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The fulfillment in quantum electrodynamics of the principle of relativistic causality—the signal velocity

does not exceed the velocity of light—is discussed. In Sec. 1 it is argued that this principle is not

guaranteed automatically merely by the local commutativity of the theory. Section 2 is a critical review of

the signal transmission problems which have been formulated and solved in the literature. In Sec. 3, this

problem is considered in the framework of a simple but fairly realistic model of quantum electrodynamics.

The signal source is an external current localized in some region S. The arrival of a signal in a region D

at a distance R is established by a change in the coordinate, momentum, or energy of a charged particle.

It is shown that proof of relativistic causality of the theory requires one to take into account appropriately

quantum-mechanical and, in particular, quantum-electrodynamical features of the problem. In the final

fourth section, a general formulation and exact solution of the signal transmission problem are given. The

treatment is of sufficient generality for one to be able to assert that in the framework of quantum

electrodynamics none of the possible methods of signal transmission violate relativistic causality.
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1. INTRODUCTION. PRINCIPLE OF RELATIVISTIC
CAUSALITY

The prinicple that the signal velocity should not exceed
the velocity of light is not guaranteed merely by rela-
tivistic invariance of a theory. This principle is a syn-
thesis of the ordinary causality condition (the effect
should not precede the cause) and the special theory of
relativity. If a signal could be transmitted with super-
luminal velocity, then there would exist a Lorentz frame
in which the cause (switching on of the signal source)
would be later than the effect (arrival of the signal).
And one could then have a purely logical contradiction
of the type in which the effect could countermand its
cause (see §2.7 in the book1). In this review, the prin-
ciple we have just formulated is called the principle of
relativistic causality.

The opinion is widely held that local commutativity1'
of quantum field theory guarantees the fulfillment of
relativistic causality. Two field quantities defined at
points χ and y are locally commutative if their com-
mutator (or anticommutator) vanishes when χ and y are
separated by a spacelike interval (for a mathematically
more precise formulation, see, for example, §1 in Ch.

''Local commutativity follows from Bogolyubov's causality
condition; see Ch. 4, S3 of the book.2

3 of the book2). Of this kind are the commutation rela-
tions calculated in all textbooks for the Heisenberg op-
erators Ε (electric field), Η (magnetic field), and φ
(electron-positron field) in the Lorentz gauge in quan-
tum electrodynamics.

Relativistic causality is deduced from local commuta-
tivity, for example, in the following manner. Locality
of the commutation relations for Ε and Η means that in-
dependent exact measurements of fields in two neighbor-
ing spacelike regions are possible: the one measure-
ment does not interfere with the other. But if fields
were to propagate with superluminal velocity, this would
be impossible (see the end of §48 in the book3).

Nevertheless, there are theories in which local com-
mutativity holds but phenomena occur which indicate
that local commutativity alone does not guarantee rela-
tivistic causality. Let us give some examples.

The phenomenon of instantaneous spreading of the
wave packet of a relativistic particle is well known.
For example, in the framework of the theory of a quan-
tized free scalar field (in which the condition of local
commutativity is of course satisfied) one can pose and
solve the problem of the motion of a packet for a corre-
sponding particle. Initially, a t/ = i0, the particle is lo-
calized in a finite volume V, so that the probability of
finding the particle outside V is zero (finite packet). It
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can be shown that at the time to+r there is a nonvanish-
ing probability of finding the particle in a region sepa-
rated from Vby a distance R greater than cr (see, for
example, Ref. 4). Hegerfeldt's proposal4 for avoiding
this contradiction with relativistic causality is to sug-
gest that finite packets are impossible. But this is to
overcome difficulties by introducing into the theory a
new postulate, so that relativistic causality is then
guaranteed by not just local commutativity alone but
also by this postulate.

Let us consider now the propagation of, not a particle,
but a free quantized field (scalar, electromagnetic, etc).
It is known from classical electrodynamics that if an
electromagnetic field at time t = t0 is localized in some
manner in a region Vs, it then propagates with velocity
c. Therefore, a detector which measures, for ex-
ample, the electric field (test charge at rest) in a re-
gion VD at distance R from Vs, gives an indication only
after a time R/c. In the quantum case, the correspond-
ing problem must be formulated somewhat differently.
We cannot assume that outside Vs at t -10 both Ε and Η
are zero: in virtue of the equal-time commutation re-
lation

l£x(x, t), d.i)

the fields E(x, t) and H(x, t) at any point χ cannot simul-
taneously assume exact values, in particular, zero val-
ues. We shall assume that outside Vs at t = t0 the elec-
tric field Ε is zero. If in addition at points * s e v s it
takes on certain definite values, then the initial state is
completely specified. This state is nonstationary since
Ε does not commute with the Hamiltonian JdViE2 +H2).
Therefore, the distribution with respect to Ε in the re-
gion VD must change with the time in some manner.
This change can be found by solving the Heisenberg
equations (free Maxwell equations) for the fields Ε and
H; see, for example, Sec. 4 later. Instead, we here ad-
duce some qualitative arguments which lead to the same
result as the exact solution. If Η takes nonzero values
outside Vs at the time t = t0, as we have said above, then
by virtue of the Maxwell equations this nonzero Η gen-
erates an electric field everywhere outside Vs immedi-
ately after the time i0, this including the region VD as
well. Note that we have used a particular (equal-time)
value of one of the local commutation relations in the
derivation of this paradoxical result.

However it does not mean that in the given case Ε
propagates instantaneously. The point is that if Ε at
t = t0 were zero everywhere, then also in this case we
should have a nonzero Ε everywhere immediately after
the time t0 (on the basis of the same qualitative argu-
ments). If this "background" of quantum fluctuations of
Ε is subtracted, the propagation velocity of Ε is finite
(see later in Sec. 4). However, it does not follow from
local commutativity that this "background" must be sub-
tracted. One of the reasons for the existence of the
"background" are the equal-time commutation relations,
which hold in theories in which there is local com-
mutativity and also in theories in which there is no lo-
cal commutativity (for example, in nonlocal theories).

Finally, we give an example of a theory with interac-

tion in which the condition of local commutativity is
satisfied but there are difficulties with relativistic
causality. This is Lee and Wick's theory of "finite
quantum electrodynamics" (see Ref. 5, in particular,
Sec. 8 of Lee and Wick's paper). A feature of this the-
ory is that it makes essential use of an indefinite met-
ric. We emphasize in connection with this example that
the most popular variant of ordinary quantum electro-
dynamics—the Gupta-Bleuler formulation—also uses an
indefinite metric (the other well-known formulation—
the Coulomb gauge or radiation gauge—contains the in-
stantaneous Coulomb interaction, and is not a local the-
ory).

In addition to local commutativity, other general cri-
teria can serve to guarantee relativistic causality. We
mention, for example, the principle that the group vel-
ocity should not exceed c. The problem with this is that
it does not work in the case of a medium with anomalous
dispersion (see Refs. 6, 7). Another example which is in-
structive in this connection is discussed in Sec. 4 of the col-
lection of articles of Ref. 8. Another criterion is proposed
for quantum field theory in Ref. 9: relativistic causality of
a theory is guaranteed by a "causal" form of the equa-
tions for the Heisenberg operators in the representation
of coherent states. However, it will be shown in Sec. 2
that the solution of various signal transmission prob-
lems leads to results that do not agree with relativistic
causality despite the fact that the equations of quantum
electrodynamics have a "causal form." The choice of
one or other representation of the theory cannot change
these results. We shall see that they are determined,
not by the method of solution, but above all by the form-
ulation of these problems.

On the basis of what we have said above, we assume
that neither local commutativity nor the nature of the
Heisenberg equations guarantees relativistic causality.
We shall show that many other ingredients of the theory
are important when one is considering relativistic cau-
sality of a theory: the manner in which the signal
source is described, the choice of the observables mea-
sured by the signal detector, and so forth. In this re-
view, rather than attempting to give other general cri-
teria guaranteeing relativistic causality, we discuss
theoretical descriptions of definite signal transmission
experiments. All the important aspects of the theory
are then automatically taken into account. The treat-
ment will be sufficiently general for us to be able to as-
sert that no quantum electrodynamic methods of signal
transmission lead to a violation of relativistic causality.

