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Some typical resonance nonlinear-optics phenomena taking place when light interacts with atoms are
considered. The multitude of such phenomena reduces to scattering of the perturbing light, perturbation of
the atomic spectrum, excitation of an atom and its ionization. In all these cases the investigations are
carried out using the simplest model—an isolated atom in a monochromatic external field. Such a model
enables one to give an exact description of many elementary processes. On the other hand it is sufficiently
realistic. A detailed investigation is carried out of resonance fluorescence, spontaneous Raman scattering,
multiphoton excitation of atoms, resonance shifts and splitting of atomic levels and resonance ionication of
atoms. The nature of these processes is investigated as a function of the intensity of the external field, its
frequency, a specific atomic spectrum, the nature of polarization of the perturbing field, and the degree of
its nonlinearity. The role played by the field of the electromagnetic vacuum is analyzed. Theoretical
predictions are compared with the results of many experiments describing resonance processes of the

interaction of an intense light field with atoms.

PACS numbers: 32.80.Kf, 32.80.Fb, 32.50. + d, 32.70.Jz
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1. INTRODUCTION

In this review we consider the overall picture of res-
onance nonlinear-optics phenomena occurring when
light interacts with atoms.

Throughout we shall utilize the simplest model—an
isolated atom in a monochromatic classical external
field. Such a model, on the one hand, enables us to
give an exact description of many elementary processes,
and, on the other hand, is a sufficiently realistic one.
At the present time it is possible in practice to obtain
at any frequency in the visible range sufficiently intense
radiation with spectral width of the order of the natural
width of atomic levels or even with a smaller width.

The use of the method of intersecting beams—a light
beam and an atomic beam-—makes it possible not to
have to take the Doppler effect into account. The high
intensity of laser radiation, and also the high sensitivity
of phonon and ion detectors enable one to utilize suf-
ficiently rarified targets and thereby to ignore secon-
dary processes. One should also keep in mind that these
particular ideal conditions are optimal ones for a wide
range of practically important problems associated with
selective action of intense laser radiation on an atomic
medium.

First of all we specify more precisely the content
which we ascribe to the concept of resonance inter-
action.

When reference is made to a resonance between the
frequency of an external field w (or of its higher har-
monics) and the transition frequency w,, between defin-
ite bound states of an electron in an atom E{®’ and E{*,

309 Sov. Phys. Usp. 21(4), April 1978

Introduction. .. .. e
. Two-Level System ............. ... ..o iiii.n.
. Resonance Fluorescence Spectra . ......................
. Three-Level System in a Resonance Field. . . . . . e
. Multiphoton Excitation . ... ............... .. .. ......
. Resonance Ionizationof Atoms. . ......................
LConclusions . . ... .. e ;
References. .. ........ . i

0038-5670/78/040309-19%01.10

then it is always assumed that these frequencies are
close to each other. In the simplest case of a phonon
resonance with which we will deal at the outset the con-
dition of closeness takes the form w = w,,=E{ -E®,
where Ef,,‘:’,, are energies of bound states in an unper-
turbed spectrum,’ It is well known in practice that the
actual condition for the observation of resonance phen-
omena is one imposed on the magnitude of the deviation
fromresonance A= w,,, ~ w <7, ,, wherey, ,isthere-
duced width of the resonance. Inwhat follows we also shall
bebasically interested in small deviations from resonance
or, as is often said, in “exact resonance”, the condition
for the attainment of which will differ from the one stated
above only by the presence of the dependence of the
resonance on the intensity of the external field. Such
an approach follows naturally from the assumption of
high intensity of the external field. However, in actual
fact the attainment of resonance is associated with the
selection from among the finite number of bound elec-
tron states E{* of two specific ones, E{?), and there-
fore the rigorous definition of the resonance process
turns out to be much less restrictive:

A= opy — 0 & Omp- (1)

This condition is well known from the old, “prelaser,”
physics. However in cases of interest to us when we
are dealing with processes occurring in a strong light
field it is necessary to take into account the perturba-
tion of the atomic spectrum by the external field, so
that condition (1) turns out to be a necessary but not a
sufficient one. It must be complemented by the con-

1) we shall everywhere use the system of units e=fi=m,=1.
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which is in actual fact the condition for the weakness
of the perturbation of the resonance states m,n by the
external field & (d.» is the dipole moment of the two-
level system m,n). We note that the ratio d,,&/a can
take on arbitrary values.

A generalization of conditions (1) and (2) to the case
of multiphoton resonance is not trivial; it is carried
out in section 5.

We now turn our attention to the principal parameters
characterizing the light field.

First of all we note that, as is well known, if the con-
dition n,, >> 1 is satisfied, then the field can be des-
cribed as a classical one (where n,, is the number of
quanta of a given oscillation mode, i.e., of an oscilla-~
tion characterized by the propagation vector k and po-
larization @). The condition stated above is equivalent
to the following condition on the intensity of the field
of the wave: &> (w3Aw /c?)*/? which in the visible
range gives a numerical estimate of €>»>1V/cm. Ob-
viously this condition is in fact satisfied in all cases
of interest to us. Therefore in what follows the field
will everywhere be described classically, and the in-
teraction of light with atoms (in the dipole approxima-
tion which we will utilize in the greater part of this re-
view) has the form V =d& coswf. The terms “quantum”
or “photon” will be utilized either to preserve the tra-
ditional terminology, or to characterize the frequency
of the classical field in language usual in the physics of
an atom which is, as is well known, in principle a
quantum object.

One of the basic parameters appearing in problems
of interest to us is the time T during which the external
field & acts on an atoms. It is obvious that the charac-
teristic time with which it makes sense to compare the
time of action T is the lifetime of an atom 7 in a par-
ticular state. This can be either the natural lifetime,
or a lifetime determined by an induced transition of an
electron from this state. If for the sake of definiteness
we refer to natural lifetimes, then their values are
7,2 1078 sec, while the magnitudes of the level widths
are respectively y, <1073 cm™. It is obvious that in the
case of induced fransitions the lifetimes can be smailer
by many orders of magnitude. When lasers are used
as sources of an intense light field, then, as a rule,
we are dealing with a so-called regime of modulation
of the resonator factor?’ when the laser is operating
in a pulsed regime emitting (in the case of a single
mode generation regime) a smooth bellshaped pulse
with a front duration of the order of the half-width
T=10"% sec. But in certain cases one could also util-
ize radiation from lasers operating in the regime of
continuous generation. Thus, if one speaks of spon-
taneous transitions, then typical experimental con-
ditions correspond to the case y,T = 1.

All the conditions for bringing about resonance inter-

2) such a regime is often referred to as a “giant pulse regime”.
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action which were discussed above were stated under
the assumption of a monochromatic external field. This
assumption is well realised in practice since in real-
ising a single-mode (i.e., one with three fixed indexes)
generation regime of the laser one can have a very
narrow spectrum of emitted light, so that Aw/w~1078,
while in the worst case of a multimode generation reg-
ime of an active medium characterized by a broad
luminescence line one has Aw/w~10"%. 1t is also nec-
essary to keep in mind that the monochromatic nature
of laser radiation in the case of a single-mode genera-
tion regime is closely associated with the duration T

of the radiation pulse: Aw=1/T (in a multimode gener-
ation regime one always has Aw> 1/T). In pulses of
nanosecond duration Aw>> y;, where y, is a typical
natural width of atomic levels. In pulses of picosecond
duration, which are obtained from lasers in the regime
of synchronized phases of the modes, Aw attains values
of ~10! - 10 cm™.

We now turn to the intensity of the light field and
specify the terms “intense light” and intense light field”.
It is quite natural that these terms are defined both by
the field and by the atom and are characterized by the
interaction of the field with the atom. We shall use
these terms when the interaction exceeds the natural
width of the resonance determined by spontaneous decay.
Applied to the single-photon resonance in a two-levels
system which we discussed above the c¢riterion for an
intense external field § has the obvious form

{ dmngl ZF Ymune (3)

We give.a numerical estimate assuming d,,,~ 1 Debye,
while y,, ,~10° sec We obtain the condition €< 50-100
V/cm. We note that this is a lower limit, since the
estimate of d_, is an upper estimate, and moreover the
resonance is assumed to be exact. In all other cases,
including the case of multiphoton resonance, the criti-
cal value of the intensity of the field exceeds the value
indicated above by several orders of magnitude. The
corresponding criterion is given in Section 5. Compar-~
ing numerical estimates of critical intensities for an
intense field and for a classical field it can be seen
that the intense field of interest to us is always a clas-
sical one.

In the discussion carried out above we have restricted
the range of field intensities also from above by the suf-
ficiently obvious condition

E<E, @

where 8,.=5X10° V/cm is the atomic field intensity.
From a theoretical point of view this enables us always
to assume that the ratio &/ &,¢ is a small parameter.
From the point of view of the physical essence of the
phenomena under consideration this enables us to leave
out of consideration the tunnel effect since it is well
known that in the frequency range of visible light the
condition stated above is equivalent to the condition
¥> 1, where the adiabatic parameter y = 'rm/T

- w(2E$°’)‘/2/8.

Finally, the intensity of the field is restricted by.the
condition (2) of the smallness of the perturbation com-
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pared with the distance between the levels. Since the
quantity w,_, varies sharply as the principal quantum
number characterizing the states m and » is varied,
the criteria (2) and (4) cannot be reduced to a single
one. Specifically, while for states of low excitation
these criteria are close to one another, for highly
excited states the criterion (2) turns out to be the more
restrictive one.

From the point of view of the physics of the inter-
action of an intense field with an atom the specific sit-
uation consists of the perturbation of the spectrum of
bound electron states and of the occurrence of multi-
photon transitions with a probability comparable to the
probability of single-photon transitions. From the the-
oretical point of view the specific situation consists of
the inapplicability of perturbation theory of the first
order with respect to & to the description of the effects
taking place; in the language of Feynman diagrams this
means that it is necessary to take into account diagrar-<
of second and higher orders in §. From a practical
point of view an intense field is characterized by the
nonlinear nature of the observed phenomena with res-
pect to the intensity of the exciting light.

