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Collisions between slow atomic particles involving a small change in electron energy in the transition are
examined. Asymptotic methods are presented for calculating the parameters of interaction potentials for
atomic particles at large separations. Different models describing electron transitions during collisions
between atomic particles are analyzed. The simultaneous use of the asymptotic method for the calculation
of the interaction potentials between colliding particles and of the generalized two-level approximation for
the quasiresonant particle collision results in reliable calculations of transition cross sections for a broad
range of processes. This is demonstrated by considering examples of resonant charge transfer, spin
exchange, and also some quasiresonant processes.
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INTRODUCTION

Quasiresonant processes during atomic collisions are,
by definition, connected with transitions in which the
electron energy of the particles changes very little (or
not at all). Quasiresonant processes therefore take
place with high cross sections, comparable with or ex-
ceeding the gas-kinetic cross sections, and play an im-
portant role in phenomena occurring in ionized or ex-
cited gases under different conditions. For slow colli-
sions, when the relative velocity of the colliding parti-
cles is small in comparison with the characteristic ve-
locity of valence electrons in their orbits, the natural
theoretical description of quasiresonant transitions ex-
presses the properties of the system of colliding parti-
cles in terms of the parameters of the quasimolecule,
i. e., the system consisting of the same particles but
with fixed nuclei.

Calculations of cross sections for quasiresonant
transitions can be substantially simplified for two rea-
sons. Firstly, the transition energy is small and the
collision itself is slow, so that a restricted number of
states of the quasimolecule participates in the transi-
tions. Secondly, the quasiresonant transitions them-
selves occur at large separations between the colliding
particles as compared with their dimensions. This de-
termines the smallness parameter of the theory and this,
in turn, enables us to express the properties of the
quasimolecule in which we are interested in terms of the
parameters of the colliding particles. The cross section
for the quasiresonant transition can therefore be ex-
pressed in terms of the parameters of the colliding parti-
cles and the collision velocity by taking into account the
nature of the transition for each particular quasireso-

nant process and by considering the possible collision
paths.

This approach to the theory of atomic collisions was
developed in the sixties by Soviet scientists and has been
reviewed in a number of monographs . t l ~ e ] It has been
called the asymptotic theory of atomic collisions. The
idea of the asymptotic method is to expand the cross
section in terms of a small parameter which is essen-
tially equal to the ratio of the geometrical cross sections
of the colliding particles to the cross section for the
process under investigation. Since, for the processes
which we are reviewing, this ratio is small, we can not
only calculate the transition cross section but also esti-
mate the precision of the calculation. This is the funda-
mental difference between the asymptotic theory, on the
one hand, and model and semiempirical approaches, on
the other. Moreover, despite the fundamental difficulties
in obtaining the intermediate result, the asymptotic the-
ory does yield the final result in relatively simple form
(analytic or semianalytic), which establishes a simple
relationship between the cross section for a particular
process and the parameters of the colliding particles as
well as the collision velocity. This is a natural conse-
quence of the expansion in terms of the small parame-
ter, and may be regarded as the advantage of the asymp-
totic theory.

Our aim is to review the asymptotic theory of quasi-
resonant processes and to illustrate it by simple exam-
ples of interactions and collisions between atomic parti-
cles. Experience has confirmed the advantages of the
asymptotic theory of atomic collisions as compared with
other approaches, and many new results have been ob-
tained, some of which are included in this paper. More-
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over, the idea of the asymptotic approach to the theory
of atomic collisions, which enables us to present the re-
sult of the theory in terms of an expansion in a small
parameter, has itself turned out to be fruitful in adja-
cent branches of physics as well. The authors hope that
the principles of the asymptotic methods presented here
will also be useful in other branches of physics.

1. INTERACTION BETWEEN ATOMIC PARTICLES AT
LARGE SEPARATIONS

The probability of transition between quasiresonant
states during a slow collision between atomic particles
can be expressed in terms of the parameters of the in-
teraction potential between these particles. Since such
transitions are found to occur mainly at large separa-
tions between the particles as compared with their di-
mensions, we shall, in this chapter, confine our atten-
tion to the interaction potential at large separations be-
tween the particles. This type of information is impor-
tant not only for the particular problems with which we
shall be concerned, but also in determinations of the
elastic scattering cross sections and the associated
transport coefficients of gases at moderate temperatures,
as well as in determinations of the parameters of mole-
cules with low dissociation energies and the parameters
of condensed media consisting of weakly interacting
atoms and molecules.

Calculations of the atomic interaction potential at
large separations are a part of the general problem of
evaluating the adiabatic electron terms of quasimolecules
(the adiabatic electron term of a quasimolecule is the
electron energy as a function of the distance between the
nuclei when the latter are treated as being held fixed).
The "direct" method of evaluating these terms, which
has recently been widely used, is based on the varia-
tional procedure which cannot be successfully employed
without the use of powerful modern computers .CS5] This,
of course, restricts the application of the variational
method to the many particular problems of collision the-
ory in which we have to know the behavior of the poten-
tial curves over relatively large intervals of interatomic
distance R. However, computational difficulties and the
high cost of variational calculations are not the main
impediment to the broad application of this procedure to
collision problems. The basic problem is that, as the
interatomic distance increases and the interaction be-
tween the atoms is reduced, the precision of the varia-
tional method for a given basic set of electronic func-
tions becomes lower. This is connected simply with the
fact that the interatomic energy is a small part of the
total energy of the system of atoms, and decreases with
increasing R. Moreover, the variational method is suit-
able in practice only for the simplest systems.

Perturbation theory, based on the electron states of
free atoms, is an alternative approach to this problem.
It is well known"3 that this method can be used to ob-
tain relatively simply the first and second order terms
for the interaction energy when this energy can be ex-
pressed in the form of a multipole expansion and the
overlap between the functions associated with different
atoms can be neglected. The interaction energy can then

be written as a series in the reciprocal powers of R and,
depending on the electron and charge states of the atomic
particles, the first term of the expansion R"" will corre-
spond to different values of n. In particular, η =4 corre-
sponds to the interaction of an ion and an atom in the S
state (this is the interaction between a point charge and
an induced dipole, i. e., the so-called polarization in-
teraction) and η =6 corresponds to the interaction of
two atoms, one of which is in an S state (this is the in-
teraction of mutually induced dipoles, i. e., the so-
called van der Waals interaction). We note that the
basic methods for calculating the potentials correspond-
ing to the long-range interaction were developed quite
early on in the history of quantum mechanics.""1"

However, a serious shortcoming of the above variant
of perturbation theory is that it has a restricted range
of application. In particular, the representation of the
long-range interaction potential Ulr by a series in pow-
ers of 1/R is asymptotic in character (i. e., it diverges,
beginning with a certain term) and is already invalid at
distances considerably greater than could have been
expected on the basis of the general criterion for the
interaction U,r to be small in comparison with the char-
acteristic energies AE associated with the electronic
excitation of atoms. This defect can be removed only
by taking into account the overlap of electron wave func-
tions.

