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1. INTRODUCTION

Symmetry has always been one of the guiding princi-
ples in constructing new physical theories. The history
of science contains many examples of how predictions
made on the basis of seemingly abstract considerations
of invariance were beautifully confirmed experimentally
and stimulated the development of new approaches in
both theory and experiment. Symmetry plays a particu-
larly important role in the physics of elementary parti-
cles , since in this case it is very difficult to give an
obvious theoretical interpretation of the experimental
data. There is little hope of solving the inverse scat-
tering problem, i.e., reconstructing the form of the
potential from the scattering data, in relativistic quan-
tum dynamics. In practice, therefore, the form of the
Hamiltonian in quantum field theory is usually postu-
lated on the basis of symmetry arguments and the natu-
ral requirement of "simplicity."

However, the intuitive ideas about symmetry that can
be gained from ordinary experiments refer mainly to
the invariance properties of space-time, leave too much
arbitrariness in the choice of the Hamiltonian of the
field system, and do not reflect the specific character
of the interactions between elementary particles. A
decisive role in elementary-particle physics is played
by so-called internal symmetries, which are not direct-
ly related to the properties of space-time and which do
not have such an intuitive interpretation as, for example,
invariance with respect to displacements in space and
time. In essence, the basic task of the theory is to dis-
cover such symmetries and to use them as a basis for
constructing dynamical models.

The simplest and best known example of an internal
symmetry is the symmetry of the wave functions of
charged particles with respect to phase transformations.
If a field φ(χ) satisfies the Dirac equation

Γ/γΗ0μ — m+ ey^A U (χ)] ψ (χ) = 0, (1.1)

then exactly the same equation holds for a field φ'{χ)

which differs from φ(χ) by a phase transformation:

ψ' (χ) = «*»Φ (ι). (i,2)

The fields φ and φ' carry the same physical information.
This means that it is not the phase itself that has physi-
cal significance, but only phase differences of charged
fields. In accordance with Noether's theorem, the in-
variance of the Hamiltonian with respect to the trans-
formations (1.2) leads to the conservation of electric
"charge.

Transformations associated with the conservation of
other charges—baryon charge, lepton charge, etc. —can
be defined in a similar way.

The phase transformations (1.2) can be regarded as
rotations in "charge" space. The symmetry means that
there is no preferred direction in this space.

A natural generalization of these ideas is the concept
of isotopic symmetry of the strong interactions associ-
ated with invariance with respect to rotations in a three-
dimensional "isotopic" space. As in the previous case,
the symmetry means that there is no preferred direc-
tion in this space. The proton and neutron emerge as
different states of one and the same particle, distin-
guished by their projections of "isotopic" spin. Just as
states with different angular-momentum projections in
a spherically symmetric field are physically equivalent,
the distinction between the proton and the neutron is
unimportant from the point of view of the strong inter-
actions. We can fix the "proton direction" arbitrarily,
after which the "neutron direction" is uniquely deter-
mined.

Further generalizations of these ideas led to the es-
tablishment of the SU3 and SUi symmetries, on which
the current classification of the hadrons is based.

The symmetries discussed above manifest themselves
primarily in the existence of conserved quantities—
charges, isotopic and unitary spin, etc. They impose
rather weak constraints on the dynamics of the inter-
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action and do not fix the specific form of the potential.
In particular, from the point of view of the conservation
of charge, it would be perfectly possible for the electro-
magnetic interaction to be mediated by massive vector
or scalar particles instead of by massless vector quan-
ta—the photons. A more restrictive symmetry is re-
quired to specify the form of the interaction uniquely.

In the case of electrodynamics, such a symmetry is
well known—it is invariance with respect to local phase
transformations or, as we usually say, gauge invari-
ance. As we have already pointed out, invariance with
respect to the global phase transformations (1.2) corre-
sponds to an arbitrariness in choosing a direction in
charge space. However, in fixing a direction at any
single point x, we simultaneously fix it at all other
points of space-time, since the phase transformations
(1.2) act identically at all points x. Real experiments
always refer to a limited region of space-time. It
would therefore be natural to expect that there exists a
possibility of choosing directions in charge space inde-
pendently at different points of space-time. In other
words, there exists an invariance with respect to phase
transformations with a phase that depends on the coor-
dinates :

ψ (ζ) —*• eicat-xty (ζ), ψ (ζ) —*- e~Ka**'ψ(ζ). V-l««/

The Dirac equation (1.1) is invariant with respect to
the transformations (1.3) if the electromagnetic field
Α μ (χ) is simultaneously transformed according to the
law

Λμ(ζ)-,1μ(ζ) + 3μα(ζ). (1.4)

Symmetry with respect to the gauge transformations
(1.3) and (1.4) is much more restrictive than invariance
with respect to global phase transformations. The lat-
ter holds for both Eq. (1.1) and for the free Dirac equa-
tion

— m) ψ (ζ) = 0. (1.5)

But the free Dirac equation is no longer invariant in the
case of local gauge transformations. Gauge invariance
requires the existence of an electromagnetic field whose
interaction with all charged fields is introduced by re-
placing the ordinary derivative by the covariant deriva-
tive :

•fl, = du — ieA. (1.6)

This formula is a direct generalization of the well-
known expression in classical electrodynamics for the
momentum of a particle in an electromagnetic field:

ν-~- 4· (1.7)

The foregoing considerations show that a local trans-
formation of the phase of the field φ(χ), which can be
regarded as a coordinate in charge space, is equivalent
to the appearance of an additional electromagnetic field.
This situation is clearly analogous to the weak principle
of equivalence in Einstein's theory of gravitation, ac-
cording to which a local transformation of the coordin-
ate system leads to the appearance of an additional
gravitational field. Following H. Weyl, this analogy en-
ables us to formulate the following principle of relativi-

(χ)

(1.8)

(1.9)

ty in charge space:

The field configurations

and

describe the same physical situation.

The principle of relativity in charge space uniquely
specifies the Hamiltonian of quantum electrodynamics—
a theory whose predictions are all in excellent agree-
ment with experiment. Invariance with respect to the
gauge transformations (1.3) and (1.4) is an experimental
fact that is as well established as relativistic transla-
tional invariance and other "classical" symmetries.

