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Studies are reviewed that employ the effect of an anomalously strong shift of the fundamental Κ -series x-

ray lines associated with a change in the number of 4/ electrons in a given atom for investigating the

phenomenon of variable valency in compounds of the rare-earth elements in general, and the so-called

isomorphous phase transitions in these compounds in particular. The mechanism of the shift effect and its

theory are described. The available data on the shifts of the Κ -lines of the different compounds of all the

rare-earth elements (except promethium) are discussed. A summary table gives the valencies (including the

anomalous ones), the occurrence of which has been proved by this method. Application of the Κ -shift

method for studying isomorphous (or isostructural) transitions allows one to establish unambiguously that

the mechanism of these transitions involves a change in the number of 4/ electrons, and to measure the

magnitude of these changes. The review concludes with a brief description of the principles and design of

the required experimental apparatus-crystal diffraction spectrometers.
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1. INTRODUCTION

The 4/ shell, which becomes filled in the case of the
rare-earth elements, lies deep inside the atom at about
the same place as the other, long since filled (s,p, d)
shells with the principal quantum number of four. The
peak density of 4/ electrons occurs at a radius several
(5-8) times smaller than the radius of the atom deter-
mined by the outermost (e.g., 6s) electrons. Hence an
electron in a 4/ state, lacking an opportunity of encoun-
tering electrons of neighboring atoms, practically does
not participate in forming chemical bonds, i. e., it is
not a valence electron. Yet the 4/ level lies energeti-
cally near the levels of the valence 5d and 6s electrons.
These facts are well known, and they arise from the re-
pulsive centrifugal potential, which is proportional to
I (I +1), where I is the orbital quantum number, which
is three for 4/ electrons.

The spacing from the 4/ level to the levels of the va-
lence 5d and 6s electrons proves to be comparable with
the energies released upon forming a chemical bond.
Here promotion often proves favorable, i .e . , excitation
of one of the 4/ electrons to a valence level. The new
(extra) valence bond formed thereby can supply enough
energy to compensate for the energy of promotion. Con-
versely, a change in the parameters of an existing
chemical bond (change of partner or even a change in
bond length, e.g., upon forced stretching or heating)
can make its rupture energetically favorable, with re-
turn of the valence electron to the 4/ level. Therefore,

a valency of four or two is observed in a number of
cases in addition to the valency of three that is typical
of all the rare earths. c l~3 ] Thus the 4/ shell plays the
role of a sort of "depot." The electrons situated there
do not themselves participate in chemical bonding. Yet
under the conditions presented above they can shift to
the valence band, i .e . , become chemically active, or
vice versa, they can leave the valence band.

An essential point is that the energy location of the 4/
level itself proves to depend on the external conditions,
primarily on the volume occupied by the atom. It varies
by amounts comparable with the energy spacings under
discussion even at moderate pressures (units or tens of
kilobars). The latter fact, together with the above-noted
dependence of the chemical binding energy on the dis-
tance between the partners, renders the valency sensi-
tive to such physical factors as pressure and tempera-
ture. Bridgman had already observed14·1 a phenomenon,
which was explained in the early fifties by Pauling and
Zachariasen,c 5 '6 ] and which has been rather well studied
now for metallic Ce c 7 " 9 ] and SmS. c l 0~ 1 3 ] It consists of a
sharp, discontinuous change in the volume of the speci-
men, AV/V~15%, at a definite pressure (6-9 kbar).
Remarkably, the observed first-order phase transition
is not accompanied by a change in structure, i. e., in
crystal-lattice symmetry. Hence its primary cause can
be only an event on the intraatomic, rather than on the
lattice level. Presumably the presented material has
already allowed the reader, following the authors of
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Refs. 5, 6, to view these isostructural (or isomorphous)
transitions as a special case of the phenomenon of vari-
able valency, which is initiated by physical causes and
which consists of a transfer of one of the 4/ electrons of
a rare-earth atom to the valence band. The sharp
change in volume is excellently explained quantitatively
by the compression of the atoms themselves. After such
a transition, the outer electrons of the latter prove to be
subject to the action of the increased electric change.

Evidently the valency, i. e., the number m of valence
electrons, will be determined in the cases discussed by
the relationship

(1)

Here Ζ is the atomic number of the element, or the
total number of electrons per atom, Z X e is the number
of electrons in the nearest inert core (xenon), and Zv is
the number of electrons in the 4/ shell. The number in
parentheses for a given element is constant. Hence a
change Am in the valency is unambiguously associated
with a change AZV in the number of 4/ electrons:

Am — — Δ Ζ . , . (2)

The transition of a 4/ electron to one of the valence
levels or the reverse "collapse" of a valence electron
into an inner 4/ state with a severalfold change in the di-
mensions of its corresponding "orbit" is a unique phe-
nomenon that is catastrophic on an atomic scale. One
of its manifestations could be an anomalously strong
change in the energy of even the fundamental Kai and
KBi x-ray lines, which are due to transitions between
the innermost levels of the atom (ls-2p; ls-3p). Hence
these lines are usually not subject to any influences.
This expectation has been confirmed1143 and has subse-
quently allowed the effect of shift of the Κ x-ray lines
to be used as a new experimental method of studying the
phenomenon of variable valency in the rare-earth ele-
ments in general 1 1 5" 1" and the phenomenon of isomor-
phous phase transitions in particular."· 1 3 · 1 8 · 1 9 3

The present review offered to the readers' attention is
a collection of the first results along this line, i. e., an
illustration of how the discussed phenomena look, so to
speak, in terms of the displacements of the x-ray lines.

2. THE EFFECT OF CHEMICAL SHIFT OF Κ X-RAY
LINES

Let us examine (Fig. 1) the potential U(r) due to one
of the atomic electrons, e.g., a 4/ electron, whose ra-
dial wave function p(r) = r2ip2(r) is shown by the dotted
curve. Evidently we have

• P(r')dr'

and

(3)

(4)

As we know, the radial wave function of an electron hav-
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FIG. 1. Explanation of the mechanism of the effect of chemical
shift of x-ray lines. p(r) = r 2 * 2 ^)—radial density of electrons:
5s electron—light solid curve having five (n — I = 5) maxima; if
electron—dashed curve having one (n - 1 = 1) maximum; the
positions of the principal density maxima for 2p, 3p, and 4/>
electrons are also noted; Uif (r) is the potential produced by a
4f electron; AU(r) is the change in potential caused by deforma-
tion of the wave functions of the electrons upon removing (or
exciting) a 4f electron (the nature of the deformation for a 5s
electron is shown by the dotted curve); ΔΒ^ 4 is the direct
change in the energy of the Κ^ 4 line upon removing a 4f elec-
tron; ΔΕ " are the changes in energy of the Is, Zp, etc., levels
caused by compression of the wave functions of the electrons
upon removing a 4f electron. The inset at the right shows the
relationship between the shift and the line type that is expected
upon removing a 4f electron.

ing the principal quantum number η and the orbital quan-
tum number I has (w -1) maxima. That is, it has one
maximum for a 4/ electron. Hence the potential Uif

electron. Hence the potential U^ir) in the region of the
inner Is, 2p, and Zp shells is constant (t/^O) in Fig. 1),
while the derivative dUyirj/dr is zero throughout the
region inside the 4/ shell.