The critical intensity of the field, which in the opti-
mal case must be regarded as intense, is quite small
not only in comparison with the atomic field intensity,
but even with the intensity of the field of laser radiation
and is at the upper limit of intensities which can be re-
alised utilizing noncoherent light sources. However,
detailed experimental data on elementary resonance
nonlinear-optics phenomena were obtained only in re-
cent years. The principal difficulty consisted of carry-
ing out experiments with a spectral resolution better
than the natural line width. Two circumstances enable
one to carry out such experiments. The first is the use
of lasers operating in the regime of single-mode gen-
eration with a spectral width of the order of 107 em™!
and with an absolute generation frequency variable over
wide limits. The second is the use as targets of atomic
beams of such low divergence that in the case of trans-
verse propagation of laser radiation the Doppler effect
does not exceed the value indicated above. The choice
of a specific transition in an atomic spectrum also
presents a certain difficulty, since the contribution of
third levels, i.e., of nonresonance interaction, must be
small. At the same time it is evident that the fine
structure of the spectrum must also be taken into ac-
count.

We now turn to the general methods of solving the
problems indicated above. The theoretical description
of resonance phenomena is based on using the reso-
nance approximation.®? The essence of this method
consists of an approximate solution of the system of
quantum mechanical equations for the atom which is
acted upon by a monochromatic light perturbation V
~cos wt: in this perturbation only the exponential e”
(or e***) which leads to a small energy denominator in

iwt

3 In foreign literature the equivalent term “rotating wave
approximation” is utilized. 3 The “method of averaging”
. has the same meaning.4
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the solution is taken into account and the exponent for
which the denominator is not anomalously small is neg-
lected. The resonance approximation is correct when
conditions (1) and (2) are satisfied.

We now discuss which quantum mechanical equations
must be solved. In the most general case, when the
complete Hamiltonian includes the atomic Hamiltonian
7, the intense classical external field V and the quan-
tum field of the electromagnetic vacuum, the problem
of finding the complete wave function is a very compli-
cated one. Indeed, in intense fields during times of
their action T which are not too small the condition
yT>>1 is satisfied, i.e., the number of spontaneously
emitted quanta ~yT turns out to be quite large. How-
ever, complete information containing all that needs to
be known concerning the photons mentioned above is not
at present available experimentally; only the probabil-
ities of emitting one spontaneous quantum of a definite
frequency are measured. From the mathematical point
of view this means that the necessity does not arise to
obtain the complete wave function, but one needs only
average values of the probabilities over the photon
variables.

As is well known,® such an approach is realized by
introducing the atomic density matrix p. The equations
for it have the form

X =ilp, H1—7p, (5)

where 52’=5Y’(,+ V, while the matrix;/ describes the re-
laxation of the elements of the density matrix.?

without reference to a specific phenomenon one can
note the following general character of the solutions of
equation (5) in different time regimes.

For times T <« 1/y radiation damping is unimportant.
In this case the elements of the density matrix break up
into products of amplitudes: p;;=afa;. The equations
for these amplitudes are the usual Schridinger equations
with the Hamiltonian =%, + V. In the resonance ap-
proximation they reduce to a system of equations with
constant coefficients. The solutions of this system of
first order differential equations are in principle ob-
tained by a direct method. They represent a set of
states orthogonal to each other which are referred to
as quasienergy or “dressed states”.>'® The corre-
sponding atomic system in resonance external fields is
often referred to as a “dressed atom”. One of the for-
mulations of such problems consists of transitions be-
tween quasienergy states under the action either of a
weak test field or of the electromagnetic vacuum field,
etc.

Each of the quasienergy states represents a combi-
nation of stationary states. But the energies of these
states differ from the energies of the initial atomic
states unperturbed by the field. They are called
“quasienergies”.® From the Floquet’ theorem it fol-
lows that the energies of the stationary states, a com-
bination of which makes up the fixed quasienergy state,
differ from each other by integral multiples of w.

4 Equations (5) are often called the “optical Bloch equations”.
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We note that in order for the Floquet theorem to be
applicable it is not necessary that the resonance ap-
proximation be satisfied, but only periodicity of the
perturbation is required. But in the general case quasi-
energy states consist of a large number of stationary
states and therefore their use is impractical. In the
resonance approximation an essential contribution to
the quasienergy states is made by a small number of
stationary states and they become convenient for ana-
lytic investigations.

If we turn to times T~1/y, then a transitional regime
occurs which is characterized by a very complicated
form of solutions.

Finally for T> 1/y a stationary regime occurs which
is characterized by constant occupation numbers of at-
omic levels. A distinguishing feature of the stationary
regime is the fact that the solutions do not depend on
the initial conditions, and, in particular, on the meth-
od of switching on the external field.

Taking spontaneous effects into account in the sta-
tionary regime turns out to be considerably simpler
compared to solving the system (5) when a transition -
is being investigated between two states between which
no strong resonance field is acting. For example, we
may be dealing with a three-level system in which res-
onance with the strong field occurs between the first
two levels while spontaneous emission occurs as a re-
sult of the transition of an electron to the third level
(resonance spontaneous Raman scattering; section 4).
Then taking the interaction with the field of the electro-
magnetic vacuum into account reduces to the Breit-
Wigner procedure.® It consists of replacing in all the
formulas the level energies E{* by the quantities E{*

- %i-y,. 1t should be noted that such a replacement is of
a very general nature in the sense that the widths of the
levels are not necessarily radiative widths, but rep-
resent the sum of all possible widths.

without reference to whether the Breit-Wigner pro-
cedure is applicable or not the specific features of the
strong field consist of the fact that it leads to transi-
tions between different quasienergy states and also nu-
merically alters the values of the spectral widths of
such transitions compared to the case of a weak field.
We emphasize that in strong fields these widths may be
altered also in the direction of being reduced.

2. TWO-LEVEL SYSTEM

The simplest of all quantum-mechanical systems
which can be used to investigate the resonance phe-
nomenon is a two-level system. We denote by » the
lower state with energy E,‘,F”; and by m the upper state
with energy E'®, and by 7,, the spontaneous width of the
upper level with respect to a transition to the lower
state. Resonance occurs in an external field when con-
ditions (1), (2) are satisfied.

As has been noted in the Introduction, phenomena
arising in the case of resonance are of a different nature
depending on the time that the field is acting. We first
consider the short times when relaxation can be neg-
lected. The solution of the problem of the behavior of
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a two-level system in a resonance external field is well
known,'*2 so that we shall not reproduce it here.?® We
recall that one obtains two quasienergy states orthogonal
to each other, the wave function represents a super-
position of them, the coefficients of which depend on the
initial conditions imposed. Since each of the quasien-
ergy states arises from two stationary states the wave
function in the general case represents a superposition
of four stationary states, the quasienergies of which
have the form (Fig. 1)

Ef=ElxQ+%y, Ei=El:0-5. (6)
The quantity
Q=1V 82 +(4,.8p, )

appearing in (6) is known as the Rabi frequency.® In
the case of an exact resonance, i.e., when A=0 we ob-
tain from (7) the so-called Rabi resonance frequency
Q=|d,,8 /2.

As can be seen from (6) twice the Rabi frequency is
just the splitting of each of the levels m and n. From
(3) and (7) it follows that such splitting can be observed
only in a strong field. A characteristic feature of this
splifting is its linear dependence on the amplitude of the
field intensity & (of course, for not too great deviations
from resonance, and specifically when A <d,,8).

The dynamic development of the two-level system in
time in the relaxationless regime indicated above
(v, T «< 1) depends significantly on the initial conditions.
Depending on the time of growth of the amplitude of the
field 8T one can select two limiting cases: the instan-
taneous and the adiabatic switching-on of the pertur-
bation. In the case of the adiabatic switching-on the
initial unperturbed state dynamically develops into one
of the quasienergy states, and for this reason no split-
ting is observed. In contrast to this in the case of the
instantaneous switching-on superposition of both quasi-
energy states occurs and splitting is observable. It
turns out® that if the relation AST « 1 is satisfied then
the regime of switching on the external field is instan-
taneous, and when the inequality is reversed, it be-
comes adiabatic. This relation can be quantitatively
understood from the point of view of the indeterminacy
principle: mixing of the quasienergy states occurs when
the time of mixing 1/4 is sufficiently great.

From what has been said above one can conclude that

in the non-resonance case the adiabatic regime of

switching-on is always realized. In the resonance case

5) The problem under consideration is mathematically equiva-
lent to the problem of a particle of spin % in 2 magnetic
field, ?
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for characteristic values of deviation from resonance
A~vy, the instantaneous regime of switching-on is real-
ized since 8T =T, which is typical for pulsed lasers.

Until now we have been interested only in the splitting
of levels. We now turn to the question of level shifts.
From (7) it may be seen that in the resonance approxi-
mation the nonresonance shift® is absent. Tn actual fact
such a shift does occur. Its amplitude can be calcu-
lated if in the lowest order of perturbation theory one
takes into account effects arising from the exponential
e'“* which does not lead to a small energy denominator.
Taking nonresonance terms into account within the
framework of the two-level system leads to shifts of the
levels m and = which are small, quadratic in the field,
equal in magnitude and opposite in direction. In this
case the position of the resonance is shifted from the
point A=0 by an amount |d,,,é|2/4w,,,, which is re-
ferred to as the Bloch-Siegert shift {(cf., Refs. 10, 11).
It is small since the denominator of the ratio indicated
above contains the distance between the levels w,, which
has a relatively large value.