The electromagnetic and gravitational fields, together
with the Yang-Mills fields, form the family of gauge
fields. Yang-Mills fields arise in a natural way when
the idea of localized phase transformations is extended
to isotopic, SU3, and other transformations. If, in an-
alogy with electrodynamics, we require that the direc-
tion in isotopic space can be fixed arbitrarily at various
points of space-time, i.e., that the theory is invariant
with respect to the gauge transformations

\|) (ζ) (χ), (1.10)

where, for example, Λ{χ)={φρ,φ^ is an isodoublet con-
sisting of the proton and the neutron and r ' are the
Pauli matrices, then there must necessarily exist a
vector and isovector field Au whose interaction with the
fields φ is introduced by replacing the ordinary deriva-
tive by the covariant derivative:

(1.11)

The Yang-Mills field transforms under infinitesimal
gauge transformations according to the law

4 (x) - * 4 (x) + d^ (z) - (χ) a" {x). (1.12)

A Yang-Mills field can be associated with any compact
semi-simple Lie group. The form of its interaction
with the other fields—the "matter fields"—is uniquely
specified by the following generalized principle of rela-
tivity in charge space:

Suppose that the fields φα(χ) realize some representa-
tion of a compact group G and that the vector field Au

belongs to the adjoint representation of this group.
Then the field configurations

ψ"(ζ), ψ* (ι), 4 (ζ)

and

I6cm-gtcmna.n (ζ)] Al (ζ ° (χ).

(1.13)

(1.14)

where T' are the generators of the representation
realized by the fields φ and f""" are the structure con-
stants of the corresponding Lie algebra, describe the
same physical situation.

The principle of relativity for Yang-Mills fields has
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proved to be extremely fruitful for elementary-particle
physics. The theory of gauge fields accounts for the
most important results obtained in this subject during
the past decade. Remarkably, it turns out that many of
the earlier successful phenomenological models can be
consistently and elegantly formulated in terms of Yang-
Mills theory. A good example of this is the theory of
weak interactions.

Until recently, all the experimental data on weak in-
teractions were described by means of a phenomenologi-
cal four-fermion interaction of the form

where the current Jx is a sum of terms of the form

= iy- (i + v5) v. + + ν5) νμ
(1.16)

Here e, μ, vt, and v^ are the wave functions of the
electron, the muon, and the corresponding neutrinos,
and there are also analogous terms containing the wave
functions of the hadrons. However, numerous attempts
to develop a consistent quantum theory on the basis of
the Lagrangian (1.15) have been unsuccessful. Although
this Lagrangian leads to good agreement with experi-
ment in the quasi-classical "tree" approximation, cal-
culations of the quantum corrections give meaningless
divergent expressions. As is well known, an analogous
difficulty in quantum electrodynamics is resolved by
means of the renormalization procedure, i.e., a redefi-
nition of the "bare" charges and masses which charac-
terize fictitious non-interacting particles. After re-
normalization, all the parameters of the actual interac-
ting particles and the amplitudes for all physical pro-
cesses become finite. However, this procedure, which
provides a unique algorithm for perturbation-theory cal-
culations in quantum electrodynamics, turns out to be
inadequate in the case of the Lagrangian (1.15). The
divergences cannot be eliminated by redefining a finite
number of parameters—the corresponding theory is non-
renormalizable.

This seems to indicate that the four-fermion interac-
tion (1.15) is not fundamental. The form of the Lagran-
gian (1.15) suggests that the interaction of the vector
currents Jx actually occurs in the same way as in elec-
trodynamics , via the exchange of quanta of a vector
field W^:

.17)

In lowest-order perturbation theory, the Lagrangian
(1.17) gives the amplitude

·£/»(*)'"'ΰ*^'""·'*». ft·")

which at low energies k2« m2 coincides with the ampli-
tude obtained from the Lagrangian (1.15). In this
scheme, the observed contact interaction of the currents
is merely an approximate low-energy potential due to
the exchange of a single vector meson.

For a long time, it was believed that the interaction
(1.17) suffers from the same disease as the contact
four-fermion interaction. Attempts to develop a per-

turbation-theory formalism for the Lagrangian (1.17)
led to uncontrollable divergences which are character-
istic of a non-renormalizable theory.

The situation becomes fundamentally different if we
assume that the field Wx is a Yang-Mills field. This
hypothesis follows naturally from the analogy with
electrodynamics. The analogy between the weak and
electromagnetic interactions had already been noted by
Fermi and discussed by many subsequent authors. In
both cases, the interaction involves conserved vector
currents. In many respects, the weak and electromag-
netic currents behave like the members of a single mul-
tiplet corresponding to some algebra that unifies these
interactions.

We can attempt to unify the weak and electromagnetic
interactions on the basis of a common gauge group by
combining the matter (lepton and quark) fields into mul-
ti-component multiplets ψ={φ1. . . $„} which realize a rep-
resentation of this group and combining the electromag-
netic field and the fields of the intermediate vector me-
sons that carry the weak interaction into a Yang-Mills
multiplet Aa =(Al,... ,A*}. In accordance with the
preceding discussion, the principle of relativity uniquely
specifies the form of the interaction of the intermediate
mesons with the leptons and quarks. If the gauge group
is simple, this interaction is automatically universal
and is characterized by a single coupling constant. In
the case of the Yang-Mills theory, it is possible to
formulate a renormalization procedure analogous to the
corresponding procedure in quantum electrodynamics
and to construct a formalism of perturbation theory.

Despite its obvious elegance, the foregoing picture is
unsuitable for describing the experimental situation in
this simple form. In addition to the properties which
the electromagnetic and weak interactions have in com-
mon, there are important differences which this scheme
does not incorporate. First of all, the electromagnetic
interaction is of long range, whereas the weak interac-
tion has a finite range. Since the effective range of an
interaction is inversely proportional to the mass of the
field that carries it, this means that the W mesons,
unlike the photon, must have a non-zero mass. Second-
ly, the electromagnetic interaction conserves parity,
whereas the weak interaction contains terms which are
non-invariant with respect to spatial reflections. It
would appear at first sight to be impossible to combine
these properties within the framework of a symmetric
theory—all Yang-Mills fields must have zero mass, and
the currents must have the same transformation proper-
ties.

However, we recall that the symmetries discussed
above referred only to the Hamiltonian and the equations
of motion. Now the actual behavior of a physical sys-
tem also depends on the boundary conditions or on the
symmetry properties of the ground state. It is appro-
priate here to cite a well-known classical analogy. Con-
sider a ball which rests at the center of the concave
base of a bottle (see Fig. 1). The ball is in equilibrium.
This system is symmetric with respect to reflections
about the center. However, this equilibrium position is
unstable. Left to itself, the ball will roll towards the
wall under the action of an arbitrarily small perturba-
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\ 1 FIG. 1.

tion. This position is energetically more favorable and
therefore stable. This new equilibrium position, which
is the true ground state, no longer possesses the original
symmetry—the symmetry is spontaneously broken. We
cannot predict in which direction the ball will roll. All
positions near the wall have the same energy and are
therefore equivalent. This means that the ground state
is degenerate.