Removal of a 4/ electron increases the binding energy
of the Is, 2p, and Zp electrons by the same amount,
which is equal to Uif{0); the spacings between these
levels, which define the energies Eai 2=Els-E2p, Εβι 3

= EU-E3p of the Και 2 and KBl 3 lines,' remain unchanged.
Only the K&2 4 line, which corresponds to a transition
from the 4/>'level, undergoes a substantial positive shift:
the binding energy of the ip level is increased by a
smaller amount than the binding energy of the Is level.
Evidently the difference (ΑΕ'Β2 4 in Fig. 1) will determine
the energy shift of the KB2 4 line. However, the result
of removing a 4/ electron Or transferring it to an outer
orbital (e.g., 6s) is also an increase (almost by unity)
in the charge that gives rise to the Coulomb field acting
on the outer filled 5s and 5p shells. The wave functions
of the latter, which possess inner maxima, since η - 1
= 5 or 4, respectively, are thereby compressed toward
the nucleus (see the solid and dotted curves for the 5s
electrons in Fig. 1). The result will be an introduction
into the region of the inner shells of a certain electron
charge Ap(r) and the appearance of a corresponding po-
tential AU(r). Upon looking at Eqs. (3) and (4), we can
easily see that this will diminish the binding energy of
the inner levels, and the decrease will be maximal for
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the innermost, i .e . , the Is level. Correspondingly the
energies of the Κ lines will decrease. That is, the lines
will undergo negative shifts that will increase with in-
•creasing distance from the nucleus of the outer level of
the transition:

AE.meV

The inset of Fig. 1 shows this graphically. However,
the monotonic increase of the negative effects will be
distorted for the KB2 4 line by the above-discussed large
positive shift Δ Ε$2 4*. Hence we can expect upon remov-
ing a 4/ electron a'highly characteristic V-shaped pat-
tern of large negative shifts of the Κ lines, i .e . , cor-
responding to an energy decrease. Conversely, an in-
crease in the number of 4/ electrons will cause an
analogous effect of opposite sign (a positive Λ-shaped
shift).

One can predict the shifts of the Κ lines upon changing
the number of 4/ electrons far more accurately, but less
pictorially, by representing the shifts as differences of
the corresponding eigenvalues of the energy ε in self-
consistent calculations of the Hartree-Fock type:

t-whf
•-ι — ( ε ι , — e S i (5)

Here the differences in parentheses will represent the
energies of the Κ lines corresponding to configurations
having η and η - 1 4/ electrons.1 } In this way one can
expect quite satisfactory predictions, not only qualita-
tively but also quantitatively. This is because the par-
ticipants are essentially only the sufficiently internal
levels of the atom, and to a very good degree the one-
atom approximation is satisfactory for the problem. As
we know, the best embodiment of the latter are the Har-
tree-Fock calculations. Figure 2 presents some re-
sults of such calculations, [ 2 0 : which were specially un-
dertaken for this purpose.2> In addition to the already
familiar V-shaped relationship that involves removal of
one 4/ electron (the points for Eu3*-Eu2* are connected),
the shifts are given that are due to removal of one of the
valence electrons, i .e . , 5d, 6s, or6/>.3> The dotted
line and the points with the error bars show the experi-
mental values"4 1 for EuF 3-EuF 2, which are typical t r i-
and divalent compounds, and which thus differ in one 4/
electron.

"The requirements on the model being used are not very
stringent, since the calculations must be carried out accurately
by the same program for both configurations being compared.
Here the possible errors compensate apart from small er-
rors due to the difference in configurations, i .e. , propor-
tional to the sought effect itself. Of course, the numerical
accuracy of the self-consistent calculation must be greater
than the sought effect, and must amount to a few millielectron-
volts.

2'The calculations were performed by the Dirac-Slater method,
which is a relativistic variant of the Hartree—Fock method
with the exchange interaction being taken into account ap-
proximately (aPa Thomas—Fermi).

3>By employing arguments like those of Fig. 1, the reader can
easily understand the characteristic features of these curves
also.

WOO -

zooo-

FIG. 2. Typical shift-line type
relationships for 4f, hd, and 6s
(or p) electrons. For the 4f elec-
trons, the solid line joins the cal-
culated energy differences of the
Κ lines of europium having the "·*-
figurations Eu3*(Xe)4f6 and
Eu2t(Xe)4/7, while the dotted line
joins the experimental shifts for
EuF3 and EuF2. The brackets in-
dicate the calculated limits of the
shifts of the corresponding lines
upon removing a 4f electron for
the other rare-earth atoms (from
Ce to Yb).

As expected, one observes good quantitative agree-
ment of the calculated and experimental data. The ef-
fects from the 4/ electrons are anomalously large. They
substantially exceed (by a factor of 5-15) the effects due
to the valence electrons, and they give a characteristic
V-shaped relationship. This completely rules out their
simulation by any phenomena of a different nature.

The brackets in Fig. 2 limit the regions containing the
calculated shiftsc20] for the different rare-earth elements
from Ce to Yb. It turns out that the relationships be-
tween the shift and the type of line are similar for all
the rare-earth elements. Apparently the latter fact
should not be surprising, since it stems from the simi-
larity of structure of the inner shells of the atoms, i. e.,
from the same causes as those responsible for the simi-
larity and simplicity of the x-ray spectra themselves.

3. THE PHENOMENON OF VARIABLE VALENCY OF
THE 4f ELEMENTS AS REFLECTED IN THE /(-SHIFTS

Table I and Figs. 3 and 4 collect the experimental
data : 1 7 : on the chemical shifts in compounds of the rare-
earth elements of different valencies. The reference
point from which the shift was measured was in all cases
chosen as the simplest trivalent oxides or halides whose
valency of three had been firmly established.4'

The difference from the reference point in the number
of 4/ electrons, i. e., the difference of the valency from
three (see Eqs. (1) and (2)) should give rise to charac-
teristic V-shaped relationships if the valency exceeds
three, i .e . , approaches four, and to Λ-shaped relation-
ships if the valency is less than three, i .e . , approaches
two. Comparison of the amplitudes of the curves with
the maximum experimental amplitudes, which can be
taken as corresponding to a valency change of one, or
with the analogous calculated values (see Fig. 2) makes
it possible also to estimate directly the fraction of the

4'in a number of cases this statement was directly tested with-
in the framework of this same method by measuring the zero
shifts that different trivalent compounds should give with re-
spect to one another in this approximation, since it is im-
probable that a fractional valency differing from three aris-
ing from "fortuitous" circumstances would prove to be the
same for several tested compounds.
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TABLE I. Chemical shifts of if-series x-ray lines in com-
pounds of the rare-earth elements.

Compounds

A

CeT

C e a

CeO4

CeClj + Ce
NdCl3 + Ce
Ce(S04)o?

