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1. PROTONS, NEUTRONS, HADRONS AND THEIR
STRUCTURE

More than 99.9% of all matter is made up of protons
and neutrons. The interaction among these particles
is thus one of the most prominent features of the phys-
ical world. In the Thirties, after the discovery of the
neutron, the study of the forces that bind protons and
neutrons to form nuclei became the central problem of
a new field of research: nuclear physics. The hope
was that it could be possible to obtain from experiments
a relatively simple form for the nuclear potential that
acts among protons and neutrons. As often happens,
the situation is today very different from the forecasts
made forty years ago.

To study better the forces acting between nucleons
( i .e . , between neutrons and protons) physicists went on
building machines capable of accelerating protons to
higher and higher energies. In the collisions of these
energetic protons with nuclei new particles were pro-
duced and nowadays the number of known particles is
so large that nobody thinks they are to be considered
"elementary" in the old sense of the word. This large
proliferation has affected only the particles which feel
the strongest among all the known forces, the nuclear
interaction. Indeed the particles that are sensitive only

' 'This English text has been supplied by the author, and is not
being published in English elsewhere. It was translated into
Russian for Usp. Fiz. Nauk by Yu. M. Antipov.

to the much less strong electromagnetic and weak in-
teractions can still be counted on the fingers of a single
hand. The road to the study of the forces acting be-
tween nucleons has thus brought us two fundamental
facts: there are hundreds of different types of parti-
cles that are created through strong interactions, and
which feel them, but only a few particles are sensitive
only to weak and/or electromagnetic interactions. The
two classes of particles have been named "hadrons"
and "leptons".

By scattering leptons on hadrons and leptons on lep-
tons we have learned that while hadrons are extended in
space with radii of the order of 10~13 cm, leptons look
point-like to our present level of spatial resolution,
which is of the order of 10~15 cm. This fact already
suggests the possibility for hadrons to be composed of
other more "elementary" point-like constituents. After
all the same trend appeared in the past in passing from
molecules to atoms, from atoms to nuclei and electrons
and from nuclei to protons and neutrons. About fifteen
years ago such a vague statement was made more pre-
cise by the discovery that all known hadrons could be
understood as bound systems of two or three subnuclear
particles, the "quarks". Nowadays we have strong
arguments to think that there are at least four different
types of quarks, named «-quark, d-quark, s-squark
andc-quark; in terms of the electric charge of a photon,
their charges are +2/3, - 1 / 3 , -1/3 and +2/3, respec-
tively. In the quark model a proton is made up of two
w-quarks and one d-quark, while a neutron is made of
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two d-quarks and one w-quark. Up to now nobody has
ever seen a free quark, but the amount of information
that can be correlated by making the hypothesis that
hadrons behave as if they were made of quarks is so
large that physicists have accepted to live with the
following scheme: hadrons are made up of quarks but
these constituents are prisoners within the hadrons
themselves and they cannot be found as free particles.
Not everybody is happy with this picture, but until
free quarks are discovered this is the only viable
description of the hadronic world.

Protons and neutrons are made of quarks bound to-
gether by quark-quark forces. The nuclear forces that
bind protons and neutrons in nuclei are, in this scheme,
residual forces among bound quarks similar to the Van
der Waals forces acting between molecules. Also in
the molecular case the simple Coulomb potential acting
between nuclei and atomic electrons give rise to com-
plicated forces between molecules. From this point of
view the proton-proton, proton-neutron and neutron-
neutron forces look much less interesting and funda-
mental than before. Still there are good reasons for
studying the interactions of these particles. In fact one
can consider protons as typical hadrons whose inter-
actions can be studied in great detail due to the possi-
bility of producing beams of intensity and energy that
cannot be attained for other types of hadrons. Today
the available beams of high energy protons are about
a hundred thousand times more intense than the beams
of any other hadron. Similarly, the energies available
in the centre-of-mass for proton-proton collisions are
more than five times larger than the corresponding
quantity in any other hadron-hadron collision. One can
thus say that proton-proton collisions are interesting
not so much because about half of the mass of stable
matter is contributed by protons, but because protons
are typical hadrons and it is relatively easy to prepare
very intense beams of high energy protons by separating
electrons from hydrogen atoms and by accelerating the
left-over nuclei.

Less intense beams of other hadrons can be produced
by properly collimating and focussing the particles
produced in the collisions of high energy protons with
the nuclei of a target material. In the following we
shall present data obtained with beams of antiprotons,
positive and negative pions and positive and negative
kaons. These particles differ by their presumed quark
composition. Antiprotons (symbol p) are the anti-
particles of protons: they are formed of three anti-
quarks, usually indicated as ΰ, ΰ and ~3. Pions (sym-
bol π) and kaons (symbol K) belong to a different family,
the so-called bosons. They are bound states not of
three but of two quarks, or more precisely of a quark
and an antiquark. One can formally write the quark
structure of the electrically charged particles, the only
one that can be focussed in beams, as follows:

ud, n~ — ud; K* = us, K~ = us. (1)

of proton-proton collisions in spite of the smaller in-
tensity and energy of the beams.

2. A SIMPLE PICTURE OF DIFFRACTION
SCATTERING

If the energy of a hadron is larger than a few GeV
(i.e. a few billion electronvolts), the nuclear forces
acting between the projectile hadron and a hit target
proton usually give rise to the production of other had-
rons. We can say that when the two hadrons pass at
distances of the order of 10 ~" cm a localized burst of
energy is produced that very often materializes so that
a fraction of the energy transforms into the mass of a
number of newly created particles. In these "inelastic"
processes the rest of the energy appears as kinetic
energy of the outgoing particles. In a relatively small
percentage of the collisions no fraction of the available
energy transforms into mass and the two hadrons suffer
an "elastic" scattering.

The quantity which is best suited to express the ener-
gy at which a collision between two hadrons occurs is
the energy available in the center-of-mass system,
which will be indicated by the symbol ST. At any given
center-of-mass energy, the probability of observing an
elastic or an inelastic interaction when a moving had-
ron crosses a thin target is expressed by introducing
the elastic and the inelastic cross-sections. These
quantities are measured either in cm2 or in millibarns
(1 mb= 10"27 cm2) and can be defined as the equivalent
target areas offered by one of the colliding hadrons to
the other as far as elastic or inelastic processes are
concerned. They depend both upon the type of the
colliding hadrons and the energy in the center-of-mass.
The total probability of interaction (which takes into
account both elastic and inelastic processes) is obvi-
ously measured by the sum of the elastic and inelastic
cross-sections. Introducing the symbols atl and a u to
indicate the partial cross-sections, the total cross-
section is then σ4 = σβΙ + σ1η.

In the case of elastic collisions the important quantity
is the distribution of the scattering probability as a
function of the angle at which the projectile hadrons are
scattered. Considering, for simplicity, proton-proton
collisions in the center-of-mass system, the two pro-
tons of mass Μ which collide have a total energy VT/2
and momentum

If energy is measured in GeV, momentum is measured
in GeV/c. Indicating by θ the scattering angle in the
center-of-mass system, the momentum transfer t is
defined as

These four particles are metastable in the sense that
they decay through weak interactions into other par-
ticles but their lifetime is long enough to be used many
meters away from the production point. The study of
their interactions complements very usefully the study

l — cos6). (3)

The last expression is valid when the center-of-mass
energy ST is much larger than the rest energy of a
proton, Me2. In the case of small angle scattering the
momentum transfer simplifies further to

ί « -ρ«θ». (4)

For most of the data to be reviewed in this article, Eq.
(4) is a good approximation so that one can say that the
momentum transfer is proportional to the square both
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of the momentum p and of the scattering angle Θ,

In a hadron-proton collision, the distribution of the
scattered hadrons is defined by the differential cross
section da/dt, that is related to the cross section /
to find a scattered hadron in the solid angle d£l by the
expression

da π da ,

u
i a

Of course the integral of du/dtl over the full solid angle
gives back the elastic cross-section atl.

We have thus defined the main quantities measured
and discussed in the field to be reviewed. They are:
σ,, σβ 1, a u and do/dt. While introducing their defini-
tions we have used a classical language which tacitly
assumes that protons are tiny billiard balls that, in
elastic collisions, hit and ricochet away from one an-
other. However, quantum mechanics tells us that this
picture is wrong, because each moving hadron behaves
more as a wave than as a small ball. The wavelength
λ of this wave is related to the momentum ρ of the par-
ticle by the well-known relation due to de Broglie,
which reads λ= hi p. Numerically, the value of the
Planck constant is 1.2 when the wavelength λ is mea-
sured in fermis (10~13 cm) and the momentum ρ of the
particle in GeV/ c.