Thus, when resonance occurs, nonresonance shifts
of levels are small compared with the resonance split-
ting of the levels.

In conclusion we note that the relaxationless regime
is of no practical interest since when the conditions
YT <1 are satisfied a very high field intensity is re-
quired for the development of the quasienergy states,
such that the resonance Rabi frequency would be very
great:

Q=—§'Idmn§|>'}-'>>7m-

We have in mind a field intensity which is by several
orders of magnitude greater than the critical intensity
which follows from the inequality (3).

We now turn to the more realistic case of times T
which are not small compared to 1/y,,. Then spontane-
ous relaxation should be taken into account. In partic-
ular, the quasienergies (6) become complex with widths
of the order 7,,. If we now concern ourselves with a
transition from the state m under the action of an in-
finitely weak test field, which does not perturb the sys-
tem under consideration, to some third state (we are
not interested here in its nature) then we can select
two cases: in a weak field, d,,,,,g<y_, the levels E;,
overlap and splitting is not gbserved; in the opposite
case, in a strong field, d,,£>v,,, two maxima must be
clearly observed in the absorption spectrum of the test
radiation the distance between which depends linearly
on the intensity of the field Z

Such an effect, which was first observed experimen-
tally in the perturbation of molecular spectra by an
electromagnetic field in the UHF range,'? has been re-
cently observed also in the case of perturbation of at-
omic spectra in a light field.” Starting with experi-

8 Sometimes the equivalent term “quadratic Stark effect in an
alternating field” is utilized.

" The phenomenon under consideration is also called the “lin-
ear dynamic Stark effect”, and also the “Autler-Townes ef-

. fect”.
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ments on observing the splitting of the D-line in a po-
tassium atom under the action of intense resonance
light'? a similar phenomenon was also observed in
many other experimental situations.'* The progress

in experimental techniques of which we have spoken in
the introduction has made it possible in recent times to
obtain in a number of cases sufficiently accurate quan-
titative data characterizing resonance splitting in the
optical frequency range.'®'1® Ag an example we refer
to the results of the experiment in which the intense
field of radiation from an infrared laser at a wavelength
of 3.51 ym was utilized for the resonance perturbation
of the transition 6P, ,-5D,,, in the spectrum of a xe-
non atom. A test field of 4.54 ym wavelength was used
to measure the population of the 5D, ,, state asa function
of the deviation of the frequeccy of the test field from
resonance with the 6P, state. Figure 2 shows two max-
ima in the absorption spectrum of the test radiation
corresponding to the quasienergy states of the 6P,
level. The distance between the maxima depended lin-
early on the intensity of the strong field.

We now consider the stationary regime in detail. In
this case one should turn to the system of equations
(5). Since in a stationary regime 8p/8¢=0, this sys-
tem is an algebraic one and can be easily solved. In
particular, the probability of finding the electron in
the upper level turns out to be equal to

P (00) = ———Adma®P___ ®)
2}dmn¥$ |21 442 pE
In accordance with the general remarks made in the
introduction expression (8) does not depend on the ini-
tial conditions, and in particular, on the regime of
switching on the perturbation. We note that always

Pam(*) < 3.

Expression (8) enables us to obtain easily the total
probability of spontaneous radiation per unit time:

&% o7/, :
“J a1 =3 =1
(3, A i e
Y
P 1
Aot ; H--\—
Y e T
[ '
e A e
b
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1
(-]
1
4 1 £
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FIG. 2. Level splitting as a function of the intensity of a strong
resonance field £ , w measured by the method of absorption of
the test radiation w’. a) Level scheme for the xenon atom {(w’
is a weak test field); b) population of the upper level in the

case of a weak resonance field w; ¢) population in the case of

a strong resonance field w; d) dependence of the amplitude of
the splitting A w’ on the intensity of the strong field g ,W.
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W = PmPmm (o0). (9)

On the other hand, we evaluate the total probability
of unshifted radiation (elastic scattering) per unit time.
The unshifted _radiation is produced by the average di-
pole moment d(f) = p,,,d,,, +compl. conj., whichoscillates
harmonically with the frequency of the forcing field w.
It is well known from classical mechanics that the di-
pole will radiate just at this frequency. Thus, the total
probability of unshifted radiation per unit time has the
form'’ B

e, (10)
A5 -2 {dmn B *
where w is determined by (9). In particular, in a weak
field (d,,,&<«<v,) formula (10) goes over into the well-
known expressioni” obtained within the framework of
the perturbation theory for resonance fluorescence:

L
TSR GATTE (1)
which is nothing other than the well-known Breit-Wigner
formula for elastic resonance scattering by a quasi-
discrete level,!* Formula (11) describes a two-pro-
ton process in which a quantum of the external field is
absorbed and a spontaneous quantum is emitted. This
process is characterized by the Feynman graph shown
in Fig. 3a. As a result of the law of conservation of en-
ergy the frequency v of the emitted quantum is rigorously
equal to the frequency w of the absorbed quantum. It is
just for this reason that the scattering is said to be
“unshifted” (or “Rayleigh”).

w9 = Ym | Pma (00} 2=

wel =

In a strong field the elastic scattering is described by
expression (10). All the Feynman graphs correspon-
ding to relation (10) contain only one emitted sponta-
neous quantum. A typical graph is shown in Fig. 3b.
Again as a consequence of the law of conservation of en-
energy the frequency v of the emitted quantum is rig-
orously equal to w.

From (10) we see that w®™ <w. The remaining part of
the scattering w —w,, represents shifted (or inelastic)
scattering. Feynman grapsh corresponding to inelastic
scattering contain at least two emitted spontaneous
quanta. A typical graph is shown in Fig. 3c. As can be
seen from Fig. 3¢, in accordance with the law of con-
servation of energy ¥, +v,=2w, and the frequencies of
the emitted quanta themselves », and v, can differ from
w. From a physical point of view the shifted scattering
represents spontaneous transitions between quasienergy
states of a two-level system. In section 3 we shall con-
sider the spectral distribution of the shifted scattering.

@

FIG. 3. Feynman graphs illustrating the process of reson-
ance fluorescence. a) Unshifted scsttering in a weak field;
b) unshifted scattering in a strong field; c) shifted scattering
in a strong field.
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It was assumed above that the strong field is strictly
monochromatic. In actual fact in any real experiment
this is not so. Therefore formula (10) should be multi-
plied by a factor which takes into account the line shape
of the spectrum of the exciting light. Let Aw be the
width of this line. Then, obviously, the width of the
spectrum of emitted quanta (the fluorescence spectrum)
is determiged by the smaller of the two widths Aw or
(2 +2[d, 8|22

In 3 weak field the second width reduces to v,, and the
fact mentioned above is well known.'®* Numerous ex-
periments in which resonance fluorescence has been ob-
served were carried out under conditons when Aw>vy,,.
This is the usual situation when the spectral width of the
radiation of the exciting source is greater than the nat-
ural line width. n this case a fluorescence spectrum
of width y,, is observed. But the experiment can be
carried out under conditions when the above inequality
has the opposite sign. An example of such an experi-
ment is given in Ref. 20. The barium atom was excited
from the ground state into the excited state 'P, which
has a natural width y,,~5X 107 cm™ by laser radiation
with an effective width of the spectrum Aw which is
smaller than v, by a factor of severalfold. In this case
the fluorescence spectrum was observed to be approxi-
mately twice as narrow as the natural width of this
transition (Fig. 4).

3. RESONANCE FLUORESCENCE SPECTRA

The fluorescence phenomenon consists of scattering
of light by an atom in the course of which the initial
state of the atom is not altered. In the case when the
frequency of the incident light is close to one of the
atomic frequencies w,, the probability of fluorescence
increases sharply and we are dealing with resonance
fluorescence. Limiting ourselves to only such a case
we consider the problem of the spectral distribution
with respect to the frequencies of the emitted spontan-
eous photons in a two-level system which is acted upon
by a monochromatic external field &coswt.

The total probabilities per unit time of the unshifted
scattering w® and of the shifted scattering w— w*! are
determined by the formulas of section 2. From the
physical point of view the shifted scattering is deter-
mined by transitions between quasienergy levels. As
can be seen from section 2 it is not prominent in weak

FIG. 4. The resonance fluorescence spectrum (solid line) in
the case of a narrow spectrum of exciting radiation measured
in Ref. 20. Dasghed line is the Lorentz contour of the line in
the case of spontaneous decay of the same state.
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fields when these levels merge due to the spontaneous
width, and conversely, is pronounced in strong fields.
In a strong field one cannot consider the scattering
process as a reemission of a single photon absorbed
by the atom since in the course of a lifetime of the
atom in an excited state other photons are scattered
by it.2

In the case of unshifted scattering the spectral dis-
tribution has a trivial appearance: dw*'(v)=w*6(v
— w)dv, where w® is determined by formula (10). As
can be seen from Fig. 1 the spectral distribution of
the shifted scattering must have maxima at frequencies
corresponding to differences between quasienergy
levels. The widths of these maxima are of the order
of v,. There are three such maxima with the central
one corresponding to scattering at the frequency w,
while the satellites are separated from it by twice the
Rabi frequency. The aim of the present section is a
quantitative description of the shapes of spectral dis-
tributions and their comparison with experiment.

According to the general principles of the theory of
electromagnetic radiation in the dipole approximation
the probability dw(v) ~(|d, |%), where d, is the Fourier
component of the operator for the dipole moment d(t),
ie., d,= [Td(t)e™'dt, while the brackets (- - -) denote
quantum mechanical averaging over the initial state
of the system with one electron; T is the time during
which the field acts.

The probability of elastic scattering is determined
by the square of the average value of the dipole mo-
ment, i.e., dw*(v)~ I(J,)IZ. Consequently, the in-
elastic scattering is determined by the difference
(|ad,|»=(|d,|»- |<d)|% i.e., by the quantum fluctua-
tion of the dipole moment. Thus, while elastic scat-
tering can be described within the framework of the
classical radiation theory, inelastic scattering repre-
sents an essentially quantum effect.