On the other hand, if one attempts to take into ac-
count the overlap effect within the framework of the usu-
al Heitler-London method/35·1 it turns out that the more
stringent criterion for the validity of perturbation theory
(namely, that the first-order corrections to the zero-
order functions must be small) is not satisfied for the
range of electron coordinates which provides the main
contribution to overlap, i. e., for the "tails" of the elec-
tron functions. The consequence of the violation of this
criterion is that calculations of the overlap integrals,
or of the related exchange and resonance integrals, with
unperturbed atomic state functions yield an incorrect
result for the exponentially decreasing part (sometimes
called the short-range or exchange part) of the interac-
tion Δ (β).

We thus have the problem of finding the correct pro-
cedure for evaluating the wave functions of "almost free"
atoms, i. e., of taking into account the small distortions
of the atomic state functions that are important for the
overlap calculation at large separations between the
atoms. When this is done, one can, of course, confine
one's attention to the classically forbidden region of mo-
tion of the electron, where the electron density is appre-
ciably smaller than the maximum density. All this col-
lectively forms the foundation for the asymptotic method
of determining the exchange interaction potentials for
atomic particles. In the final analysis, this approach
will yield an analytic expression for the exchange inter-
action potential in the limit of large separations.

There are several types of exchange interaction be-
tween atomic particles (Fig. 1). The first corresponds
to the transition of a valence electron from the field of
the remaining ion to the field of another, and the second
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FIG. 1. Three types of exchange
interaction: a) electron trans-
ferred from the field of one ion
(atom) to the field of another; b)
exchange of two electrons be-
tween two different atomic parti-
cles; c) the wave-function "tail"
of the valence electron in the field
of its own atomic residue reaches
another atomic particle and there-
by interacts with it.

corresponds to the simultaneous exchange of two elec-
trons. The third type is determined by the distribution
of the valence electron in the field of a neighboring
"foreign" atom. In the ensuing discussion, we shall ex-
amine in detail the interaction of an ion with a corre-
sponding atom, which belongs to the first type of ex-
change interaction. We shall use this simple example,
which retains all the main features of the problem of
calculating the asymptotically exact expression for the
exchange interaction potential, to demonstrate the spe-
cial features and possibilities of the asymptotic method.

We begin with the case where the electron shell of the
ion is full and the valence electron of the atom is in an
s state. We shall analyze the behavior of the electron
terms of the quasimolecule consisting of the ion and the
corresponding atom in the limit of large separation be-
tween them. We shall use the symmetry of the quasi-
molecule, which is such that the Hamiltonian describing
the electron is invariant under reflection of the elec-
trons in the plane of symmetry. This plane is perpen-
dicular to the line joining the nuclei and bisects it. A
double reflection in this plane returns the system to its
initial state. The electron eigenstates can therefore be
divided into even and odd ones, depending on whether
their wave functions retain their sign or change it on
reflection in the symmetry plane. These wave func-
tions satisfy the Schroedinger equations

(1.1a)

~

where Vu Vz are the effective interaction potentials be-
tween the electron and the corresponding atomic residue,
ε,, εΒ are the energy levels of the states under consider-
ation, which depend on the separation between the nuclei,
and the term e*/R represents the Coulomb repulsion be-
tween the nuclei. In the limit of infinite separation be-
tween the nuclei, the energies ε,,εΒ are equal and cor-
respond to the electron energy level in the atom.

Let us consider the region of large separations be-
tween the nuclei, when the even-odd energy difference
between the electron states is small in comparison with
the ionization potential of the atom. In accordance with
Fig. 2, the wave functions of the even and odd states can
then be expressed in terms of the same functions, and

the even-odd energy difference can be found by using the
following device."6 3 We multiply (1.1a) by ψΒ and (1.1b)
by ψ,. We then subtract one from the other and inte-
grate over the half-space to the left of the symmetry
plane. The result is

f
ν

= (εϊ —e t t)

Next, we transform the left-hand integral into a surface
integral and express the wave functions of the even and
odd states in terms of the wave functions centered on the
corresponding ion (see Fig. 2): φ ι , ν = (ψι±ίΡζ)/^2 . Fi-
nally, since the separation between the nuclei is large,

This yields

(1.2)

where the surface S coincides with the symmetry plane,
and the ζ axis lies along the line joining the nuclei.

We now introduce a cylindrical coordinate system with
the origin at the midpoint of the line joining the nuclei,
the ζ axis lying along this line, and the ρ axis perpen-
dicular to it. Since the electron is in an s state, the
wave functions ψ1 and φζ depend only on the distance to
the given nucleus. In the above coordinate system they
are therefore given by

where R is the separation between the nuclei and ip(r) is
the electron wave function with r being the distance
from the nucleus in the neighborhood of which the elec-
tron is largely concentrated. We now use this to trans-
form (1.2) to the form

(1. lb) to doing this, we use the obvious relation
(1.3)

FIG. 2. Electron in the field of two identical centers. Reflec-
tion in the symmetry plane corresponding to the transformation
ψ( — φ 2 , ψ2~*Ψι· Correspondingly, the even electron wave func-
tion which retains its sign under reflection is given by $e = (ψ)
+ ψ2)//2, and the odd wave function is ipu = (ψ, - ψ2)ΛΓ2.
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FIG. 3. Electron terms for the quasimolecule A*+A with one
valence s electron at large separations between the nuclei.
UlT is the long-range interaction potential between the ion and
atom and Δ is the exchange interaction potential.

and assume, for simplicity, that the electron wave func-
tion is real.