Before going on to describe the experimental data and
their detailed interpretation, it is worthwhile looking
at high energy hadron-hadron scattering from a simple
and intuitive point of view that takes into account the
wave properties of matter. The phenomenon of two
hadron waves which move towards one another and in-
teract is difficult to visualize. However, it is com-
pletely equivalent to the more intuitive problem of a
single wave which inpinges on an absorbing object fixed
in space. For simplicity, in Fig. 1 we consider a disc.
The disc is absorbing because, as discussed above,
the interacting hadrons give rise to many inelastic
processes which have the effect, in the wave descrip-
tion, of subtracting energy from the incoming wave and
transferring it to the produced hadrons. The phenom-
enon can be characterized by the "profile function",
which is the distribution of the absorption as a function
of the distance from the center of the disc. In general
this profile varies with the energy available in the
center-of-mass, because the probability of the various
inelastic processes is a function of the energy.

The far-reaching consequences of the wave nature
of the interacting hadrons can be best appreciated by
comparing the two simple situations depicted in Fig. 1.
In Fig. la a large number of point-like particles move
along parallel paths and are absorbed by a disc of
radius R, while in Fig. lb a plane wave is absorbed by
a disc of equal radius. In the first case all particles
hitting the disc are absorbed as a consequence of the
inelastic processes in which other hadrons are pro-
duced. The inelastic cross-section is clearly equal
to the area of the disc (σ,Β= irR2) and a "hole" appears
in the incoming beam and extends to infinite distances.
Since the point-like particles behave independently and
each of them is either absorbed or unaffected by the
disc, there is no elastic scattering and σ # ι = 0 . In the
case of Fig. lb the incoming plane wave describes a

Absorbing disc

of radius A

t t t t t i i imn

FIG. 1. (a) Classical description of the absorption of pointlike
particles by a disc. The disc produces a hole in the flux of the
impinging particles, (b) Wave description of the same phenom-
enon. The shadow is due to the superposition of two waves,
the incoming unperturbed one and the diffracted wave.

beam of particles whose momentum can be deduced
from the wavelength by means of the de Broglie rela-
tion. The portion of the wave front which strikes the
disc is absorbed and its energy is converted into other
forms of radiation emerging from the disc itself.
These are the hadrons produced in the inelastic pro-
cesses. In this case too the inelastic cross-section is
σ\Λ- 1LR% b u t a t t n e same time, due to the absorption,
a "shadow" is generated behind the disc. At variance
with the case of the "hole" produced in the beam of
point-like particles, this shadow extends only to finite
distances because the various portions of the wave front
are not independent of each other. For this reason it
is impossible to drill in the incoming wave a hole which
remains as the wave travels to greater distances: the
sharp edges of the hole in the wave front spread out
sideways to fill the hole itself. Thus the very exis-
tence of absorption implies the appearance of a wave
which has the same wavelength as the incoming wave
and propagates from the disc outwards. This is the
"diffracted" wave. It describes particles which are
scattered elastically because they have the same wave-
length as the incoming wave, and the momentum of the
diffracted particles equals the initial momentum as a
consequence of de Broglie relation.

How big is the elastic cross-section due to this dif-
fraction phenomenon? For a completely absorbing
disc of radius R, it is as large as the inelastic cross-
section (σ#1 = σ ΐ Β = vR2), so that the total cross-section
is twice the geometrical area of the absorbing disc.
To accept this at first sight surprising result, it is
necessary to understand how the shadow is formed.
Two separate waves of the same wavelength propagate
in space: the incident plane wave and the diffracted
wave, which has spherical wave fronts because it has
its source in the disc. The two waves interfere and,
in particular, just behind the disc there must be totally
destructive interference, so that the two amplitudes
cancel and the shadow is produced. This requires the
scattered wave to have behind the disc, and over an
area equal to itR2, the opposite phase but the same in-
tensity as the incident wave. Thus the energy which is
diffracted is equal to the energy which, transported
by the incoming wave, impinges on the disc. This is
turn implies that the elastic cross-section equals the
inelastic one.

Summarizing, for a completely absorbing disc the
elastic and inelastic cross-sections are equal, the total
cross-section is twice the geometrical area, and thus
the ratio 2σθ1/σ, equals 1. For a disc of uniform but
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not complete absorption the elastic cross-section be-
comes smaller in relation to the inelastic one, and it
can be shown that the ratio 2σ,,/σ,, which is smaller
than 1, is equal to the "absorptiveness", defined as
the fraction A of the wave amplitude which is absorbed:

*-%*-. (6)

The proof of this result is very instructive. If the disc
has uniform absorptiveness A, the amplitude behind the
disc is reduced to a fraction (1 - .A) of the incoming
amplitude. Since here (as in optics) the intensity of the
wave is proportional to the square of the amplitude, a
fraction (1 - A)2 of the energy which impinges on the
are itR2 is transmitted. This implies that the fraction
of this same energy which is absorbed is 1 - (1 - A)2

— 2A-A2. The inelastic cross-section is then smaller
than the area R2 by the same factor: σ1η= (2Α - A2)TIR2.
The value of the elastic cross-section is obtained by
considering the intensity of the diffracted wave. In or-
der to do so we use the principle enunciated for optical
waves in 1837 by A. Babinet: the diffraction pattern due
to any obstacle is equal to the pattern produced by the
"complementary" screen, that is by the screen which is
opaque where the obstacle is transparent and vice
versa. The amplitdue of the wave behind the partially
transparent hole of the complementary screen is A
times the incoming amplitude, because it has to be the
complement of the situation where the amplitude after
the screen is reduced by the factor (1 - .A). Then the
intensity of the diffracted wave is proportional to A2

and one has, for the complementary screen but also for
the disc by virtue of the Babinet principle, ael = A2vR2.
The total cross-section is <Jt = ala + atl = 2vR2A, so that
for complete absorption (A=l) it equals twice the ge-
ometrical area of the disc. In general, by combining
the expressions obtained for σβ1 and ct, one obtains Eq.
(6).

Summarizing, if diffraction scattering dominates, the
ratio of the elastic to the total cross-section can be
considered as a measure of the average "absorptive-
ness" of the colliding hadrons. The absorptiveness is
determined by the many inelastic processes that can
occur when the two hadrons collide, so that a measure
of σ#1 and at tells us something concerning the inelastic
processes that cause, through diffraction, the observed
elastic scattering events. Of course the differential
elastic cross-section da/dt contains more information
than the integrated cross section σ,,. Let us now dis-
cuss this point.

Detailed information on the absorptiveness profile
is contained in the form of the diffraction pattern, that
is, in the angular distribution of the scattered particles.
This distribution presents a large maximum in the
forward direction, at a scattering angle equal to zero,
and a series of minima and maxima at larger angles,
characteristic of all diffraction phenomena. In con-
sidering the angular width of the central peak of the
diffraction pattern, it is enough to recall that in all
diffraction phenomena the relevant quantity is the ratio
between the wavelength and the dimensions R of the dif-
fracting object. Thus the width of the central peak is
proportional to the ratio λ/Λ, and from a measurement
of the angular width the radius R can be obtained.

For an absorbing disc of radius R the distribution of
the scattered intensity was derived in 1835 by G. B.
Airy and is given by a well-known formula that in our
present notation becomes:

dt ~\dt )t=ol 2πΛΙ)/λ J ~Wi/i_o PL \ λ / J· \

The Airy function reduces to a Gaussian in θ for small
scattering angles.

(8)

Usually one parametrizes the forward differential
hadron-hadron nuclear cross-section in the form

dt \ dt /(—o

By recall ing the de Broglie relation X=h/p and com-
paring Eqs. (7) and (8), the slope & of the forward elastic
cross-sect ion in a logarithmic plot versus I/I is r e -
lated to the hadron-hadron interaction radius R by the
expression

»-(-£) (9)

To get a feeling for the orders of magnitude, an in-
teraction radius of 1.4 fm, which is approximately the
range of the nuclear forces, would give rise to a dif-
fraction peak having a slope b =*13 GeV"2.

