the electric field E, [see
(9.12)] cannot be measured by a voltmeter. This is re-
lated to the circumstance that instruments of the volt-
meter type actually record not the difference in electric
potential, but the existence of an emf = [}V(¢ + p/
e)*dl in a circuit, i.e., they measure the difference in
chemical potential u+ e¢ that arises in the circuit under
nonequilibrium conditions.'® Actually, a current does
not pass through a conductor that joins the two points

— T
...\\_j/_

_—

FIG. 16, Superconductor in an éxternal field. The velocities
v, and the kinetic energies mv2/2 differ at the points A and
B (owing to the inhomogeneity of the field). Consequently the
equilibrium conditions of the system are altered and a Ber-
noulli potential arises.
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A and B of a superconductor having different values of
mv?/2 (Fig. 16), owing to the equality of the electro-
chemical potentials u¥ + e*¢ = const and p} + e*¢ = const
at these points [compare Egs. (9.1) and (9.2) with 6u*
=0]. However, one can measure the electric field E
by a contactless method by using a capacitative cir-
cuit,!®+1% Experiment'® confirms the relationship
(9.13), which contains the factor n/n. According to
(9.13), the field does not depend on the temperature
(since the factors ng and »2~&%~1/n, cancel out in
(9.13),” as is observed experimentally. The magnetic
field that gives rise to the potential difference under
the conditions of the experiments'®% could either be
fixed externally’® or created by a current passed
through the specimen.'®® The potential difference de-
tected in Refs. 105 and 106 reached values of the order
of 10"2 V.

In the general case involving nonequilibrium (V7 #0)
and a magnetic field H (i.e., v,#0), it is not difficult to
convince ourselves that the total electric field is the
sum

E=E, + Ep + Er.

Here E, is the field of (9.10) involving inhomogeneity,
E, is the Bernoulli field of (9.13), and E .= Vou}/e* is
the thermoelectric field of (9.6).

Finally we mention another electrostatic effect (see,
e.g., Refs. 6,110) that gives rise to an electric field,
but doesn’t create an emf. Namely, in the case of an
open circuit under the condition p + e¢ = const and in the
presence of a temperature gradient, an electric field
arises in a superconductor owing to the appearance of
an increment of the chemical potential u=(3u/8t)dT.
Attempts to observe this field have been undertaken in
Refs. 25, 111, and 112.

CONCLUDING REMARKS

We hope that we have made the fact plain enough that
thermoelectric phenomena in the superconducting state
not only do not vanish, but even, in principle, are quite
multifaceted. It is true that the pertinent effects (fields,
currents) are generally very small in comparison with
those that occur in the normal state; hence they have
not been observed in the past. However, the develop-
ment of measuring technique has made the observation
of thermoelectric effects in superconductors quite pos-
sible, and properly speaking, the pertinent experi-
mental studies have already begun. We can suppose
that in the next few years this field will attract more
attention, and a number of interesting results will be
obtained. The major goal of this article consists pre-
cisely in illuminating the present state of the problem,

29)Actually, since H=curl A~A/5, we have A~H§5, where 6 is
the London penetration depth. Taking into account the fact
that J,=eny,, wecanrewrite Eq. (6.8) in the form v,=eA/mc,
whence we bet v2=(e/mc)*H?s?. Since 62=mc?/4ne’n, [see
2.71, we have v?, ~1/n,, and when we neglect the dependence
of n, and n, on the coordinates, the temperature-dependence
drops out in (9.13).
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and in particular, its physical content, thus enabling
the development of experimentation. Very broad poten~
tialities along this line exist both in regard to inhomo-
geneous circuits or bimetallic plates made of isotropic
superconductors (subsections 2 and 3) and in the case of
anisotropic (noncubic) monocrystalline superconductors
(subsection 4). Of course, the effects discussed in Sec.
9 also merit attention.®?

But we shall not repeat here what we have said above
in the pertinent sections, and shall only make a com-
ment of a more general nature.

For many years (four decades!) the study of super-
conductivity has concentrated on thermodynamic equi-
librium conditions, or somewhat more exactly, on
superconductors at a temperature T that has become
established and is everywhere the same. Evidently
this means that for a given material the distribution
function of both the electrons and the phonons is fully
determined by a single number 7. Yet under nonequi-
librium conditions, the state is characterized by the
above-mentioned two functions, whereby in principle
an immeasurable number of new possibilities is opened
up. Heat transport (heat conductivity), absorption of
sound, and thermoelectric effects in superconductors
belong to the category of nonequilibrium phenomena in
their simplest (in a certain sense) variant, in which the
temperature of the electrons and the phonons is the
same, and primarily, characterizes the state of the
metal locally, but varies from point to point. But, of
course, even the aforementioned situation occurs only
in the case of a sufficiently small mean free path. As
this mean free path increases, and especially when
“normal” electrons (quasiparticles) are injected through
the boundary or by illumination, we pass into the re-
gion of states that are no longer describable by quasi-
equilibrium distribution functions with a temperature
T(r,t). Here we can encounter situations that are quite
unusual (within the framework of equilibrium concepts).
As the most striking example, let us point out that
under an inverted population of the electronic levels,
superconductivity can arise not in the case of attraction,
as is usual, but in the case of repulsion between the
electrons.'®!'* We can suppose that the study of non-~
equilibrium states of superconductors will in time play
an ever greater role in the field of superconductor
physics.®? Thermoelectric effects already under quasi-
equilibrium conditions belong to this same field of phe-
nomena, while under sharply nonequilibrium conditions
they are also both of independent interest, and perhaps,
can be used to study (and measure) other nonequilibrium
phenomena. Inview of what has been said, we do not
doubt that theoretical and experimental studies of ther-

$Many other effects have not been discussed at all, In partic-
ular, we have completely put aside the very interesting non-
steady-state thermoelectric and thermomagnetic effects in-
volving moving vortices.

Ag it seems to us, two other very important fields of super-
conductivity physics of tomorrow will be studies in the fields
of high-temperature and surface superconductivity. !4
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moelectric effects in superconductors have a great fu-
ture.

In conclusion, the %uthors take the opportunity to
thank L. P. Pitaevskii and A. A. Sobyanin for remarks
made upon reading the manuscript.

NOTATION

e*=2¢~charge of a Cooper pair;
m*=2m—twice the mass of an electron;
i, —chemical potential of the superconducting sub-
system;
u,—chemical potential of the “normal” subsystem;
By=2,, k=20,
Su*= u¥ — u* - nonequilibrium difference in chemical
potentials;
J, —superconducting current density;
jn— current density of the normal excitations;
j=3.+],—total current density in the superconductor;
& —~ electromotive force;
b —thermoelectric coefficient of the normal metal;
b, - thermoelectric coefficient of the normal excita-
tions of the superconductor;
0, - normal conductivity of the superconductor;
a,=b,/0,-differential ‘thermo-emf”;
H, —thermoelectric magnetic field arising in a super-
conducting ring;
&, —thermoelectric magnetic flux arising in a super-
conducting ring;
A=476% c* - parameter of the London theory;
6=(m*c*/4ne’n?)'/? - London depth of penetration;
n, —density of “superconducting” electrons;
n¥=(1/2)n, - density of Cooper pairs;
n,~-density of “normal” electrons;
&,= hc/2e= 2 x1077 gauss* cm?® — quantum of flux;
A, ¢ —vector and scalar potentials of the electromag-
netic field;
X - arbitrary gauge function;
¥=Re' - complex order parameter.
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