For this reason it is necessary to introduce quantum
operators for the creation and annilhilation of parti-
cles: a; and g;. In this case, since in future we shall
not be interested in different instants of time, it is
convenient to take these operators in the Heisenberg
representation i.e., depending on the time.?

In order to calculate averages of which we spoke
above we introduce the operator for the atomic density
matrix p=33, ,a}a,py;- Of course, in the general case
the operator for the total density matrix of the whole
system must depend also on the operators for the
photons of the electromagnetic field. But if one as-
sumes that the changes occurring in the atom have
only a small effect on the states of the vacuum field
then the operator for the total density matrix can be
represented in the form of a product of two operators,
with one factor depending on the operators for the
atomic particle, and the other one depending on the
operators for the photons. This is the “Markov (or
factorization) approximation”. This is violated, for
example, for close levels when y, ~w,,. Insuch a
case the time for the emission of a quantum 1/y,, is
comparable with the time of transition of the system

315 Sov. Phys. Usp. 21(4), April 1978

o b

/’/’ v'l
o FIG. 5. Feynman graph
| -~ for the emission of N
PPt %2 quanta by a quasienergy
Ty state (solid line).

from one state to the other one ~1/w,, which follows
from the energy-time indeterminacy relation. This
leads to the appearance of retardation.

Averaging the operator for the total density matrix
over the states of the photons according to the indicated
Markov approximation we arrive at the operator intro-
duced above for the atomic density matrix. This opera-
tor enables us to predict changes in atomic states with-
out analyzing what happens at the same time to the state
of the electromagnetic field.

We analyze the above statement in terms of Feynman
graphs. The exact approach consists of obtaining the
amplitude for the emission of a large number of quanta
from the quasienergy states. Figure 5 shows a typical
graph. The heavy lines in this diagram denote the
propagation function for quasienergy states in con-
trast to the thin lines corresponding to the unperturbed
atomic states.?® The total amplitude is represented
by the sum of all graphs of similar type. A transition
to the description with the aid of the atomic density
matrix corresponds to averaging over the frequencies
of all the spontaneously emitted quanta with the excep-
tion of the one which is recorded by the measuring
instrument.

The average value [ of any operator I is calculated
by means of the formula I=(f)=Tr(/p). The operator
for the dipole moment has the form d(¢) =3 19,8 a,
where d;; are the matrix elements of the dipole mo-
ment. In the expression

T T
‘|‘§v|')=j S (d* () d () et ar ar’

we goover to the variable 7=f'-¢ and let T—». We
then obtain?

UGI=T | 1dmn B O Pran G+ ¢~ dr +compl. conj. ;- (12)

here the line denotes averaging with respect to time ¢,
and p,,=daja,  Formula (12) has meaning for the sta-
tionary regime when all the times are great compared
to 1/y,.

We now turn to the calculation of the averages. For
simultaneous operators this is relatively uncomplicated.
For example,

Pmn)= ) Tr (2}amatay) piy= Y Smibn j0ij=Pmn.
T 5

which clarifies the definition of p,,. In the derivation
commutation relations for the operators g, and a; have
been utilized here, and also the fact that the state over
which the averaging is taken contains one particle so
that the action of two sequentially situated operators
a,a; yields zero.
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Formula (12) contains averages of the products of
the operators p,,, at different instants of time. For the
evaluation of such averages it is necessary to bring
them to the same time, since only then do the Heisen-
berg operators have the usual commutation proper-
ties.?? With this aim in mind we formally expand the
operator p,,, at the time instant ¢ +7 in terms of the
complete system of operators 5, 4 at the time instant
t:

Pmn (¢ +7) = 3] ol (&, 1) pug (0. (13)
S ;

In view of the linear dependence of the operators
Pmalt +7) and the new quantities p¥’ (¢, 7) regarded as
functions of 7 the equations for these new quantities
formally coincide with the equations (5) for the density
matrix p. Indeed, averaging relation (13) quantum
mechanically we find that it is valid not only for the
operators, but also for their averages, i.e., for the
elements of the density matrix p,,. The only new
different aspect are the new initial conditions. They
follow from (13) if in that relation we set 7=0:

PHE, 0) =5,,5,,.

Substituting (13) into (12) we obtain

ULM=T ldna ' 3, Tr @hanataotan) | o (0T, e, 1 ¢~ dr-+compi. conj.
ijkt 0

We note that in this formula the lower limit of inte-

gration is equal to zero, and not to — «, as in the

general case (12). This is associated with the fact that

the operator gt +7) can annihilate a particle only after

it is present at the time instant ¢, i.e., for 720,

Evaluating the trace of the product of six operators
a’, a in the same manner as was done above for the
product of four operators, and going over from
(|d,]? to the probability for the emission of a photon
dw(v) per unit time we obtain

@0 (5) =12 Re | 1omm () Pn (6 1)+ Ppn() O3 (1, D™V 2 (14)
q

Averaging over ¢ in (14) is superfluous since in the
stationary regime there is no dependence on {. This
can be easily verified utilizing for the quantities ap-
pearing in (14) the stationary solution (8) of the system
(5).

If one integrates expression (14) over v and takes into
account the initial conditions for p*" then, as should
have been expected, we obtain the total probability of
scattering (9).

Further, if in (14) we consider the case 7-«, then
pM~0, while p7% - p,..(f +7). Substituting these values
from (14) we obtain, as should have been expected, the
probability of elastic scattering (10).

The solution of equations (5) for the quantities pki(¢, 7)
in the general case is quite awkward due to the
Cardano formulas for the characteristic values.!” In
different limiting cases it takes on a more tractable
form. In what follows we shall consider only the case
of zero deviation from resonance: A=0. The roots of
the characteristic cubic equation of the system (5) in
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this case have the simple form:
1 3 N
f0=—"3Vm S=—7Tmk l/-(T‘Vm) —|dmaB 2.

while any solution of (5) can be represented in the form
0~ a+be‘°'+ce"'+d¢u,

where the coefficients q, b, ¢, d are determined by the

initial conditions. :

For a weak field, in particular for |d,,&| <y./4, all
the roots mentioned above are real. In this case in
addition to coherent scattering determined by the con-
stant g there appears also inelastically scattered light
of frequency v near w which represents a supposi-
tion of three resonances with the same position but of
different widths. All these widths, as has been noted
already, are of order vy,,.

But if on the other hand the field is strong, specifi-
cally |d,.8| >¥a/4 (cf., criterion (3)), then we see that
in addition to the central peak at a frequency w of
width y,, there appear two symmetrically situated sat-
ellites of widths 3y,/2 at a distance (|d,,8|’

- (y,/4)H'? from the central peak. In particular, for
a very strong field the satellites are separated from
the central peak by an amount of twice the resonance
Rabi frequency |d,,&|, as has already been mentioned
above.

Calculation using formula (14) in this last case
leads!? to the following result for dw(v) = dw!**(v)
(as has been noted above the elastic scattering is neg-
ligibly small):

dw () = { LN
[4(v—0—]dpnn® | )3vml2+1
1 1/3 dv
+ - + = W
Bo—oml 1 " 4 (v o | dpnB [ 13vmlt+1

(15)

As should have been expected after integration of this
expression over v we obtain w=y,/2 which corresponds
to spontaneous emission from the level m the proba-
bility of finding an electron in which is equal to 3.

The result (15) could also have been obtained by a
considerably simpler method without turning to the
general expression (14) and the functions p!] depending
on two different times. From Fig. 1 it is clear that
transitions between them can occur as a result of
emission of four photons: one of frequency w - |d,. 8|,
one of frequency w +|d,&| and two of frequency w. In
the case of a very strong field for A =0 the probability
of finding the electron in these quasilevels is the same,
s0 that the total probabilities per unit time for the
emission of each of the photons indicated above are
equal to (1/8)y,. Taking into account the fact that the
spectral widths for the emission of each of these quanta
are equal, as we have seen, respectively to (3/2)v,
and y,, (this result does not require the introduction of
functions depending on two different times), we obtain
formula (15) directly. Naturally, such a simple ap-
proach is not suitable for the case of nonzero deviations
from resonance or for weaker fields.

Experiments on observing the resonance fluores-
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FIG. 6. Resonance fluoresence spectrum as a function of the
power of the exciting radiation (the parameter is stated on the
curves).?

cence spectrum in a strong field*®” % were carried
out by means of exciting the transition between com-
ponents of the hyperfine structure in a sodium atom
38, F ' =2) - 3P;,,(F' =3).

The fluorescence spectrum observed in Ref. 20 for
different values of the intensity of the exciting field
and different values of the deviation from resonance is
shown in Fig. 6. It can be clearly seen that as the
intensity of the resonance field is increased satellites
appear in addition to scattering at the undisplaced
frequency. This occurs for values of fields satisfying
condition (3). The amplitude of the central maximum
in a very strong field is greater than the amplitudes of
the satellites by approximately a factor of three, while
the width of the satellites is one and a half times
greater than that of the central peak; the frequencies
of the satellites differ from the undisplaced frequency
by an amount of twice the resonance Rabi frequency.
Thus, both qualitatively and quantitatively relation (15)
gives a good description of the experimental data
(Fig. 7).

The dependence on the deviation from resonance is
illustrated by Fig. 8. In complete agreement with
theory we note that the satellites cease to be observed
when the deviation from resonance is of the order of
the width of the central maximum. Results obtained in
other papers® are of a similar nature.

Summarizing one can assert that the experimental
data on the resonance fluorescence spectra in a strong

dwfv)
(i 4

FIG. 7. Resonance fluorescence spectrum in a strong field
calculated on the basis of the data of Ref. 17 (dashed line) and
measured in Ref. 20 (solid line).