On the basis of Refs. 78, 10 and of other investigations
we can formulate two general requirements which must
be satisfied by a properly posed signal transmission
problem:

1) it is necessary to consider the transmission of in-
formation from one finite region of space Vs (the source)
to another finite region, VD, where the detector is lo-
calized;

2) the person transmitting the signal must be free to
send the signal (or decide not to) at any arbitrary time
t0 (see §7 of Ref. 10). In particular, a periodic process
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cannot be used for signal transmission. t<R/c.

Thus, we are concerned with an essentially nonsta-
tionary problem, and this must be solved in quantum
field theory.

In Sec. 2, we give a critical review of the formulations
of the signal velocity problems in quantum electrody-
namics known in the literature. The main aim of this
section is to introduce the problem and not to be ex-
haustive. Section 3 solves a problem close to the ones
considered in Sec. 2; namely, a rather simple but fairly
realistic model of quantum electrodynamics. The sig-
nal source is an external current localized in S. The
arrival of a signal in D is determined by a change of
familiar observables: the coordinate, momentum, and
energy of a charged particle localized in D. It is shown
that to prove relativistic causality one must take into
account appropriately quantum-mechanical and, in par-
ticular, quantum-electrodynamical features of the sig-
nal transmission problem. In Sec. 4, we give a general
formulation and exact solution of the signal transmission
problem in quantum electrodynamics, the charged par-
ticles also being described by a second-quantized field.

2. HISTORY OF THE SIGNAL VELOCITY PROBLEM IN
QUANTUM ELECTRODYNAMICS

a) Soon after the creation of quantum electrodynamics,
Kikuchi11 calculated in 1930 the following problem at the
suggestion of Heisenberg. An excited atom S serves as
the source of the signal. More precisely, at time t = 0
the following initial state is specified: The atom S is
excited and there are no photons. The energy density of
the electromagnetic field at times t>0 at a distance Λ
from the atom is then calculated. Instead of this,
Fermi1 2 in 1932 calculated the probability of excitation
at time t > 0 of a second atom D at a distance R from the
first (Fig. 1). In both cases, a causal result was ob-
tained—the energy density or the excitation probability
of D is equal to zero until the time t-R/c.

The calculations were made in the first nonvanishing
order of perturbation theory. Besides this approxima-
tion, two others were made. Let us consider what they
were. Fermi calculated the probability amplitude
aSD*(t) that the initial state S*D (S excited, D not ex-
cited, no photons) goes over at time t into the state SD*
(S not excited, D excited, no photons). The main mech-
anism of excitation transfer is as follows: S emits a
(virtual) photon, and D absorbs it (for details, see Ap-
pendix A, in which the solution of Fermi's problem by
"covariant" perturbation theory13 is presented). The
first simplifying approximation can be described as fol-
lows: integration with respect to the modulus of the
momentum k of the photon which carries the excitation
from S to D can be made, not within limits from 0 to °°,
but between —<*> and +•». Later, in Ref. 14 it was shown
that the causal result is basically a consequence of this
assumption: a more accurate calculation of the inte-
grals with respect to k does not give zero at times

The second approximation is usually called the dipole
approximation. It is assumed that the electron of the
atom emits or absorbs a photon, not at its own position,
but at the center of the potential which binds the elec-
tron. This is a much weaker assumption than the first;
see Appendix A. If it is not made, the amplitude
aSD*{t) acquires a trivial noncausal contribution of the
following origin. In the case of real potentials that bind
an electron, there is a nonvanishing probability of find-
ing the electron of the atom S far from the center of the
potential, in particular, near the atom D. As a result,
the atom may be excited immediately after the time
t = 0. However, the probability of this is exponentially
small if Λ is much greater than the characteristic atom-
ic length I (for the hydrogen atom, it is proportional to
e'Rll). The dipole approximation is indeed admissable
since it rids the result of the trivial noncausal contri-
bution. Note that the noncausal effect discovered in
Ref. 14 is proportional to some inverse power of the ra-
tio R/λ , where λ is the mean wavelength of the ex-
change photon, λ » /, i.e., it is incomparably larger
than the trivial contribution just discussed.

b) Fermi's problem was solved once more in 1949
with allowance for damping.15·16 On the basis of these
calculations, Heitler asserts at the end of §20 of his
book17 in connection with the probability w = \aSD*(t)\2

that "the probability w is exactly zero for all t<R/c."
But in fact this causal result is a consequence of the
same replacement of j"dk by jT«,dk. In reality, it was
shown in Refs. 15, 16 merely that in the theory of damp-
ing the situation as regards relativistic causality is no
worse than in ordinary perturbation theory.

c) After the creation of covariant perturbation theory,
the discussion of relativistic causality in quantum elec-
trodynamics was continued in the framework of the same
problem of Fermi, but in somewhat different terms. In
Appendix A it is shown that the amplitude aSD*U) of Fer-
mi's problem is proportional to the expression

J d'x I d'y ^ /S.D (if) D'mn (ι,-*) rss. (*),
mn

(2.1)

where j D * D is the matrix element of the electron current
of atom D. The aim of the investigations that we shall
now discuss was to prove the following assertion: al-
though the propagator Dc does not vanish outside the
light cone, the expression (2.1) nevertheless does not
lead to a violation of relativistic causality. The idea be-
hind the arguments is presented in its most general
form in Ref. 18. We take the expression (2.1), but we
assume that the integration with respect to x0 and y0 is
made between -°° and +°° (and not between 0 and /, as in
Fermi's problem; see the passage in Appendix A after
Eq. (A.3)). We take the Lorentz gauge, when m, w = l,
2, 3, 4 and !>$„, = 6mnD

c. We obtain the expression

M dxa (2.2)

(£>
FIG. 1.

which was considered in Ref. 18. One can show that
Dc = D^r+D<

T*,\, where (-) and (+) denote, respectively,
the negative-frequency and positive-frequency parts of
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the corresponding function2' (i.e., for example, the
function e(-ft0) is added to the momentum transform of
£*«*)· For all functions Δ and j expanded in a Fourier
integral, we have

Therefore

] t/'μ*' W + /μ'

If the

M = J

cur rent j μ(χ) is such that j μ(χ)=){

μ\χ), then

A: , (») D r e t (v - χ) ; μ (ι),

(2.3)

(2.4)

(2.5)

and then the interaction between the currents is purely
retarded and causal. The matrix element of a current
for which])l=j(*) contains only positive-energy com-
ponents, and the energy of the initial state is greater
than that of the final state and a photon (with positive
energy) can be emitted. For the special case

; s s , (1) exp [ HEa-Es.) x0 ], £ s , > Ε 3,

the result (2.5) is proved in §37 of the book of Ref. 19.
For a generalization of Akhiezer and Berestetskii's
treatment see the end of Ch. 12 in the book of Ref. 20.
Similar considerations can be found in other investiga-
tions. We shall show that they do not bear on the prob-
lem of the signal velocity. The first assumption in the
derivation of (2.5) is that of the infinite (and not finite)
limits of integration with respect to the time. The sec-
ond is the assumption that j μ(χ) =)(

μ*\χ). It rules out the
possibility of currents localized in time (equal, for ex-
ample, to zero until the time < = 0)3 )). This means that
one is essentially considering the stationary problem of
the interaction of two currents of the type of electron
scattering. In such a problem, there is no signal prop-
agation. To transmit a signal, it is necessary to change
the current j μ(χ) at some time, without changing it at
earlier times. A signal source of this kind cannot be
described by a positive frequency current.

d) Let us also consider Fierz's paper.21 The opinion
is frequently advanced that in it the following is proven:
even if the expression (2.1) exhibits a noncausal be-
havior, the time-energy uncertainty relation does not
permit one to say that it is actually observable.