Rb 3PrF 7

PrOn

PrCl2(6,6% NdCI2

" m e t

; N d m e t

NdS
NdCI,
CsjNdFj.s
Rb3NdF,,5

S mmet
SmCl2

SmS
SmS (p>9kbar)
SmS (20% CdS)

EuF,

Gimet

GdCl,
GdS

Tbraet
BaTbO3
TbOj
TbCl2 (33%

DyCl2)
TbCl a (33%

SmCla)

DVinet
DyCla

DyOa (TbOa)
Rb3DyF,, s

H o m e t

HoCla

Elmet
ErCla

T m m e t

TmS
TmSe
TmTe
TmCla

TmCl (Rb)

Ybmet
YbClj

Lu.net

Β

CeF3

Ce,
CeF3

CeF3

CeF3

CeF3

CeCljug

P r F 3

P r F 3

Pr a O 3 («/I»)

P ^ 3

Nd 2O 3 (,A>)
Nd 2O 3

Nd a O 3

Nd 2O 3

Nd aO,

Sm a 0 3 («B»)
SmF3

SmF3

SmS
SmS

Eu 2O 3 («C»)
EuF 3

GdjOj («C»)
GdF·
GdF3

TbaO3 («C»)

Tb a u 3
Tb a 0 3

3

T b F 3

ΙΎ2Ο3 («C»)

DygO3
DyF,

H o a 0 3 («C»)
Ηο,Ο,

Er aO 3 («C»)
Er 2 O 3

TmjOj («C»)
Tm2O3

T m , 0 ,
Tm»03

Tm2O3

T m a 0 3

YbaO3 («C»)
YbCl3

LuaO3 («C»)
LuF3

iE~EA-EB, meV

+29+7
—173+14
—602+12
-412+9

—439+21

—386+5
+30+9

+280+9
+36+10
+20+15

—4+9
+62+11

+437+15

—32+11
+606+14
+595+20
—318+43
—352+15

+644+10
+631+15
+630±100·

—36+12

— 19+15
—630+28
—452+11

—10+14
+435+23
+29+50

—1+17
+317±27

+18+43
+32+34

—46+10
+62+19

+114+20
+434+32
+503+15
+363+40

+582+30
+574+34

—3+20
+48+38

—84+12
—566+32

—1727+20
— 1240+25

+ 10+17
+26+21

—1322+55

—1375+36
—1034+9

—12+20
+734+18
—18+18

—55+25
+51+18

+1130+20
—202+56
—142+59

+1455+40
+1430+38

—926+41
—923+55

+1450+40
+1220+340*

+10+27
+130+104

—1750+38
—1207+30

+59+45

+34+95

+1146+17

—2U+61

+651±15

—36+39
—15±52

+102+40
+274+57
+990+55

+1091+34

+1165±85

—103+73
—196+52
—288±36

—146+85

—423+22

+260+56

-22+37

+394+68

+413+54
+556+53
—258+180
—305+62

+300+65

—252+76

+550+92

+154+100

+213+112

+217+82
+602+136
T-613+110

compound with anomalous valency in the specimen or the
fraction of a 4/ electron that has gone into forming a
resonance-hybridized valence bond that requires only
partial transition of a 4/ electron to a valence level.5>

We now comment on these data.

5'Unfortunately it does not seem possible to distinguish these
two possibilities within the framework of the given method,
which determines only the position of the "center of gravity"
of a line that is displaced but not resolved into components
(see Sec. 5 below).

400

> 0
g

-son

ism

— 5m-

FIG. 3. The phenomenon of variable valency for the elements
from Ce to Sm in the shifts of the Κ x-ray lines. ΔΕ is the
shift of the Κ line of the element in a compound from its posi-
tion in a reference trivalent compound. (In the right upper dia-
gram, the lower point refers to Rb 3 PrF 7 -PrF 3 .)

Cerium

The largest shift is seen in CeF4. Apparently the con-
figuration in this compound is close to 4/°, i .e . , here a
complete transition occurs of the single 4/ electron into
the valence band, and the valency is four. The valency
of metallic Cer is close to three, or perhaps, judging
from the non-zero negative shift of KBl (see Table I),
which amounts to =5% of the shift for CeF4, it barely
exceeds three. We shall return again to metallic Ce r

and Ce t t in the next section devoted to isomorphous phase
transitions; for the present we shall only state that Ce a

1200

600

400

0

200

-

^ 1 ^
3gs^2—

" Tm

1600

>l200

•«' 800

400

0

f

-

* , "β, '

ώέ" \

£u-Yb

FIG. 4. The same as Fig. 3, but for the elements from Eu to
Yb.
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shows an appreciable loss of 4/ electrons as compared
with Ce r, which amounts to about a third of an electron,
and which correspondingly implies a valency close to
3.3.

The appreciable departure from the limiting effect in
CeO2 is highly curious and unexpected.

Praseodymium

Above all, the noteworthy thing here is the simulta-
neous existence of three valence states, and corre-
spondingly, the only simultaneous observation in our
collection (i .e. , for a given particular element) of V-
and Λ-shaped curves. Metallic praseodymium (see
Table I) is trivalent, and it proves to be trivalent also
in PrCl2, evidently by forming a bridge compound with
a metal-metal bond, which we can provisionally exhibit
in the form Cl2 = Pr - Pr = C12. Yet addition to PrCl2 of
even a few percent of NdCl2 elicits a quite distinct
(=50%) appearance of the divalent form of praseodym-
ium.

Just like CeO2, PrO2 does not attain the limiting value
of the effect, which is approximated only by Rb3PrF7.

Neodymium

Metallic neodymium is trivalent, and neodymium is
also trivalent in NdS. However, in contrast to PrCl2,
the valency of NdCl2 is close to two.

An attempt to obtain by analogy with Rb 3PrF 7 tetra-
valent neodymium in Rb3NdF6>5 and Cs3NdF6>5 gave an
indefinite result: perhaps a small admixture (at the
level of =10%) of the tetravalent state is observed, but
the total effect hardly exceeds three standard errors.

Samarium

Metallic samarium is trivalent. Samarium in SmCl2

is divalent, and the same is true of SmS under normal
conditions. Yet SmS with a 20% admixture of GdS ap-
proaches trivalency. The same effect is produced by
application of hydrostatic pressure (p>9 kbar). The
nature of these latter phenomena will be discussed in
greater detail in the section on isostructural phase tran-
sitions.

Europium

Metallic europium, and also EuF2, are typically di-
valent compounds.

Gadolinium

Gadolinium is trivalent in the metal and in the com-
pounds GdCl2 and GdS.

Terbium

Metallic terbium is trivalent.

Most interestingly, like CeO2 -and PrO2, TbO2 does not
attain the limiting shift value. Apparently there is a
mechanism of forming a fourth valence bond common to
these compounds that is more complex than transition
of an entire 4/ electron to the valence band, and which

requires only partial (on the average) 4/— 5<i (or 6s)
transition.

Attempts to obtain the divalent state of terbium in
TbCl2 by adding DyCl2 or SmCl2 (see Table I) have
failed—Tb remained trivalent.

Dysprosium and holmium

Metallic dysprosium and holmium are trivalent. The
existence of valency two is clearly marked in DyCl2 and
HoCl2. An attempt to get the tetravalent state of dy-
sprosium in Rb3DyF6o5 gave a result just about as in-
definite as in the case of the analogous compounds of
neodymium.

Erbium

Metallic erbium is trivalent, and it remains trivalent
in ErCl2.

Thulium

Metallic thulium is trivalent.

The valency is close to two in TmCl2.

The behavior of the valency of thulium in the chalco-
genides TmS, TmSe, and TmTe is quite remarkable.
Here one observes a gradual transition from the practi-
cally trivalent state in TmS through a mixed state in
TmSe to the practically divalent state in TmTe. Ap-
parently this is an example of the effect of the length of
the extra metal-metal bond on its realizability: this
distance is least in TmS, and this is probably a typical
bridge compound S =Tm - Tm = S; in TmSe and especial-
ly in TmTe, the possible Tm-Tm distance increases,
the extra bond becomes unfavorable, and the electron
fully or partially returns to the 4/ shell to give rise to
a marked Λ-shaped relationship.

Ytterbium

Metallic ytterbium is divalent, as is ytterbium in
YbCl2.

Lutetium

Metallic lutetium, not strictly being a 4/ element, is
trivalent.