317 Sov. Phys. Usp. 21(4), April 1978

dwy
av

-235- 107 em!

+66-10"%cm™
+117:107 e

103¢m™ __,\A__{m-w" cm™!
L]

v

FIG. 8. Resonance fluorescence spectrum as a function of the
deviation from resonance (the parameter is shown on the
curve) between the frequency of the strong external field and
the transition frequency (results of experiment of Ref. 20).

field are well described by theory both qualitatively
and quantitatively.

4. THREE-LEVEL SYSTEM IN A RESONANCE FIELD

In the preceding section a description was given of
scattering of light in the course of which the atom re-
mains in the initial state. We next consider the pro-
cess when the atom after resonance scattering of
light goes over into a new state. In this case, ob-
viously, it is necessary to take into account at least
three atomic levels.

We first investigate the simplest situation shown
in Fig. 9a: an electron situated in the initial state »n
makes a transition after the strong field & coswt of
frequency w close to w,, has been instantaneously
switched on at the instant of time £ =0 to the state m
from which it makes a further transition to the state
accompanied by the emission of a spontaneous quantum.
Just as before, we are interested in the solution for
large times {>>1/y,,.

The specific feature of the strong field consists of

—_———l

] b
FIG. 9. Diagrams of processes occurring in athree-level sys-

tem. a) Sg.nntaneou§ Raman scattering; b) case of two exter-
nal fields § ,w and §’, w’.
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the fact that the electron can oscillate many times be-
tween the states m and n and only subsequently pass
from the state m to the state /. As was noted in sec-
tion 2, such oscillations can be described using the
language of quasienergy states. It is obvious that in
this problem we are interested in quasienergy states
of the level m. In contrast to the situation considered
in section 2, in the present case it is necessary to take
into account the spontaneous decay of quasienergy states
to the third final state !. This can be accomplished by
applying the Breit-Wigner procedure to the state .
If this is done for the quasienergies (6) then in an
arbitrary case the expression for the splitting of the
quasilevels has a fairly awkward appearance. There-
fore we here restrict ourselves to the case of zero
deviation from the m,n resonance: A=0. Then the
frequencies of the emitted spontaneous quanta are
concentrated near the values v, =w_, +3(|d &2

- ({722, In the limiting case v, =0 the frequencies
of the emitted quanta are determined as before by
expressions (6). We see that splitting is observed
only in strong fields ld 6| >¥a/2. We note that in a
very strong field ({d > y,) the resonance splitting
is smaller by a factor of two than in the case of reson-
ance fluorescence, this being explained by the absence
of splitting of the level I in the present case. We note
that for A #0, if A>y,, then in accordance with (6)
splitting can be observed in arbitrary fields.

We now turn to the question of the probability of
emission of spontaneous radiation with the particle
making a transition to the level ! as a function of the
frequency of the emitted photon v. In contrast to the
case of fluorescence we are here dealing with an abso-
lute probability, and not with probability per unit time.
It is obvious that for 1> 1/y,, the particle completely
goes over to the state [, i.e.,

Wy = “-’mS |am @O pdt=1;
0

here a,(t) is the amplitude for finding the electron in
the level m at the instant of time ¢{. The method of ob-
taining this quantity in the resonance approximation for
a two-level system m,n was described in section 2. It
now needs only to be modified by means of applying the
Breit-Wigner procedure to the state m.2® It is based
on the fact that in accordance with our assumption the
total spontaneous width y,, corresponds to a transition
to the level I, while the spontaneous width of the corres-
ponding transition to the state m is negligibly small.
Setting

wi={ doy)=m | Jan P F=1,

one can obtain the probability for the emission of a
photon dw,(v) in the frequency range {v, v +dv}; here

- FIG. 10. Feynman graph
m for processes of spontan-
eous Raman scattering.
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a,(v) is the Fourier-component of the quantity g,(¢).

The general expression for dw,(v) is quite awkward.
We restrict ourselves to the case A=0 and to very
strong fields |d,,&| >7y,. We then obtain

duwy (v) = Ym/4
(v—Ome—(1/2) | dma® | 1+ (1/16) 92,
Ym/é ] dv

(v—Omi - (1/2) | dmn 8 | 1+ (1/16) 12,

)
(16)

We see that the spectrum consists of two peaks with
widths which are by a factor of two smaller than the
wdith y,, while the probabilities of transitions from
both quasienergy states are the same. As the field

is decreased the splitting of the quasienergy levels is
diminished and in the limit of a weak field both reson-
ances merge into one of width v,,.

If we pass on to deviations from resonance different
from zero, then although, as we have mentioned
earlier, the splitting of the state m may be observed
also in a weak field, nevertheless the intensity will
in fact be great for a transition of frequency corres-
ponding to the law of conservation of energy being
satisfied. In this case the expression for the probabil-
ity of scattering of light is well known!¢;

(/41 dmni 12 ¥m

dwy (V) = G o) T

8 (0~ v—ay,) dv. (17)
It is described by the Feynman diagram shown in Fig.
10. It may be seen that the relation (17) is similar to
the relation (11) for the probability of resonance fluor-
escence. This is quite natural, since both processes
are qualitatively similar—induced transition, spontan-
eous transition. Correspondingly the probabilities of
both processes are also of the same order of magnitude.
The process of Raman scattering of light in a weak ex-
ternal field can also be characterized by a quantity
which does not depend on the intensity of the field,

—the scattering cross section, It is obtained from

the expression for the probabilit; !2 (17) by the standard
method—division by the factor c6°/8rw. We note that
the relation (17) can be obtained from the well known
Kramers-Heisenberg formula,? if in the latter one
neglects the nonresonance terms compared with the
resonance ones. The quantitative criteria for the ap-
plicability of (17) were stated in the introduction—they
follow from the condition of the absence of mixing in the
two-level system m, n.

If the lower level n also has a spontaneous width v,
then the expression (16) should be modified by the re-
placement in the denominator of the width: y, -~ (v,
+v,)% This result can be obtained also from the gen-
eral Breit-Wigner theory. Then the total probability is
given, as it should be, by w,=y,/(v,,+v,) <1.

Finally, if the probability of a spontaneous transition
from the state i to the state n is not small, then, as
has been noted above, the Breit-Wigner formalism is
inapplicable, and one must utilize the density matrix
method?® for the solution of the problem. As a result
of this the structure of expression (16) is qualitatively
preserved, but the resonance widths entering into this
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expression will be complicated functions of different
partial widths.

Experimentally the process shown in Fig. 9a, re-
ferred to as spontaneous Raman scattering of light by
an atom, has been observed both under conditions of
exact resonance (cf., for example, Ref. 29), and in the
case of a large deviation from resonance (cf., for ex-
ample, Ref. 30). But for a number of reasons all the
experimental data known until now have been obtained
under such conditions that they did not give interesting
information concerning the spectrum of the scattered
photons. First of all these data were all obtained under
conditions when the Doppler effect played a significant
role, and therefore resolution as to frequency was in-
sufficient. Secondly, in the majority of experiments the
process of induced Raman scattering was observed—in
order to increase the yield of the scattered light an ex-
tended atomic target was utilized in which the forcing
field at a frequency close to the frequency of the tran-
sition w,, was produced as a result of the large number
of atoms in the target and consequently as a result of .
the large number of scattered quanta.

From the theoretical point of view the description of
induced scattering is close to the description of spon-
taneous scattering given above. We consider in (16) a
certain very narrow frequency range [v,,v,+dv] in the
neighborhood of one of the resonances. Then y, dv is a
quantity proportional to the power of the spontaneous
radiation in this frequency range. K in the same fre-
?ency range we apply to the system a weak field

*cosvt, such that |d, & |<«v,, then the probability of
the transition m,l can be calculated by means of per-
turbation theory: w,,=2(d, 8" /2)26(v - v,). Multiplying
this by dv we obtain a quantity proportional to the power
of the induced radiation: (v/2)|d, 6 |?. When the con-
dition |d,, &’|?>v,dv is satisfied induced scattering
will be considerably more prominent than spontaneous
scattering. In this case in formula (16) in the term
contained therein corresponding to the frequency inter-
val dv indicated above one should replace the power of
spontaneous emission ~y,dv appearing in the humerator
by the power of induced emission ~(1r/2)|d,,,,2‘«§"|2, as a
result of this we obtain the probability of induced emis-
sion in the form

1 duy(v) =
vy )=

& [* (18)

(we recall that the ratio of the power of induced scatter-
ing to the power of spontaneous scattering is character-
ized by the Einstein coefflclent) Since as a result of
the weakness of the field &' this probability is small
compared to unity it does not affect the condition

f dw (v)dv=1.