To elucidate this assertion, let us suppose that the
probability of excitation of atom D in Fermi's problem

2 )From the relations
C r e l (i) = β (*„) D (i) = θ (ζ,) D<-> + θ (*„) D<*>, D.a, (i) = -Θ )-*„) D (i),

DC (i) = θ (l0) D'*> (x) - θ (-χ,) D'-> (z)

there follow two equations: B r e t = Cc + D (" ) and D M f = J5 c-D (* ).
The positive-frequency part of the first equation has the
form DJ*\ = Dcl*), the negative-frequency part of the second
equation has the form D^J = fli:("', from which it follows that

3)The Fourier transform of the function j(feo)0(feo) is an analytic
function of the time and cannot vanish in any time interval
(for example, (-00, 0)). Conversely, a current localized in
a finite interval cannot be a purely positive-frequency
current.

before the time R/c is appreciable only if ί is less than
R/c over a time of order λ/c, where λ is the wavelength
of the photon emitted by atom S, 1/\~ES* - £ s . Note
further than in Fermi's problem the process of prepar-
ing the excited state of the atom S is not considered (in
what follows, we shall consider investigations in which
this shortcoming is rectified). The photon which ex-
cites D can, however, appear near S during the time of
excitation of S before the time t = 0. The excitation has
a duration of order λ/c. This can be seen, for ex-
ample, from the well-known expression for the excita-
tion probability (see Sec. 29 in Ref. 3)

I b (0 |« = [41 HB3|« sin» {Ea - Bo) \ ] (EB - Eo)->.

It is seen that the noncausal advance of the signal is
comparable with the uncertainty in the time of the actual
emission of the signal.

However, exact calculation of (2.1) shows that for
t<R/c the amplitude aSD*(t) depends on t through the
quantity R -1 as a power: aSD*(t)~ \/|R -1\ if [R -t\/
λ » 1; see Ref. 14 and the end of Appendix A. Such a
decrease of aSD*(t) with increasing R —t is too slow for
one to say that the noncausal advance is of order λ/c
(we could say this to be so if, for example aSD*(i)
~exp(-|u - ί|/λ)). Note that Fierz in his calculations
used, in particular, the inadmissible replacement dis-
cussed above of D° by Dni. Therefore, it cannot be as-
sumed that Fierz established an illusory nature of the
noncausal advance.

We may mention that Fermi's problem can be modi-
fied in such a way that the excitation time and the mag-
nitude of the noncausal advance are completely indepen-
dent quantities. Suppose, for example, that the atom S
is a three-level system with levels EO<ES <ES* such
that Es* -Es « £ s * - £ 0 . 1 4 Such a system can be ex-
cited in a time ~1/(ES • -Eo). The level Es • may be
metastable and de-excited first preferentially to the
level Es, emitting a photon of energy Δ =ES * -Es,
which is then absorbed by the atom D.

e) The significance of the already mentioned paper14 of
1964 is in showing that the solution of Fermi's problem
leads to a noncausal result that must be regarded as an
observable effect in the framework of quantum mech-
anics. (The same noncausal result was obtained in Ref.
22 in the framework of a somewhat different but, in
principle, similarly posed problem.)

Holding the same opinion, Ferretti in 1968 pointed out
that the problem solved by Fermi does not completely
correspond to a signal transmission problem.23 The
condition that there be no photons in the final state SD*
in fact presupposes that everywhere in space there are
instruments that detect photons and cases are selected
when these instruments detect nothing. But the signal
detector must be localized in the finite volume VD (see
Sec. 1). For example, it is necessary to measure only
the state of atom D irrespective of the state of other
parts of the system. For the signal transmission prob-
lem, a more appropriate quantity is

Snv 1 (SD'ny | £7 ((, 0) | S'D) |«, (2.6)

where U{t, 0) is the evolution operator, SD*ny is the
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state with η photons, and Sny stands for not only sum-
mation over η but also for integration with respect to
the momenta of the photons and summation over their
polarizations. The expression (2.6) is not equal to

I «sz>. Μ I'=I <·">*!£'(<. θ) | ί ·Β>| · (2.7)

even in the first nonvanishing order of perturbation the-
ory. Indeed, if, as usual, we describe the initial and
final states by the eigenfunctions of the free part Ho of
the total Hamiltonian (i.e., by "bare" states), then the
state S*D can go over into the state SD*yy: S has emit-
ted a photon, D has also emitted a "different" photon,
but it has also been excited. This occurs in the same
e2 order of perturbation theory. Although the corre-
sponding amplitude is much smaller than (2.7), the non-
causal effects under consideration are also small.

However, having started to modify the object of our
calculations in this manner, we must then also take in-
to account another consequence of the use of the "bare"
formalism: at a time t>0 the atom D may be found to
be excited even if S was not initially excited φ can be
excited with the emission of a photon). Therefore,
Ferretti subtracts the "background" from (2.6). He de-
fines this background as the quantity analogous to (2.6)
but in the case when the atom S is absent,

5 n v | (Ο·»γ | U (f, 0) | D) |2. (2.8)

(Actually, apparently it would be sufficient to subtract a
quantity of the type (2.8) with the initial state SD, i.e.,
the atom S is not excited.) Ferretti obtained a causal
result: the difference between (2.6) and (2.8) in the first
nonvanishing approximation is exactly zero for t<R/c.
Unfortunately, the calculation was made for the case
that in ordinary (3 + l)-dimensional electrodynamics can
be described as follows. Two infinite planar (thin) lay-
ers are taken as the "atoms" of the source and the de-
tector. Then the problem reduces to a spatially one-di-
mensional case and is simplified. However, to estab-
lish the fact of excitation of such an infinite "atom" re-
quires an infinite time. In the signal velocity problem,
the source and the detector must be localized in finite
volumes. One can of course accept that Ferretti proved
relativistic causality for two-dimensional electrody-
namics. However, the relativistic causality of electro-
dynamics in the case of the real (3 + 1) dimensionality
remained open.

f) In Refs. 24, 25 an attempt was made to improve the
formulation of the problem of the velocity of transfer of
excitation from atom S to atom D by a different method of
describing the excited states of the atoms which takes
into account the presence of interaction. Instead of
"bare" creation and annihilation operators (of photons
and excitation quanta of the atoms), "physical" opera-
tors were introduced (whose no-particle vector coin-
cides with the physical vacuum). In contrast to Ref. 23
the result was found to be noncausal. However, it can
basically be explained by the circumstance that in terms
of "physical" operators the interaction turns out to be
nonlocal; see Sec. 4 of Ref. 26. One can introduce other
"physical" operators, for which the magnitude of the
noncausal effect is reduced. The result of Ref. 27 is
explained in the same manner. In contrast to all the

previously discussed investigations, in Ref. 27 the pro-
cess of excitation of atom S is described theoretically
(by means of a change of the potential that binds the
electron of the atom). However, the signal arrival is
determined by the transition of atom D to the excited
state, which is described by means of "physical" oper-
ators.

g) In Ref. 28 the present author considered not only the
signal source just described but also a source in the
form of an external current localized in a region Vs and
switched on at the time t = 0. The "background" sub-
traction device was used. The transition amplitude was
not calculated, but rather the changes in the distribu-
tions with respect to the coordinate q, the momentum p,
and the energy of the electron of the atom D due to the
signal source. All calculations were made without the
use of perturbation theory in the framework of exactly
soluble models of quantum electrodynamics (one or two
nonrelativistic electrons in an oscillator potential in-
teracting in a dipole manner with a quantized electro-
magnetic field). It was shown that the distribution with
respect to q (or the square of the modulus |M(?)|2 of the
wave function of the D electron in the coordinate repre-
sentation) begins to change only after a time R/c. But
the momentum distribution (or the phase of the func-
tion u(q)), and with it the distribution with respect to
the energy of the electron, begins to change immediate-
ly after the source is switched on. In the following sec-
tion, these results will be reproduced for a different
model, and it will be shown that the noncausal change
in the phase of u{q) is to be regarded as just as unob-
servable as the change of a vector potential by the gra-
dient of a scalar function. Thus, all of the problems
just described lead to signal transmission with velocity
not exceeding c.

h) Of course, a signal source in the form of a local-
ized external current or potential that is switched on
satisfies conditions 1) and 2) on the signal source form-
ulated at the end of Sec. 1. It would seem that these
conditions are also satisfied (to a reasonable extent) by
Fermi's source in the form of an excited state of an
atom which is simply specified at the initial time. How-
ever, in Sec. 5 of Ref. 28 it was shown that the coordi-
nate distribution of the D electron behaves noncausally
in the case of the Fermi source even if the "background"
is subtracted. In contrast to Ferretti's calculation,
this was shown for ordinary (3 +1) spacetime. One can
relate this result to the instantaneous spreading of a
wave packet; see the introduction. In this case, the
signal is transmitted basically by a single photon. The
fact that this photon is emitted by the atom S means that
immediately after the emission the photon can be as-
sumed to be fairly well localized in a region with the
dimensions of the atom. The excitation of the atom D at
time t shows that the probability of finding the photon in
the region VD at this time is not zero. The noncausal
result, in both the case of packet spreading and the case
of Fermi's problem, is due to the nonvanishing outside
the light cone of the function Dc (which coincides with
the function D ( + ) in the problem of packet spreading).