Thus even a qualitative examination of the data on the
chemical shifts has allowed us to draw a number of con-
clusions. Some of them are trivial, while others are
perhaps more unexpected. An essential point is that
they have all been obtained by a single method within the
framework of a completely identical theory. By con-
firming one another in this manner they provide a uni-
fied picture of the valence properties of the rare-earth
elements. The most direct result is the unambiguous
proof of the realizability in the rare earths of the va-
lencies listed in Table II, which had given rise to some
disputes and dissension prior to these studies. c l~ 3 ]

4. ISOSTRUCTURAL PHASE TRANSITIONS

The theory of isostructural phase transitions is at
present quite well developed. Most of the studies are
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TABLE II. Valencies of the rare-earth elements as observed
by the method of Κ x-ray line shifts.

m

Ce

4
3

Pr

4
3
2

Nd

3
2

Sin

3
2

Eu

3
2

Gd

3

Tb

4
3

Dy

3
2

Ho

3
2

Er

3

Tm

3
2

Yb

3
2

LU

3

based on examining the system of interacting 4/-5rf (or
6s) electrons, essentially by developing the ideas of
Anderson's classical study. t 2 1 ] They have the aim of
explaining with an appropriate choice of parameters the
fundamental features of the pressure-temperature phase
diagrams of metallic cerium and SmS (see, e.g., Refs.
8, 22).

We shall not present here the contents of this group
of studies, since our aims are better served by a some-
what different theoretical approach that was first ap-
plied, insofar as we know, to cerium by Waber, Liber-
man, and Cromer. : 2 3 ] Here one can obtain simulta-
neously the energies of the x-ray lines, and a direct ex-
perimental test of the theory by the method of x-ray line
shiftsC2U becomes possible. The latter is important be-
cause, apart from certain details of the phenomenon,
which can prove convenient for study by virtue of the
specifics of the new method, the main point for which
the method offers especially convenient proof has re-
mained not fully proven: one still encounters a view-
point that denies the very /— d(s) mechanism in the gen-
erally accepted sense, m i and which, in particular,
rests on experimental studies in which a/-d(s) mecha-
nism in the Ce r -Ce o transition was not found. C 2 6-2 8 ]

Following Ref. 9, let us examine the results of a
Dirac-Slater self -consistent calculation. This calcula-
tion is quite analogous to that performed in Refs. 20 and
24, data from which we have employed above (see Fig.
2), but it has different boundary conditions. In earlier
calculations people had simulated a free atom, and
hence they imposed boundary conditions at infinity.

-s -

200 Wigner-Seitz at. units

FIG. 5. Total energies £ c of cerium atoms in different values
configurations as functions of the volumes V of the atoms as
calculated by the Dirac-Slater method under the Wigner-Seitz
boundary conditions. The scale of the slope angle of the tangent
to the curves corresponding to a pressure of 50 kbar is also
shown.

τ-,κ

1000

500

Liquid

FIG. 6. Phase diagram of
metallic cerium. Phases y, a,
and a ' are face-centered cubic,
the β phase is hexagonal close-
packed, and the δ-phase is
body-centered cubic.

50 Ρ, kbar

Now we shall try to describe an atom of the crystal
(metal) structure surrounded by like atoms. The volume
allotted to a given atom is naturally bounded by planes
perpendicular to the line segments linking it with its
nearest neighbors and passing through their midpoints.
If for simplicity we replace the obtained polyhedron with
a sphere of equal volume V with the radius R, and im-
pose boundary conditions on the surface of this sphere
so that the sphere should be an impenetrable boundary
of the atom, we gain the possibility of accounting for in-
traatomic properties such as the eigenvalues ε, the total
energies £ E , the electron density at the nucleus, etc.,
as functions of V or R. Here we must assign a valence
configuration (the number of valence electrons, and
hence also that of 4/ electrons, and their distribution
over the valence levels) as a parameter.

The relationship of the total binding energy of the
cerium atom thus calculated to the atomic volume V is
shown in Fig. 5 for three configurations (solid lines):
two integer-valued—trivalent 4/15rf16s2 and tetravalent
4/°5d26s2, and one fractional—4/1""5rfu"6s2, where η
= 0.5 and the valency is 3.5. We shall use the trivalent
configuration to simulate Cer, the tetravalent configura-
tion to simulate a somewhat hypothetical Ce o . , c 2 9 ] and
the fractional configuration to simulate Ce t t. Let us

Calculations

2DO0-

FIG. 7. Calculated and experimental facsimiles (solid lines)
for the Cey—Cea transition. The solid heavy line joins the ex-
perimental shifts of the Κ lines upon cooling metallic cerium
from room temperature to liquid-nitrogen temperature (77 °K),
the dashed and dotted lines are the calculated shifts under the
boundary conditions on the Wigner-Seitz sphere and at infinity,
respectively under the assumption that the transformation in-
involves transition of 0. 5 4f electrons; the thin solid line gives
the experimental energy differences of the corresponding lines
for CeF4 and CeF3.
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find which properties of the phase diagram we can ex-
tract from this calculation and compare them with the
experimental p-T diagram of cerium (Fig. 6).

First we note that evidently calculations of this type
pertain to the case of a fully "frozen" lattice, i .e . , they
are most closely realized at a temperature of absolute
zero. The pressure in the graph of Fig. 5 is defined by

dV
(6)

i. e., it is defined as the negative of the slope of the
tangents to the EV(V) curves. The phase of fractional
valency possesses minimal energy at zero pressure (or
normal atmospheric pressure, which is the same on the
given scale), i. e., the minimum of its total energy oc-
cupies the deepest position. Thus, in agreement with
experiment (see Fig. 6), the theory predicts that a-
cerium is most stable at low temperatures.6 ) One can
easily trace in Fig. 5 the qualitatively quite understand-
able (see above) sharp differences in the radii of atoms
having different 4/ configurations in terms of the shifts
in the minima of the total energy toward smaller vol-
umes as the 4/ electron is removed. We note that the
presented theory starts, as one says, from first prin-
ciples, and contains no parameter other than the mixing
parameter 77, which in a first crude approximation can
be taken to be 0 . 5 . "

Evidently, one can now again use Eq. (5). When one
has obtained the energy differences of the Κ x-ray lines
of the studied phases directly within the framework of
this calculation, one can compare them with the experi-
mental data and with those calculated earlier in the iso-
lated-atom approximation (with boundary conditions at
infinity). Figure 7 makes such a comparison, where
the dashed lines join the points pertaining to the energy
differences of the Κ lines calculated at the minima of the
Ce o and Ce r curves of Fig. 5. The dotted curve shows
the results of a calculation for the same configurations
in the free-atom approximation. The solid heavy curve

6'Evidently this model does not take into account the extra
energy that is released as a result of the extra valency in Ce a

and Cea., and which depresses the position of the minima for
Ce a and Ce a , (see above, Sec. 1, Introduction).

The pictorial mechanism mentioned in the Introduction of
the variation in the position of the 4/ level with varying pres-
sure (decrease in its binding energy with decreasing atomic
volume) can be traced well in studying the relationship ε 4y
=f(V) obtained in these calculations (see, e.g. , Fig. 5 in
Ref. 23). Yet qualitatively the conclusion that the spacing
between the 4/ and 5d levels diminishes upon compressing the
atom because of the more substantial decrease in the binding
energy of the deeper if electron follows directly from Eqs.
(3) and (4) and from a treatment of the type of Fig. 1, where
the potential AU(r) is now determined by the charge "squeezed"
into the atom as it is compressed.