The function given by (1.3) relates the difference be-
tween the energies of the states of the molecular ion un-
der consideration to its parameters in the limit of large
separations between the nuclei. Before we analyze this
formula in detail, let us consider the expression for the
state energy. In this case, the long-range interaction
between the ion and the atom is the same for both states,
so that the energy of each of the states can be written in
the form

(Λ) ± 4 Δ (Λ),

where ε0 is the electron energy for an infinite separa-
tion between the nuclei, Utr is the long-range and mainly
polarization interaction, and Δ is the exchange interac-
tion potential due to the overlap of the electron shells
(Fig. 3). The exchange interaction potential between the
ion and its own atom is, by definition,

(1.4)

where the wave functions fa and φζ correspond to finding
the electron in the field of the respective atomic residues.
The exchange interaction potential is assumed small in
comparison with the characteristic energy of the elec-
tron in the atom, so that \(φ1\φζ)\«ί.1)

We now determine the resonance interaction between
the ion and the atom in the above case. This means that
we must determine the wave function of the electron in
the quasimolecule, which is centered on one of the nu-
clei and is present in this form in the expression for the
exchange interaction potential given by (1.3). We shall
do this by using the Schroedinger equation (1.1) but,
since the separation between the nuclei is large, we
shall neglect the long-range and exchange interactions
in the expression for the energy. The result is the fol-
lowing Schroedinger equation for the wave function cen-
tered on the first nucleus:

"The two definitions given by (1.2) and (1.4) for the exchange
interaction potential become identical when the exact wave
functions are used.

(1.5a)

where K*yz/2m is the ionization potential of the atom.
At the same time, in the range of coordinates for which
the electron does not enter the "interior" of the atomic
residues, the potential representing.the interaction be-
tween the electron and the ion is a Coulomb potential,
so that this equation becomes

— "»—Δψ ψ ip = I ' *)Ψ 11 · DD/

where r l t 2 is the distance of the electron from the corre-
sponding nucleus.

The wave function of the electron in the quasimolecule
can be conveniently expressed in terms of the wave func-
tion of the electron in the atom which, well away from
the atomic residue, satisfies the Schroedinger equation

(1.6)

The solution of this equation at large distances r from
the nucleus is

Γ γ 2 -^ (1.7)

where a0 is the Bohr radius and A is an asymptotic coef-
ficient determined by the behavior of the electron in the
interior of the atom.

Assuming that the atomic parameters A and γ are
known, we shall determine the wave function of the elec-
tron in the quasimolecule in the region between the nu-
clei as follows. In the neighborhood of the first nucleus,
where rt «R, we can neglect the effect of the second ion
on the electron, so that the wave function of the quasi-
molecule is identical with the atomic wave function.
This region also includes r 1 y 2 » e 0 , where the asymp-
totic expression (1.7) is valid for the atomic wave func-
tion. Next, we move the electron along the line joining
the nuclei toward the region between the nuclei, where
the inteiaction potentials between the electron and each
of the nuclei are comparable. Here, we have riyz>>ao,
so that the Coulomb interaction potential between the
electron and each of the nuclei is small in comparison
with Kzyz/2m, and the main change in the wave function
is connected specifically with this term. In view of this,
we write the electron wave function in the form t l e l

χ (Γ)- (1.8)

Substituting this into the Schroedinger equation, and ne-
glecting the second derivative with respect to χ. we obtain

where, along the axis, rt +rg =R. Hence, we have

In particular, the electron wave function at the midpoint
of the line joining the nuclei is

(1.10)

98 Sov. Phys. Usp. 21(2), Feb. 1978 Ε. Ε. Nikitin and Β. Μ. Smirnov 98



Accordingly, if we use the asymptotic expression given
by (1.7) for the radial wave function of the electron in
the atom, we obtain the following expression for the
resonant exchange interaction (1.3)C17]:

Λ = A 2 — e-"v<'«/? ( 2 / v m )" 1e- f lv. (1.11)

This expression was obtained for the interaction be-
tween the ion and the one-electron atom containing the
valence s electron, but it can be extended to the more
general case. Let us begin with the one-electron atom
with electron angular momentum I and component μ of
this momentum along the line joining the nuclei. The
wave function of the valence electron can be written in
the form of the product of the radial and angular wave
functions Φ(τ) and Υ1η(θ,ψ) (r, θ, φ are the spherical
coordinates of the electron relative to the nucleus in the
field of which it is mainly concentrated):

Ψ (r) = Φ (r) Υ, (θ, φ) .

The main variation of the radial wave function (1.7) is
then exponential, i .e . , <£>(r)~e'rr, so that the exchange
interaction potential given by (1. 2)2> now becomes:

Because of the exponential form Φ~β'γτ, this integral
converges for small ρ (P~VR/y « # , since Ry» 1),
where Φ(ν) = <i>(R/2)e"yp2/J!. This corresponds to small
angles Θ=2ρ/Λ and, since Υ1ιι{θ,φ)~βΙί, for small Θ,
the evaluation of the above integral yields

or, using the explicit form of the spherical harmonics
Yllt for small angles and the asymptotic expressions
given by (1.7) and (1.10) for the radial wave functions,
we obtain the following expression for the exchange in-
teraction potential'193:

,,. g V ( / W ) ( 1 - 1 2
m ( / - | μ | ) ! | μ | ! Υ

Ι μ Ι

This expression can be generalized to the case where
the atom and the ion contain a number of valence elec-
trons. As in the preceding case, the transition to the
new result involves a change in the wave function for
electrons in the interior of the atom. Neglecting rela-
tivistic effects, let us represent the atomic wave func-
tion by the sum of products of wave functions of one of
the electrons by the wave function of one of the atomic
residues. In accordance with the Racah fractional
parentage scheme, the wave function of an atom contain-
ing η valence electrons is given byC 2 0 l 2 U

l, 2 , . . . , « ) = — = • Ρ
l

where Φ,

4 ) | β μ _ 1 σ ( 1 ) Ψ , · Μ , ™ | 1 ( 2 , 3 η),

(1.13)
and Φ' are the wave functions of the atom,

the valence electron, and the atomic residue, respec-
tively; the numbers in parentheses are the numbers of
electrons on which these functions depend; LMLSMS

are, respectively, the orbital angular momentum of the
atom and its component along the line joining the nuclei,
S is the spin of the atom, Ms is the spin component along
the line joining the nuclei, lMtsms are the same quan-
tum numbers for the atomic residue, and Ζβμ|σ are the
quantum numbers of the valence electrons. The quan-
tities Uxm1;jzmzjm) are the Clebsch-Gordan coefficients
corresponding to the addition of the orbital and spin
angular momenta of the electron and of the atomic resi-
due to give the corresponding angular momentum of the
atom, and Ρ is the electron permutation operator.