In conclusion, at high energy, hadron-hadron col-
lisions are dominated by inelastic processes and the
inelastic cross section oln = ot - σ β 1 measures their
probability. This implies a strong absorption of the
incoming waves and thus diffraction scattering. The
diffractive peak is expected to be an exponential in the
momentum transfer and its slope b is proportional to
the square of the interaction radius R. The integral atl

of the differential cross-section is related to the ab-
sorption taking place within the radius R. More pre-
cisely, the ration 2σ./σ ( is a measure of the average
absorptiveness. At this point a question arises very
naturally: what is the meaning of the quantity <tio/dt)t,0,
the only one for which no physical interpretation was
given? The answer to this question may come as a sur-
prise: the elastic cross-section at zero angle (rfff/di)t=0

is not an independent quantity as a consequence of the
"optical theorem", which was put in precise mathemat-
ical form by Niels Bohr, Rudolf Peierls and George
Placzek in 1936. This theorem is valid for all wave
phenomena and for any absorptiveness profile. For
simplicity we leave out its derivation. Here it is
enough to indicate why one can expect such a theorem
to exist. The wave nature of the interacting particles
implies that two quantities determine the whole diffrac-
tion phenomenon: the interaction radius and the ab-
sorptiveness. On the other hand, from an experimental
point of view, there are three quantities which are mea-
sured independently. They are usually the total cross-sec-
tion, the forward elastic cross-section (da/dt)t=0 and the
slope b of the diffraction peak. (From these three quanti -
ties, all the others can be computed. For instance, the last
two define the elastic cross-section σβ1, and the in-
elastic cross-section can be obtained as οΐΛ = σ{ — οβ1.)
Quite naturally then, there is a relation among the
three experimentally defined quantities. The proof
shows that, indeed, the theorem relates only the first
two of them, that is the forward cross-section and the
total cross-section. But why does the forward elastic
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cross-section play this very special role? This can be
traced back to the fact that the plane incoming wave and
the spherical diffracted wave are tangent to each other
only in the forward direction, so that it is only there
that the waves keep in step and are able to interfere at
large distances from the absorbing disc.

With the present notation the optical theorem reads

(£)«-*«• do)
As anticipated, the forward cross-section is not an in-
dependent quantity because it is proportional to the
square of the total cross-section.

3. EXPERIMENTS ON TOTAL CROSS SECTIONS

3.1. Good geometry transmission experiments

In proton synchrotrons protons are accelerated to a
maximum momentum, which is determined by the radi-
us of the machine and the attainable maximum magnetic
field in the magnets that keep the protons on their cir-
cular orbits. At the end of the acceleration cycle, a
few seconds long, secondary particles are produced by
bombarding with protons a target, placed either in-
ternally or externally with respect to the machine. The
secondary particles produced in the forward direction
are fpcussed and momentum analyzed in a beam trans-
port system. The system used at Serpukhov by the
IHEP-CERN collaboration a few years ago is sketched
in Fig. 2, where the symbols Κ refer to collimators,
L to quadrupole lenses and Μ to bending magnets.1

Slt S 2 and S 3 were scintillation counters defining the
beam particles and Au A2 were counters with a hole
used in anticoincidence to reject halo particles. The
detector W was used to optimize the focussing proper-
ties of the transport system. Various targets could be
placed in the beam: hydrogen (H2), deuterium (D2),
helium (He) and a dummy empty target (E) used for
background subtraction.

...Ϊ-...Γ,

FIG. 2. System used at Serpukhov by the CERN-IHEP colla-
boration to measure total cross sections by the transmission
technique. The particles produced In the target Τ by the pro-
ton circulating In the proton synchrotron are momentum analy
ysed by a magnetic channel. The L and Af refer to quadru-
pole lenses and to bending magnets respectively. Κ are colli-
mators. Downstream of scintillator S3 four targets could be
placed in the beam. The inset shows the twelve transmission
counters T t . . .Tn subtending increasing solid angles as seen
from the target.

A differential Cerenkov counter (D) and a high reso-
lution Cerenkov counter C were used to identify the
particles, thus distinguishing electronically between
pions, kaons and protons having the same momentum.
These counters work on the principle of the Cerenkov
effect: a particle of velocity ν moving in a medium of
index of refraction η emits light under an angle δ such
that cos 6= c/vn.

Behind the target, twelve circular transmission
counters (2\. . . T12), were mounted on a trolley which
could move on rails along the beam line. At each mo-
mentum of the beam the trolley was moved so that the
solid angle accepted a fixed range of momentum trans-
fer: UI«0.038 (GeV/c)2. In any experiment of this
kind the rates measured in these counters are used to
extrapolate to ideal conditions. Ideally one would like
a beam of negligible transverse dimensions, a target
without walls and one transmission counter, again of
negligible transverse dimensions. Any hadron which
interacts in the target would not be seen by the trans-
mission counter, and the rate Ν measured by it would
be smaller than the incident rate JV0 by a factor that
depends exponentially upon σ,. More precisely

where NA is the Avogadro number, PA is the atomic
weight of the target, and pi is the target thickness in
g/cm2. Since actual beams have finite dimensions, one
is forced to use large transmission counters, which
measure a slightly smaller value than at. The total
cross-section is then obtained by extrapolating to zero
solid angle by using the rates measured in the twelve
T-counters. Moreover, to take into account the scat-
tering in the walls of the target, the rate No is mea-
sured with a dummy target placed in the beam.

The details of the procedure used in this kind of
good geometry measurements are discussed in the
review paper by Giacomelli.2 There it is shown that
one can reach point-to-point errors which are as small
as ± 0 . 1 % .

3.2. Colliding beam experiments

Good geometry experiments produce among the most
accurate measurements in hadronic physics. In 1971
a new type of accelerator came into operation at CERN,
the Intersecting Storage Rings (ISR) in which two in-
tense proton beams collide head-on. A completely new
technique for measuring total cross-section had then
to be invented. This is the second argument to be dis-
cussed in this section.

When a relativistic proton of laboratory momentum
/>lab collides with a stationary proton of mass M, the
center-of-mass ( c m . ) energy has the form:

V"i«V'2U7^. (12)

It follows from the equation that in the collision of a
proton of 26 GeV/c (close to the maximum momentum
at which protons can be accelerated in the CERN pro-
ton-synchrotron) with a hydrogen nucleus the energy
available in the c m . is about 7 GeV. The rest of the
energy is wasted, so to speak, due to the motion of the
center-of-mass.
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FIG. 3. Schematic drawing
of the CERN protonsyn-
chrotron (PS), that injects
protons into the Intersect-
ing Storage Rings (ISR)
through two transfer tun-
nels (TTl and 7T2). The
ISR diameter is 300 me-
ters. The two proton
beams stacked in the ISR
cross in eight points. II
and 14 are the largest ex-
perimental area built
around the intersecting
points number 1 and 4.

In the collision of two relativistic protons which have
opposite and equal momenta p, the center-of-mass is
fixed in the laboratory and the c m . energy is simply

V*~ 2p. (13)

Combining Eqs. (12) and (13) one obtains the "equiva-

lent" laboratory momentum ρ1Λ of a collision in which

both protons move in opposite direction with momentum

P-

Phb « ΤΓ-

For example, for two protons of momenta />=26 GeV/c
the equivalent laboratory momentum is />lab-1500
GeV/c.

Thus the reason for constructing colliding beam
machines is the very high c m , energies that can be
achieved. The CERN ISR is the first high-energy pro-
ton colliding beam facility to be built and produces the
highest c m . energies in the world. A general de-
scription was given by K. Johnsen.3 As schematically
indicated in Fig. 3, two storage rings cross at eight
points and are filled with protons accelerated by the
CERN Proton-Synchrotron (PS). In each ring the pro-
tons are bent by 132 strong focussing magnets. The
beams circulate in two vacuum chambers which have
a cross-section of 50 mm x200 mm and a diameter of
300 m, and cross in the horizontal plane in the eight
interaction regions at an angle of 14.8°. During in-
jection, every two or three seconds, a pulse of about
2 · 1012 protons is injected into one of the two rings.
Each ring is filled with about 200 pulses, so that,
during normal operation, the number of protons in each
ring is larger than 5 · 1014. Since the revolution time is
about 3 μβ, this corresponds to a current of about 25A.
The residual pressure in the vacuum chambers is so
low (some units in 10~J2 Torr) that the lifetime of the
two beams is typically greater than one yearl Excel-
lent experimental conditions are therefore available for
runs of many days.

The rms value of the beam height is of the order of

1. 5 mm, while the width in the horizontal plane is de-
termined by the momentum band accepted. With a
typical momentum acceptance t^pjp-1%, the width is
~40 mm, so that the two beams can be visualized as
two thin, wide ribbons which cross in the eight inter-
section regions at 14.8°. Due to this angle and to the
horizontal width, the length of the collision source is
±150 mm, while, as noted above, its radial width in
normal runs is of the order of ± 20 mm. This radial
width can be reduced by switching on special quadru-
poles in the machine lattice, which, in four of the eight
intersection regions, superimpose the trajectories of
the protons having different momenta. When the "Ter-
williger scheme" is on, the width of the beam is re-
duced to ~± 5 mm and the length of the source becomes
~±40 mm. Special scraping procedures applied to the
beams at injection and after stacking of the beams can
reduce the length of the source to ± 15 mm.

The luminosity L of two colliding beams is, by def-
inition, the proportionality factor between a cross
section Δσχ (for detecting events of type χ in the solid
angle of the apparatus) and the corresponding detection
rate Nt.