In contrast to Fermi's source, a localized current
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generates a state of the electromagnetic field (with in-
determinate number of photons) that does not spread
instantaneously (see Refs. 29, 30, in which these states
are said to be "strictly localized"; in Ref. 9 they are
said to be coherent). It must be recognized that for the
formulation of the signal velocity problem an important
aspect is that the signal source be described by a cur-
rent or potential that is switched on.

1) The general solution of the problem of relativistic
causality in quantum electrodynamics will be set forth
in Sec. 4 on the basis of Refs. 31, 32. A different pos-
sible general approach has been sketched by Bell in
Sec. 7 of Ref. 33.

j) The present review does not pretend to complete-
ness. In particular, we do not discuss Refs. 10, 34-36.
We have not considered the literature devoted to the in-
stantaneous spreading of packets of free relativistic
particles. One can take the point of view that the theory
of free particles is too lacking in content to describe the
problem of signal transmission.4'

3. EXTERNAL CURRENT AS SOURCE OF A SIGNAL
AND A NONRELATIVISTIC ELECTRON AS DETECTOR

We consider the problem of the signal velocity in
which the conditions 1) and 2) on the signal transmission
formulated at the end of Sec. 1 are satisfied. This prob-
lem is fairly similar to the one proposed by Fermi (see
Sec. 2a-2e), but is solved differently. The problem can
serve as an introduction to the general formulation pre-
sented in Sec. 4, which uses not entirely familiar field
descriptions of observable physical quantities.

a) The source of the signal is an external current <7μ

which is localized in a certain region Vs and is switched
on at time t = 0. The current emits a quantized electro-
magnetic field. The arrival of the signal is detected by
means of a nonrelativistic spinless charged particle,
which for brevity we shall call an electron. This elec-
tron is localized in the region VD by an external poten-
tial and interacts with the quantized electromagnetic
field. We assume that there is an instrument which
measures a state of the electron.

The state vector Φ(ί) of the system describes both the
electron and the field (the photons). The state of the
electron can be described by a density matrix (obtained
by suitable summation and integration of |Φ(/)|2 with re-
spect to the photon variables). Knowing it, we can find
the probability that the electron coordinate is equal to q
and the momentum equal to p, i.e., we can obtain the
distributions with respect to q and with respect to p.
We shall find these distributions directly by calculating
the mean values, mean squares, and other moments of
the operators q and ρ (we recall that the distribution
with respect to q is equal to Σ π Ά * ! ? " ! * ) ) · More pre-
cisely, we shall calculate the changes in these distribu-

4 )In particular, one cannot therefore deduce from the fact of
instantaneous packet spreading that it is impossible to have
finite packets (when the wave function of the particle van-
ishes outside a finite region).4

tions due to the switching on of the external current. It
is natural to assume that the signal arrives at the time
when these changes appear.

We consider the expectation value of any Schrodinger
operator A (A may be equal to q, q2,..., p,p2, etc.) in
the state Φ(ί), which is related to the initial state Φο by
the relation Φ(ί) = 1/(ί,0)Φ0 (where U satisfies the
Schrodinger equation: i 9,1/ =HU):

(Φ (ί), = <Φ0, ν*ΛϋΦα) = (Φο, (3.1)

We see that this expectation value is equal to the ex-
pectation value of the corresponding Heisenberg oper-
ator Αβ(ί) = ϊ/+(ί,0)Α[/(ί,0) in the initial state Φ0 (Φο here
is a constant state vector in the Heisenberg picture).
Instead of calculating [/(<, 0) and Φ(ί), we shall find
Au(t). This is a simpler problem, and in addition, its
solution has a more perspicuous meaning, as we shall
see.

We compare the moments of the operator q at the time
t in the case when the current is switched on and when it
is not:

(Oj(l), 9"Φ/(φ-<Φ(0, ?"Φ(Ο> = <Φο, 1?ϊ(«)-9"«)]Φο>· (3.2)

Here we have used the relation (3.1). When the current
is switched on, the total Hamiltonian depends explicitly
on the time, and we have

<i>j{t) = Vj(t, 0)Φ0, ij (t

idU, (3.3)

If the current is not switched on at the time 2 = 0, the
Hamiltonian does not depend on the time (and is, for
example, equal to ̂ ( ί = 0)).

It can be seen from (3.2) that the moments (and the q
distribution) begin to differ when the Heisenberg oper-
ator qj(t) begins to differ from the Heisenberg operator

(3 .4)q (() = exp (f = 0)) q exp \-il~3C, (1 = 0)].

b) We first consider the problem of finding the
Heisenberg operators in the Coulomb gauge (the Lor-
entz gauge is discussed later). The HamiltonianStijt)
has the form

*>(0 = -L· ip-e

(3.5)

(see, for example, §13 of Ref. 17 or §17 of Ref. 38). We
find the equations for Hj(t) and Pj(i)· First, we calcu-
late

—•srrJ-=—'ή/Οι ®r(')l; I·»·")

here, 3tH(t) = U$#{t)Uj is the Heisenberg operator of the
Hamiltonian. In view of the relation of the form Ujp2U,
= UjpUJUjpU*rp = p*j, it depends on the Heisenberg op-
erators qj(t),pj(t), etc, in the same way as jtfU) (see
(3.4)) depends on the Schrodinger operators q,p
The equal-time commutation relations for the Heisen-
berg operators are also the same as for the Schrodinger
operators. Therefore, (3.6) can be readily calculated:

^ r - - - S - I P , w-'Afx Cfc «. oi ^ v. (3.7)
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Further, we can calculate o2qj/Bt2 = -i\y,JtK]. The
calculation of [v, J*^] simplifies considerably if, using
the commutation relations of the Coulomb gauge (see,
for example, §§48-49 of the book of Ref. 3), we find
the commutators

vf\ = i,/,t = i, Ϊ, J).

- g r a d

(3.8)

(3.9)

(3.10)

By means of them, we obtain

(3.11)

The right-hand side of (3.11) contains the operator of
the Lorentz force. A similar equation is obtained for
q(/) without the index J. Equation (3.11) must be solved
simultaneously with the equations for the operators E 7

and H,. We shall not write out these (Maxwell) equa-
tions. We take the results that we need for the oper-
ators Ε and Η from Appendix B.

To solve approximately the Heisenberg equations ob-
tained above, we expand q,(/), E^, H, and q(i), E,H in
terms of the coupling constant e: qt =J2ne"q(jn), etc.
We substitute these expansions in the equations and
equate the coefficients of equal powers of e. In the
zeroth approximation we obtain

(0

(3.12)

We seek solutions of the Heisenberg equations in the
form of definite expressions for the Heisenberg opera-
tors in terms of always the same Schrodinger operators,
i.e., the operators with which the Heisenberg operators
must coincide at t = 0 when the current Jit was not yet
switched on. In particular,

q, ( 0) = q (t = 0) = (3.13)

(see (3.3) and (3.4)). We shall assume that the operators
qf\t) and q{0){t) coincide at t = Q with the Schrodinger
operator q, and the remaining q^tt) and q("\t) with η
» 1 are equal to zero at t = 0. In this case, (3.13) will of
course be satisfied.

Since Eqs. (3.12) for <#"(/) and q(0)(t) are the same
and the initial conditions are the same,5 ) q(/\t) = q(0\t)
for all t.

The equation for q(/) has the form

Since E(q(0) +eq(1))=E(q(0)) +eq(1)E'(q(0'>) +..., we can
assume that E<0> and Η$°> in (3.14) do not depend on

5'Equations (3.12) are of second order, and therefore, besides
(3.13), it is also necessary to remember that (Bqj/8t)t.t

= O9/ef)t,0 by virtue of pfU= 0)=/>(f=0) andAJX<i = 0)
=Ajt = 0) (see (3.7)).