In a number of experiments®' quantitative measure-
ments were made which enabled one to obtain inform-
ation on the total probability of scattered light. These
data obtained under conditions both of a weak and also
of a strong field are well described by the theory given
above. This is quite natural, since the total probability
of scattering does not depend strongly on the spectral
characteristics of the resonance process.
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We now consider the case when the third level [ lies
higher than both resonating levels m,n (cf., Fig. 9b).
Then obviously the state ! cannot be populated as a re-
sult of spontaneous transitions (in contrast to the case
of Fig. 9a). If in the case of the transition m ,1 one
switches on a weak field &' cosvt of frequency v close to

w,m, then this field will lead to induced transitions to
the level I. We determine the probability w, of fmdmg
the particle in the state I by considering the tield &
within the framework of the first order of the theory of
nonstationary perturbations, i.e., by assuming that
|d We assume for the sake of simplicity that
spontaneous emission with the width y, occurs only from
the level ! to the level m, while spontaneous emission
from m to n is negligibly small. As before, we restrict
ourselves to the stationary regime. Then solution of the
equations for the quantum mechanical amplitudes is
relatively uncomplicated.’* In this case the Breit-
Wigner procedure is utilized for the state I, For the
case of zero deviation from resonance A =g, = w=0
and of a very strong field (|d,, 8|>>y,) the probablhty of
scattering as a function of the frequency of the weak
field v has the form

1
W = =
[(V_mlm‘“ /2 [ dpn® | 2+ (1/4) ¥

1 din 8’
+ — I l] | 4
v—0om+(1/2) [dun$ | 2+ (1/4) i
(19)

As was expected expressions (16) and (19) have a sim-
ilar structure. Again, the width y,, of the transition
from the state m to the state »n is not small, then one
must solve the system of equations (5) for the density
matrix. The result has a form analogous to (19), but
with a width which is a combination of y, and v, :7,~7,
+3 Ve

Experimental results obtained in Refs. 16 for the
case of exact resonance demonstrate the validity of eq-
uation (19). In similar experiments two lasers were
used which emit in the visible spectrum. The strong
radiation field from one of the lasers was tuned to be in
resonance with a transition from the ground state of the
atom to an excited state. The weak field of the radi-
ation from the second laser with variable frequency of
generation v was utilized for measuring the dependence
of the probability of finding the electron in the excited
state 52S(F =2) as a function of the frequency v. This
probability was recorded by means of observing the
spontaneous decay of the third state. Figure 11 shows the
dependence of the occupancy of the excited state on the
frequency v and on the intensity of the strong field.
Both in this and in other cases that have been investi-
gated two maxima which follow from (19) are clearly
observed.

Until now the whole investigation of the three-level
system was carried out for the case when one of the ex-
ternal fields is equal to zero or is small. Investigation
of the general case when the second field é" is also
strong (|d,, &’/? 2y,) represents a much more compli-
cated problem. We note that no experimental investi-
gations of the spectrum of the scattered light in the

N. B. Delone and V. P. Krainov 319



& &
2007 %em? 2407%cm™!
— —
1 1 i 1 1 1 1 1 J.
v v
a b ¢

FIG. 11. Intermediate resonance in a three-level system. a)
Level scheme for the sodium atom; b) population of the upper
state in the case of a weak resonance field E,w; ¢) the same in
the case of a strong field (data from experiment of Ref, 16).

case of two strong fields have been carried out. How-
ever such a situation can easily arise in the case of in-
duced Raman scattering of light when the intensity of
the field &’is great. Just as in the case of the two-
level system we consider only two limiting cases: the
relaxationless and the stationary regimes.

Thus we first consider the case when the times are
so short that spontaneous widths are not important.
The resonance fields &’and & acting respectively on
the transitions n, m and m,!, lead to oscillations of the
probabilities of finding the particle in each of the three
levels under consideration. In the resonance approxi-
mation the problem can be solved relatively simply3?
and one can obtain the probabilities averaged over time.
We shall present a number of results of such solutions
(for the system of Fig. 9b). It is well known that in a
two-level system no choice of the deviation from reson-
ance and of the field will lead to the probability of find-
ing the particle in the upper level being greater than the
probability of finding the particle in the lower level. In
contrast to this in a three-level system it is possible to
choose the fields £’and &’ with zero deviations from re-
sonance in both cases in such a manner that the average
probability of finding the particle in the upper level !
would be greater than either of the probabilities of find-
ing the particle in level m and n. But even in the
optimal case the inversion of the population of the state
1 with respect to n does not exceed 3% while the aver-
age probability itself of finding the particle in the level
I amounts to 35%.

Still more interesting results are obtained in the
stationary regime. In this case the problem should
be solved by the density matrix method. From the so-
lution it follows that for zero deviation from both re-
sonances and under the condition |d,,&|> |d,.& > v,
> v, the stationary probability of finding the particle in
the upper level tends to 100%.

Each of the levels of the three-level system situated
in two strong resonance fields is split into three quasi-
energy levels, so that in the general case for each of
the two transitions —m ,n and 7, m—the spectral line con-
sists of seven resonance peaks. In the case of zero de-
viation from both resonances the number of resonances
reduces to five. In Ref. 34 the theory of correlation
functions involving two times described in section 3 was
utilized for numerical calculations of the line shape.
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The situation is simplest in the case of very strong
fields and zero deviation from resonance. In this case
along with the central peak at the undisplaced frequency
v =w,, there exist two satellites on each side whose dis-
tances from the central peak amount respectively to
£3(14,, 812 +|,, #1772 and (|a,,8]% + |, &2 /2.5
A similar picture is observed near the central peak at
the undisplaced frequency v =w,,. The widths of all the
peaks are combinations of the widths y,, and y,.

5. MULTIPHOTON EXCITATION

As is the case for multiphoton process, multiphoton ex-
citation of atoms is not a threshold process with respect to
the intensity of the external field. H owever, inorder that
the the probability of multiphoton excitation of an atom
shouldbe sufficiently great for observation, the intensity
of the exciting field must also be sufficiently great. In a
strong external field the definition of the process of
multiphoton excitation is that it is an induced multipho-
ton transition from the lower state to the upper one the
lifetime of which is determined by the process of its
spontaneous decay. In other words, this is multiphoton
spontaneous Raman scattering. Obviously competition
of induced transitions from the upper state to other
bound states and into the continuous spectrum sharply
narrows the possibilities of realizing multiphoton ex-
citation. For this reason in the case of atoms and of
the frequency range of visible light one can practically
be concerned only with relatively few-photon excitation
processes.

The probability of a K-photon transition from the
state » to the state under the action of an external
field of intensity § and frequency w is described within
the framework of the nonstationary perturbation theory
of the K-th order by means of replacing in the fol‘mula
for the single photon probability the quantity d,,£/2 by
viE)gX, The quantity V!X’ is referred to as the multi-
photon matrix element and has the well known form

v 2 R (edmg) (edgp) ... (edpn)
mn_a > g » 2K (0gn—(K—1) 0} [0pn —(K~2) 0] ... [0pa—@] *

(20)

It is described by the Feynman diagram shown in Fig.
12. This compound matrix element takes into account
virtual transitions both into the bound states and into

the states of the continuous spectrum.

From (20) it can be seen that the magnitude of the
multiphoton matrix element depends sharply on the fre-
quency of the external field, and that as the frequency
or its higher harmonics approach the frequency of some
intermediate transition in the spectrum of the atom the

(<] m
~
2 St N U FIG, 12, Feynman graph
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matrix element increases without limit within the
framework of the given approximation. Correspond-
ingly, just as in other similar cases, perturbation the-
ory is applicable only to such frequencies for which the
denominators in (20) are larger than the spontaneous
widths of the intermediate states. If this is not so, then
the problem appears to be relatively simple only for
weak fields when V¥ ¢ «y,, where K’ =w,,/w is the
order of the intermediate resonance. Then in accord-
ance with the Breit-Wigner procedure one should re-
place in (20) E&* by E®'— L4y,

In accordance with what has been said above we note

. the changes and modifications that must be made in the
formulas describing different resonance phenomena in
the preceding sections. In going over from the single
photon to the K-photon resonance in a two-level system
(cf., section 2) the deviation from resonance A is re-
placed by the multiphoton deviation from resonance A,
=w,,—Kw+8E,,, while the Rabi frequeney Q is re-
placed by the multiphoton Rabi frequency £, =3(a%
+4|V®|2g2K)1/2 where SE,, is the difference between
the nonresonance shifts of the levels m and n.3°* From
the form of the Rabi frequency it follows that in order
to calculate it correctly in the case of K-photon reson-
ance it is necessary to know 8E,, with an accuracy up
to terms of order K-1.

We discuss the criteria for the applicability of the
resonance approximation to K-photon resonance. It is
obvious that the criterion (2) goes over into the criter-
ion

| VST EF < Omn- (21)

Criterion (1) is replaced by one which is considerably
more demanding:

B K omn ()" (22)

Indeed, if A, > v, (8/6,)%", then the amplitude of the
multiphoton resonance transition is of order V{5g%/
Wl E/E) " ~d,,,8/w,,, ie., it is of the same order of
magnitude as the nonresonance amplitude of the tran-
sition m,n in the first (nonvanishing) order of pertur-
bation theory.

In addition to the resonance criteria in the case of
multiphoton transitions the criterion for the field
strength § is also altered. In place of the criterion (3)
the field should now be considered strong if the con-
dition V¢£'g¥ =y  is satisfied. The critical intensity
satisfying this condition is considerably higher than in
the single photon case.

We now turn to the probability of multiphoton exci-
tation. If we adopt the scheme of Fig. 9a, then the
probability of multiphoton excitation from the state » to
the state m with a subsequent spontaneous transition to
the state ! has for weak fields the form

' (23)

W |V P €K,

mn

Ym
(@mn— R@)21-(1/4) V2,

here 7,, is the spontaneous width for a transition from
the state m to the state . As everywhere else, this
formula refers to the stationary regime. We note that
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for K =1 formula (23) agrees with (17). It is not useful
to consider the case of strong multiphoton excitations

in the sense indicated above since the fields corres-
ponding to it rapidly approach atomic fields with increa-
sing K.

Calculation of the multiphoton matrix elements (20)
requires overcoming typical difficulties associated with
the choice of the optimal wave function for the optical
electron in a complex atom, and also with the necessity
of carrying out infinite summations over intermediate
states. The nature of the first of these difficulties is
one of principle. The methods of overcoming this dif-
ficulty are analogous in the case of bound-bound and
bound-free transitions; they have been discussed in suf-
ficiently great detail in reviews devoted to the mulfi-
photon ionization of atoms®® and to the nonresonance
perturbation of atomic levels?” Here we merely note
that the number of concrete calculations of multiphoton
matrix elements for bound-bound transitions is very
limited®® so that at present there is no possibility of
reaching any conclusions concerning the optimal meth-
ods of calculation,

In calculating the multiphoton matrix element (20) it
is necessary to satisfy the selection rules for multipho-
ton transitions; in a typical case when one can restrict
oneself to the dipole approximation the selection rules
for the orbital quantum number have for a K-photon
transition® the form Al =1, -1 =-K,-K+1... , K-1,

K independently of the degree of ellipticity of the exter-
nal field. The selection rules with respect to the mag-
netic quantum number depend on the ellipticity of the
external field. In the case of linear polarization AM =0,
for circular polarization AM =+1, for the general case
of elliptical polarization the values AM =-K,-K
+1,...,K-1,K are allowed. We note that in the often
encountered case of circularly polarized light and an
initial S-state in the case of AM =K we have Al =K,
since the angular momentum cannot be less than its
component.