The state of the quasimolecule consisting of the ion
and the atom is characterized by its total spin J. Ac-
cordingly, the wave function of the quasimolecule cor-
responding to the atom being near the first nucleus is

. / Ml tn — 1)1 ή (sm,; SMs\JMj)

(1.14)

where the operator Ρ permutes the electrons situated
in the field of different atomic residues, and the wave
function superscript indicates the number of the nucleus
in neighborhood of which the electron is located. The
Clebsch-Gordan coefficient corresponds to the addition
of the spins of the ion and of the atom giving the resul-
tant spin of the quasimolecule. The remaining notation
is the same as in the previous formula.

We now substitute the wave functions given by (1.14)
and (1.13) for * ! and the analogous expressions for Φ2

into the expression for the exchange interaction poten-
tial given by (1.4). If we extract from the complete
Hamiltonian for the system of electrons the Hamiltonian
for the electron undergoing the transition, and at the
same time neglect the simultaneous exchange of two elec-
trons, we can express the exchange interaction potential
of the many-electron system in terms of the one-elec-
tron potential. These operations yield the following ex-
pression for the exchange interaction potential'223:

Δ =

2>We use this formula in this case with allowance for the fact
that we are dealing with complex angular wave functions.

1 G'SL Ρ 2 ( U : m> I L<M

(1.15)
where J is the total spin of the quasimolecule and Δμ is
the exchange interaction potential when only one valence
electron is present with angular momentum component
μ along the line joining the nuclei. We can thus replace
the calculation of the exchange interaction potential be-
tween an atom with η valence electrons in the state with
quantum numbers LMLS and the atomic residue in the
state with quantum numbers lMtS to the problem of one
valence electron described by the same wave function
in the field of the two atomic residues.

The above detailed analysis of the interaction poten-
tial between the ion and the corresponding atom illu-
trates the possibilities of the asymptotic method in cal-
culations of interaction potentials. The exchange inter-
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action potential between the ion and the atom is repre-
sented by the first term of the expansion of this quantity
in powers of 1/R. This means that, by taking the ne-
glected terms into account, we can estimate the preci-
sion of the asymptotic method. Moreover, the exchange
interaction potential itself is calculated in the asymp-
totic method with allowance for all the structural fea-
tures of the interacting atom and ion without the use of
models.

The dependence of the exchange interaction potential
between the ion and its own atom on the separation be-
tween them can be obtained without taking into account
the distortion of the electron wave function due to the
interaction with the other atomic residue. For example,
in the case of the valence s electron, the use of the un-
distorted atomic wave function (1.7) in (1.4) or (1.3)
leads to the correct result A~R<z/rao>-1

e'
Rr [see (1.11)].

A different situation obtains in the case of the exchange
interaction between two atoms, which is determined by
the simultaneous exchange of two electrons. In this case,
in the region which determines the exchange interaction,
the potential for the interaction between the electrons is
much greater than the potential for their interaction with
the atomic residues. For this reason, the wave function
for the electrons in the quasimolecule becomes essen-
tially a two-electron function, and this gives a different
dependence of the potential for the exchange interaction
between atoms on the distance between the nuclei as com-
pared with the case where we use the undistorted atomic
functions.3'

The first correct evaluation of the exchange interac-
tion potential between two atoms at large separations
was performed by Gor'kov and Pitaevskii™3 in the case
of hydrogen atoms (see also the paper by Hering and
Flicker124·1). The asymptotic method was subsequently
extended'25·1 to the case of the interaction of two alkali
metal atoms and the interaction of arbitrary atoms at
large separations."6"2 8 3 In the final analysis, the asymp-
totic theory enables us to express the interaction poten-
tial between distant atoms in terms of the parameters of
these atoms, namely, the asymptotic parameters Α, γ
and the quantum numbers characterizing the states of the
atom and the quasimolecule.

The character of the exchange interaction between
atomic particles is such that it can be used as one of
the elements in finding the electron terms of the quasi-
molecule in a more complex situation. In fact, the ex-
change interaction is determined by the "tails" of the
electron wave functions, the long-range interaction is
due to the region in which the electrons are mainly con-
centrated, and the spin-orbit interaction is governed by
the inner region of the atom. Since these regions do not
overlap, we can independently calculate the matrix ele-
ments of the Hamiltonian corresponding to the different
types of interaction. The subsequent diagonalization of

the energy matrix can be used to determine the electron
terms of the quasimolecule at large separations between
them. As an example, we shall determine the energy
matrix for the interaction of an inert gas atom (in the 'S
state) and its ion fP s ta te) . " ' 2 "

The Hamiltonian for the system of electrons in this
example can be conveniently written in the form

c?n na " o ϊ β
afH — Q/CQ g· £rL.S>,

where 3£0 includes the electrostatic interaction between
the electrons, L, S are the orbital and spin angular mo-
mentum operators for the ion, and tT is the spin-orbital
splitting of the ion levels. We shall expand the eigen-
functions of the quasimolecule under consideration in
terms of the eigenfunctions of the Hamiltonian &£0. In
the limit of infinite separation between the nuclei, R
- » and the state of the quasimolecule described by " 0

is twelve-fold degenerate (three-fold in the component
of the orbital angular momentum, two-fold in the spin
component, and two-fold in the dependence on the num-
ber of the nucleus to which the atom is bound). For finite
distances between the nuclei, the quantum number of the
quasimolecule is the parity of its state under reflection
in the plane of symmetry, i. e., the plane perpendicular
to the line joining the nuclei and bisecting it. Because
of this symmetry property, the energy matrix can be
divided into two 6x6 blocks.

Moreover, according to the Kramers theorem, each
of the states of the quasimolecule is doubly degenerate
with respect to the simultaneous change in the signs of
the components of orbital and spin angular momenta ML

and ms. The energy matrix is therefore found to split
into four independent 3x3 blocks. Table I gives two
blocks of the required energy matrix with ML +ma>0,
where uu(R) corresponds to the long-range interaction
with angular momentum component Μ along the line join-
ing the nuclei and Δ u is exchange interaction potential.
The upper sign in front of the exchange interaction poten-
tial corresponds to the even state of the quasimolecule
and the lower to the odd state; Eo is the energy of the
system for R - °° and in the absence of the spin-orbital
interaction.