The equation for q^l\t) has the same form except that
none of the quantities have the subscript J. Suppose the
current Ju is localized in a region Vs near the origin of
coordinates, and the electron is in the region VD,e)

which is situated at distance R from Vs. It follows from
the results of Appendix Β that the differences E^0)(x, t)
-E ( 0 ) (x, t) and H^0)(x, t) -H ( 0 )(x, t) are retarded functions
of the current «/j,. Therefore, they vanish for X£LVD and
t<R/c. Because of this, the right-hand side of (3.14) is
equal to the right-hand side of the analogous equation for
q(1)(t), from which it follows that a2[q^\t) -q ( 1 )(f)/8/2

= 0 for t<R/c. By virtue of the null initial conditions,
cf/Xt) - q(1Ht)=O for t<R/c, i.e., in the first approxi-
mation

?/(i) = g(Ot t <c—. (3.15)

An exact solution (of the more general problem) is
discussed in the next section. We now note only the re-
sult (3.15) was obtained in Ref. 28 without the use of
perturbation theory (but in the dipole approximation and
for the special case W(q)~q2). Turning to (3.2), we con-
clude that the coordinate distribution of the electron
does not change prior to the time R/c.

However, the behavior of the distribution with respect
to the electron momentum p is noncausal; for it follows
from (3.6) that

We show that the difference A / x - Ax in (3.16) does not
vanish for t<R/c. The transverse vector potential A±

can be expressed as follows in terms of the vector po-
tential A of the Lorentz gauge (see, for example, §80 in
Ref. 39):

χ (ι, /)=A(x, () —

A (y, (3.17)

here u(x, t) is the potential of the longitudinal part Ax of
the vector potential. Using

••— 4πδ<3> (χ — y ) (3.18)

we can verify that the divergence of the expression A
- Vu really is zero. In Appendix B, it is shown that A
changes in VD only after a time R /c. However, u in
(3.17) is expressed nonlocally in terms of A, and there-
fore A/±(x, t) — Ax(x, t) does not vanish for x€:VD and
t<R/c:

^ j *»T^TI 2 ik J
(3.19)

(3.14) (we have used (3.17) and (B.8).

6>If the potential W(q) in (3. 5) is infinitely high on the boundary
of the region VD, then all the eigenfunctions of (p2/2m)
+ W(q) vanish outside VD and the electron is strictly
localized within VD. ία the case of realistic potentials, one
can speak of localization of the electron in VD only if one
ignores the exponentially small probability that the electron
may also be outside VD. Then (3.15) must also be regarded
as true under the condition that the same quantities are
neglected.
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Turning now to (3.16) and bearing in mind that the
right-hand side of (3.16) vanishes for t<R/c by virtue of
(3.15), we establish that

Pj W - P (') =«V * (, (I),' <), ( 3 . 2 0 )

which is not equal to zero for t<R/c.

However, the expressions (3.19) and (3.20) for t<R/c
have the form of a gauge transformation:

p' = p + eVx, Δχ=0. (3.21)

which is permitted in the framework of the Coulomb
gauge since it conserves the transversality of the vector
potential. Indeed, divAj.= divAj_=0, because div grad λ
= Δλ(χ, t) = 0 for jcgVj and t<R/c (using (3.18), one can
show that Δλ(χ, t) is a retarded function of the current
and equal to zero for |x - x s | > tc for all x s e v s ) . We see
that (3.19) and (3.20) are a guage transformation only for
|x - x s | > tc. A further difference from an ordinary gauge
transformation is that (3.19) and (3.20) have a dynamical
origin: the function λ is not an arbitrary (harmonic)
function but is determined by the external current. Fi-
nally, one can show that the equations of the theory in
the Coulomb gauge are not invariant under (3.19) and
(3.20) are only a special case of (3.21) from the point of
view of an observer who is situated together with his in-
struments in VD and is not able to observe anything out-
side VD. On the basis of this, we may assert that the
transformations (3.19) and (3.20) from A / x and p, to A±

and ρ do not lead to observable consequences in VD as
long as t<R/c. We shall say that these are quasigauge
transformations. The transformations (3.19) and (3.20)
can be written in the form

ρ =ρ, Φ' = Φβ·"·, (Λ.ΔΔ)

i.e., instead of transforming the Heisenberg operator p
one can transform the wave function of the system,
multiplying it by a phase factor that depends only on the
electron coordinate (in particular, a gauge transforma-
tion is expressed in precisely this way in §18 of the
book of Ref. 38). One can therefore say that (3.20) is a
"premature" (but unobservable) change in the phase of
the electron wave function in the coordinate representa-
tion (strictly speaking, one should speak of the phases
of the elements {qr |p \q2) of the electron density matrix;
see subsection a) of this section).

We now demonstrate how an apparently noncausal re-
sult can be obtained by means of ordinary perturbation
theory. Suppose the bound states of the electron are de-
scribed by the eigenfunctions of the operator 3ie = {p2/
2m) + W(q). The distribution with respect to 3ft behaves
noncausally, like the distribution with respect to p.
This means that if the atom D up to the time f = 0 was in
the ground state, then immediately after the switching
on of the current it could already be found in an excited
state. How is this reconciled with what we have said
above (before and after Eq. (3.22))? The point is that
the change Φ — Φβχρ[ίβλ(χ, t)] in the wave function has the
readily recognized form of a gauge transformation if Φ
is a function of the electron coordinate χ (and certain
photon variables). The same transformation expressed,
for example, in the representation of the electron mo-
ment p no longer reduces to multiplication by a phase

factor: the modulus of the wave function also changes,
i.e., the ρ distribution changes. Perturbation theory
actually establishes that in the representation of the
eigenfunctions of 3Ce the wave function changes when the
current is switched on in such a way that the distribution
with respect to the eigenvalues of 3CE changes immedi-
ately. We have succeeded in showing above that in the
χ representation this change has the form of an unob-
servable quasigauge transformation (3.22). This re-
sult can also be formulated as follows: the Heisenberg
operators p%t)/2m + W(qj) and {p2(t)/2m) +W(q) describe
the same observable as long as t<R/c (just as AJL and
A/x and Ax describe the same field strengths Ε and H).

c) In the Lorentz gauge, the HamiltonianJlfU) has a
different form. In (3.5), it is necessary to drop the sub-
script J- of Ax and-Ejj replace the last two terms by
jd3xJMAp, and replace the energy operator of the elec-
tromagnetic field by the expression (17.7) of Ref. 38. In
addition, it is necessary to take into account the Lorentz
auxiliary condition: physically realizable states can
correspond only to vectors Φ that satisfy the equation
3?Φ =0. The operator 2 in the Heisenberg picture is
equal either to 8μΑμ in the form of the auxiliary condi-
tion proposed by Fermi and used by Dirac in the book of
Ref. 39 or to (θμΑ,,)*"' (the Gupta-Bleuler form). In the
Heisenberg picture, the initial vector Φο can be taken
as Φ. Since Π8μΑμ =0, 1 7 · 3 9 the auxiliary condition is
satisfied at any time if it is satisfied at the initial time:

Idiv Ε (χ, 0) — ; (χ, 0)] Φο = 0. (3.23)

As an example of the application of (3.23), we point out
that one cannot take as Φο a vector which is an eigen-
function of the operator {p\/2m)+W(q). The point is
that the momentum operator ph of the Lorentz gauge
does not commute with the operator div Ε -j0 because of
j o ~6(x-q) . Therefore, the operator (p\/2m)+W does
not commute with div Ε -j0 either; its eigenfunctions
cannot be eigenfunctions of div Ε -j0 with zero eigen-
value, i.e., they cannot satisfy the auxiliary condition.
On the basis of this and more general arguments,
Dirac38 (see §§77 and 80) points out that the observables
in the Lorentz gauge can be described only by operators
Ο satisfying the condition [<£,Ο]Φ = 0 (in particular, by
ones that commute with S?). Dirac calls such operators
"physical." For example, the operators p c and Ax of
the Coulomb gauge, which can be expressed in terms of
operators of the Lorentz gauge (see (3.17)), are "phy-
sical," and also

P l — AL = V (3.24)

Proceeding from the Hamiltonian written down at the
beginning of this subsection, we can obtain an equation
for qs(t) and the result (3.15). Instead of (3.7), we shall
have mdq/dt=pL -eA. Since A behaves "causally," so
does pL. However, as we have just said, pL cannot de-
scribe an observable. If the electron momentum is as-
sociated with the operator pc, then using (3.24) we of
course obtain the same results as in the Coulomb
gauge; see the preceding subsection, in which pc was
denoted simply by p.
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4. GENERAL PROOF OF FINITENESS OF THE SIGNAL
VELOCITY IN QUANTUM ELECTRODYNAMICS

The general formulation of the signal transmission
problem will first be described schematically. In Sec.
4f we show that it is indeed general and suitable for de-
scribing a large class of real signal transmission ex-
periments.

a) An external current Ju localized in the region S and
switched on at the time t0 will serve as the source of the
signal (more precisely, as the primary source; see
later in Sec. 4f, in which there is also a discussion of
the adjective "external"). The arrival of a signal is
determined by an instrument localized in the region D,
which is at distance R from S (see Fig. 1). It is as-
sumed that it measures a certain physical quantity, for
example, the electric field Ε (by means of a classical
"test" charge). In the theoretical description, one can
partly reflect the construction of the instrument. For
example, one can introduce in the Hamiltonian the var-
iables of a test charge (or electron, as is done in Sec.
3). But then one again requires an assumption about the
existence of an instrument that measures the coordinate
and velocity of the charge. The impossibility of dispen-
sing with the assumption that there exists a certain fi-
nite part of the instrument not described in the frame-
work of quantum mechanics is a general result of the
theory of measurements.