In the case of linear and circular polarizations it is
not necessary to take into account degeneracy with re-
spect to the magnetic quantum number since there is no
mixing of degenerate substates. In the case of ellip~
tical polarization each state is characterized by a su-
perposition of substates with different M. This super-
position may, in principle, be found by means of solv-
ing the corresponding secular equation.’ However
such a procedure is required only for the final state
and for the case of a strong field. For intermediate
states, and also for a final state in a weak field the
choice of the basis does not affect the result as a con-
sequence of summing over all the substates of the de-
generate level.

In a hydrogen atom and in the case of hydrogenlike
atoms there is no point in finding the probability of
transitions under the action of a strong field to states
with a definite angular momentum since states with dif-
ferent angular momenta are mixed in an elliptically po-
larized field.** A similar mixing occurs also between
states of an atomic multiplet when the criterion V2)g?
Z w,, is satisfied, where n,n’ are different states of
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the multiplet, while the matrix element describes their
nonresonance perturbation in an external field.*

If we now turn o experiment, then the first point that
must be noted is the absence of systematic experimen-
tal data on multiphoton matrix elements for bound-
bound transitions. However, on the other hand, a large
number of experiments have been carried out in which
basically two-photon excitation was realized (as a rule,
of the first excited states in alkali atoms). The results
of these experiments related to multiphoton excitation
are well described by theory. It should be noted that in
these experiments one had the simplest situation for
their theoretical interpretation—there were only a few
intermediate states so that one had to take into account
a small number of terms in the multiphoton matrix ele-
ment. We do not give here references to these experi-
ments since data on multiphoton excitation can be ex-
tracted from them only in an indirect manner.

We note only one experiment in which there was ob-
served a completely obvious but practically important
role of the presence of an intermediate quasiresonance
state, i.e., of a state with an extremely small deviation
from resonance.? As can well be seen from (20), a
decrease in one of the denominators of the expression
for the multiphoton matrix element can increase by
many orders of magnitude the probability of multiphoton
excitation., Figure 13 shows the result of the experimental
mentioned above in which observations were made of
the dependence of the probability of two-photon exci-~
tation of the 4D state in the sodium atom on the devi-
ation from resonance in the case of an intermediate
single photon resonance with the 3P state.

In investigating multiphoton bound-bound transitions
it is necessary to keep in mind that it is not always pos-
sible to restrict oneself to the dipole approximation.
We have in mind here such frequencies of the external
field for which resonance quadrupole transitions can
compete with nonresonance dipole transitions. The ef-
fectiveness of the competition by the quadrupole tran-
sitions is due to the fact that the relatively smaller nu~
merator (matrix element) i§ compensated by the rela-
tively smaller (resonance) denominator, so that the
probability of the transition can turn out to be compar-
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FIG. 13. Probability w of two-photon excitation of a sodium
atom in the 4D/, state as a function of the deviation from in-
termediate resonance between the frequency of the external
field w and the energy of the transition to the 3Py, state (ex-
periment of Ref. 42).
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FIG. 14, a) Resonance transitions in the spectrum of a sodium
atom ~ dipole (3P — 4 D) and quadrupole (3P —5P and 3P -4 F);
b) probability w of ionization of a sodium atom as a function of
the deviation A from resonance between the frequency of an
external field w and the energy of the quadrupole transition

3P —~ 4 F (result of the experiment of Ref. 43).

able with the probability of a nonresonance dipole tran-
sition. Experimentally in a number of papers*+

- single photon resonance transitions were observed be-

tween quadrupole coupled states in different atoms.
Data from an experiment® in which in the same ex-
perimental arrangement both dipole and quadrupole
transitions were observed made it possible to determine
with good accuracy the magnitude of the matrix ele-
ments for the quadrupole transitions. In this experi-
ment (Fig. 14) a sodium atom was excited under reson-
ance conditions by relatively weak light from one laser
from the ground state into the 3P state. Under the ac-
tion of relatively strong light from a second laser the
frequency of generation of which could be varied, the
electron, on absorbing two photons, made a transition
into the continuous spectrum. Depending on the fre-
quency of this second laser the two-photon transition
could take place through different intermediate states,
among them the 4D state (Al =1, dipole transition) and
the 4F state (Al =2, quadrupole transition). The ions
were recorded and probabilities of transitions via the
indicated states were compared: the probability of the
dipole transition turned out to be greater by a factor of
approximately 10°, From this ratio and from the well-
known magnitude of the corresponding dipole matrix
element it was possible to obtain the magnitude of the
quadrupole matrix element | (3P |»*|4F)|~10"5cm?,
This quantity is well described by caleulations,*s as
well as the ratio between the matrix elements for the
dipole and quadrupole transitions proportional to »n2,
where n is the principal quantum number.

We now turn to the question of violating the conditions
for realizing multiphoton excitation due to the appear-
ance of induced transitions from the excited state., It is
obvious that the experimental criterion for the appear-
ance of induced transitions is the deviation of the depen-
dence of the probability of multiphoton excitationas a
function of the intensity of the exciting field from the
corresponding power law. Such deviations were ob-
served in a number of experiments on two-photon ex-
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citation,* but these experiments did not give the an-
swer as to what competing process was taking place.?”
The frequently realized case when competition is pro-
vided by ionization from excited states—the resonance
process of multiphoton ionization—is discussed in the
next section. As regards multiphoton mixing of reson-
ance states, so far no experiments are known in which
this interesting process is observed. We note that in a
real atom as a result of the criteria on the intensity of
the field indicated above (V{£)g¥>1y_) we can be dealing
only with two-photon mixing.

Finally, we make a remark concerning multiphoton
emission. It is obvious that this process is qualitative-
ly different from multiphoton excitation, since one of
the virtual transitions can have a spontaneous nature.
The presence in addition to spontaneous transitions also
of an induced transition results in a greater probability
of such a process compared to the probability of spon-
taneous multiphoton emission which, as is well known,
is very small.*®* However, for the process of induced
multiphoton emission to be realized it must successfully
compete with the process of single-photon or cascade
spontaneous emission, It is just for this reason that the
induced emission so far has been observed only under
fairly exotic conditions——such as the decay of the meta-
stable 2S-state of deuterium situated in the field of ra-
diation from a laser using neodymium glass.*® With
the energy of excitation of this state being approxi--
mately 10 eV and with the energy of the quantum of the
external field being approximately 1 eV photons were
observed with an energy of approximately 9 eV. Thus,
a simple two-photon decay of the metastable state was
occurring in which the process of emission of a single
photon of energy in the neighborhood of 1 eV was of an
induced nature. The magnitude of the cross section of
the process indicated above measured in this experi-
ment is well described by calculations.*®

In conclusion we note that when we are speaking of
multiphoton transitions the presence of an intermediate
quasiresonance bound state must, obviously, increase
the probability of induced multiphoton emission by many
orders of magnitude.%

6. RESONANCE IONIZATION OF ATOMS

It is customary to say that the process of multiphoton
jonization of atoms is a resonance one if the energy of
one or several quanta of the external field is close to
the energy of the {ransition from the ground to some
excited bound state. We first consider a particular
simplest process of {wo-photon resonance ionization
(Fig. 15) and assume that it takes place under the action
of two fields of different frequencies w and ' and of in-
tensities § and §’.

In the case of a weak resonance field §(|d, &|<7,)
and of a weak ionizing field &’(w,; <7, the probability
of resonance ionization is described by the obvious re-
lation within the framework of perturbation theory:

(24)

1 -~
T' dpn® P .
V=GR Fam T me~ EE”,
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FIG. 15. Diagram for the process of resonance ionization of
an atom. a) Two-photon ionization in two fields§ ,w and § ,
w’ ; b) multiphoton ionization in a single field§, w.

where w, ~ 8% is the probability of ionization from the
state m per unit time, while (w,, - w) is the deviation
from resonance.®’

Formula (24) can be easily generalized to the multi-
photon case, It follows from the results of section 5
that for this it is necessary to carry out the replace-
ments 3d, 6~V EE A~ A, =W, - Kw; Wep—wiE . At
the same place in section 5 criteria are stated for the
weakness of the field which are valid in the case of
multiphoton transitions.

The process of resonance ionization in a weak exter-
nal field has wide practical application both for the
spectroscopy of highly excited atomic states,™ and al-
so for a wide range of problems associated with selec-
tive action of laser radiation on an atomic medivm—
separation of isotopes,* obtaining polarized elec-
trons®® (cf., also the end of this section) and polarized
nuclei.’*

In a strong resonance field § splitting of the state m
takes place into two quasilevels the energies of which
are determined by formulas (6). (Obviously splitting of
the ground state is of no interest in the process under
consideration.) We assume, as always, that the time

-

during which this field acts is great, |d,,&|7> 1.