Diagonalizing the above energy matrix, we can readily
determine from the relation \E-3£ikl=0 the position of

TABLE I. Energy matrix c«jik for the quasimolecule consisting
of an ion and an atom of an inert gas at large separations.

3 ) For example, the exchange interaction potential between two
hydrogen atoms for large separations R between them is
Δ~Λ5 / 2βχρ(-2Λ/α0), whereas the use of atomic wave func-
tions in (1.4) leads t o c l 5 ] Δ~Λ3εχρ(-2Λ/α0).

Quantum
numbers

ML = 0.

"••=4

ML = 0.

" ' ! - —

-¥«

0

ML-l.

™s=-4

-4'-

0

m s-T

0

0
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0, at. units TABLE II. Parameters of inert-gas crystals.C 2 9 ]*

\
*.Λ 4 5 5J0 5.5 Ρ, at. units

FIG. 4. The O(3P)-O(3P) potential1313: left-hand side—varia-
tional calculation; right-hand side—results based on the
asymptotic method.

the six electron terms of the quasimolecule for any ra-
tio between the types of interaction03 ( I . . . I represents
a determinant).

Figure 4 shows another example of the exchange in-
teraction, i. e., that involving two oxygen atoms (in the
SP state). The spin-orbital interaction is now so small
that it cannot be seen on the scale of the figure. To the
left of the region of matching, we give the terms obtained
by the variational method'303 which cannot be used for
large JR. On the right, we show the asymptotic terms.1

It is clear that the matching between the two sets of
data is satisfactory, and that the characteristic term
energies in this region amount to about one-twentieth of
the excitation energy corresponding to the next oxygen
term ?D). The asymptotic and variational methods give
sharply differing results for only one Π, term.

Figure 5 shows another case where the spin-orbital
interaction is very large (the I2 molecule). Comparison
of the asymptotic (solid lines) and experimental (dashed
curves) terms converging to the two fine-structure com-
ponents of I (dissociation limits for tPi/z +zPi/z and
2·£*3/2+2·Ρι/8> respectively) shows the high precision of
the asymptotic method/223

C31]

FIG. 5. Interaction potential for
two iodine atoms1321: dashed

.uniis curve—experimental, solid curve-
calculations by the asymptotic
method.

Type

Separation between
nearest neighbors

Sublimation energy,
kcal/mole

Debye temperature,
deg

Ne

5.56
(6.05)

0.50
(0.48)

71
(64)

Ar

6.24
(7.25)

2.3
(1.8)

91
(80)

Kr

6.94
(7.5)

2.6
(2.7)

62
(63)

Xe

7.72
(8.2)

3.1
(3.8)

49
(55)

•Results obtained by the asymptotic theory are shown without
parentheses; figures in parentheses are experimental.

It is important to note that in all the cases considered
the exchange interaction plays an important, if not the
dominant, role in the above range of distances. Even
in the case of the interaction between alkali metal atoms
in the ground and resonantly excited states, where the
long-range interaction potential decreases as i?"s, cal-
culationscss: of the exchange interaction show that this
interaction is important for transitions between fine-
structure components.

Finally, we mention the interesting possibility of using
the above methods for term calculations at moderate dis-
tances by direct substitution of the exchange integrals
tabulated in handbooks on quantum chemistry. A com-
parison of this method with the asymptotic method has
been carried out in the literature"41 for a number of
diatomic hydrides. As an example, Table Π compares
the parameters of an inert-gas crystal,a n calculated on
the basis of the exchange and long-ranged interactions,
with results of measurement.

So far, we have confined our attention to the first two
types of exchange interaction (Fig. 1), which involve a
transition of the valence electron from the field of one
atomic residue to the field of the other, or the simul-
taneous exchange of two electrons. The criterion for
the validity of the asymptotic approach to the evaluation
of the exchange interaction potential is that the separation
between the nuclei must be large:

(1.16)

At the same time, the electron ionization potentials of
both particles are similar but, if they do differ, the
asymptotic approach used as indicated above is valid
provided

I Yi - Yi Κ ί- . 17)

It is only in this case that the exchange interaction po-
tential is determined by the distributions of the elec-
trons in the region between the nuclei.

If, on the other hand, the ionization potentials for the
two atomic states are appreciably different, then the
condition given by (1.17) is violated at large distances.
Physically this means that the exchange interaction is
determined by the region near the atom with the larger
ionization potential. In the limiting case of a very large
difference between the ionization potentials, the inter-
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action picture can again be simplified. In particular, the
effect of a perturbed "compact" atom on a weakly-bound
valence electron in another atom is equivalent to the
presence of the pseudopotential"··"3

i-=-e<r-H), (1.18)

where L is the scattering length for the electron atom,
R represents the position of the perturbing atom, and r
is the position vector of the valence electron. Hence,
according to perturbation theory, the interaction poten-
tial is given by

(1.19)

where #(R) is the wave function of the valence electron
at the point occupied by the perturbing atom.

The above problem was first put forward by Fer-

mitse,s9] m t h e c o u r s e Of a n analysis of the shift of the
spectral lines of alkali metal atoms in an inert gas.
The Fermi formula for the spectral-line shift can be
obtained by averaging (1.19) over the positions of the
inert-gas atoms. Equation (1.19) was first derived by
Ovchinnikova,tW3 and the subsequent expansion terms of
the interaction potential in terms of a small parameter
were obtained by Alekseev and Sobel'man"13 for the case
where the perturbing atom lies in the classically accessi-
ble region of motion of the valence electron. The oppo-
site case has also been treated' in the literature.C423

The pseudopotential can be used as one of the elements
in the energy matrix to determine the position of the
electron terms for atoms of different sizes in a more
complicated situation. The criterion for the validity of
this approach demands that the size of one of the atomic
particles should be small in comparison with the other.
When this is so, this criterion enables us to investigate
Changes in the electron energy comparable with the elec-
tron binding energy. In particular, this method can be
used to investigate the crossing between the electron
term of the quasimolecule, consisting of the negative
ion and the atom, and the continuous-spectrum lim-
it. t 5 t 4 3 3 We note that, when the asymptotic method is
valid, the exchange interaction potential is much smaller
than the binding energy of the valence electron.