Nx = Lbax. (I4)

L is usually measured in units of cm"2 s"1. The lumi-
nosity can be expressed as a function of the parameters
which characterize the two crossing beams:

£(«) =
e'ctan lit τ J Pi (* (15)

In this expression ^ and I2 are the two proton currents,
e is the electronic charge, c the velocity of light, γ
= 14.8° is the angle at which the two beams cross in the
horizontal plane, pt and p2 are the vertical distributions
of the beams normalized to 1. The distributions are
supposed to be centered around the vertical coordinates
Zj and z2, and δ= zt - z2 * s *-ne vertical distance be-
tween the centres of the two beams. Of course the lu-
minosity is a function of δ and, for bell-shaped ver-
tical distributions, it is maximum for 6 = 0. The de-
pendence of the luminosity on the product of the cur-
rents expresses the fact that L increases proportionally
to the number of circulating protons in each ring. In
Eq. (15) only the folding of the vertical distributions of
the two currents appears because the two beams form
an angle y ^ 0 in the horizontal plane. This guarantees
that the projection of the trajectories cross at one
point, so that the horizontal distribution does not in-
fluence the luminosity.

Using the approximate figures quoted above (σ «* 1. 5
mm), and average values for the currents (/1 = /2 = 25A)
one obtains from Eq. (15):

L as 10" cnT2 s"1 . ( I 6 )

It is interesting to compare this luminosity with the
luminosity which is obtained by directing a proton
beam, extracted from a proton-synchrotron (-5-1012

proton s"1), onto a hydrogen target 100 cm long:

L « 2.5 -10" cm"2 s'1. (17)

It follows from the comparison that, as far as lumi-
nosity is concerned, the ISR is equivalent to a proton
synchrotron beam traversing a hydrogen target which
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is about 0.4 μΐη thick.

The accurate measurement of the luminosity is one of
the most difficult problems in experimentation with col-
liding beams and, in particular, it is very important
for the measurements of total cross-sections. At the
ISR the luminosity measurements are performed by
means of the Van der Meer method.4 The method con-
sists in vertically displacing the two beams in an in-
tersection region by small, known steps by means of
well-calibrated magnets producing a horizontal field.
The counting rate Nm(tj) in a system of counters, which
is used as a monitor, is measured for each displace-
ment β between the centers of the two beams. Com-
bining Eqs. (14) and (15) one has

CENTRAL BOX

OF COUNTERS

· HODOSCOPE

Pi (*) P.(z + δ) dz. (18)

From this expression it is immediately seen that, by
integrating the measured monitor rate over the dis-
placement 6, the double integral of the vertical distri-
butions over dz and db reduces to 1 (because both pi

and p2 are normalized to 1) and one has

(19)

Since the beam currents can be measured with very
high precision, the cross section of the monitor sys-
tem Δσ,, (which is a function of the beam momenta) is
obtained with a percentage error equal to the one in-
volved in the measurement of the monitor rate Nm(6)
and in the calculation of the integral. Careful studies
and controls of the errors involved in the knowledge of
the beam displacement , made by the ISR machine
group, the CERN-Rome Collaboration, and the Pisa-
Stony Brook Collaboration, have led to the conclusion
that the scale of displacements is known today (1977)
within an absolute accuracy of ± 0. 5%.5 Since typical
steps in the luminosity measurements are Δδ = 0.5 mm,
this corresponds to an error in this displacement of
±0.0025 mm. The point-to-point errors on Δσ,, depend
upon the long-term stability of the monitor counters
and on the reproducibility of the vertical displacements
of the beams. The standard deviation of ΔσΛ obtained
by the CERN-Rome Collaboration and the Pisa-Stony
Brook collaboration is ±0. 5%. Once the monitor
cross-section ΔσΛ is known for a given momentum of
the circulating protons, the luminosity L can be ob-
tained by measuring the monitor rate Nm per second
and by applying Eq. (14).

The two groups already mentioned have performed
extensive measurements of the total proton-proton
cross section at the ISR. In 1973 they discovered the
-10% rise of σ, in the energy interval 22 «/"£ < 63
GeV.6·7 Recently the accuracy of the measurements has
been greatly improved by using the apparatus sketched
in Fig. 4 . 5 · 8 Two different methods have been applied
by the CERN-Rome and by the Pisa-Stony Brook Collab-
orations.

The CERN-Rome method used the hodoscopes A and
Β placed at small angles with respect to the circulating
protons and can logically be described as follows:

i) measurement of the elastic rate Νβ1(θ) in a known

FIG. 4. Perspective view of the CERN-Pisa-Rome-Stony
Brook experiment to measure total cross sections at the ISR.
The two beam pipes cross at an angle of 14.8°. The eight big
wheels represent the large hodoscopes used to detect the total
number of proton-proton interactions. The hodoscopes A and
B, whose details appear in the inset, were used to detect the
protons elastically scattered at small angles (6=* 5 mrad) and
thus to obtain the total cross section by applying the CERN-
Rome method.

solid angle ΔΩ at some small scattering angle θ (5 mrad
in this experiment);

ii) extrapolation of the elastic rate, with the usual
exponential behavior with respect to t of Eq. (8), to zero
angle to obtain N#l(0);

iii) application of Eq. (14) to deduce the elastic
cross-section in the forward direction:

I da \ ATe| (0)
(ϊαΊι-ο ~TSTf

iv) use of the optical theorem to derive σ, [(Eqs. (10)
and (5)]. In terms of quantities directly measured

(20)

The Pisa-Stony Brook Collaboration, that used the
large apparatus of about 500 counters, appearing as
big wheels in Fig. 4, detected the total number of pro-
ton-proton interactions over a large fraction of the
whole solid angle. From this measurement the rate
Nt, extrapolated to the whole solid angle, was obtained,
and the total cross-section was deduced by applying
Eq. (14):

σ, --£.. (21)

The extrapolation (which is of the order of 5%) is main-
ly needed to correct for elastic events which are un-
avoidably lost because the charged particles do not
come out of the vacuum chamber.

In the approaches used by the CERN-Rome and the
Pisa-Stony Brook Collaborations, the total cross-sec-
tion depends in different ways on the luminosity L: in
one case atccL~i/2 [Eq. (20)] while in the other atccL~l

[Eq. (21)]. It is thus possible to combine the two meth-
ods and to obtain a value of the cross section which
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FIG. 5. Compilation of
data on total cross section
as a function of the labora-
tory momentum of the inci-
dent hadron ρ l a b and of the
total energy in the center of
mass Js· The curves are
from a model by Llpkin, to
be discussed in Section 5.1.
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does not depend upon the luminosity of the colliding
beams. This technique has been recently used by the
two collaborations already working in the field. Data
have been taken simultaneously with the experimental
arrangements of Fig. 4, so that elastic and inelastic
rates were measured for the same machine luminosity
and the total cross section was derived by applying the
formula

ΛΓ.1 (0) 1 (22)

The results of the three methods are perfectly con-
sistent, and the point to point error of the combined
results is ±0.6%. The scale error of this weighted
average is ± 0 . 7 % . 5

3.3. Results on total cross sections

The available data on total cross sections for pro-
tons 1 · 5 · 9 · 1 0 · 1 1 are summarized in Fig. 5. The meaning
of the curves will be discussed in Sec. 5.1. The in-
elastic cross sections of Fig. 6 have been obtained by
subtracting from at the elastic cross-sections atl, that
will be discussed in the next section. The differences

-

-
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y*' pp

ι . , Ί , · ι Ι

>

.-Serpukhov

•-ISK •

"*Ρ

ι
s m' so to1 soo n1

pL(GeV/c)

FIG. 6. Momentum dependence of the inelastic cross section
defined as a l n =a f -<r e l . Note that σ1η increases steadily with
ριΛ only for the two channels K*p and pp. This is attributed to
the quark composition of the two interacting hadrons: only for
these two channels there is no pair of quarks that could annihi-
late in the interaction. In fact the quark composition of a K*
and a proton are as and uud respectively [see Eq. (1)]_. On the
other hand a π*, for instance, has the composition ud, and the
d can annihilate with the i-quark in the proton target.

FIG. 7. Differences between the total cross-section of nega-
tive and positive particles on protons: Λσ,=σ(" — σ]. The data
have been fitted with a power dependence, as expected in a
Regge exchange model (see Section 5.1). The parameter a 0 is
defined by Aat = σ0 · pL ' "o.

in at for negative and positive particles are plotted
versus the laboratory momentum in Fig. 7. The in-
terpretation of these data will be discussed after some
typical experiments on elastic scattering have been
presented.