In the regions S and D and also in the remaining part
of space there may be photons and electrons (free or
bound by constant external potentials). The state of this
complete device for transmitting a signal at the time Zo

is described by the vector Φο. It is natural to assume
that Φο is stationary for t<t0 (but this is not necessary).

We have already frequently emphasized the need to
take into account the quantum mechanical features in the
description of the signal transmission experiment. One
cannot, for example, assume that up to the time t0 the
electric field £ within D is zero. A state with a definite,
for example, vanishing value of Ε is not stationary
since the operator Ε does not commute even with the
Hamiltonian of the free electromagnetic field. For the
same reason Ε in stationary states (described by eigen-
vector of the total Hamiltonian Jf of the system for t < t0)
cannot have definite values, but is characterized by a
certain distribution. We shall assume that the signal
has arrived at the time / when the distribution with re-
spect to the considered local observable has changed
within D from the "background" distribution one would
have had at time / if the external current had not been
switched on.

The "distribution with respect to Ε at time t in the
situation in which the current was switched on minus the
distribution with respect to Ε at time / with no current
switched on" can be found if one calculates the moments
of this difference, i.e., the expectation value, the mean
square, etc. The problem reduces to calculating ex-
pressions of the form

(I'j (ί, f0) Φ«, Ο (τ) Uj (ί, 10) Φ,)

— ( « ρ [-ί (ί — <„) ae (0)] Φ, ο (χ) exp ι-ι (< - („) ge (0)1 ΦΟ>,

Where O(x) may denote E"(x) (w = 1,2, 3 , 4 , . . . ) , χ

(4.1)

FIG. 2.

or the magnetic field, etc; U,{t, t0) is the evolution op-
erator of the system: idtUf=Mt)Uj. By exp[-i(i-i0)
xj(f(0)] we denote the evolution operator of the same sys-
tem but when the external current is not switched on and
the total Hamiltonian does not depend explicitly on the
time (is equal toJlf(t0) at all times). Since

(Α. Ο \

and UJOUJ is the Heisenberg operator Oj(t) (which at
t-ta coincides with the Schrbdinger operator O), we can
rewrite (4.1) in the form

(Φο, \Oj (z, t) — Ο (χ, 01 Φο),
Ο (ζ, ί) = exp [ι (( - ί0) ΰί (0)) Ο exp [-i (t - (0) 3ΰ (0)]. ( 4 . 3 )

b) The problem has been reduced to the calculation of
Heisenberg operators and expectation values of them.
All Heisenberg operators of quantum electrodynamics
can be expressed in terms of Αμ(χ, t) and φ{χ, t). In Ap-
pendix Β it is shown that

fj (i, 0 = Φ (x, 0, AJtl (x, t) = Λμ (χ, 0, (x, 0 4 S,, (4.4)

if the point (x, /) lies outside the future light cone S,
constructed on the region of localization of Jfl (Fig. 2),
i.e., (x, t) must satisfy the condition (x - x s ) 2 - (t- tof
> 0 for all x s <E V s. Since E, - Ε = -θ ,(Α, - A) - V{AK -Ao\
thenE /(x I ),i)=E(x£ ),/) also for t-to<R/c. Returning to
(4.3), we see that the distribution of the electric field
within VD is changed by the external current only at
times R/c after the switching on of the current. The
magnetic field H, the density of the Poynting vector,
and the current density j μ have the same causal be-
havior.

c) The quantities just listed do not exhaust all pos-
sible observables. The theory really does satisfy the
principle of relativistic causality if causal behavior is
shown for a sufficiently large class of observables (suf-
ficiently large for one to be confident that all observ-
ables have this behavior).

An example of an observable that cannot be con-
structed from Ε, Η, and j , , is the number of electrons
in a finite volume V. Since there exist instruments
capable of measuring such a quantity (this can be done,
for example, by means of a Wilson chamber), the the-
ory must also include an operator associated with this
observable.

The number of electrons in a- volume V is character-
ized by the mean square \u(x)\2 of the modulus of the
wave function of the electrons in this volume. The
state of an electron is also characterized by the phase
of M(X). In Sec. 3, we drew conclusions about the modu-
lus and phase of u from the distributions with respect to
q and p. In the second-quantized theory of relativistic
electrons we must also in some manner describe the
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observable characteristics of the state of the electrons.

We introduce an operator of the electron number in
the macroscopic volume V. An operator of this kind
was defined by Wightman and Schweber40 by means of
the operator of the particle number density (see Eqs.
(53) and (54) in Ref. 40). They considered different
definitions of the particle coordinate. Here, we shall
use the coordinate χ that arises naturally in field the-
ory. One can show that the choice of the coordinate is
unimportant if we need the integral of the density over
a macroscopically large volume.7'

For the operator of the electron number density we
take the expression ψ(~)+(χ)ψ(~)(χ), where φ(~) is the
part of the electron-positron field φ of the Lorentz
gauge that annihilates electrons. In Appendix Β it is
shown that the behavior of !νο4>ί~)+ψ<-~)<?χ does not con-
tradict relativistic causality. However, an important
feature of quantum electrodynamics is the fact that the
operator /ψ'"14;//"' cannot describe an observable num-
ber of electrons because (as one can show) it does not
commute with the operator of the Lorentz auxiliary
condition, i.e., it is not "physical"; see Sec. 3c.

A possible example of a "physical" electron number
density is provided by the operator <ρί~)4(χ)φ<~'(χ) con-
structed by means of the "physical" operator of the
electron-positron field φ of the Coulomb gauge:

φ (x, i) = ψ (χ, 0 e-
i i u<".<> (4.5)

(see §80 of the book of Ref. 39; here, e is the electron
charge; the operator «(x, t) is written down in (3.17)).

Let us illustrate the physical meaning of the density
operator Ν(~)(χ) = φ(~)*(χ)φ(')(χ). We calculate its ex-
pectation value in the single-electron state α*Ω. The
SchrSdinger operator an is determined by the expansion
of the Schrodinger operator <p(x) with respect to a com-
plete system of eigenfunctions of the Hamiltonian of the
Dirac equation (with arbitrary constant external poten-
tial)

φ (x)=Snlin (x) «„ + V P W Φ'"' (Ό+ Φ'*1 (Ό·

The symbol Sn denotes summation over the discrete
values of η and integration over the continuous values.
We have

* (x) <fl-> (x) a J Q ) - 2 u * (χ, μ) un (χ, μ). (4.6)

We obtain the density of the probability distribution
with respect to the coordinates in the considered state
(in (4.6), we have written explicitly the spinor index μ).
The expectation value of N(~) in the state α^,αίβρΐΐ is
equal to the sum of the densities \unf + | «J 2 (the density
of the positrons drops out of the expression). In the
state in which there are only positrons and/or photons,
the expectation value of JV("' is zero. In the general
case, we obtain not the sum of the squares of the mod-
uli of the wave functions of the electrons, but the dia-
gonal elements (x\p \x) of the density matrix.

7'The point is that the transition to a different (say the Newton-
Wigner) coordinate q is made by means of the function
<x lq>, which is exponentially small for Ix-ql »h/mc.