An analogous mechanism enables us to distinguish the
weak and electromagnetic interactions in a gauge-invar-
iant theory. It leads to a non-zero mass for the Yang-
Mills fields corresponding to the intermediate W me-
sons and to a breaking of the symmetry between the
weak and electromagnetic currents.

Let us assume that, apart from the leptons and
quarks, the Yang-Mills fields interact with scalar fields
φ. The gauge-invariant Lag rang ian for the interaction
of scalar fields has the form

> . • ^ > ( 1 · 1 9 )

With the positive sign of the mass term, the potential
ν(φ) has a unique, translationally invariant minimum at
the point φ = 0. The corresponding position of equilibri-
um is stable and possesses the same symmetry as the
Lagrangian (1.19). On the other hand, if the mass term
appears in V(<p) with the minus sign, then the potential
V has a form analogous to that considered above in the
example of the bottle. Exactly as in that example, the
symmetric extremum φ = 0 is unstable. The system
"slides" into one of the stable equilibrium positions cor-
responding to zero Αϊ and constant φ having a fixed
length <p2

0 = m2/2h2. The equilibrium position is degener-
ate. The minimal configurations form a sphere whose
points correspond to the directions of the constant vec-
tor φ 0 . All the directions of φ 0 are physically equiva-
lent. Therefore we can arbitrarily fix the direction of
the vector <p0, assuming, for example, that it is direc-
ted along an axis η: <p0={0,... ,0,w/V2fe}.

Of course, this choice of the boundary conditions
breaks the invariance of the theory with respect to glo-
bal, coordinate-independent gauge transformations.
The reader who is familiar with solid-state theory will
undoubtedly see the analogy here with the phenomenon of
spontaneous magnetization of a ferromagnet, where the
formulation of the theory also requires a choice of the
direction of the magnetization vector.

It might appear that by choosing the term (m2/2)cp2

with the minus sign we obtain a physically meaningless
theory in which the scalar particles have negative mass.
However, this would be a hasty conclusion. The quad-
ratic term in φ plays the role of a mass only when the
point φ = 0 is a position of stable equilibrium. To de-

termine the actual mass spectrum, we must make an
expansion of the potential (1.19) in the neighborhood of
the stable extremum, which is equivalent to a displace-
ment of the fields φ by the constant vector φ 0 . After
such a displacement, we obtain a Lagrangian whose
quadratic part actually determines the mass spectrum
(apart from radiative corrections), while the terms of
higher order in the fields describe the interaction.
In this form, the Lagrangian can be used to construct a
perturbation theory in which, as usual, the propagators
are determined by the quadratic part of the Lagrangian,
while the vertices which appear in the construction of
the Feynman diagrams are given by the terms of third
and fourth order in the fields. It can be seen from Eq.
(1.19) that the transformation to the displaced fields
leads to mass terms for some of the vector fields and
for the fields φ:

l(X) Al(x) + -&- ψΓ"ψ. (1.20)

For example, if T* = IT1 , the mass term takes the form

^ ΐ μ μ ) 2 + μμ)
2ΐ, (1.21)

i.e., two of the vector fields acquire a non-zero mass,
while one remains mass less. The structure of the in-
teraction Lagrangian is also modified, and it becomes
possible to obtain different transformation properties
for the electromagnetic and weak currents.

This mechanism, first proposed by Higgs, m is the
basis of the Weinberg-Salam unified model of the weak
and electromagnetic interactions/ 2 1 as well as many
more recent unified models.

The reader may wonder why we insist on spontaneous
symmetry breaking instead of "manually" introducing
terms that break the symmetry between the weak and
electromagnetic interactions. The point is that the
spontaneoulsy broken symmetry is still a symmetry.
After transforming to the displaced fields φ' - φ +φ0,
the Lagrangian (1.19) remains invariant with respect to
local gauge transformations. Only the form of the latter
changes. If a gauge transformation for the Lagrangian
(1.19) had the form

(1.22)

then after transforming to the fields φ' this gauge
transformation in the theory with spontaneously broken
symmetry takes the form

(1.23)

Unlike the original transformation (1.22), the transform-
ation (1.23) with constant or' is not generated by any uni-
tary operator and therefore does not lead to the conser-
vation of any quantity. This means that the symmetry
is broken. Nevertheless, the condition of invariance
with respect to the transformation (1.23) still uniquely
specifies the form of the interaction of the field φ with
the Yang-Mills field. Owing to the invariance of the
spontaneously broken theory with respect to local gauge
transformations, it is possible to extend to this theory
the procedures of quantization1·3·1 and renormalizationC41
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developed for symmetric theories, as was done in Ref.
5.

The unified gauge models reproduce all the success-
ful predictions of the phenomenological four-fermion
model (1.15) and, at the same time, in contrast with the
latter, constitute a self-consistent theory with which
it is possible to calculate uniquely quantum corrections
to the amplitudes for various processes. These gauge
models also yield a number of important qualitative
predictions which are beautifully confirmed by experi-
ment. The most important of these predictions is the
existence of neutral weak currents and charmed hadron-
ic states.

However, returning to the problem formulated at the
beginning of this review, namely that of discovering a
symmetry which completely determines the form of the
interaction, we must admit that we have not yet solved
this problem for gauge-invariant models with spontane-
ously broken symmetry. The mechanism of spontaneous
symmetry breaking used in these models is a purely
external one from the point of view of the gauge theo-
ries—the existence of the Higgs scalar mesons does not
in any sense follow from the symmetry of the theory.
The only reason for introducing them is to ensure a
reasonable mass spectrum for the weakly interacting
particles. In addition to its esthetic deficiency, this
procedure also raises purely practical objections. The
predictive power of the theory is significantly reduced.
In contrast with the universal Yang-Mills interaction,
the interactions of Higgs scalars with fermions and with
each other are to a great extent arbitrary. The param-
eters which characterize these interactions are not
fixed by the condition of gauge invariance. As a result,
models of the Weinberg-Salam type give no predictions
regarding the mass spectrum of the matter fields.