4. EXPERIMENTS ON ELASTIC SCATTERING

4.1. Scattering in the Coulomb region

Until now we have, for simplicity, neglected the fact
that two charged hadrons scatter not only through the
nuclear interaction, but also because their electric
charges repel or attract each other as a result of the
Coulomb force. Since the two types of scattering can-
not be distinguished, quantum mechanics tells us that
one has to sum the two amplitudes and that the differen-
tial cross section contains an interference term. At
high energy and in the forward direction the nuclear
amplitude fs is, as we have seen, mainly diffractive.
Formally this means that its phase differs by π/2 with
respect to the phase of the Coulomb amplitude fc.
Since the amplitude due to real Coulomb potential is - -
real, it follows that the nuclear amplitude is mainly
imaginary. However, in general it contains a small
real part, which for reasons of simplicity we have
neglected until now. To be consistent with the expo-
nential parametrization in If I [Eq. (8)] and with the
optical theorem [Eq. (10)] one usually writes:

/χ = (ί + Ρ)·^-«-*"12- (23)

With this normalization the differential cross section
takes the form do/dt— n\f I2. In the diffractive regime
the ratio ρ between the real and the imaginary part of
the nuclear amplitude is expected to be much smaller
than 1. The amplitude due to the Coulomb potential is
well known: for point-like particles of equal elementary
charges

where ot= 1/137 is the fine structure constant. Eq. (24)
gives the celebrated l/θ4 angular dependence of the
Rutherford elastic cross section. To complete it,
small corrections have to be applied to take into ac-
count the finite dimensions of the hadrons and the effect
of a small imaginary part.
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By summing the two amplitudes and then squaring,
the elastic differential cross section becomes STATION[

-£- = π/Sr + j t/g—~ ρσ,β-b ι' 1/2 + small corrections . (25)
GAS JET

The third term is due to the interference between the
two amplitudes and has a different angular dependence:
it is proportional to l/θ 2 . This allows its separation
and thus the determination of the ratio ρ of the real to
the imaginary part of the nuclear amplitude, once at

and b are known. Eq. (25) is the basis of all experi-
ments which, by measuring di/dt in the region where
the interference is not negligible, derive the ratio p.
The interference is greatest where the nuclear and
Coulomb amplitudes are equal, that is at momentum
transfers ί ^ 2 · 10"3 GeV2. These small values of f,
the so-called "Coulomb region", have to be reached
to measure p. In the following we shall describe two
types of experiments performed one at Serpukhov and
at the Fermilab proton synchrotron, and the other at
the Intersecting Storage Rings.

V. Nikitin and coworkers at the Joint Institute for
Nuclear Research in Dubna were the first to study pro-
ton-proton scattering at small momentum transfers by
measuring the kinetic energy of the recoil proton. 1 2 · 1 3

After a projectile proton has been scattered by a proton
at rest in the laboratory, the fast proton moves at a
small angle θ in the laboratory while the other proton
recoils at angles around 90° with a small kinetic energy
Γ . This kinetic energy is directly proportional to the
momentum transfer:

111 = 2MT. (26)

The experimental method is based on the measurement
of T. Since the range of these protons is very small,
one must use thin targets. The group mentioned above,
together with Y. Pilipenko, devised a supersonic hy-
drogen jet as a target to be put in the internal beam of
an accelerator. The first experiment was performed
at Serpukhov14 and the others at Fermilab near
Chicago.15

A schematic layout of the detection apparatus is
shown in Fig. 8. The beam circulating in the accelera-
tor traverses the gas jet pre-cooled at 40° Κ and the
recoil protons are detected at a distance of about 2.5 m

.COLLIMATOR

AREA~1cmJ

1.5 mm

FIG. 8. (a) Principle of the gas jet technique. The circulating
proton beam of a synchrotron traverses the jet of hydrogen,
which moves perpendicularly to the drawing. The recoil pro-
ton is detected at few meters by solid state detectors. In
some cases the sensitive area of the detectors is reduced by
means of a collimator. (b) Realization of the above principle.
A valve is used to separate the vacuum in the accelerator from
the chamber containing the detectors.

by detectors mounted on a moveable carriage. Many
solid state detectors of ~1 cm2 area measure the pro-
ton energies, if these are smaller than about 30 MeV.
Since each detector is located at a fixed angle, the en-
ergy spectrum of the recoils registered by the detector
shows a peak for elastically scattered protons. This
allows a very accurate subtraction of the events due to
the nonelastic background. In this experiment the high
intensity of the internal beam and the multiple travers-
als through the target compensate for the small density
of the hydrogen jet and result in luminosities of the or-
der of 1034 cm"2 s"1. However, it is very difficult to
measure absolute cross sections because an indepen-
dent measurement of the beam-jet luminosity cannot be
performed.

The second experiment to be discussed was per-
formed by the CERN-Rome Collaboration at the Inter-
secting Storage Rings.1 6·1 7 A sketch of the experimen-
tal arrangement is shown in Fig. 9. Protons elasti-

ISR MAGNET —

INTERACTION

REGION

. PROTON BEAM

"ROMAN POTS"

FIG. 9. Plan view and side view of one of the ISR interaction regions where a Coulomb experiment has been performed. Two
columns placed at 9 meters from the crossing point hold two movable indents of the vacuum chambers. These so called "Roman
pots" were moved very close to the circulating beams after their stacking in the machine was completed.
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FIG. 10. Mechanical mounting of one column and two Roman
pots. One of the two motors below moves the lower pot, the
other moves the hodoscope system In the pot. For the Coulomb
experiment performed In the years 1972-197316 each of the
four hodoscopes was formed of 14 scintillators and had the
structure indicated in the figure. In the last refined experi-
ment, performed in 1976-197716, each hodoscope was formed
of 32 scintillators.

cally scattered in the vertical plane were detected by
hodoscopes of scintillators placed in indents of the
vacuum chamber at about 9 m from the intersection
point. The movable sections are known by now as
"Roman pots". A cross section of the holding column,
with Roman pots and a hodoscope is shown in Fig. 10.
Four scintillator hodoscopes were placed in these pots,
which were moved very close to the circulating beams
after the stacking of the protons was completed. Suc-
cessively the scintillators were moved inside the pots
to come as close as possible to the circulating beams.
The hodoscopes were assembled in three layers; a
stack of twenty four 2 mm high scintillators that de-
fined the vertical component of the scattering angle, an
array of seven vertical 4 mm wide fingers that deter-
mined the horizontal component, and behind them a
single trigger counter. The four hodoscopes were
combined in two pairs such that, for elastic collisions,
if one proton hit a hodoscope the other proton traversed
the hodoscope conjugate to the first one.

To be able to move the counters well into the region
where Coulomb scattering dominates, beams of a height
and a width of only a few mm were essential. There-
fore the ISR was operated using the Terwilliger focus-
sing scheme, described in Section 3.2, and thus super-
imposing the equilibrium orbits for different momenta
in the intersection region. In addition the halos of the
beams were scraped off at injection time and at regular
intervals during data taking. Beams of a few amperes
were obtained with cross sections twice as low and ten
times as narrow as under normal running conditions.
This made it possible to bring the counters as close as
9 mm from the beam axis, where they detected protons
scattered at angles of 1 mrad. 1 6 This corresponds to
III <*10~3 GeV2 when the momentum of the two colliding
beams is 31 GeV, the maximum attainable at the ISR.

A typical angular distribution obtained at 26.7 GeV
is shown in Fig. 11. At small values of the momentum
transfer the rapid decrease of the Coulomb cross sec-

I/I,GeV*

FIG. 11. Typical differential cross section measured at the
CERN ISR. At very small momentum transfers the Coulomb
amplitude dominates, while above |f |<*0.01 the nuclear ampli-
tude determines the behavior of the cross section. The contin-
uous line represents the best fit to the data.

tion is apparent. Above I/I <* 0.01 GeV2 the slowly de-
creasing nuclear amplitude dominates. The dashed
line represents the expected distribution if the ratio ρ
between the real and the imaginary parts was zero. It
is seen that the interference is destructive. A fit to
the data gives ρ = 0.078 ± 0.010. This is one of the
most accurate measurements ever performed of the
quantity p.

Fig. 12 is an up-to-date summary of the available
information on ρ obtained with the usual six types of
projectile hadrons. 1 5· 1 6· 1 7 At momenta of the projectile
hadrons larger than a few GeV/c, ρ is of the order of
10"1, i .e. the elastic scattering amplitude is essen-
tially imaginary as is expected for a diffractive ampli-
tude.

In optics the real part of the refractive index of a
medium at a given frequency may be expressed as an
integral over a function of the imaginary part of the
refractive index extended to all frequencies. Such a
"dispersion relation" follows from a very simple
causality condition; when a light packet impinges on a
medium, no diffracted wave can appear before the
packet arrives. Of course the same condition applies
to the quantum mechanical wave packets describing the
hadrons. Thus a dispersion relation connects the real

Pi(GeV/c)

FIG. 12. The data for this compilation of the ratio ρ between
the real and the Imaginary part of the forward nuclear ampli-
tude have been taken from Kefs. 15, 16, and 17. The curves
are computed by means of dispersion relations by using as in-
put the total cross section.18 The overall agreement is good.
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and the imaginary parts of the nuclear amplitude.
Since the imaginary part of the nuclear amplitude is
proportional to the total cross section (optical theo-
rem), at any given energy the value of ρ may be ex-
pressed as an integral of the total cross sections for
particle and antiparticle over the whole energy region.
The curves of Fig. 12 have been computed in this way18

and their overall agreement with the data demonstrates
the validity of the causality principle in the subnuclear
world.