"Perhaps it is pertinent to note here that in a single center
spherically symmetrical problem in the approximation under
consideration, the mixing of/ and d (or s) levels, that are
levels of different parity [(-1)3 and (-1)2 or (-1)°], could
stem only from a cause such as neutral weak currents (see,
e.g., Ref. 30). Of course, in a polyatomic system such as
a real crystal, one need not adduce such an exotic notion, and

f-d mixing arises from participation of neighboring atoms. I 2 U

gives the experimental results,C 9 ] which were obtained
by comparing the energies of the Kai, KBl, and Ktl 4

lines of initially identical specimens of metallic y-
cerium, one of which was kept at room temperature,
while the other was cooled to liquid-nitrogen tempera-
ture.

First of all we state that both of the calculated fac-
similes8 ' of the 4/ electrons resemble one another in
shape and absolute magnitude; evidently here also the
fact is manifested that the effect is due to the electrons
of the inner shells. Thus it is immaterial in the first
approximation which boundary conditions, i. e., which
atomic radius, we take for considering the effect of re-
moving a 4/ electron. Moreover, as we have noted
briefly in the last section (see Fig. 3), the γ -a transi-
tion in Ce undoubtedly involves a decrease in the num-
ber of 4/ electrons. This is eloquently witnessed by the
experimental curve of Fig. 7. Thus the studies that
deny the fact of transition of an electron from the 4/
state to the conduction band in cerium1 2 6"2 8 1 are in er-
ror . 9 ' The fraction of this transition expressed as the
quantity η (see above) can be refined by using the ratio
of the experimental and calculated shifts:

η Δ£:βχρι

The weighted mean as found taking into account the ex-
perimental errors for the three Κ lines proves to be

= 0.23 ±0.02. (7)

The thin solid line in Fig. 7 also gives the experimental
relationship for CeF 4-CeF 3 (see Fig. 3). One can em-
ploy it to get an estimate of 77, which does not depend on
the calculations, according to the relationship

&E-

Here we find

. Ι·=-77·Κ = 0.31 ±0.02. (8)

Both values agree rather well, so that we can state that
the Ce y -Ce a transition at 77°K is accompanied by a
transition of from 0.25 to 0.3 4/ electron per atom on
the average into the conduction band.

Let us proceed to the data involving the phase transi-
tion in SmS. Figure 8a shows how this transition looks
at room temperature and under pressure "in the light
of" the K6. x-ray line (dark and open points with error
bars). c u ·™ The dashed line shows the data of Ref. 12,
whose authors measured the pressure dependence of the
magnetic susceptibility. (The ordinate scales are ad-

8>This designation"41 is sometimes used for curves of the type
of Fig. 2; in the American literature1 3 1 1 it is translated as
"fingerprint. " Both terms are rather expressive, and empha-
size well the possibility of using these curves for identifying
the type of electron that has taken part in forming a chemical
bond.

9 Ά possible source of the errors is explained in Ref. 9.
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FIG. 8. a) Isomorphous phase transition under pressure in
SmS "as seen by" the KBi x-ray lines (points with error bars—
experimental changes ΩΕ in the energy of the K^ x-ray line of
samarium in SmS upon increasing (solid dots) and decreasing
(open dots) the hydrostatic pressure P: the dashed line is in-
serted for comparison of the data on the magnetic susceptibility
X1121); b) experimental facsimiles for the isostructural phase
transition in SmS (solid circles—transition under hydrostatic
pressure, open circles—transition caused by adding gadolinium
(20% Gd); the dashed line joins the experimental points for
SmF3—SmCl2 (open squares) and SmF3—SmS (solid squares);
the dot-dash line joins the calculated points for the configura-
tions 4fs5d* and 4f6Sm2*).

justed by calculating the best fit of the curves.) The
similarity of the x-ray and magnetic curves allows us
to judge them to have a common source. Figure 8b
(solid curve, solid circles) gives the relationship be-
tween the shift and type of line; here one of the initially
identical SmS specimens being compared was at atmo-
spheric pressure, and the other at a pressure of about
9 kbar. The dotted line in the same diagram shows the
experimental variation for SmF3-SmCl2 (open squares)
or for SmF3-SmS (solid squares), which are already
familiar to us from Fig. 3, together with the relation-
ship calculated for the configurations 4/55d1 and 4/6Sm*2

by the Dirac-Slater method.c20] The latter can be used
as calibration curves that differ by a single (whole) 4/
electron. A simple comparison unequivocally indicates
the mechanism of the phase transition. The fraction η
of the 4/ transition, which we can easily find from the
ratio of the shifts corresponding to the phase transition
and to the experimental calibration curve, amounts to

= 0.62 ± 0.03 electron/atom . (9)

If we use the theoretical curve for calibration, we find

° ' 5 3 ± 0 · 0 2 electron/atom . (10)

A method is known for simulating the action of hydro-
static pressure. In simple terms it consists of incor-
porating the crystal lattice being studied into another
one that is somewhat cramped with respect to it, so that
crystallization leads to compression. A classical ex-
ample is the so-called Laves phases (see, e.g., Ref.
32). Another way to bring the atoms of a studied lattice
closer together, which also simulates to some extent
the action of omnidirectional compression, is to intro-
duce into the lattice replacement atoms of smaller ra-
dius than the original ones. The substituents cause a
local contraction of the lattice (in particular, see Ref.
33, which directly pertains to the case of SmS of inter-

FIG. 9. Facsimile for the
Laves phases of cerium.
The shifts are measured
with respect to Ce r.

est to us). At times these methods are very simple and
effective. Yet the question always arises of how valid
is the model that equates their action to that of simple
hydrostatic compression. We find it intriguing to take
up some examples that analyze this problem as applied
to phase transitions in cerium and SmS by the method of
if-line shifts.

Figure 9 shows the experimental facsimiles obtained
with the Laves phases of cerium.C9] In CeFe2, CeCo2,
and CeNi2, the Ce-Ce distance is substantially smaller

-too*-
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FIG. 10. Relationships of the shifts of theiffll line of samarium
(solid dots with error bars) to the concentration χ or the im-
purity in the compounds (a) Gd^Sm^jS, (b) NdjSm!.^, (c)
EUjSm^jS, (d) Nd^Sm^jSe. The open dots give the shifts of the
K^ lines of the impurity atoms, and the crosses give the re-
sistivities of the specimens; the dashed line in Fig. (d) shows
the approximate course of the shift of KBl of Nd that would have
occurred if the semiconductor-metal transition were caused by
an electronic transition of neodymium from the divalent to the
trivalent state. The triangles in Fig. (c) show the fractions
a(x) of trivalent samarium atoms in the total number of rare-
earth atoms in the specimens.
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than in Ce r, i .e . , cerium seems to be compressed.
Conversely, in CeAl2 and CeMg2 the distances are the
same as in Ce,, or even somewhat larger. Thus one
would expect in the former three substances a 4/ transi-
tion analogous to that observed under pressure, while in
the latter nothing should happen. We see that experi-
ment has generally confirmed the expectations, but with
unexpected details that consist of a certain difference in
the effects in CeFe2, CeCo2, and CeNi2. If the latter
does not involve defects in the specimens, then it re-
quires a special explanation, since one cannot explain
this difference by a simple difference in the effective
pressures.

Figure 10 presents a collection of data c l 9 ] obtained by
the second of the above-mentioned methods of simulating
pressure. They pertain to the phase transition in SmS,
which was first observed under these conditions in Ref.
33.

In the first case (Fig. 10a), the Sm atoms are par-
tially replaced by Gd, so that we can write the obtained
compound in the form Gd^Smi.^S. One measures as a
function of χ the shift Δ £ of the Κβι line of samarium
(solid curve, solid points). The shift remains constant
in the range 0 ^x «0.12, and undergoes a very sharp
jump near χ = 0.18. Its facsimile is shown by the open
circles in Fig. 8b, which excellently fit the curve per-
taining to the phase transition under pressure. Thus the
phase transitions effected by doping with gadolinium and
by applying pressure actually appear similar.