It is natural to try to take a further step towards the
unification of the various interactions. Gauge invari-
ance enabled us to combine the photon and the interme-
diate W mesons in a single multiplet and to specify
uniquely the form of their interaction with the matter
fields. Can we not postulate a larger symmetry which
would unify the Yang-Mills fields and the lepton and
quark fields with the Higgs scalars? It is clear that the
familiar isotopic or unitary symmetries are inappropri-
ate for this purpose. All these symmetries relate fields
having the same tensorial dimensions—the irreducible
multiplets consist of either scalars of spin-5 particles,
etc. The symmetry that we require must give a non-
trivial relation between fields having different tensorial
dimensions, in particular fermions and bosons. Since
bosons are described in quantum theory by commuting
variables, while fermions are described by anticommu-
ting variables, the algebra of the corresponding trans-
formations must contain both commuting and anticommu-
ting elements. In other words, the required group must
include transformations of the type

ψ{χ) ->- φ (χ) + εψ (χ). (1.24)

where φ is a scalar field, Φ is a spinor field, and ε are
anticommuting spinor parameters.

Such a group can be constructed, and the correspond-

ing symmetry is known as supersymmetry. It turns out
that most of the usual formalism of group theory, with
fairly obvious modifications due to the presence of anti-
commuting elements, carries over to supersymmetry
transformations. The irreducible representations of
the supersymmetry group unify the vector, spinor, and
scalar fields within a single multiplet. The existence
of spinor fields (leptons and quarks) in the supersymme-
tric theory necessarily entails the existence of scalar
fields, which are natural candidates for the role of
Higgs mesons. The requirement of invariance with re-
spect to supersymmetry transformations leads to rela-
tions between the masses and interaction constants of
the gauge fields and the Higgs scalars. As a result,
super symmetric models should be of much greater pre-
dictive power than the standard unified models. How-
ever, we encounter the same problem in the supersym-
metric theory as that which arose in attempting to com-
bine the photon and the W meson into a multiplet of
Yang-Mills fields. All the members of a single super-
multiplet should have the same mass. Therefore the
supersymmetric theory leads to a degeneracy in the
masses of the scalar and spinor fields, which is not ob-
served experimentally.

As before, we can avoid this difficulty by means of
spontaneous symmetry breaking. However, the mech-
anism of spontaneous symmetry breaking described
above cannot be directly generalized to this case.
Supersymmetry imposes strong restrictions on the form
of the potential V(<p) which determines the stable ground
state. In the simplest supersymmetric models, the
stable extremum corresponds to a stable ground state,
so that there is a degeneracy in the masses of the spin-
or and scalar particles. To remove this degeneracy and
reproduce a realistic mass spectrum and form of inter-
action in the supersymmetric theory, we must resort
to more refined methods. In fact, the present review
will be largely concerned with this problem. We shall
describe a mechanism of spontaneous supersymmetry
breaking which is applicable to practically any super-
symmetric theory. As in the case of the Yang -Mills the -
ory, models with a spontaneously broken supersymme-
try can again be subjected to a symmetric renormaliza-
tion procedure, and the relations between the counter-
terms are merely replaced by finite, calculable quanti-
ties. This mechanism enables us to construct realistic
supersymmetric models of the weak and electromagnet-
ic interactions.

The plan of our review is as follows. Section 2 con-
tains auxiliary material. Its purpose is to acquaint the
reader who is unfamiliar with the theory of supersym-
metry with the basic concepts of this theory. Section 3
contains a detailed discussion of spontaneous super-
symmetry breaking. This section is aimed primarily
at the reader with the necessary background who is in-
terested in the further development of the theory. In
Sec. 4 we discuss the application of supersymmetry to
the weak and electromagnetic interactions. As an ex-
ample, we consider in detail a simple supersymmetric
model of the leptons. This section may be of interest
to readers who are interested in unified gauge models.
It can be understood without any particularly deep
knowledge of the theory of supersymmetry. Finally, in
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the concluding section we enumerate the most character-
istic features of supersymmetric gauge models of the
weak and electromagnetic interactions.

2. SUPERSYMMETRIC GAUGE THEORIES

Since supersymmetry transformations connect Fermi
and Bose fields, the corresponding algebra must contai ι
anticommuting elements. The minimal algebra which
includes anticommuting generators and contains the
subalgebra of the Poincare group has the form1 6·8 1

IPU
- = ο, _ = o, (2.1)

where Pu are the generators of the four-dimensional
translations, Sa are the generators of the supersym-
metry transformations, which are Majorana spinors,
and C is the matrix of charge conjugation. A detailed
discussion of the representations of the algebra (2.1)
can be found in a review by Mezinchesku and Ogievet-
s k i i , m where references to the original papers are
given. We confine ourselves here to the facts that are
required for what follows.

It is convenient to realize the representations of the
algebra (2.1) in the space of functions $(xu,θα) depend-
ing on the real parameters χ (points in Minkowski
space) and the anticommuting Majorana spinors θα sat-
isfying the relations'-7'101

[θα, θβ]+ = 0. (2.2)

The supersymmetry transformations act in the space of
the variables χ and θ as follows:

*μ-<-Χμ + ^·εγμθ, θα + θα + εα, (2.3)

where the parameters of the transformation, εβ, are in
turn anticommuting Majorana spinors.

A scalar superfield is defined in analogy with an or-
dinary scalar:

Ψ (χ, θ) = Ψ' (χ1, θ'). (2.4)

The superfield Ψ(*, θ) is equivalent to a multiplet of or-
dinary fields, since any function of a finite number of
anticommuting variables is a finite polynomial. It
follows from the property (2.2) that 05=O, and by ex-
panding Φ(ΑΓ, θ) as a Taylor series in θ we obtain

Ψ ί χ , θ ) = <τ(χ) + θχ(χ)

+ -i- [θθ? (χ) + θγ5θ<ϊ (χ) -f θ,γ,ν,ΘΑ» (χ) + (θθ) θλ (χ)] + -§2 (^θ)2 D Μ-

(2.5)

Thus the real superfield Ψ(χ, θ) is equivalent to a multi-
plet of ordinary fields containing the (pseudo) scalars
c(x), F(x), G(x), andD(x), the Majorana spinors χ(χ)
and λ(χ), and the vector field Au(x). These fields trans-
form into one another under the supersymmetry trans-
formations (2.4):

6c = εχ, 6D = — it d\. (2.6)

The superfield 'ίζ(χ,θ) admits an invariant expansion
as a sum of superfields containing fewer components:

The chiral superfields Φ4(*,θ) are equivalent to multi-
plets of ordinary fields consisting of (pseudo) scalars
AJix) and Fk(x) and two-component scalars ^t{x), while
the superfield Ψ^χ,θ) includes a Majorana spinor, a
four-vector, and a scalar.