4.2. Scattering at intermediate momentum transfers

As discussed towards the end of section 2, the mea-
surement of the forward slope b of the nuclear differen-
tial cross section is equivalent to a determination of the
hadron-hadron interaction radius. (In this connection
it is worth looking back to Eq. (9).) Indeed, according
to the indeterminacy principle, collisions with small
momentum transfers probe large spatial distances, and
they give information not on the internal structure of
the hadrons but on their overall dimensions and shape.
This was the aim of an experiment now being performed
at Fermilab by the Single Arm Spectrometer Group.l9

This experiment used particles of momenta between
20 and 200 GeV/c produced in a beryllium target at 2.65
mrad with respect to the extracted proton beam from
the 400 GeV accelerator. The beam transport system
had three stages each 150 m long: a collection stage,
in which the solid angle and momentum bite were de-
fined, a filtering stage, which suppressed the beam
halo, and a recombination stage, which produced the
final achromatic image. Along the transport system
hodoscopes of scintillators measured the momentum
and the direction of the incident particles and Oerenkov
counters tapped it as a pion, a kaon or a nucleon. At
the end of the transport system there was the hydrogen
target followed by the spectrometer. Since the spec-
trometer was situated at 0° with respect to the trans-
port system, it could not pivot around the target to vary
the scattering angle. The angle between the incident
beam and the spectrometer was then varied by magnetic
deflection of the incident beam. A system of three
bending magnets located just upstream of the hydrogen
target was used to pitch the incident beam in the ver-
tical plane, as shown in Fig. 13. Along the spectrom-
eter, ten multiwire proportional chambers provided in-
formation about the trajectory and the momentum of
the scattered particles. Three threshold Cerenkov
counters and a differential Cerenkov counter served to
identify scattered particles as pions, kaons or nucleons.

(10 foot)

Incident

Angle
(20 foot) Hodoicope

(10 foot)

Muttl Wire
Chamber·

Trigger Threihold Trigger
C o u n t e r Cerenkovt Counter

FIG. 13. Schematic drawing of the Single Arm Spectrometer at
Fermilab. The incident beam is deflected in the vertical plane
so that the spectrometer detected particles scattered in the
target at the angle φ . Multiwire proportional chambers mea-
sured the scattered particles and four Cerenkov counters iden-
tified them.
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FIG. 14. Differential cross section versus the momentum
transfer at ρϊύ)= 175 GeV/c. A similar behavior is observed
also at the other momenta measured by the Single Arm Spec-
trometer Group.18 The data are well fitted by the parametriza-
tion of Eq. (26).

Some of the data obtained in this experiment are
shown in Fig. 14. The qualitative behaviour of the an-
gular distribution is similar for all projectile hadrons
at all momenta. For If Is0.8 GeV2 all the data can
be well fitted by the simple expression

where C is of the order of 2 GeV"4 above 10 GeV/c.
The quadratic term is introduced to reproduce the con-
cave behavior of άσ/dt appearing in Fig. 14. For Ul
smaller than 0.1 GeV2 the second term in the exponen-
tial is negligible and the parameter Β measures the in-
teraction radius. Figure 15a summarizes the present-
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FIG. 15. Compilation of slope data.1 6·2 0 Since the slope of the
differential cross section depends upon the differential cross
section depends upon the momentum transfer, the average
value of |i | has to be specified. Figure a shows the logarith-
mic increase of the proton-proton slope at a very small value
of the momentum transfer. The other figures show the energy
dependence of the slope of the usual six scattering reactions
for a larger value of the momentum transfer. The larger in-
crease is observed in the pp and in the K*p channels, remin-
iscent of the situation found for the inelastic cross section
(Fig. 6).
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ly available data on the slope b of proton-proton scat-
tering.2 0 The forward slope increases logarithmically
with s, the square of the centre of mass energy.

An educated fit to the data above 100 GeV2 is:

bvp = 6.97 + 0.77/nn"(s) (27)

This increase of the slope is usually expressed by
saying either than "the forward proton-proton nuclear
amplitude shrinks with energy" or that "the proton-
proton interaction radius increases logarithmically with
energy". A similar behavior is observed in the K*p
channels, while the diffraction peaks in τι*ρ and K~p
scattering do not shrink appreciably with energy.

Figure 15 also shows the energy dependence of the
slopes measured at an intermediate value of the mo-
mentum transfer, liI = 0.2 GeV. There is less energy
dependence at this transverse momentum than at UI«0.

4.3. Scattering at large momentum transfers

The Aachen-CERN-Geneva-Harvard-Torino Collab-
oration working at the CERN Intersecting Storage Rings
(ISR) discovered that at high energy the proton-proton
differential cross section has a minimum around I/I
= 1.4 GeV2. Figure 16 summarizes the data as a func-
tion of the momentum of the projectile proton impinging
on a proton at rest in the laboratory.21 The typical
diffractive minimum is deepest around 200 GeV/c and
moves towards smaller values of Ul when the energy
increases. This behavior is consistent with the shrink-
age of the forward slope: in the ISR energy range,
that is for V~s increasing from 23 to 63 GeV, the slope
b increases by (12 ±3)%, while the value of the momen-
tum transfer \tm I, at which the minimum appears, de-
creases by (14±3)%.2 2 These two facts are both con-
sistent with a proton-proton interaction radius in-
creasing with energy by about 6% in the ISR energy
range, which corresponds to a range of laboratory mo-
mentum which goes from 290 to 2000 GeV/c.

Recently further data have been obtained by the
CERN-Hamburg-Or say-Vienna Collaboration.23 This
group has worked for many years using the Split Field
Magnet (SFM) mounted in one of the intersection regions

Central
Forward detector

INSIDE OF ISR

FIG. 17. Perspective view of the Split Field Magnet (SFM)
mounted in intersection 4 of the ISR. The top part of the mag-
net and the forward detector on beam 1 are removed to show
the details of the central detector. The multiwire proportional
chamber has in total about 70,000 wires. The magnetic field
is 1 Tesla and points upward on the left hand side of the mag-
net, as seen from the inside of the ISR, and downward on the
right hand side.

of the ISR. A perspective drawing of the SFM facility
is shown in Fig. 17. In this drawing the top part of the
magnet has been taken away to show the two vacuum
chambers, that cross at 14.8°, and the set of multiwire
proportional chambers used to detect the charged par-
ticles produced in the events selected by the trigger
system. The detectors used in this experiment were
the two forward telescopes, each equipped with 12
chambers, 1 m high, 2 m wide and having wires spaced
2 mm one from the other. The average magnetic field
was 1.0 Tesla, providing a momentum resolution of
±7% for the scattered protons. The large coverage of
the chambers allowed an acceptance larger than ~ 40%
for momentum transfers larger than 3 GeV2. The re-
sults are plotted in Fig. 18, which shows that behind
the minimum the slope of the cross-section is b2- 1.8
GeV"2. Around 6.5 GeV2 there is a kind of break and
a third slope 6 3=0.9 GeV"2 appears in the range 6« I/I
« 10 GeV2. By using an optical model it was quite natu-
ral to expect a second diffraction minimum around 4 or
5 GeV2. The data exclude this possibility.

FIG. 16. The dip in proton-proton elastic scattering gets
deeper with the momentum of the incoming proton. Moreover
the position of the diffractive minimum moves with momentum
towards smaller momentum transfers. The data are taken from
from the papers of Ref. 21 and 22.

53 GeV

FIG. 18. Proton-proton differential cross section as measured
at the SFM by the CERN-Hamburg-Orsay-Vienna collabora-
tion.23 Around 6 GeV2 the slope of the differential cross sec-
tion changes. These results are confirmed by data obtained at
Fermilab, and show that there is no second minimum for mo-
mentum transfers smaller than 10 GeV2.
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5. WHAT HAVE WE LEARNED FROM HADRON-
PROTON SCATTERING?

As anticipated, the higher energy and intensity of
proton beams and the use of the proton-proton Inter-
secting Storage Ring have resulted in the availability
of proton-proton data of high quality. Experiments on
scattering of other hadrons by protons and neutrons are
less abundant and precise, so that in the discussion of
the general feature of high energy diffraction the pro-
ton-proton channel plays a dominant role. With this
in mind, let us now discuss the main findings.

5 . 1 . Energy dependence of total cross sections

Two features are apparent from Figs. 5 and 7. The
differences of the cross sections for particles and anti-
particles scattered by protons decrease rapidly with
energy and all cross sections have a shallow minimum
around 50 GeV/c, with the exception of the K*p channel.