The type of interaction which we have been considering
characterizes the transition to a new type of bonding.
Let us suppose that the perturbing atom can form a bound
state with the electron, i. e., a negative ion. The scat-
tering length L is then negative, and the interaction is
attractive. This can also be understood in a different
way; part of the electron is "located" in the well pro-
duced by the perturbing atom, and this leads to the
appearance of charges on the interacting atoms. This is
the so-called ionic bonding. It plays an important role
in chemical bonds and in certain other elementary pro-
cesses. The presence of ionic bonding and its influence
on particle interaction is, however, more complicated
than the above description would suggest/*43 Ionic states
play an important role in the appearance of ionic
bonding. As an example, Fig. 6 shows the potential
curve for a system of interacting atoms in the presence

FIG. 6. Hypothetical behavior of the terms of a system subject
to ionic bonding. Dashed curves show the potential curves in
the absence of interaction between the ionic and covalent
states, assuming that the covalent interaction is repulsive.
The influence of the ionic states leads to the appearance of a
well in the interaction potential between the atoms.

of ionic states.

In conclusion of this section, we note that our aim has
been to provide a description of the exchange interaction
between atomic particles and to demonstrate the value
of the asymptotic approach to the determination of this
interaction. The above material therefore uses only
part of the existing information on the interaction poten-
tials between atomic particles at large separations.

2. TRANSITIONS BETWEEN QUASIRESONANT
STATES DURING COLLISIONS

We must now consider transitions between quasi-
resonant states in the course of slow collisions. The
character of transitions between these states is deter-
mined by the size of the Massey parameter ξ, which is
equal to the ratio of the effective collision time a/v to
the transition time Κ/Δε:

t· (2.1)

where Δε is the transition energy, ν is the relative
collision velocity, and a is the characteristic length
over which there is an appreciable change in the inter-
action. When ξ » 1 , the transitions are adiabatically
of low probability, and the transition probability is of
the order of e'e. We are interested in the case where
the above process occurs efficiently enough to ensure
that ξ<1.

Under quasiclassical conditions, When the wavelength
X of relative motion is small in comparison with the
characteristic size a, the nonadiabatic condition (ξ;£ΐ)
will automatically ensure that the transition energy is
small in comparison with the kinetic energy Ε of the
atoms:

Δε (2.2)

If, in addition, we demand that the energy of the adiabat-
ic electron states should be small in comparison with the
kinetic energy for all interatomic distances that are sig-
nificant for the process, i. e.,

e(R)<E, (2.3)

then the system of quantum-mechanical equations de-
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scribing the scattering process can be reduced to a semi-
classical system, and the latter can be written down for
rectilinear trajectories of the nuclei. In other words,
complete information on the collision is provided by the
scattering amplitudes on(i) in the expansion of the time-
dependent electron wave function of the quasimolecule in
terms of the molecular wave functions:

ν,αΑβχρ(-4-ίεη<«Λί (2.4)

where the sum is evaluated over the molecular states η
that are adiabatically correlated with the initial and fi-
nal states of the system, and it is assumed that there
are no transitions to "distant" states. The equations
for an that are equivalent to the time-dependent wave
equation for Φ(ί) in the restricted set of basis functions,
have the form

(t) a»· (0 exp [ - χ \ (εη—εη) df]. (2.5)

The coupling between the equations in the adiabatic basis
is provided by the matrix elements of the nonadiabatic
coupling operator cnn», for which there are well-known
general selection rules and methods for approximate
calculation. Integration of the equations along rectilin-
ear paths for different initial conditions gives a set of
amplitudes completely defining the semiclassical scat-
tering matrix which depends parametrically on the col-
lision impact parameter p.

This formulation of the problem will, of course, sub-
stantially simplify the calculation of probabilities and
cross sections, as compared with the rigorous quantum-
mechanical approach but, nevertheless, the equations
are still difficult to solve. Although such sets of equa-
tions, including tens or hundreds of channels, can be
successfully solved by computers, the correlation be-
tween the interaction and the cross sections is lost in
the solution, i. e., the information on the mechanism of
the process in which we are specifically interested is
lost. This is why approximate, but physically clear,
methods, that can be used to follow all the details of the
mechanism, continue to be important.

One of these methods is based on the transformation
of the basis functions so that the interaction between the
states in the new basis is localized within relatively
small ranges of variation of ΔΒ.. The particular form
of the transformation depends on the physical picture of
the process and is determined by the relative importance
of the different interactions. A possible choice, based
on the introduction of time-dependent Hund coupling is
discussed in Sec. 4. Here, however, it is important
to note that, if the nonadiabatic interaction is localized
in a relatively small part of the overall domain of varia-
tion, the complete solution of the equations can be con-
structed by matching solutions obtained for different re-
gions, and the set of equations can be substantially sim-
plified in each region. At the same time, the solution
of the equations in the intervals between the regions of
nonadiabatic interaction can be obtained in explicit form
as an independent evolution of the system over the in-
dividual terms.

The most probable of all the possible situations is the
one in which two states are strongly coupled in a local-
ized nonadiabatic region. We shall, therefore, confine
our attention to this case. It is known in the literature
as the two-state or two-level approximation. The time-
dependent wave function in the basis of two adiabatic elec-
tron states of the quasimolecule, * t and Ψ2, can be writ-
ten in the form

= α, (ί) t.exp ( - χ

where the coefficients ax and a8 satisfy the equations

t

ma1 = c12exp[-^-J (ε,— e2) <ίί'j a2,

t

ika2 = c21 exp [-̂  j (e2 — ε,) dt ' j a,,

. 6)

(2.7)

where tx, ε2 are the adiabatic electron terms of the
quasimolecule, which contain the separation between the
nuclei as a parameter, and c u =(ψχ -ίΛθ/θίΙψ2) is the
matrix element of the nonadiabatic coupling operator.

We shall now consider the case of resonant charge
transfer between the ion and the atom (or some other
similar resonant process), when the process takes
place without a transition between the states of the quasi-
molecules. The probability amplitudes aUi in (2.6) are
then time-independent, and the wave function (2.6) can
be written in the form (see Fig. 2)

t

- | If

(2.8)
where !pu φζ correspond, in accordance with Fig. 2, to
finding the electron in the field of the first or the second
atomic residue, respectively, ce,tu are the energies of
the even and odd states of the quasimolecule, which con-
tain the separation between the nuclei as a parameter,
and the initial conditions are chosen so that the electron
is located near the first nucleus prior to collision
(*(-«) =Ψι).