To construct an action which is invariant with respect
to supersymmetry transformations, it is sufficient to
integrate any superscalar, such as [*(*,#)]", with re-
spect to the invariant measure /<f4fti4x, where the inte-
gral with respect to ά*θ is defined by the equations1111

to* = 0, θ α <ίθβ = 6 a f l . (2.8)

The simplest invariant action has the form

J Φ+ (ι, θ) Φ. (χ, θ) d*x <M

= j id^A* (x) d»A - (x) + £? h? {x) + F+ {x) F. (x)] d'x

(2.9)

and describes non-interacting spinor and scalar fields.

It follows from the definition (2.8) that

J d' ΘΨ (ι, Θ) = D (χ),

i.e., the integral of the Z?-component of a scalar super-
field with respect to d*x is an invariant. This can be
seen directly from the transformation equations (2.6).
The D-component transforms into a total derivative, so
that Jd4x.D(*) is an invariant. It can be shown that the
integral of the Ft-component of a chiral superfield is
also an invariant. We shall often make use of this
property in what follows.

Since the spinors and scalars belong to a single mul-
tiplet in the supersymmetric theory, the fermion
charges of the spinor and scalar fields are interrelated.
If we require that members of a single supermultiplet
have different fermion charges, the transformation
which determines this charge must affect the generators
of the algebra (2.1). The only such transformation con-
sistent with the commutation relations (2.1) has the
form 1 1 2 · 1 "

The superfield *(χ,θ) then transforms as

Ψ(χ, θ ) - * Ψ (χ, e"av56)

or, in terms of components,

EH*]-

(2.10)

(2.11)

(2.12)

i.e., the two-component spinors \ t and λ. possess fer-
mion charges -1 and +1, while the vector field Αβ and
the scalar D carry no fermion charge. If we assign fer-
mion charges ±1 to the spinor components of the chiral
superfields, their possible transformation laws have
the form

Φ ± (Χ, θ) -»- «Τ2ηαφ± (χ< <Γα·»5θ), η = 0, 1 (2.13)

Ψ (Χ, θ) = Φ+ (Χ, θ) + Φ . (Χ, θ) + Ψ! (Χ, θ). (2.7) or, in terms of components,
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0:
Γ Α± "Ι ΓΑ±~\ ΓΑ±,™°--\

(2.14) s =

It can be seen that the scalar components of the chiral
fields have non-zero fermion charge. The fields Ft are
not true dynamical variables, so that their charge is
immaterial, but the A±-components correspond to real
particles. It can be shown that if the Lag rang ian con-
serves fermion charge and contains a bare mass, then
the supersymmetric theory necessarily contains scalar
particles with non-zero fermion charge.

Supersymmetric gauge-invariant theories are of the
greatest interest for applications. A supersymmetric
generalization of electrodynamics was first constructed
by Wess and Zumino.C141 An analogous construction was
considered in Refs. 15 and 16 for the case of a non-
Abelian gauge group.

It is obvious that we cannot confine ourselves to a
single vector gauge field in a supersymmetric theory,
since the transformations of the group connect the vec-
tor field with fields of different tensorial dimensions.
The role of a gauge field in this case is played by the
supermultiplet Ψ(ΛΓ,Θ), which contains spinors and
scalars in addition to the vector field. We can describe
the matter fields by means of the chiral supermultiplets
**(*>Θ), which contain spinor and scalar fields.

The supersymmetry transformations do not commute
with the ordinary gauge transformations, so that the
supersymmetric action must necessarily be invariant
with respect to the larger gauge group

(2.15)Φ±(χ, ζ, θ)Φ±(χ, θ),

where the matrices Ω4(χ,0) satisfy the condition Ω*
= ( Ω . ) " 1 . The role of the usual gauge function is now
played by the chiral matrix superfield Ω4(χ,θ), which
depends on eight arbitrary functions Ut(x), V±(x), and
W±(x), where E4 and W± are (pseudo) scalars and Vt is a
two-component spinor. In the case of a non-Abelian
group, each of these functions in turn has several com-
ponents.

The gauge-invariant kinetic term has the form

(2.16)

In contrast with ordinary gauge theories,this expression
is essentially non-linear: the series (2.16) contains
arbitrary powers of the fields c(x), the fourth power of
χ(χ), etc. At first sight, the Lagrangian (2.16) therefore
corresponds to a non-renormalizable theory and is
meaningless in the framework of perturbation theory.
However, the gauge invariance (2.15) allows us to speci-
fy eight components of the field Φ (AT, Θ) arbitrarily.
In particular, following Wess and Zumino, we can put

c (χ) = χ (χ) = F (χ) = G (ι) = (χ) = 0. (2.Π)

In this gauge, the infinite series (2.16) terminates and
the action takes the form (we write here the supersym-
metric generalization of the Lagrangian for a Yang-
Mills field interacting with the matter fields)

ψ + Μ {AtF+ - ψψ) + 1
+ - AID A.)

, A,])*

(The Lagrangian for an Abelian theory is obtained from
(2.18) by making the substitution τ*-/.) The fieldsD
and F± are not true dynamical variables, since the La-
grangian (2.18) contains no derivatives of Dand F±.
Eliminating D and Ft, we obtain the mass term and the
contact interaction for the scalar fields:

- Λ/2 (A+

t *.A.) — £ (Α*τ"Α+ - A*. (2.19)

The Lagrangian (2.18) contains all the necessary ingre-
dients of unified gauge models: the vector field Au in-
teracts in a gauge-invariant manner with the spinor and
scalar fields, and the scalar fields in turn interact with
each other and with the spinor fields. In other words,
the scalar components of the chiral superfields can in
principle play the role of Higgs mesons. In contrast
with the Weinberg-Salam model, the Lagrangian (2.18)
now depends on only a single dimensionless coupling
constant g.

It can be shown that this property is preserved in the
renormalized theory. t t 7" 2 0 ) All the ultraviolet diver-
gences are eliminated by renormalizing the charge and
the wave functions of the superfields. This implies in
particular that the supersymmetric Yang-Mills theory
is asymptotically free, despite the presence of scalar
particles. Owing to the supersymmetry, the invariant
constant of the fourfold interaction of scalar fields,
which usually violates asymptotic freedom, coincides
with the Yang-Mills constant, which, as is well known,
tends to zero for large values of the argument (if the
number of multiplets of the matter fields is not too
large).

A remarkable property of supersymmetric theories
is the absence of an independent mass renormalization.
If the bare mass is equal to zero and there are no con-
servation laws which forbid the appearance of a mass,
then the physical mass can be uniquely calculated.