The convergence of particle and antiparticle cross
section towards a common value is in agreement with
a fundamental theorem due to Pomeranchuk,24 that fol-
lows from very general hypotheses on the energy de-
pendence of the scattering amplitudes. The energy be-
havior of the differences plotted in Fig. 7 can be under-
stood in the framework of an exchange picture of high
energy hadron-hadron collisions. In quantum electro-
dynamics the basic process used to describe electron-
proton scattering is the exchange of a virtual photon
between the two colliding particles (Fig. 19a). The
Coulomb amplitude describing this process appears in
Eq. (24): α is the coupling constant between charges
and photons, and 1//>202=1// is the factor describing
the propagation of the virtual photon. The simplicity
of this formula follows from two facts: (i) in electro-
dynamics the coupling constant is small and (ii) there
is only one virtual particle that, through its exchange,
gives rise to electromagnetic forces. In the case of

FIG. 19. (a) Electron-proton scattering Is due to the exchange
of a virtual photon, (b) From the point of view introduced by
Chew and Frautschl,25 pion-proton scattering is mediated by
the exchange of a set of particles having the same quantum
numbers but different spins. One of this set is called "Reg-
geon". The figure depicts the exchange of a Reggeon R. (c)
From the point of view of the constituent quarks, the exchange
of a Reggeon is represented as the annihilation and the simul-
taneous creation of a quark-antiquark pair.

strong interactions, the coupling constant is large and,
moreover, many virtual hadrons may be exchanged.
Still the application of ideas due originally to Regge25

allows us to use a relatively simple picture of hadron
collisions. In this approach the exchange of particles
having the same quantum numbers but different spins
are all lumped together as a contribution of what is
called a "Regge trajector". The graph of Fig. 19b thus
represents the amplitude caused by the exchange of all
the virtual hadrons lying on the same trajectory R.
This averaging procedure over many elementary pro-
cesses leads to a simple energy dependence for the
amplitude:25

(So=lGeV>). (28)

Here we cannot discuss the f-dependence of the com-
plex factor F(i) but we direct our attention to the power
dependence of the Regge amplitude. This dependence
is different at different values of the momentum trans-
fer and is determined by the Regge trajectory a(/). The
trajectory is fixed, for small values of t, by the masses
of the particles that are connected by the trajectory in
a single family and thus the energy dependence of the
amplitude of Eq. (28) is well defined. Due to the op-
tical theorem [Eq. (10)], the expected energy depen-
dence of the total cross section is:

(29)

where 0^(0)> a2(0)> a3(0) etc. and the sum is extended
to all Regge trajectories that can be exchanged between
the two hadrons without violating the known conservation
laws. To obtain an asymptotically constant total cross
section, the first Regge trajectory should have aj(0)=l.
The data indicate that all cross-sections rise with en-
ergy and that to fit them one needs ar(0)«1.05. The
trajectory with "intercept" α(0) = 1, that determines the
very high energy behavior of the total cross sections,
has been named "Pomeron". Indeed, having the largest
intercept, it dominates asymptotically for s —°° and,
being equally coupled to particles and antiparticles,
automatically guarantees the validity of Pomeranchuk
theorem. The secondary trajectories have a smaller
intercept and the difference between particle and anti-
particle total cross sections should behave as

Δσ, = ( J - p " ' (30)

The data of Fig. 7 show that the expectation of a power
behavior is met. The values of the power are consis-
tent with the figures that one can predict for a2(0) from
the known values of the masses of the particles that lie
on the secondary trajectories. In summary, from an
exchange point of view the data on total cross sections
point to a Pomeron trajectory having an intercept
larger than 1 and are in agreement with the expected
contributions of the secondary trajectories.

The Pomeron contribution in the exchange picture is
what we have called "diffraction scattering" in the op-
tical picture discussed in the previous sections. In-
deed, it is essentially imaginary and dominates at high
energy. From the point of view of the quark structure,
this contribution is expected to have a strength propor-
tional to the overall number of quarks and antiquarks
in the projectile hadron.26 To understand this result it
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is enough to assume that (i) in a hadron-hadron scat-
tering the quark-quark forward amplitudes add and that
(ii) the amplitudes dominating at very high energy are
all equal, independently of the nature of the interacting
quarks. In this picture the contribution of the secondary
Regge trajectories is related to the annihilation of the
antiquarks of the incoming hadron with the quarks of
the target proton and is proportional to the number of
possible combinations (see Fig. 19c). These two terms
give a three parameter description of the total cross
sections with an accuracy of the order of 15%. A few
years ago Lipkin noted that the addition of a third term
containing two other parameters could improve the
accuracy by an order of magnitude.27 The proposed
universal parametrization for the hadron-proton (Hp)
cross section is compared with the data in Fig. 5 and
reads

Vf *°.<3 -f 1. ") χ-»·»

where:

x = />,*/(20 GeV/c)«s [see Eq. (12)]

ΛΓ* = total number of quarks in Η

ΛΓ*,= total number of nonstrange quarks and anti-
quarks in Η

N$ = number of ~d~ antiquarks in Η

χ2 = number of ΰ antiquarks in Η.

The first and second terms of Eq. (31) are the quark
model recipes for the Pomeron and Regge contributions.
The third term decreases slowly with energy and can
be considered as due to a second Pomeron with inter-
cept a(0)«0.8.

We may conclude this argument by stressing that
measurements of the total cross section are experi-
ments at zero momentum transfer, i .e. that they be-
long to the class of experiments in which it is impossi-
ble to obtain directly information on the internal struc-
ture of hadrons. However, the available data are con-
sistent with a quark-quark picture supplemented by
some simple hypotheses. Another model, that con-
siders the "glue" as an active agent in strong interac-
tions, will be described in Section 5.3. It describes
elastic scattering data well, but does not give simple
expressions for the total cross sections. Both mddels
have attractive features, but clearly the final answer
has not been reached.

A relevant question in connection with the energy de-
pendence of the total cross sections is: what is their
behavior at energies even larger than the ones attain-
able at the ISR? A general theorem due to Froissart2 8

states than an asymptotic power law, such as the one
that appears in Eq. (31), is not compatible with caus-
ality. According to this theorem a hadron-hadron cross
section cannot increase faster than (Ins)2. We are,
however, very far from "asymptotia" and it can be
shown that the observed increasing cross sections have
nothing to do with approaching the saturation limit set
by Froissart. Thus the only reliable information on
higher energy proton-proton cross sections comes from
the already discussed accurate measurement of the
ratio ρ performed at the ISR by the CERN-Rome Collab-
oration. 1 6 A dispersion relation connects ρ to an inte-
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FIG. 20. The round points represent the most recent measure-
ments of ρ and σ, performed at the ISR. The continuous curves
are simultaneous fits to the energy dependence of the ratio ρ
and the total cross section at, taking into account the disper-
sion relation that connects these two quantities. The accurate
determination of ρ at the ISR fixes the behavior of σ, at much
larger energies, so that one can say that the total cross sec-
tion increases up to at least 350 GeV in the center of mass.
In this context, the dashed areas represent the one standard
deviation regions, such that there is a 68% probability that the
quantities ρ and σ, do not lie outside them.

gral over the total cross sections; at a fixed energy
such an integral relation states, roughly speaking, that
ρ is proportional to the derivative of the cross section
as a function of In s. This explains why an accurate
measurement of the forward real part constrains very
strongly the behavior of at. The results of a simul-
taneous fit to all the available data on ρ and σ, are
shown in Fig. 20.1 6 In the fit the high energy behavior
of σ ( has been varied. As a result one has obtained the
shaded areas, that are one standard deviation limit for
the high energy behavior of both quantities. It is seen
that the proton-proton cross section continues to in-
crease above the measured range up to at least -is
-300 GeV, that corresponds to />Ub«50.000 GeV/c,
where it should reach 55 mb.

5.2. Elastic cross sections and hadron-proton

absorptiveness

Elastic cross sections are obtained by integrating the
differential cross section άσ/dt. Accuracies of the or-
der of a few percent may be obtained when the integral
is extended up to momentum transfers of the order of
1 GeV2. The existing data are plotted in Fig. 21 to-
gether with the energy dependence of the ratio a e l /a f .
The most striking feature is that all channels reach a
constant value of atl/crt by 100 GeV. Especially im-
pressive is the fact that the value 0.18 for proton-pro-
ton scattering is observed from 10 GeV to ISR energies.

In the diffraction picture the ratio 2σβ1/σ( is a mea-
sure of the average hadron-hadron absorptiveness A
[see Eq. (6)]. Above about 10 GeV the data of Fig. 21
give A - 0.26 in the ττ*/> and K*p channels and A - 0. 36
in the pp and pp channels. These numbers are small,
indicating that hadrons are relatively transparent to
one another. Moreover, their absorptiveness does not
vary appreciably with energy, in spite of the fact that
the total cross sections increase.