It can be shown that information about the phase of the
electron wave function is given by the expectation value
of the operator V(x) of the momentum density of the
electron-positron f ield.8) We consider the "physical"
operator P(x) constructed from φ(χ):

P(i)^i-: [((•(!) (-iV)q-(i) + ( —iV<()*(p]: (4.7)

We calculate the expectation value of (4.7) in the state

ρ (χ) α*® = 2 I"»(*. μ) Ι2 v n» (*> " η = Ι "η Ι «'"" (4.8)

The right-hand side of (4.8) differs from (4.6) by the
presence of the gradient of the phase of un(x).

On the basis of (4.6) and (4.8) we can assume that the
operators JV("' and P(x) play a role analogous to the op-
erators q andp of a single electron in Sec. 3.

d) In order to calculate the change in the number of
electrons in VD and the change in the phase of their wave
function, we must in accordance with (4.1) and (4.3) cal-
culate the expectation values of the differences Ν J~'
-Nim) and Ρ,(*) - P(%)of the Heisenberg operators in the
initial state Φο. For this, we must in turn calculate φ ί

and φ . Using (4.4) and (4.5), we obtain

φ/(ΐ)=ψ.ίβ~""·' = ψϋ~ΙΟ'·' = <ρ(ΐ)ί"'"~"·'\ Ι Ξ (S, I) { Sj. (4.9)

It is shown in Ref. 32 that (4.9) implies that Nl,~\x)
-N{~)(x) and P7(x) -P(%) are nonzero for # e V c and
t - to<R/c, and they are in fact proportional to (t -10)/
R3 (see Ref. 31). However, this macroscopically non-
causal behavior must be declared unobservable. The
point is that (4.9) and (3.19) have the form of a quasi-
gauge transformation;

)=φ(ΐ) cxp ieX(z),

λ(χ,1)=κ(χ,Ι) — uj (4.10)

as we discussed in Sec. 3b. We must therefore assume
that JiV^'Mrf1* describes the same observable as
jN('\x)(fx as long as x&Sj. The same applies to
Pj(x) and P(x).

Note that the difference N^M-N^Hx) for ;

contains also an exponentially small noncausal term of
the same origin as the one in ipj'^ipj'^ - ψ (" ) +ψ ("' (see
Sec. 3 in Ref. 31 and the end of Appendix B). However,
the presence of such terms does not contradict rela-
tivistic causality.

e) In Ref. 32 it is shown that one can find an expres-
sion for the number density operator of Dirac electrons
that is a "physical" operator and also has (macroscopi-
cally) causal behavior. Other expressions for the mo-
mentum density are also discussed in Ref. 32.

Since an electron has spin, for the final demonstration
that quantum electrodynamics is relativistically causal

8>It would seem to be difficult to give a physical interpretation
of P(x) since one cannot speak of the momentum of an
electron at the point χ in quantum mechanics. But we have
already shown in Sec. 3 that the momentum distribution
gives information about the behavior of the phase of the wave
function u(x) in the coordinate representation.
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we must also show that the spin state is not changed
"prematurely" in VD. Leaving out the proof, we merely
mention that this can be done by means of the expres-
sion for the density of the spin part of the angular mo-
mentum tensor (which is given, for example, in §20.5
of the book of Ref. 19).

f) The proof presented here that the signal velocity in
quantum electrodynamics does not exceed the velocity
of light is fairly general and applies to perfectly real
signal transmission experiments. To demonstrate this
assertion, we use two basic facts.

1) Mathematically, the proof reduces essentially to the
derivation of the operator equations (4.4). In Appendix
Β this proof is given for the case which involves any
arbitrary constant external potentials Ψμ. It can also
be carried through for various species of charged par-
ticles in addition to electrons and positrons (protons,
etc).

2) We have not needed to know the actual form of the
initial-state vector Φο.

We now show that the proof is also applicable in the
case of a real signal source consisting, for example,
of atoms capable of being excited and subsequently de-
caying. They can be excited, for example, by means of
an electron beam. These atoms and electrons can be
described theoretically by means of Φο; Ψμ can describe
the potentials which bind the electrons of the atoms or
form the exciting beams.

We emphasize that the concept of the current Jv which
can be switched on is needed to describe a signal source
of this kind too. In a signal transmission experiment we
must have the possibility of beginning to excite the
source atoms (by directing an exciting beam onto them)
at a time ta which we choose arbitrarily. The current Jjl

is used to describe the "first cause" of the signal.9'
For our purposes, we do not need to know the actual de-
pendence of <7μ on the time after ta. Therefore, Ju can
describe much better the real current than what is
called an "external current." This last, by definition,
depends on the time in a prescribed manner, whereas
of course the fact that the current radiates affects the
time dependence of a real current. Instead of JM, one
could also use the analogous concept of a potential which
is switched on.

In the same way, one can justify the applicability of
the proof for signal sources such as radar, an instru-
ment with a Kerr shutter, etc.

The general treatment of this section (in contrast to
Sec. 3) shows that before the time R/c in the region VD

there can be no change in directly observable quantities
such as the current at the output of photomultipliers,
counters, or other parts of a signal detector. Finally,
the source S and the detector D may be separated, not
by a vacuum, but by some material medium (fluid or

9)One should perhaps regard the pressing of a switch button
as the "first cause". But in virtually all cases this will
have as a consequence the change of some current, and this
can be reflected in the theoretical description.

crystal). The proof also holds for this case in so far as
Φο and ψμ can describe the electrons and protons of this
medium.

APPENDICES

A. Calculation of the probability amplitude for excitation
of an atom used as a signal detector

In the interaction picture, the amplitude aSD*(t) of the
Fermi problem has the form

<tS D, (I) =<££>· | ί / ( ί , Ο) \S'D), ( A . I )

where U satisfies the equation idU/St=jeintU, and the
states \S*D) and \SD*) are, as usual, assumed to be
two-electron eigenfunctions of the free part «JiJ of the to-
tal Hamiltonian Λ"=Λζ, + J(fin,. The attempt to calculate
(A.I) by means of a theory expressed in the Lorentz
gauge immediately encounters the difficulty described
in Sec. 3c: The eigenfunctions of 3t0 do not satisfy the
Lorentz auxiliary condition, and cannot therefore de-
scribe physical states. In the Coulomb gauge, this dif-
ficulty does not occur, and we therefore choose that
gauge (see also the end of §13.2 in Ref. 17). We adopt a
system of units in which h = 1 and c = 1. We have

f - f /o i3-) Jo(x')d^xd^x' ι Λ t\\

Like Fermi,12 we discuss in what follows only the part
of the transition amplitude (A.I) due to 3(L, i.e., due to
the exchange of a transverse photon. The contribution
from 3ic is under usual conditions smaller than that from
jui (see (A.13) below). Since there are no photons in the
initial or the final state, we can separate out from
U(t, 0) an operator U' that couples precisely such states
in the e2 approximation (as is done in §37 of the book of
Ref. 19):

υ ι (ι, 0) = — (A.3)j d*x d*y 2 h Wuv (»-*>/» W-
μν

The integration with respect to the times x0 and y0 is
from 0 to /. The propagator for the transverse photons
has the form

(m, n = l, 2, 3),

** (A.4)

(A.5)

(See, for example, Eq. (14.54) in the book of Ref. 41.)
The operators φ and ψ of the electron-positron field in
the currents }μ and j v can be expanded in terms of the
eigenfunctions of the electron part of 3fa; in particular,
in terms of the functions w(x) of bound states of elec-
trons in the atoms. For example, the operator φ(χ) an-
nihilates an electron in the state i%*W=exp(-i£ s*x 0)
xws*(x) and creates it in the state ivg. Therefore, the
part of the amplitude (A.I) corresponding to (A.3) takes
the form

| · ^ - f f (y)

(A.6)
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The exchange term is very small if R is much greater
than the atomic dimension I (the overlapping of the elec-
tron wave functions in this case is negligible). The am-
plitude (A.6) can be calculated in different ways. To re-
duce it to the form in which Fermi made his simplifying
assumptions, we use the representation for Dc given in
§17.3 of the book of Ref. 19:

Assuming for simplicity that Es * ~ES =ED* -ED = Δ, we
obtain from (A.6) and (A.7)

*o)])

(A.8)
Further, we can first integrate with respect to x0 and
y0 (the reversal of the order of integration is justified in
the same way as in the proof of Parseval's equation in
the theory of integral Fourier transforms):

t Vo

x f <Ρΐι/| (χ) a n u s , (x) f ^-{ [ dy0 f <teoexp(iiMy-x)-*Ufo-

< :«o

dy0exp(i[k(x-y)-i(io-!/o)]} [«mn-

xJA.IdJ.-^. j .d)
' £ Ι Γ i3»ul

i(*+A) (*+Δ)2 J J D

(A.9)