However, the Lagrangian (2.18) is "too symmetric."
In nature there is no degeneracy in the masses of the
scalar and spinor particles; consequently, the super-
symmetry must be broken and, if we wish to preserve
the symmetry relations between the renormalized am-
plitudes and coupling constants, broken spontaneously.
The problem of spontaneous supersymmetry breaking
has proved to be non-trivial, since the condition of in-
variance imposes strong constraints on the form of the
effective potential. In particular, the potential (2.19)
corresponds to a stable symmetric extremum and does
not produce spontaneous supersymmetry breaking.

3. SPONTANEOUS SUPERSYMMETRY BREAKING

The first successful attempt to solve this problem was
made by Fayet and Iliopoulos,"1 1 who pointed out that
is is possible to produce spontaneous supersymmetry
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breaking in the case of an Abelian gauge group by adding

a term linear in the field D to the action (2.18), namely

I j ΛΟ (x). (3.1)

The action remains supersymmetric after the addition
of this term, and there is no violation of gauge invari-
ance in the Abelian case. However, the presence of the
linear term leads to a non-zero vacuum average (D)o

#0. The transition to a stable ground state, D-D- ζ,
produces an additional mass term for the scalar fields,
namely

— lg[AlA+ — A*A.]. (3.2)

The degeneracy of the masses within a supermultiplet is
removed, and the supersymmetry is spontaneously
broken. If ig>M2, the fields A t in turn acquire non-zero
vacuum expectation values, and we have the usual Higgs
effect, leading to spontaneous breaking of the internal
symmetry and the appearance of a mass for the vector
particles.

The Fayet-Iliopoulos mechanism is applicable only in
the case of an Abelian gauge group, since the addition
of the term jDa(x)dix obviously violates gauge invari-
ance in the non-Abelian case. (Still another possible
mechanism of spontaneous supersymmetry breaking for
Lagrangians of a special form was discussed in Refs.
22 and 23.) Both of these methods are applicable only
to a very limited class of theories, and attempts to use
them to construct realistic models have not met with
success.'24·253

Still another problem arises in this connection. Spon-
taneous supersymmetry breaking involves the presence
of a spinor particle of zero mass—a Goldstone fermion
(Goldstone's theorem carries over to this case prac-
tically unchanged, except that we have a massless fer-
mion instead of a Goldstone boson). It was originally
assumed that the Goldstone fermion can be identified
with the electron neutrino. It is easy to show, however,
that this identification leads to a contradiction with ex-
periment.126·273

Invariance with respect to the supersymmetry trans-
formations leads to a conserved current, which in the
case of a spontaneously broken symmetry contains a
term proportional to the field of the Goldstone fermion:

,·μ [χ) = _ ί Π , μ ν (χ) + . . . (3.3)

Making use of the conservation of the current j " , we ob-
tain

0 = j dlxe">* d№ W | /„ (x)\A)

= (2n)«8 (q + pB - pA) UMy (?) + ffl»],

(3.4)

where Mv(q) is the neutrino pole term and Ru denotes
the contribution of the remaining (non-pole) terms in
(3.3). It follows from (3.4) that M,(q)-0 as q-0. In
particular, the amplitude for β decay must tend to zero
as the neutrino momentum tends to zero or, equivalent -
ly, at high energy of the charged lepton. The experi-
mental data are incompatible with such a behavior. In
principle there is still a possibility of identifying the

Goldstone fermion with the muon neutrino,1·283 although
the low-energy theorems impose strong constraints on
the behavior of the corresponding amplitudes.

Another recently proposed mechanism of spontaneous
supersymmetry breaking'29·303 gives a significant ex-
tension of the class of admissible theories and is free
from the difficulty connected with the Goldstone fermion.
This mechanism makes it possible to obtain arbitrary
mass terms for the scalar components of the chiral
superfields in a theory with spontaneously broken super-
symmetry.

We shall first show how to obtain mass terms of the
form

H(A*_A++AZA.). (3.5)

Let Ss denote an arbitrary supersymmetric action. We

introduce auxiliary chiral fields R± and R± which inter-

act with the "physical" fields as follows:

s = s,
[{Φ:Φ_Λ_ + Φ ! Φ + Λ + ) Γ L + R+R.)D + κ (S+ + If.),] dx.

(3.6)

The action (3.6) is manifestly supersymmetric. Owing
to the presence of the linear term (R.+R.)F, the vac-
uum averages (RJF{RjF are non-zero, and the super-
symmetry is spontaneously broken. The transition to
the stable vacuum produces a term

which removes the degeneracy in the masses of the
spinor and scalar fields. The variation of the action
(3.6) with respect to R. and R. leads to free equations
for Rt and R-. This means that the auxiliary fields
Rt and R± are decoupled from the physical fields. The
diagrams describing physical processes contain no in-
ternal lines for R± and R~*, and the S-matrix is unitary
in the physical sector. The only observable effect of
the fields Rt and i j t is the mass term (3.7). However,
the explicit supersymmetry of the original expression
(3.6) enables us to subject it to the invariant renormali-
zation procedure developed in Refs. 17-20. It is possi-
ble to write generalized Ward identities and to show that
the relations between the renormalized coupling con-
stants and masses which are valid in the symmetric
theory are modified only by finite, calculable terms.
The only possible new counter-term which may be re-
quired to eliminate ultraviolet divergences is

~ /O Q\

Ζ {Φ Φ_π_-4-φ Φ+/?+} W#O/

and merely leads to a redefinition of the arbitrary con-
stant κ:

ZX(A\A-+A*_A+) (3.9)

(in fact, even this renormalization is absent in most
models).

An analogous procedure can be used to obtain mass
terms of the form

t+(AlA+)+l^(AZA_). (3.10)

To do this, we must introduce general auxiliary super-
fields Ρ and P, which interact as follows:
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Here Pu Pt, P. and Pu Pt, P. denote the irreducible
components in the expansions of the fields Ρ and Ρ (see
Eq. (2.7)), and £, and £ 2 are general superscalars
which depend quadratically on the chiral fields Φ., Φ*
and Φ., Φ*, respectively. For example, £j and £ 2 take
the following form in the supersymmetric Yang-Mills
theory:

(In order to preserve the gauge invariance of the theory,
the fields Ρ and P, as well as the fields R± and i? t con-
sidered above, must be taken to be singlets of the gauge
group.)

Owing to the presence of the linear term, the super-
symmetry is spontaneously broken, as in the previous
case. The displacement of the fields Ρ given by [P],,
-LP]D + κ produces the mass term (3.10). The fields
Ρ and Ρ are again decoupled from the physical fields,
and the S-matrix is unitary in the physical sector.