The particles approach each other during the collision
process, and the energies of the even and odd states be-
come different. Therefore after the encounter the inter-
ference between even and odd states of the quasimole-
cule will be different from the initial interference. In
particular, according to (2.8), the electron transition
probability [the square of the coefficient in front of ipz

in (2.8)] is given by [ l e :

(e s -ε,»)
dt. (2.9)

We now return to the two-level approximation de-
scribed by (2. 8). Nonadiabatic coupling is usually
localized, i .e . , c12(i) reaches its maximum value at
some instant of time, which we take as the origin, and
then falls to zero quite rapidly on either side of the
maximum. The probability of a nonadiabatic transition
between states for a single transit through the region of
nonadiabatic coupling is given by

oo) I s (2.10)
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subject to the initial conditions

a, (—oo) = 1, aa (—00) = 0. (2.11)

The limits ±°° are taken in the sense that, both at the
beginning and the end of the process, the system is fax
removed from the nonadiabatic region, so that, the cou-
pling cn can be neglected.

It is frequently convenient to formulate the problem
not in the adiabatic but in the diabatic basis. If we in-
troduce the function

(2.12)

(2.13)

* « = \ I F *
— 00

which tends adiabatically to the constant values

χ (-«>) = ο,
χ (oo) = π — θ = χ»,

the adiabatic basis ψί} φζ will uniquely determine the di-
abatic basis <plt <pt, the functions of which are time-inde-
pendent:

ψ, (t) = cos 2φ-φ, + sin -ψ-·φ,,
(2.14)

Next, Ψ is expanded in terms of the diabatic functions:

Ψ(ί) = *ι (*) Φι exp ( —y j H^df) + 6,(0 φ,βΐρ ( - 1 j Hndf),

(2.15)

and the coefficients bu bz satsify the following set of
equations:

I 1

«6, = Hn exp ( i j ΔίΤ it') 6,, «Λ6, = tf21exp {-~\ ΔΗάϊ ) 6,,

(2.16)

where AH =HU-Hiz is the difference between the diabat-
ic terms and Hlt is the nondiagonal matrix element of the
interaction, which can be expressed in terms of Et -ε2

and χ:

Ml = (β! - ε2) cos χ (ί),

2ffj, = •(«! - ε,) sin χ (ί).
(2.17)
(2.18)

The transition probability Plz, given by (2.10), can
be calculated in the diabatic basis from

t

Ρ,,^ΗΒΙΚΨ(t)|q^>|»=lim|-6,(t)sin-^exp (—LjiT,,*·)

t

+ 6, (t) cos ψ exp ( —i- ] Hu df) |2

(2.19)

if (2.16) are integrated subject to the initial conditions

6, (_«,) = 1, b, (-00) = 0. (2> 2°)

We note that the initial conditions for ax in (2.11) and
for bx in (2.20) are the same since, in the limit as t
— -°°, the diabatic basis, constructed taking into account
the definition of χ in accordance with (2.13), becomes
identical with the adiabatic basis.

It is clear from (2.13) and (2.17) that the conditions
for localized adiabatic coupling do not mean that coupling
between the diabatic terms vanishes in the limit as t

—+°°. In fact, the ratio H12/AH, which vanishes in the
limit as t - - °° by virtue of the particular choice of the
diabatic basis, tends to the constant value Η# /AH
= (1/2) tan*, in the limit as t » + «.

The calculation of the transition probability can, of
course, be carried out in any basis, but the adiabatic
basis is frequently the most natural because it arises in
the course of choosing an approximate basis of electron
functions, the weak dependence of which on the inter-
nuclear coordinates can be neglected.

We now consider the simple gyroscopic interpretation
of (2. 5) or (2.16). If we look upon btb* - bzb\, 6,6*,
6*62 as the spherical components of a unit vector m, the
two equations in (2.16) for the four complex quantities
satisfying a single normalization condition is equivalent
to the following set of three equations for the components
of the precessing unit vector m:

m = -

where the vector ν is defined by the components

•• 2 I m ffu, v,, AH.

(2.21)

(2.22)

For the case under consideration when Hn is real, i. e.,
for v,=0, the time dependence of j/(i) can be represented
by the curve in the x, y plane, traced out by the end-point
of the vector v. It is clear that the length of the vector
ν is equal to the adiabatic term splitting, and the matrix
element of the nonadiabatic coupling is equal to the rate
at which it rotates relative to the axes.

The adopted diabatic basis and the initial conditions
correspond to the fact that the vectors ν and m are paral-
lel to the ζ axis when t— -°°. Next, the vector v(t) ro-
tates, and m follows ν with a certain lag, and precesses.
In the limit as t - <*>, the vector ν tends to a constant ι».,,
and the vector m precesses around v* with a frequency
determined by the magnitude of i/«, and the angle β which
characterizes the degree of departure from the adiabatic
situation as m follows v. It is readily verified that P1 2

is given by

m (oo) v(oo)
v(oo) _ (2.23)

Other initial conditions for (2.21) correspond to the fact
that the vector m has an arbitrary orientation relative
to the y axis for t— — °°, and its precession around ν with
a constant angle between m and ν corresponds to the
adiabatic development of the system.

This gyroscopic interpretation of the two-level system
provides a particularly simple characterization of the
various available models, ascribing to them certain lines
in the x, y, t space, which in turn characterize the evolu-
tion of the vector v(t). The projection of these lines onto
the x,y plane gives curves which no longer contain in-
formation on the rate of variation of v{t), but they never-
theless provide a characterization of the particular mod-
el employed. Figure 7 shows loci of the vector ν for
which the solutions of (2.7) and (2.16) have been ade-
quately investigated. These equations are widely used
in the interpretation of quasiresonant processes/53'5*3
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FIG. 7. Loci ux, vy of the end-point of the vector ν for which
the two-level approximation leads to an analytic solution: 1—
Landau-Zener caseC7]; 2—generalization of this model ob-
tained by taking into account the influence of the turning
point[45]; 3—Rosen-Zener-Demkov case1463; 4,5—exponential
models1·47'493; 6,7—hypergeometric modelsC50]; 8—linear-ex-
ponential model. i 5 2 ]

Some of these models have recently been generalized
to the case of complex terms describing both the non-
adiabatic interaction and the adiabatic decay of
s ta tes . " 3 · 5 "