The method offers an opportunity of convincing one-
self directly that gadolinium plays the role of a pressure
simulator, yet without participating per se in the elec-
tronic transformations. Upon fixing on the KBl line of
gadolinium and measuring its shift (with respect to a
GdS standard) in the transition region (dotted curve,
open points), we find practically zero shifts.

If this is actually the role of gadolinium, then we can
successfully replace it with another analogous element,
e.g., neodymium. The behavior of the ΐίάβΐηι^β sys-
tem (see Fig. 10b) actually proves to be very similar,
though not identical. Neodymium also plays a passive
role here (Fig. 10b, open points).

The dotted curves in Figs. 10a, b show the resistivi-
ties of the studied specimens. These relationships,
which are practically identical in both cases, charac-
terize the semiconductor-metal transition that is well
known in these compounds. We see that here it bears
no relation to the isomorphous transitions (it happens
in another range of concentration x) and it can be ex-
plained113" by "short-circuiting" of the semiconductor
lattice of SmS by conductive Nd-Nd bonds introduced by
the bridge structure S = Nd - Nd = S of trivalent NdS
(or GdS).

Figures 10c, d give the results of studies of systems
involving substitutions somewhat more radical than those
in cases a and b. In the case of Fig. 10c, an attempt to
"compress" the SmS lattice was made by adding EuS.
In contrast to GdS and NdS, europium is divalent in EuS,
but owing to the so-called lanthanide contraction, it has

a radius somewhat smaller than Sm.1 0 ) Here also one
observes an isomorphous phase transition that reveals
itself in the appearance of large negative shifts in Kgl of
Sm. However, in this case it occurs smoothly and ex-
tends over the entire range 0 < x ^ l . As had happened in
Gd and Nd, no electronic rearrangement occurs in
europium (see the practically zero shifts of the open
points in Fig. 10c). A semiconductor-metal transition
also occurs here (see the dotted curve for logp), but
only the trivalent Sm that is formed in the isomorphous
transition can short-circuit the lattice. The solid curve
with the triangular points in Fig. 10c shows the fraction
a of trivalent Sm atoms in the total amount of rare-
earth atoms in the lattice. In addition to the value of
1 - x, the quantities used to calculate it are the fractions
η of the trivalent state in the total amount of Sm atoms,
i. e., the quantities η (see above) that determine the
ratios of the experimental shifts Δ ΕΒι to the calibration
shifts for SmF3-SmCl2 (see Table I). The minimun re-
sistivity approximately coincides with the maximum of
the α curve, while the attained values ctmix~0.10 exactly
correspond to the critical concentration of "open valves"
needed for electrical short-circuiting of the lattice (see,
e.g., Ref. 34).

The case of Fig. lOd is closest to Fig. 10b, but sul-
fur is replaced by its analog selenium. The experimen-
tal shifts of Sm and Nd remain close to zero, i. e., now
no isomorphous phase transition occurs. Apparently the
Sm-Sm distance is SmSe increases so much as com-
pared with that in SmS that formation of the correspond-
ing bond becomes unfavorable throughout the range of
concentrations of the compressing trivalent Nd. U )

The semiconductor-metal transition (p(x) curve) oc-
curs at about the same concentrations as in the case of
sulfur (cf. Fig. 10b). Undoubtedly it involves a simple
short-circuiting mechanism. The dotted curve shows
the approximate course of the KBl shifts in Nd that would
occur if, as was assumed in one of the studies, l35Z the
semiconductor-metal transition were accompanied by a
transition of neodymium from the divalent to the tr i-
valent state.

Essentially the content of this section has been the
description of several examples of application of the
method of .if-line shifts to study the electronic mecha-
nism of phase transitions in crystals. Sometimes the
method offers only certain "conveniences." For ex-
ample, the transitions in Fig. 10 can evidently be ob-
served simply from the changes in the lattice parame-
ters. c 3 3 ]

""The assumption'19' of the effect of Eu via compression of the
lattice owing to the lanthanide contraction seems dubious,
since the difference is radii of Sm2* and Eu2* is quite insig-
nificant (substantially smaller than their difference for the
divalent and trivalent atoms, which explains the compression
in the cases of Fig. 10a,b).

As we know,"" a semiconductor-metal transition occurs in
SmSe at hydrostatic pressures of 40-50 kbar. Apparently it
indicates an electronic phase transition in Sm. Thus perhaps
the effective pressure developed by NdSe simply does not suf-
fice.
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FIG. 11. Schematic diagram of a typical apparatus for mea-

suring small shifts in if x-ray lines based on a Caucoois focus-

ing diffraction spectrometer. Sources made of the compounds

to be compared (dark circles in the diagram) are alternately

introduced into the field of view of the instrument by the drive

Ml; M2 is a motor that rotates the specimens, C is a single

crystal bent into a cylinder with its axis at the point 0, with

radius p = 2R =2m; D is the entrance slit of the detector; and

O, I, and Η are the drive rod for rotating the crystal and mea-

suring devices.

The merit of the method is its selectivity toward phe-
nomena involving a change in the number of 4/ electrons,
since the very fact of the presence (or absence) of large
Κ shifts unambiguously indicates the mechanism of the
effects. At times it is very complicated to elucidate
this by other methods (e.g., in the case of the Laves
phases, Fig. 9). When necessary, these data can be
confirmed by the curves of shift vs line type (facsim-
iles), which permit one to determine rather accurately
also the fractions of 4/ electrons participating in a tran-
sition. The latter arises from the relative simplicity
of calibration of the effect, experimental and theoreti-
cal, which ultimately involves participation in the phe-
nomenon of only the sufficiently deep-lying levels. To
a rather good approximation, this allows one to treat
the problem as a one-atom problem.

As we see it, a good application of this fundamental
feature of the method is the example involving a self-
consistent treatment of the problem under boundary con-
ditions of the Wigner-Seitz type (see Fig. 5). This
treatment allows one to establish a connection between
the description of the phenomenon and the measured line
shifts within the framework of a unified, rather rigorous
calculation.

5. BRIEF INFORMATION ON THE PRINCIPLES AND
DESIGN OF THE REQUIRED INSTRUMENTS

This chapter aims to give a brief description of the
experimental methodology that should suffice to enable
an interested reader to orient himself in the pertinent
original publications.

At the same time, some problems pertaining to the
principles of measuring small line shifts are presented
in greater detail.

Figure 11 shows a diagram of a typical experimental
apparatus.c 3 6 3 The instrument is a Cauchois focusing
diffraction spectrometer with a 2-meter focal length.
The primary radiation hvt from an x-ray tube or an in-

tense radioactive source1 3 7 3 excites fluorescent x-rays
hv2 in one of the specimens (S!,S2) to be compared,
which are introduced one after the other into the field of
view of the instrument. Upon passing through a fixed
diaphragm that limits the field of view to the central
part of the working specimen, the beam hv2 is incident
of the monocrystalline plate C, which is bent into a
cylinder of radius p = 2R = 200 cm. The plate is cut
from a single crystal in such a way that crystallographic
planes of interplanar spacing d coincide with the normal
transverse cross-sections. The beam diffracted by the
single crystal C while satisfying the Bragg condition h\
= 2dsin5 is brought into a narrow line at the focus at the
receiving slit of the luminescent detector D. The crys-
tal can be rotated about the vertical axis near the Bragg
angle by using a special mechanism, whereby the rela-
tive shifts are automatically measured (e. g., simply by
counting the turns of the driving micrometer screw of
the reducing mechanism) to an accuracy of the order of
a second of angle.