Since w,;~ &, while the resonance Rabi frequency
@=|d,,&|~8, then at a not very high intensity of the ion-
izing field, when £'~&, the inequality |d,,&|> w,; is
satisfied. In this case at first the filling of both quasi-
levels of the state m takes place, and then ionization
occurs from these states. H the condition w,;T<«1 is
satisfied then the probability of resonance ionization is
determined by the relation®®

R V- 1.5 |

(“’mn““)"{’“dmn-{g [ (25)

the general form of which is analogous to formula (24).
However in the present case the width of the resonance
is determined by the quantity |d, &|>7,.2 It is obvious

8) Under the conditions for the applicability of formula (24) the
process of resonance ionization is sometimes called “cas-
cade ionization”; this term reflects the specific features of
such a process which can also be regarded as a transition
n—~m-—E.

% Sometimes in scientific literature one speaks of “field broad-
ening of the resonance”.
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FIG. 16. Probability w of Iwo-photon resonance ionization as
a function of the intensity & of the resonance field (results of
Ref. 53).

that the transition from (24) to (25) associated with an
increase in the intensity of the resonance field & must
manifest itself in the reduction of the rate of growth of
w compared to a power law,  Experimentally such a
slowing down was observed™ in the case of two-~photon
ionization of a cesium atom by two fields in accordance
with the scheme S, ,,(F =4)~P,,,~E (F is the hyperfine
structure quantum number). The deviation begins at an
intensity of the resonance field £~ 50 V/cm (Fig. 16).
This value agrees well with the estimate of the con-
ditions for resonance mixing in a two-level system giv-
en in the Introduction.

If the ionizing field is so great that the condition
w, s T> 1 is satisfied, then instead of the probability
per unit time (25) we go over to the absolute probability
of ionization which is determined by the first factor in
(25). In the case of exact resonace with A <|d,_,&| the
probability of ionization ~1 is attained during atomic
times.

We now consider the case when the transitions nm
and mE are of multiphoton nature and are brought about
by a single field (for the sake of simplicity), with K
>2K’ (cf., Fig. 15). In such a case it is evident that
VIO gK« i, the probability of finding the electron in
the state » remains small at all times, and the process
of ionization from this state can be described within the
framework of perturbation theory. The probability of
resonance ionization is described by the relationship®®:

e VLT (26)
BB+ Wh @EN b,

where A@)=w,,- Kw+58E,,(}), 6E ,,(B) is the nonreson-
ance change in the energy of the transition mn in the
spectrum of the atom under the action of an external
field {(dynamical polarizability of these states). The ap-
pearance of the quantities w!% ’> and v, in the denomin-
ator of the expression (26) is a consequence of applying
the Breit-Wigner procedure to the state m. Formula
{28) is valid for times T> 1/w'%?, 1/y,, with w<«< w'%>,
It is obvious that for a sufficiently high intensity of the
field ¢’ one can neglect the spontaneous width y,, com-
pared with the ionization width %*'%;’ which determines
the resonance width.
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Experimentally the process of resonance multiphoton
ionization of atoms under conditions when K > 2K’ has
been observed for different values of K and, as a rule,
for K*=17% It should be noted that the process of ion-
ization at a degree of nonlinearity K >3 is observed with
sufficiently great efficiency only in cases of an appreci-
able field intensity & = 10° V/cm,* when the nonreson-
ance shifts of atomic levels including the resonance
state are great, and exceed not only the spontaneous
width of the levels but also the ionization width. There-
fore resonance in the case of ionization under such con-
ditions is, as a rule, observed with perturbed atomic
levels under conditions when the energy of the tran-
sitions from the ground state to the resonance state dif-
fers from the corresponding energy in the unperturbed
spectrum of the atom. In the case of a very high degree
of nonlinearity and, correspondingly, of a very high in-
tensity of the external field the change in energy be-
comes comparable with the distance to the nearest lev-
els.>%® As long as the change in energy is not great
it is well described by calculations of the dynamical po-
larizability of resonance state carried out by pertur-
bation theory methods.’” Thus, observation of the
process of resonance ionization in an intense field is
one of the methods for investigating the nonresonance
perturbation of atomic levels.3™* In the case of
strong perturgation the question arises of the classi-
fication of resonance states which may be new states
arising in the system atom plus light field.* The
widths of the observed resonances (Fig. 17) are de-
scribed with satisfactory accuracy by the probability of
ionization from resonance states.

The general solution of the problem of resonance
ionization of atoms® enables us to obtain data both
concerning the intermediate case when |V{Xg¥ |~ w&"
and also concerning cases when the external field acts
for only a short time.

We now turn to the angular distribution and the de-
gree of polarization of electrons originating in the re-
sonance process of multiphoton ionization of atoms. We
start with the natural assumption that the ground state
is not oriented, i.e., all values of the magnetic quan-
tum number in this state can be realized with equal
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FIG. 17. Resonance dependence of the probability w of eleven-
photon ionization of a krypton atom on the frequency of radia-
tion from a single-mode laser w. The resonances occur as a
result of absorption of 10 quanta, so that their true width is
ten times greater (result of an experiment in Ref, 58).
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probability. In the general case intermediate states
characterized by different magnetic quantum numbers
are realized with different probabilities. In the case of
a linearly polarized external field this is due to a dif-
ference in the values of the matrix elements for tran-
sitions between different states, in the case of circular-
ly polarized field this is due to appropriate selection
rules. Thus, not only the initial state, but also the in~
termediate state determines in a significant manner the
properties of the emerging electrons. Both the angular
distribution and the degree of polarization (i.e., the
greater probability of realizing final states with mag-
netic quantum numbers having a definite sign) of the
emerging electrons depends in the case of intermediate
resonance on the specific characteristics of the reson-
ance transition and on the degree of ellipticity of the
perturbing field.

As calculations have shown,®? by choosing approp-
riate parameters characterizing the atom and the ex-
ternal field (or external fields) one can obtain com-
pletely polarized electrons. Experiments® have con-.
firmed the validity of theoretical predictions concern-
ing the possibility of attaining a high degree of polar-
ization together with a high efficiency of obtaining elec-
trons. '

The whole above discussion assumed that there is no
relaxation of the intermediate state. If one assumes the
existence of significant relaxation, then the angular dis-
tribution is characterized only by the transition from
the intermediate state, and polarization cannot be sig-
nificant. Three causes can lead to mixing of intermed-
iate states characterized by different magnetic quantum
numbers— ionization broadening of the resonance
state, mixing of the ground and the resonance states,
and also a short duration of the perturbing pulse T.
Finally, one other cause is possible due to which the
intermediate state can be uniformly populated—it is the
selection rules. An example is the frequently encount-
ered case of the transition S, ,,, P, ,,, occurring under
the action of linearly polarized light. Among different
experiments in which the angular distribution of elec-
trons formed as a result of resonance ionization was
observed the case mentioned above was realized in Ref.
63. Resonance ionization of sodium atoms was ob-
served (the ground state is 35,,,) in the presence of in-
termediate resonance with the 3P ,, state. In accord-
ance with theoretical predictions the angular distribu-
tion of electrons was observed which is well described
by the relation w=a+ b cos® typical of single-photon
ionization.®*

7. CONCLUSIONS

In the preceding sections we have discussed certain
typical elementary resonance nonlinear-optics pheno-
mena without attempting to describe all possible vari-
ants of the interaction of intense light with atoms (these
questions have been covered in greater detail in the
monograph of Ref. 2). From our point of view the prob-
lem consisted of describing the principal phenomena
from a unified point of view.

- It is necessary to note once again that the framework
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of the model which we have adopted—the interaction of
intense monochromatic light withisolated atoms—unifies
a wide range of problems associated with selective ac-
tion of laser radiation on an atomic medium. One
should at the same time be reminded that if one is in-
terested in multiphoton transitions then the required
selectivity can be realized also in a gaseous target (and
not in a beam) by utilizing the method of colliding light
beams 3” The transition from a target in the form of

a beam to a target in the form of a rarified gas enables
one to increase the density of neutral atoms by many
orders of magnitude. When dense gaseous targets are
used in which during the time of action of the intense
field collisions occur within the interaction volume be-
tween electrons, ions and atoms and the atoms of the
target, the most significant effects are those associated
with the presence of the field. These are an increase
in the energy of the electrons as a result of inverse
bremsstrahlung® and the radiative collisions of
atoms.5® It is specifically these effects, and not the
gas-kinetic collision broadening,*” that determine the
optimal experimental conditions which depend in this
case on three parameters—the density of the atomic
target, the intensity of the light field and the duration
of its action on the target. The possibility of practical
utilization of nonlinear resonance effects in a number of
cases is associated with the necessity of realizing a
high field intensity over a large interaction volume,
which is sometimes difficult or impossible to attain
with a laser operating in a single-mode generation re-
gime. I one utilizes the multimode regime of radiation
which enables one to obtain a considerably greater en-
ergy in the generated pulse it is necessary to have in
mind the space-time fluctuations of the intensity of the
radiation due to the fluctuations in the amplitudes and
the phases of the modes being generated. The presence
of fluctuations leads to a number of specific effects
which can significantly distort the resonance distribu-
tions 58

It is obvious that a detailed presentation of questions
associated both with collisions and with the nonmono-
chromatic nature of the exciting radiation falls outside
the framework of the subject under discussion. To the
same extent the problem of describing the interaction of
intense light with molecules also falls outside the
framework of this discussion. The principal reason for
this is well known—a molecular spectrum is consider-
ably richer due to the vibrational and rotational degrees
of freedom the resonance frequencies corresponding fo
which lie outside the frequéency range of visible light.

A description of the interaction of an intense electro-
magnetic field with molecules represents a separate
topic.

Finally, we note that even within the framework of
this review we did not aim to produce a complete biblio-
graphy, encompassing all the published data and reflec-
ting the history of the investigations. In actual fact the
number of publications devoted to the subject of this re-
view is several times greater than the number cited by
us. We gave preference to those sources in which the
necessary material is presented in the most general
form, for example in Ref. 69.
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Numerous discussions of different questions touched
upon in this review with our friend V. A. Khodov were
exceptionally useful for us, and his sudden death was an
irreplacable loss.
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