Another method of introducing auxiliary fields is dis-
cussed in Ref. 30, where a detailed analysis of the re-
normalization procedure is also given.

An interesting special case of the Lagrangian (3.12)
is the model

Π P, + P+ D P-+P+ a P-]D-X[P]L,} d'i,

(3.13)

where Φ. is a chiral isodoublet, Φ" is a supersymmetric
Yang-Mills field, and &YM denotes the Yang-Mills La-
grangian. The transition to the stable vacuum produces
the mass term

!%.\(AXA+)#x. (3.14)

If ξ >0, the Lagrangian (3.13) also leads to spontaneous
breaking of isotopic invariance. The fields At acquire
non-zero vacuum averages. The usual Higgs effect
leads to the following mass spectrum: all three compo-
nents of the vector field, two complex fermions, and one
Hermitian scalar acquire non-zero masses proportional
to ξ. Three Goldstone scalars, which can be eliminated
by a gauge transformation, and one two-component fer-
mion remain massless. The model is infrared-finite.
Being a Yang-Mills theory with one dimensionless coup-
ling constant, this model is asymptotically free. Thus
the Lagrangian (3.6) is an example of an asymptotically
free theory with no infrared divergences.

In conclusion, we note that by dropping the auxiliary
fields and considering from the very beginning Lagran-
gians containing the mass terms (3.5) and (3.10), we ob-
tain a theory with an explicit but "mild" supersymmetry
breaking. A special case of such a "mild" breaking in a
Φ3 model was considered by Iliopoulos and Zumino.1311

The foregoing arguments provide a simple explanation
of their result, which is a particular case of the mech-
anism that we have described.

This approach is free from the difficulty connected

with the Goldstone neutrino. The Goldstone fermion is
a component of the auxiliary multiplet and does not in-
teract with the physical fields.1·29·30·32·1 The low-energy
theorems do not impose any restrictions on the form of
the interaction. As we shall show below, the existence
of massless neutrinos may be related to the conserva-
tion of lepton charges. In models with nonconservation
of lepton charge, the neutrinos acquire a uniquely cal-
culable non-zero mass. Supersymmetric models with
non-conserved lepton charge can be used to account for
the neutrino oscillations discussed by Pontecorvo and
others." 3 · 3 4 1

4. UNIFIED GAUGE MODELS WITH
SPONTANEOUSLY BROKEN SUPERSYMMETRY

In this section we shall illustrate the possible applica-
tions of supersymmetry to models of the weak and elec-
tromagnetic interactions by means of the simplest ex-
amples. In principle, we could also apply the formal-
ism developed above to unified models which include the
strong interactions. However, it seems to us that the
existing experimental information is not good enough to
enable us to make any reliable choice of a particular
model; moreover, the mechanism of producing the
masses of the strongly interacting particles is not clear
at the present time. We shall therefore confine our-
selves here to the weak and electromagnetic interactions,
bearing in mind that the "symmetry group of the world"
G is already broken down to GKte&Gs, and we take the
groupG^tobeSi/jXt/,.

The minimal model corresponds to an interaction of
gauge fields Bu and Αμ with chiral isodoublets Φ*. After
spontaneous breaking of isotopic invariance, such a
model would contain two charged andtwoneutral leptons,
which we might try to identify with the electron, the
muon, and their corresponding neutrinos. However, it
can be seen from Eq. (2.18) that, owing to the presence
of the vector Yang-Mills term

this identification would lead to the existence of right-
handed neutrinos interacting with the same strength as
the left-handed ones. Therefore a model containing a
total of four Dirac leptons is certainly incompatible
with experiment. Supersymmetric models of the weak
and electromagnetic interactions must necessarily in-
clude heavy leptons. A model that leads to a reasonable
form of interaction can be constructed on the basis of
two chiral isodoublets ΦΜ ι 2 which interact with gauge
fields Au and Βμ . ί 3 0 1 In addition to the electron, the
muon, and the e- and μ-type neutrinos, this model also
predicts heavy charged and neutral leptons. It turns out
that the mass of the neutral lepton is of the order of the
muon mass, so that this lepton would have to be seen,
for example, in the decay of the kaon. Thus this model
is unsatisfactory from the experimental point of view,
and we must further increase the number of heavy lep-
tons.

The simplest modelC351 which gives a lepton spectrum
that is acceptable from the experimental point of view
can be constructed on the basis of three chiral complex
isodoublets
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Φι± = μ?±,ψί±, Fi±), i = l , 2, 3,

where & is an isotopic index, and two Hermitian sing-
lets

c i . 2 o L 2 + c l . 2 f / | 1 . 2 k I . 2 E * 1 , 2 \
S+ = S- , 5 ± - = {As± , ψβ± > Fs± }•

The most general supersymmetric and gauge-invari-
ant Lagrangian describing the interaction of these mul-
tiplets with gauge superfields

ψ» = {οβ, χ", Μ", Ν', ΑΙ, λ", D-) (a«= 1, 2, 3),
Ψ = {<:, χ. Μ, Ν, λ, Λμ, £>},

has the form

(4.1)
where £0(Φ ,Ψ3) is the supersymmetric Lagrangian for
the Yang-Mills field and the Abelian gauge field Φ.

The mechanism of spontaneous supersymmetry break-
ing described in the preceding section can be used to
produce arbitrary mass terms for the scalar compo-
nents of 3>t and S t . We shall not repeat the appropriate
arguments here, and merely write the result (dropping
the auxiliary fields):

AX = l,±At±A,± + η,,· ( (4.2)

The Lagrangian (4.1) and (4.2) depends on the parame-
ters ξ,, T)U, Mu, and a"ijt whose possible values are
constrained by the postulated conservation laws. We re-
quire conservation of lepton charge, which is associ-
ated with invariance with respect to the transformations

'••Μ ( Α^
ΌΛΐΖ Ψι.2

W2-
(4.3)

as well as separate conservation of the electron and
muon charges, corresponding to global phase transform
ations

ΦΙ
(4.4)

Invariance with respect to the transformations (4.3) and
(4.4) requires the vanishing of all the parameters M{j,
a\), and ηυ except the following:

-πι^φΟ. ' (4.5)

It is easy to show that the effective potential corre-
sponding to (4.1) and (4.2) has a stable extremum when

o = n± (η, (4.6)

The transition to fields with zero vacuum averages
leads to the following mass spectrum: we have charged
vector mesons

w\. = - (4.7)

and neutral vector mesons

Ζμ = (f + Sir1" (gA* - gtAD, Ml = 2"' (g« + g\) (a; + a!),

The charged fermions acquire masses

~ψς{** (λ,-ill) Ψΐ + α-ίλ,-ίλ.) ψ·.} + C.C.