Figure 12a explains the process of the measurements.
They begin with one of the samples to be compared lying
in the field of view of the instrument adjusted to a point
(e.g., flj) on the shoulder of the line under study. Here
the pulses from the detector are accumulated in the
memory of the corresponding counting channel. After
the necessary exposure (as a rule, 10-20 sec), the sec-
ond of the specimens to be compared is introduced into
the field of view of the instrument, and the pulses cor-
responding to it are accumulated in a second counting
channel; here the diffraction angle is held constant at 31.
This switch of specimens is repeated several times until
the necessary "statistics" is accumulated, i .e . , until
the difference Awj of the counts from the compared
specimens is measured with the needed accuracy. Then
the instrument is fixed at a new diffraction angle (θ2 in
Fig. 12a), and everything is repeated. Thus one sys-
tematically measures the entire twofold profile of the
line (or, e.g., fourfold, depending on the number of
specimens to be compared). If one knows the experi-
mental differences Ant and the parameters of the profile
(one assumes that the lines being compared are simi-
lar), one can easily calculate the sought line shift Δ.Ε.

Evidently a question arises here that is very impor-
tant for the success of this method that concerns the

a, a,
a) b)

FIG. 12. Explanation of the process of the measurements and
of the effect of possible deformations of the line profile.
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conditions under which one can ensure the required sim-
ilarity of the profiles of the lines being compared. Ac-
tually it is well known (in particular, see Ref. 38) that
the intrinsic widths of the Κ x-ray lines amount to 0.2-
0.3 mA, and they remain approximately constant (on the
wavelength scale) over a broad range of Ζ values (e.g.,
from Mo to W). On the energy scale, this corresponds
to intrinsic "physical" widths of the lines at half-height
Δ, in the range 5-50 eV. Thus the "anomalously large"
shifts Δ £ of the order of 1 eV corresponding to the 4/
electrons amount in the rare-earth region to only about
1/30 of the natural line width. The ordinary experimen-
tal errors amount to from 10% to 1% of the effect, which
corresponds to σ(Δ Ε) of the order 0.1-0.01 eV (see,
e.g., Table I). This now corresponds to about 1/300-
1/3000 of the line width. Evidently, the similarity of
the lines under comparison must be assured to this de-
gree of accuracy, i .e . , physical or instrumental (aber-
ration) effects that distort the shape of the compared
lines should be absent.

A physical factor that distorts the profile is the ap-
pearance of fine structure in one of the lines being com-
pared. For example, if the valence state of the second
of the compared samples is an equilibrium mixture of
two configurations 4/" and 4/""1, then the second of the
compared lines will be an unresolved ( Δ £ ' =1 eV, Δφ

«30 eV) doublet with a distorted shape of the overall pro-
file (Fig. 12b). However we can easily show that the
following relationships hold for a rather wide class of
spectral line shapes (in any case, for shapes of the
Gaussian or Breit-Wigner types or mixtures of them):

flit*

but

(11)

Here Δη is the effect (see Fig. 12a) arising from a shift
by the amount Δ £ of a line of width Δ, and Δη' is the
effect (see Fig. 12b) of profile distortion caused by
doublet character AE' of the lines.

When Δ Ε ~ Δ Ε', we find that

Λ/; (12)

i. e., the distortion from the small effect proves to be
of the second order of smallness, and cannot interfere
with measuring the shift with an accuracy up to the
same small magnitude. In other words, the very small-
ness (as compared with the line width) of the studied and
the interfering effects ensures the needed rigidity and
nondeformability of the line profiles.1 2 '

12'This gives rise to the substantial difficulty of the inverse
problem of seeking by an analogous method effects that lead
only to line broadening. A good example is Ref. 39, which
provided the first experimental demonstration of the effect of
broadening of Κα lines arising from the so-called hyperfine
splitting of the Is level (AE ' « 1 eV) in the isotopes 151Eu and
12 *Sb. Here the obvious distinction was employed that the ef-
fect of a shift is an odd function with respect to the maximum,
while the effect of broadening is an even function.

FIG. 13. Explanation of the role of the aperture aberration and
of the effect of bending the reflecting planes on the acceptance
angle Αφ.

The instrumental aberration effects present the main
danger. Let us imagine that, owing to the imperfection
of the single crystal C (Figs. 11, 13) or to an insuffi-
ciently precise preparation or bending of it, different
regions of the crystal (1 and 2 in Fig. 13) focus the ra-
diation into somewhat different regions of the focal cir-
cle (detector region in Figs. 11, 13), i .e . , that the so-
called aperture aberration is present. Now let us as-
sume that one of the otherwise identical specimens un-
der comparison has a brightness inhomogeneity some-
where in its area (AS in Fig. 13). To some extent, the
latter is unavoidable even with the most painstaking
preparation and standardization of specimens. Evident-
ly, in the presence of aperture aberration, such an in-
homogeneity will distort the line shape (AD in Fig. 13)—
this is a parasitic shift in one of the profiles being com-
pared. Some of the ways of combatting this phenomenon
are trivial. The curve relating the line intensity to the
specimen thickness in operating "in transmission" (the
beams hvl and hv2 pass through different surfaces of the
specimen; Fig. 11) will evidently be a curve having a
maximum. Specimen thicknesses that correspond to
these maxima should be selected, since then not only
will maximum line intensities be attained, but also the
variations in brightness caused by inhomogeneities of
the density or thickness of the specimens will be mini-
mal. Moreover, one should rotate the specimens about
an axis perpendicular to their surface (in the design of
Fig. 11, this is carried out by the motor M2). Here
the possible brightness inhomogeneities will be smeared
out into rings and, what is of particular importance,
they will be symmetrized. One can naturally also try
to diminish the aperture aberration itself that gives rise,
as we have seen, to the aforementioned distortions.
Therefore we require an accuracy of preparation and
bending of the crystals that should approach "optical"
accuracy, with the typical tolerances on plane-parallel-
ism, planarity of the original monocrystalline plate, and
deviations of its surface from an ideal cylinder after
bending within the limits of one micron.

Yet, as we know, the very structure of actual crys-
tals is not ideal. The deviations from ideal conditions
consist of random rotations of individual small regions
(mosaic blocks) of the crystal, which are characterized
by the width of the angular distribution (usually close to
Gaussian) of the mosaic blocks, and by a lack of con-
stancy of the lattice parameters of the crystal, which is
manifested in a certain variability of the interplanar
spacing d of the system of planes employed for diffrac-
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tion (see Fig. 13) for different regions of the area of the
plate. Evidently this is one of the causes of aperture
aberration.

Estimates show that from this standpoint the degree
of perfection of real crystals that maximally approach
ideal ones suffices, when they are characterized specifi-
cally by widths of the angular distribution of the mosaic
blocks ωΓ < 1 " and Ad/d «10"5, as in the case of "semi-
conductor-grade" germanium and silicon, and also nat-
ural calcite, topaz, and quartz. But the radiation-
gathering power turns out to be insufficient in x-ray
spectrometers that use these crystals that are perhaps
as close as possible to ideal ones. In somewhat simpli-
fied terms (a detailed presentation can be found in Ref.
40), the reason is that the mosaic spread determines
the acceptance angle Δ9»ωΓ (see Fig. 13) of the instru-
ment for the monochromatic radiation emitted by the
atoms of the source. Hence, other conditions being
equal, it is advantageous to have this acceptance angle
as large as possible. On the other hand, Δθ can make
its own contribution to the experimental line width. For
example, when the studied components have a Gaussian
shape, the latter is determined by the relationship

(13)

The optimum that corresponds to the maximal radiation-
gathering power of the instrument in the case of a line
that is yet practically unbroadened is then attained near

Δ * • (14)

where Δθφ = Δλ/2ώοθ8θ is the intrinsic (physical) line
width, which is determined by differentiating the Bragg
condition, and is estimated for Δλ = 0.2 mA (cf. above)
with the typical d~l A and cos3 = l to be Δθφ =20".