A constant absorptiveness is compatible with an in-
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FIG. 21. Compilation of data on the energy behavior of the
elastic cross section and on the ratio σβ1/σ(.

29 It is worth re-
calling that In a simple diffraction picture the average hadron-
hadron absorptlveness equals 2<rrt/at [Eq. (6)].

creasing total cross section only if the interaction
radius R increases with energy. This is indeed the
case, as is indicated by the (12 ±3)% increase of the
forward slope observed for the proton-proton channel
in the ISR energy range, i .e. when -fs increases from
23 to 63 GeV. In the same interval the total cross
section increases by (11 ±2)% and, as discussed in
Section 4.3, the position of the minimum in the elastic
cross section moves by (14 ±3)%. All these data are
thus consistent with the picture that in the IRS energy
range the proton-proton absorptiveness stays constant,
while the interaction radius increases by about 6%.
Similar phenomena are also appearing in the other
channels, pointing to the conclusion that at high energy
strong interactions are such that hadrons are far from
being fully absorbing bodies. When the energy in-
creases their absorptiveness remains sensibly constant,
a fact that came as a surprise just because they are not
fully absorbing. The interaction radius which increases
more or less as the logarithm of energy gives rise to
the phenomenon of the rising hadron-hadron cross sec-
tions. All this is at variance with the theoretical ex-
pectations of the sixties, when Regge models predicted
constant cross sections with an increasing interaction
radius and a decreasing absorptiveness.

More detailed analyses of the differential cross sec-
tion data are possible as a result of which one can ob-
tain the shape of the absorptiveness profile, and not
only its average value. They are summarized in a re-
cent review paper. 3 0 These more refined analyses
arrive at the same conclusion: the hadron-hadron ab-
sorptivness profiles scale with energy in such a way
that the central absorption stays constant while the
average radius increases. 3 1 Now the question that
arises is: why do the inelastic processes, that in the
optical picture are responsible for absorption and for
the consequent diffraction, give rise to this very spe-
cial behavior? In the exchange picture the same ques-
tion is expressed in different words: why does the
Pomeron behave in the presently attainable energy
range as if its intercept were larger than 1 by about 5%.

Two languages but a single question to which we do not
have, for the moment, a convincing answer. Moreover
an understanding of this difficult dynamical problem of
the strong interactions should be reached by taking into
account the composite structure of the hadrons that was
discussed in Section 1 and that is consistently indicated
by experiments on the weak and electromagnetic forces.

5.3. Diffraction scattering and hadron structure

As has been stressed repeatedly, low momentum
transfer experiments cannot give direct information on
the internal structure of the interacting particles. On
the other hand, since lepton-hadron scattering has
shown that hadrons have a composite structure, it is
legitimate to ask whether the diffraction data described
above can be coherently interpreted in the framework
of the quark model introduced in Section 1. Many at-
tempts have been made in this direction. We shall
concentrate on the approach due to Fialkowski, Pokor-
ski and Van Hove,31·32 that has the merit of being in-
tuitively simple and of connecting with few hypotheses
a large amount of sparse information.

Let us first list the four main facts one would like to
correlate,

(i) As is shown above, it follows from the data on
hadron-hadron elastic scattering that the central ab-
sorption is practically constant with energy, while the
interaction radius increases linearly with In s. By
making use of a particle language, let us indicate by
a the minimum distance of approach of the two colliding
hadrons. The absorption A is in general a function of
the "impact parameter" a, and the experiments sum-
marized above tell us that at high energy the functional
dependence is very simple.

( 3 2 )

This property has been named "geometrical scaling"33

because it implies that with increasing energy the ab-
sorptiveness profile maintains its shape, but scales in
radius. Eq. (32) gives rise both to the logarithmic in-
crease with energy of the slope parameter 6 (Eq. (27))
and to the increasing total cross section.

(ii) The value of the central absorption A(0) is rela-
tively small. In the proton-proton case the analysis
performed on the data shows that for 23 « Vs"« 63 GeV
one has A(0)-0.75. This value is far from the maxi-
mum allowed A(0)= 1.0, that corresponds to full ab-
sorption of the proton waves at impact parameter equal
to zero. For full absorption the energy dependence of
the central absorptiveness would be a trivial statement,
since A(0) cannot be greater than 1.' But one is far
from this condition and geometrical scaling is a dynam-
ical fact to be understood.

(iii) The elastic cross section has a minimum at 111
-1.4 GeV2 and above this minimum the slope is small:
6=1.8 GeV 2 . Moreover, there is a change of slope
around ΚI -8 GeV2 but no other minimum is observed.

(iv) Elastic diffraction scattering is due to the ab-
sorption caused by the large cross section for the in-
elastic processes. For this reason it is often said that
at high energy elastic scattering is the shadow of the
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inelastic channels. An important phenomenon, that is
out of the scope of the present article, is also caused
by the very presence of the inelastic channels: inelastic
diffraction scattering. Its nature can be understood in
rather simple terms; a more complete discussion can
be found in Ref. 30. Due to their composite nature,
the colliding hadrons can be described as linear super-
positions of many states having the same intrinsic
quantum numbers. During the interaction these "dif-
fractive eigenstates" give rise to different inelastic
processes, so that each of them is, in general, ab-
sorbed in a different way. After the interaction, the
various diffractive eigenstates are no longer present
with the same weights so that their superposition gives
back the initial hadrons (elastic diffraction scattering)
plus other hadrons, having the same intrinsic quantum
numbers but different masses (inelastic diffraction
scattering). Experiment shows that at high energy the
inelastic diffractive cross section aD is almost equal
to the elastic cross section σβ 1. Only recently has it
been realized that this is a surprising result. 3 4 Indeed,
elastic diffraction is directly given by the absorption
profiles of the diffractive eigenstates while inelastic
diffraction is determined by the differences between
these profiles. These differences have to be large, if
aD has to be equal to σβ 1. This means that the diffrac-
tive eigenstates have to group in two categories, some
of them being heavily absorbed while others are almost
undisturbed by the interaction. In this way at least
some of the profile differences may get a chance to be
large. Since here it is not possible to go into more
detail, it is enough to stress that any dynamical model
of diffraction has to explain why the diffractive eigen-
states behave so differently from one another.

This remark concludes the list of the four facts one
would like to understand from a unified point of view.
The quark-glue model of Fialkowski, Pokorski and Van
Hove regards hadrons as built up of quarks and "glue",
this being responsible for the quark-quark forces.
While electromagnetic and weak interactions act only
on the quarks, the glue is responsible for the hadronic
inelastic processes. In a hadron-hadron collision the
quarks fly through, thus giving rise to the so-called
leading particles, while the glue interacts producing
the bulk of the secondary hadrons. The authors have
shown that the momentum distribution of the quarks
inside a hadron derived from lepton experiments is
naturally related to the measured distribution of the
leading particles. Moreover, the model produces
large variations of absorptiveness for the diffractive
eigenstates to account for the observation discussed
above under point (iv). This is related to the fact de-

7

L·
FIG. 22. Schematic plcutre of a proton-proton Interaction In
the quark-glue model: at and a are the glue-glue and proton-
proton impact parameters. The black dots represent the
quarks determining the intrinsic quantum numbers of the col-
liding protons.

picted in Fig. 22a: the glue-glue impact parameter
af is not equal to the hadron-hadron impact parameter
a. By assuming that the absorption is complete for
central glue-glue collisions, one obtains the needed
wide spectrum of absorptions. Indeed, for a given
hadron-hadron impact parameter a, when a, = 0 one has
A = 1, while A decreases rapidly to zero for increasing
a,.

In this model the energy independence of A(a= 0)
(point (ii)) follows from the fact that for a=0 the glue
impact parameter at is not fixed. By averaging over
the glue-glue impact parameter with a gaussian dis-
tribution in af and with A(af = 0) = 1, Van Hove and
Fialkowski have shown that the proton-proton central
absorption can be consistently made equal to 0.75. On
the other hand the geometrical scaling properties of
the absorptiveness profile [point (i)] do not come out
automatically, and one has to assume that the glue-
glue interaction radius increases with energy.

Finally, it is enough to assume that the glue-glue
absorption is maximal not only at at=0 but also in a
small but finite interval around this point32 to give a
very good description of the elastic cross-section for
0« If 16 8 GeV2 [point (iii)].

In this model the glue is responsible for strong in-
teraction collisions. A few very natural assumptions
lead to a coherent understanding of the four facts de-
scribed above. However, in order to account for the
successes of the quark model relations for the total
cross sections (and in particular for Eq. (31)) one
should furthermore assume a dependence of the glue
density on the number and properties of the quarks.
Clearly we are far from a deep understanding of elas-
tic (and inelastic) hadronic diffraction scattering at
high energy. But the way is already open to illumi-
nating relations between this physics and the informa-
tion on the structure of the hadrons continuously gath-
ered from experiments involving weak and electromag-
netic forces.
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