(4.8)

'(4.9)

Bearing in mind the lepton charges determined by the
transformations (4.3) and (4.4), we can make the iden-
tifications

(4.10)

The invariance with respect to the transformations
(4.3) and (4.4) leads to the existence of four massless
fermions

v,* = ν μ + = - (4.11)

(4.12)

There also exist three heavy neutral leptons with mass-
es

(4-13)

The masses of the heavy charged leptons are related to
the mass of the intermediate meson by the sum rule

(4.14)

If we identify one of these leptons with the recently dis-
covered particle (Λ/~ 1.9 GeV), then the mass of the
second lepton is very large.

As to the neutral leptons, their masses depend on the
ratio cifgi'*. Since MSi must exceed the mass of the
kaon, for MSl ~ 1.9 GeV we have axg{ * * 0.25.

There is a large arbitrariness in the spectrum of
scalar mesons. By choosing the parameters ξ and η
appropriately, it is possible to ensure that all the
scalar mesons are much heavier than the W meson, so
that all processes in which they take part are strongly
suppressed.

The explicit form of the interaction can be easily ob-
tained from Eq. (4.1). To do this, it is sufficient to
transform to the Wess-Zumino gauge

c = x = M = iV = 0 (4.15)

and eliminate the auxiliary fields D , Ft, and Fs. Here
we shall write explicitly only the part of the Lagrangian
which is responsible for the interaction of the light lep-
tons:

1 = ggi (g «μ (ή*«+μγμμ)

+ 2-' (g2 + gi)-'" Ζμ {

+ (gz + gl) (v. tr

2 - g\) (e^e + μ>μ)

, t + νμ Ι.ν
κνμ Ι.)}

(4.16)

where denotes the terms containing heavy leptons
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and scalar mesons.

The first term describes the standard electromagnet-
ic interaction, viVth e =ggiigi +g\)'in.

The second term contains neutral weak currents. We
note that although this model is vector-like (apart from
spontaneous symmetry breaking,the interactionLagran-
gian contains no axial-vector currents), the neutral cur-
rent is not purely vector in character. The neutral cur-
rent, which contains the heavy leptons E, and E 2 , has
both vector and axial-vector parts. Unlike the vector-
like models considered by a number of authors/ 3 6 " 4 0 3

supersymmetric vector-like models automatically lead
to the existence of an axial-vector part of the neutral
current. This is so because the fermions in these mod-
els belong to different representations of the internal
symmetry group: some of the fermions appear in the
gauge superfield and hence transform according to the
adjoint representation, while the others are components
of the chiral superfields. (The neutral current is nec-
essarily vector in character in a vector-like model only
if all the fermions transform according to the same
representation.)

The interaction constants of the charged left-handed
currents ( μ ^ χ , ) and (eLVei,) differ by a factor

(4.17)

The universality is exact only in the limit me = mli = 0.
However, since mt,ma «ME ,ME2, the deviation from
universality is negligibly small.

It is also easy to include a weak quark interaction in
this scheme. If the quarks are not mixed with the lep-
tons, they must be described by chiral supermultiplets,
and the vacuum averages of the scalar components of
these multiplets must be equal to zero. If this were not
so, there would be a mass term of the form (4.9), which
would lead to quark-lepton mixing. (Of course, such
models are also possible in principle.) We can introduce
supersymmetric mass terms for the quarks at will. All
the quarks will then have non-zero masses, which are
uncorrelated with the masses of the leptons and inter-
mediate vector mesons. It seems to us, however, that
the origin of the quark masses cannot be understood
without taking into account the strong interactions.
Therefore we shall not write any specific quark La-
grangian here. We simply note that the quark sector is
completely independent of the lepton sector, and the
standard quark models can easily be written in a super-
symmetric form. Of course, the quarks are then ac-
companied by scalar particles.

5. CONCLUSIONS

The model described in the preceding section shows
that gauge theories of the weak and electromagnetic in-
teractions admit a supersymmetric generalization which
allows us to include Higgs scalars in the gauge theories
in a natural way. The model which we have considered
is the minimal possibility (in the sense of the number of
leptons) of obtaining a reasonable mass spectrum and
form of interaction. A more detailed comparison with
experiment will probably require more complex models.
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The specific form of the weak neutral current may
prove to be crucial. The mechanism of spontaneous
supersymmetry breaking described in Sec. 3 is appli-
cable to a wide class of gauge theories, and we might
hope that it would allow us to construct a model which
satisfies all the requirements of experiment. From an
esthetic point of view, there is a preference for models
which contain only the minimal gauge interaction and
which do not include any direct interaction of the chiral
multiplets. Such models also have greater predictive
power, since they contain fewer arbitrary parameters.

In conclusion, we briefly enumerate the most charac-
teristic features of unified gauge models with spontane-
ously broken supersymmetry.

Supersymmetric models necessarily include scalar
fields, which can give rise to spontaneous symmetry
breaking via the Higgs mechanism.

The parameters characterizing the interactions of the
scalar fields are related to the constants of the gauge
interaction, thus greatly enhancing the predictive power
of the theory.

In general, the scalar fields have non-zero fermion
charge.

Supersymmetric models necessarily include heavy
leptons.

Supersymmetry imposes strong constraints on the
masses of the leptons and determines a relation be-
tween the masses of the leptons and vector mesons.

Supersymmetric theories involve no independent mass
renormalization, thus making it possible to calculate
uniquely finite mass differences and, in the case of
zero bare masses, the masses themselves.

The neutral current in vector-like supersymmetric
models is not purely vector in character.

Supersymmetric theories based on semi-simple gauge
groups may be asymptotically free, despite the pres-
ence of scalar particles.

All these features make supersymmetric theories
extremely attractive from the point of view of a possible
description of the weak and electromagnetic interactions.

Looking to the future, supersymmetry may also unify
other interactions, including the strong and gravitation-
al interactions, within the framework of a single theory.
The first attempts to construct a supersymmetric gen-
eralization of gravitation have given encouraging re-
sults." 1* 4 5 1 In particular, it turns out that the non-re-
normalizable ultraviolet divergences which occur in
theories describing the gravitational interaction with
matter are no longer present in the single-loop dia-
grams in the supersymmetric theories of gravitation.
This offers hope that the divergences may also cancel
in more complex diagrams. At the present time, how-
ever, these investigations are still at an initial stage
which is very remote from the actual experimental
situation, and we shall not discuss them in further de-
tail.
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