The integral with respect to k converges rapidly for
large k and therefore the main contribution is made by
k values not greater in order of magnitude than Δ (fe
<2Δ, for example). If ΖΔ«1, we can replace e ± i k x by
1 (the S electron is localized near the origin of coordi-
nates and e(±iky> by exp(±ikR) (the center of the poten-
tial which binds the D electron is at a point R on the ζ
axis). This is called the dipole approximation. Making
the inverse transformations from (A.9), in which the
indicated substitution has been made, to (A.6), we ob-
tain expression (A.6), in which Dc(y -x,y0- x0) is re-
placed by Dc(R,y0-x0). Thus, the dipole approximation
can be interpreted as follows: it is assumed that the
photon is emitted not at the point at which the electron
is situated but at the center of the potential which binds
the electron. After the dipole approximation, we intro-
duce the notation

These quantities can be expressed in terms of the ma-
trix elements of the dipole moments: j s = ids(Es*-Es)
(see §7 in Ch. 1 of the book of Ref. 37). Further, we
integrate with respect to the angles of
obtaining

To calculate the integral with respect to k, Fermi made
a much stronger assumption than the one which justifies
the dipole approximation: he assumed that because of
the presence of k - Δ in the denominator the principal
contribution is made by k values approximately equal to
Δ. Then the terms with k +Δ in the denominator must
be ignored altogether and one can integrate with respect
to k from —<*> to +°°. In addition, because of the condi-
tion (feR)=(AR)»l one can ignore terms of order 1/
(kR? and l/(feRf in the first figure brackets in (A.ll).
After this, the integral can be calculated by means of
residues

ω Γ,. . , (jpRHisR)

m— J J d k r e~ ' " " A "- l

(A.12)

The function e(t-R) is equal to zero for t<R, and
therefore β/(ί) = 0 for t <R.

However, the integral (A.ll) can also be calculated
without Fermi's assumption: it reduces to integral
sines and cosines. For RΔ » 1 and (R - ί )Δ» 1 the term
in the figure brackets in (A.12) is then augmented by
terms of order 1/ΛΔ and [1/(R - t)A + l/fc +()Δ] (see
Ref. 14), so that the amplitude aSD*{t) for t<R is no
longer zero. The ratio of aL(t_) at time R/c -τ =/_
(less thanil/c by some amount T«R/C) to α±(ί+), where
i+ =R/C+T, is equal in order of magnitude 1/(τΔ)2 if 1
« τ Δ « β Δ . One can show that the cause of this result
resides in the nonvanishing of Dc outside the light cone;
see (A.5).

We give also the part of the amplitude aSD*(i) due to
the Coulomb interaction JK.:

c W » «2 -jf jj^p KJsW- (A. 13)

For RA»l it is much smaller then the part (A.ll) cal-
culated without the Fermi approximation.

B. Exact calculation of the differences A y - A and 4>j - Ψ

We adopt the notation of the book of Ref. 19. We write
down the equations for Αμ and φ in the presence of a
constant external potential Μ μ̂(χ) and a nonstationary ex-
ternal current «^(x, t):

*i μ μ/

D Α}μ (χ) = - [ί,μ (χ) + / μ (χ)]; (Β.2)

where χ denotes (χ, χ0). In the equations for the oper-
ators Αμ and ψ without subscript J (the case when there
is no external current) it is necessary to set </μ =0. By
ϊμ in (B.2) we understand the antisymmetrized expres-
sion

The solution of these equations amounts to establish-
ing how the Heisenberg operators are expressed in
terms of the initial, i.e., Schrodinger, operators. The
operators ijiJt A} and ψ, A must in accordance with their
definition (see Sec. 2) coincide at t = t0 with the same
Schrodinger operator:

(A.ll)
(X, i.) U* ((,,, !„) ψ (x) U («,,, (,) = ψ (Χ) = ψ (Χ,ίο).

(χ, ί.) = Λ μ (χ) = Λ μ (χ, 10). (Β.3)
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To solve the problem, we expand ψ / ; Aj and φ, A in
series in the coupling constant e (Kall6n; see §23 of the
book of Ref. 19):

*>/ w = Σ «"•S" <*>· A'«- - Σ tnA%< (B.4)

and similarly for φ and Αμ. We shall satisfy the initial
conditions (B.3) if

and the operators ψ^"'(χ, t0) andA^(x, t0) with «> 1 are
zero. We do not assume that the external current is
small. The solutions of Eqs. (B.I) and (B.2) in the
zeroth approximation:

are well known. The first equation is the free equation,
and therefore for all times φ(^{χ) = φ(0)(χ), and both
coincide with the free operator φο(χ):

if, W = - i f «IV S (x - i') Tot (*'). '0 = ', (B.7)

(see (8.67) in the book of Ref. 13). The solution of the
second equation has the form

W+

-jL.

. (Β.8)

„„=(„. (B.9)

Indeed, (B.8) satisfies the equation DA/(J = -Ju, it satis-
fies the ordinary equal-time commutation relations (be-
cause Αομ satisfies them), and, finally, A(j°J(x) for x0

= t0 is transformed into the Schrodinger operator
Αμ(χ, tj) (the second term in (B.9) for xo = to is equal to
zero). We obtain

A%w-Ai»w = \ />rct(χ-χ·)/„<*')ίν = Ι Λ ' / " ( x ' ' l *
o r^"" ] ' ' l ) ,

(B.10)

which is equal to zero if χ €Ξ VD and * 0 - to<R/c (we re-
call that the current J^x') is concentrated in Vs and
equal to zero for x'0<t0).

Further, we write down the equations (B.I) and (B.2)
for operators of the first approximation, form their dif-
ferences, and write the result in the form

here φ(/} - φ(0) =0, and A(/J -Λ(

μ

0) is equal to zero for xa

-to<R. The right-hand sides of (B.ll) and (B.12) are
therefore zero for x0 - to<R. Since the initial conditions
for φ^ - φ(1) and A^1' -A ( 1 ) are null, the solution for
these differences is also null for x0 - to<R,x e VD. With
regard to the expressions for the solutions of Eqs. (B.ll)
and (B.12) in terms of given right-hand side and in
terms of the initial conditions see, respectively, §23 of
the book of Ref. 19 and Eqs. (B.7) and (B.9).

The right-hand sides of equations of the form (B.ll)
and (B.12) for the next approximation can be expressed
in terms of the operators of the zeroth and first approx-
imations. For x0 - ta <R, these right-hand sides vanish
since for x&S, the differences φ,- φ and A, -A on the
right-hand sides are zero in the zeroth and the first ap-
proximation. Therefore, ψ}2) -ψ(2) and AJ2) -A ( 2 ) are

zero for x£S^i By induction we find that for x^Sj (see
Fig. 2) in all orders in e the differences of the operators
Ψ/Μ ~ Ηχ) a n d Α/μ{χ) -Α μ(χ) are zero (and in contrast
to the operators occurring in them do not contain in-
finities).

Let us consider how lv (see Sec. 4c)Let us consider how lv Φ (,χ)φ\χ)άχ (see Sec. 4
behaves when the current J)i is switched on in Vs. We
write in the form )

(~' =Π(~'ψ, where
separates

out from ψ the part that annihilates electrons:

VD Yfi

(B.13)

The expression in square brackets does not vanish for
xo<R/c because the integrand contains points y',y" sit-
uated in the future cone Sj of the current J; see Fig. 2
(for such points, φ; Φ φ). Their distance to points x G F 0

is equal to or greater than \R -(t-to)c\; see Fig. 2.
The projection operator n(~)(x>y) = -*Si~)(x,*:o;y>Xo) f ° r

|x - y | » ke decreases faster than exp(- |x - y|A e) (here,
λβ is the electron Compton wavelength λ, = h/mc). There-
fore, points y', y" for which φ} * φ are represented in the
integrand with weight ~exp[-|fi - (t - to)c \/\e], and the
right-hand side of (B.13) is of order βχρ[-β(ί-ί ο )ε |/
λβ]. Such a noncausal effect does not mean that relati-
vistic causality is violated since one cannot localize a
Dirac particle in a region measuring S,\e.
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