Thus the mosaic spread of crystals closest to ideal
ones proves to be roughly twenty times (Δθφ/ωΓ =20"/
l " = 2 0 ) smaller than the optimum. Correspondingly a
diffraction spectrometer that employs a single crystal
close to an ideal one will have a radiation-gathering
power twenty times smaller than the optimum.13) One
might try to "spoil" a single crystal artificially by in-
creasing the mosaic spread in a way similar to what is
done, e.g., in neutron-diffraction spectroscopy when
single crystals of so-called prolytic graphite are used.
However, the growth of single crystals with a preas-
signed mosaic spread constitutes a very complicated
technological problem. Moreover, there is always the
danger in increasing the mosaic spread of also increas-
ing the overall imperfection of the crystal, and in par-
ticular, the variations of the interplanar spacing Ad
that determine the aperture aberration discussed above.

A way out has been found in employing the effect of
elastic quasimosaicity,"°· 4 1 1 which is inherent in ideal
single crystals, and which simulates the needed, pre-
calculated mosaicity while preserving the extreme homo-
geneity and perfection of the rest of the parameters. As

FIG. 14. Relationship of the bending coefficient * of the re-
flecting planes to the angle φ for a series of quartz plates bent
into a cylinder of ρ = 200 cm. The curves are marked with the
indices of the planes that coincide with the normal cross sec-
tions of the plates.

we know, when a plate made of an isotropic material is
bent, the transverse cross sections normal to the longi-
tudinal axis remain planar (Bernouilli's theorem). How-
ever, it is no less well known (see, e.g., Ref. 42), that
this theorem is not valid in the general case of bending
a plate made of an anisotropic material. It has been
shown"1·1 that in a cylindrically bent plane-parallel plate
of a focusing diffraction instrument, the reflecting planes
coinciding with the normal transverse cross-sections
are bent (see the inset in Fig. 13) along parabolic sur-
faces:

(15)

where

' % e assume that the well-known thick-crystal condition is
satisfied.

is the bending coefficient, which depends on the compo-
nents au of the elastic tensor of the single crystal,
which generally differs from zero. We easily note that
the acceptance angle Δθ is now determined by the angle
between the extreme tangents to the parabolas

Δ» = 2kL, (16)

where L is the thickness of the plate.

After one has selected the reflecting plane of the plate
to be cut, and aligned the normal transverse cross-sec-
tion with it, there still remains another degree of free-
dom: the possible rotations φ of the plate about the
longitudinal ζ axis. Under such a rotation, the chosen
crystallographic planes will remain coincident with the
normal transverse cross-sections, and the parameters
that characterize diffraction by the unbent crystal will
also remain invariant. However, the bending coefficient
k will vary as the components of the elastic tensor
transform upon rotation. Figure 14 shows as an exam-
ple the k(cp) relationships calculated"01 for quartz plates
in a series of orientations (the curves are marked with
the indices of the planes that coincide with the normal
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FIG. 15. TheKa. x-ray line of Sn. Obtained on a 2-meter
Cauchois spectrometer (see Fig. 11) by using quartz plates
with 1340 planes coinciding with the normal cross sections for
k = 0 and fe = 2 χ 10"4 cm' 1. The abscissa is the displacement of
the meter rod for rotating the crystal (in Mm).

cross-sections) when bent into a cylinder of 2 m radius.
The numerical values of k lie in the range

0 < it «£ ΙΟ"3 cm" 1 .

For plates of millimeter thickness, this ensures an ac-
ceptance angle of

2-10-1 radians = 40" , (17)

This excellently satisfies the optimal relationship (14),
including even the most perfect crystals having the
minimal mosaic spread (ω Γ <1") .

Figure 15 shows the experimental Kai lines of Sn
taken t 4 0 ] with a 2 m focusing Cauchois spectrometer hav-
ing millimeter single crystals of natural quartz (ωΓ

ί θ . 5") in which reflection from 1340 planes coinciding
with the normal transverse cross sections was em-
ployed. The lower curve was obtained from a plate hav-
ing

fc = 0 ( Λ ί » ωτ as 0.5").

The upper curve was obtained with

Α: = 2·10-1 cm.1 (Δθ = 2i:L =4-10-» radians =8"),

all other conditions being kept identical. With practi-
cally identical line widths, employment of the elastic
quasimosaicity effect increased the peak intensity of the
line by a factor of 11.

Diffraction spectrometers optimized by the described
method, and using commercially available x-ray ap-
paratus for exciting fluorescence (e.g., RUP-200 or
RUP-150) with currents of 10-20-mA, allow one to col-
lect from 10, 000 to 100,000 counts/min from specimens
the size of a kopeck containing masses of the studied
compounds of 100-300 mg. This allows one to obtain a
standard result of the type shown in Table I, during a
day of measurement on the average.

We should note in conclusion, that although practically
all the currently existing data have been obtained with

diffraction instruments similar to those that we have dis-
cussed. A possibility exists in principle of employing a
quite different technique based on silicon or germanium
semiconductor detectors. The first study of this type
known to us is the measurement of the shifts of the Και 2

and KBl lines for EuF 3-EuF 2 (see Table I, values
marked with an asterisk), which was carried out with a
standard Ge(Li) detector with a resolution of the order
of 1 keV. t 4 3 ] As we see, the attempt is quite successful,
and shows that here also one can reduce the errors to
10"4 of the line width if the condition of identical geome-
tries and intensities for the sources being compared is
strictly satisfied. Employment of the best modern
semiconductor detectors having a resolution of the or-
der of 0.2-0.3 keV apparently allows one to attain an
accuracy quite comparable with diffraction.

6. CONCLUSION

We have examined the effects of shifts of Kav Kn,
and Kfl2 4 lines of the order of one electron-volt involv-
ing a change in the number of 4/ electrons in compounds
of the rare-earth elements. They happened to be de-
tected'-14'1 and began to be studied later than smaller
shifts of a different nature.

Now shifts that are weaker by factors of tens and
hundreds are accessible to measurement. The most
varied physical causes can be responsible for these
shifts, including such effects as an alteration in the
charge radii of isotopic nuclei, the above-mentioned
hyperfine broadening of x-ray lines, and the study of
correlation phenomena in atomic shells. The chemical
applications (or, if one prefers, those pertaining to the
physics of chemical bonds) become considerably broader
at this level of magnitude of effects, e.g., those allow-
ing (in quantitative combination with Mossbauer data)
solution of such subtle problems as the determination of
the valence structure of oxygen compounds of iodine with
participation of s and p electrons and dative d bonds."4·1

The interested reader can get an overview of this from
the reviews.C 3 1·4 5"4 8 1

As for the future in the field closest to that which we
have discussed here, the agenda includes the problem
of analogous studies of the valency of the actinides.
Attempts along this line have already been under-
taken. c 4 9 · 5 0 3 Yet, on the whole, the situation here is
considerably more complicated, and this method has
taken only the first steps.
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