The solution of the two-level problem (2.7) in the case
of localized nonadiabatic coupling and sufficient separa-
tion between the turning point and the transition region,
is completely characterized by the nonadiabatic transi-
tion matrix which depends on transition probability Pu

for a single crossing of the nonadiabatic region and on
the so-called dynamic phases which originate in a non-
adiabatic crossing. If the matrices Ν are known for
different nonadiabatic coupling regions, the scattering
matrix is obtained by multiplying the adiabatic matrices
A, which are diagonal in the chosen basis, by the transi-
tion matrices N. We emphasize once again that this
method can be used to construct the multichannel S-ma-
trix although two states (different in each case) are cou-
pled in each region."0 5 3

To elucidate the foregoing, consider the case where
there are only two terms and one nonadiabatic coupling
region. We shall define its position by the distance Rp

at which the matrix element of the nonadiabatic inter-
action is a maximum, i. e., c^tflp) =cp. In this case,

S=AN*A*NA, (2.24)

where A* and A are diagonal matrices describing the
advance of phase during adiabatic motion over terms
for R >RP and R<RP . The transition probability ίΡ12

for a double crossing of the nonadiabatic region resulting
from a collision between the atoms [in contrast to the
transition probability Ρη for a single crossing defined
by (2.10)] can be expressed in terms of the nondiagonal
element of the S-matrix and, consequently, in terms of
the parameters contained in the iVand-A matrices:

- Plt) sin* (Φ + φ), (2.25)

where Φ is the so-called Stuckelberg phase which is de-
termined only by the character of the adiabatic terms
for R <RP, and φ is the dynamic phase. In this proce-
dure, Φ» 1 and represents the fact that the transition

region must be far removed from the turning point.

As an example, we reproduce the expression for P u

in the case of the exponential model/4 7·4 8 1 of which the
Landau-Zener and Rosen-Zener models are limiting
cases. The probability P 1 2 and the phase φ in this model
are functions of two parameters. These can be convenient-
ly taken to be the ratio of the maximum value of the ma-
trix element of the nonadiabatic coupling Up to the split-
ting Δ of the adiabatic terms at R =RP, and the adiabatic
mixing parameter χ.

If we define ξ by

_ ctgx
— "if-

the probability Plz will be given by

P.. =• exp [ - 4 (1 + cos χ)]χ)] s h ""

(2.26)

(2.27)

We note that the parameter ξ in (2. 26) and (2.27) has the
same interpretation as the Massey parameter given by
(2.1), and this justifies the use of this notation here.

The expression for the dynamic phase φ in terms of ξ
and χ is also known/553 A s regards the phase Φ, this
remains a free parameter, subject only to the condition
Φ » 1 and determined by the behavior of the terms for
R<RP.

We must now briefly consider the applications of model
solutions.

The Landau-Zener model [Eq. (2.27) in the limit of
X - π and Up /Δ finite] has frequently been used to calcu-
late the total and differential cross sections in the case
of quasicrossing terms (see, for example, the reviews
given by Nikitin and Ovchinnikovaci35] and by Lavrov11361).
Its generalizations to cases where the condition Φ » 1
can be removed were found to be essential in the evalua-
tion of the total and differential cross sections near the
threshold in energy"" and angle/563 and even at the
maximum of the total cross section, because of the ap-
preciable contribution of nonadiabatic tunneling transi-
tions for trajectories with large impact parameters.C l S 7 ]

It was also found that the sharp dependence of the non-
diagonal interaction element in the diabatic basis on the
interatomic distance, which is exhibited by the linear-
exponential model, has a substantial influence on the
cross section at low energies and may lead to two maxi-
ma in the velocity dependence of the cross section/5 1 '5 2 1

The special case of the exponential model [formula
(2.27) in the limit as χ = π/2], initially put forward to
describe nonresonant charge transfer/ 1 5 1 · 1 5 2 1 is being
successfully used at present both for processes with
large energy transfers (transitions between inner shells
of atoms t 8 5 1) and with very small energy transfers
(transitions between states displaced as a result of the
isotopic shift"5 1). We also note that the general case
of the exponential model (arbitrary χ) is being used to
describe transitions between quasimolecular terms cor-
related with different fine-structure components of
atoms. The relative flexibility of this model suggests
that it may be applicable for describing effects asso-
ciated with the coherent population of atomic states where
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it is known that the results depend to a significant ex-
tent not only on the probability but also on the phase.ci97]

So far, the transition probability has been calculated for
model processes of this type only for special cases of
the exponential model.1198]

Thus, the availability of different model solutions
enables us to consider a broad class of problems sub-
ject to the condition that only pairs of states interact
strongly in localized regions. As regards weak inter-
actions between this pair and other states, it is found
that their inclusion presents no difficulties within the
framework of this or some other variant of perturba-
tion theory. Certain resonant and quasiresonant pro-
cesses are discussed below from this point of view.

3. RESONANT CHARGE EXCHANGE BETWEEN AN
ION AND AN ATOM OR A MOLECULE

We shall now consider the simplest resonant process,
namely, resonant charge exchange between an ion and
an atom or a molecule. This process proceeds in ac-
cordance with the scheme

A* + A-*A + A\ (3 # 1)

where the tilde labels one of the nuclei. Resonant charge
exchange occurs with large cross sections, much greater
than the elastic cross section for the collision between an
ion and an atom, even at thermal collision energies.
Resonant charge exchange between an ion and an atom
will therefore determine processes associated with the
motion of an ion in its own gas and, in particular, quan-
tities such as the mobility and the diffusion coefficients
of the ion in its own gas. As an example, Fig. 8 shows
the "relay" type of charge exchange during the motion
of an ion in its own gas (this is the Sena effect). Hence-
forth, we shall confine our attention to the cross section
for the resonant charge exchange.

We begin by considering resonant charge exchange
corresponding to the transition of an s electron when the
transition takes place only between two states. Using
(2.3) for the probability of resonant charge exchange we

obtain the following expression for the resonant charge
exchange cross section"6·62·1

Ion Ion

Atom Atom

FIG. 8. "Relay" charge transfer (Sena effect1573) during
resonant charge exchange between an ion and a neutral atom
of the same kind. Since the resonant charge exchange occurs
in distant encounters, there is no elastic scattering and parti-
cles move along rectilinear trajectories. As a result of reso-
nant charge exchange an initially neutral particle becomes an
ion. This means that charge exchange results in a change in
both the direction and magnitude of the velocity, and the ion
assumes the parameters of the initially neutral particle, so
that the scattering of the ion is due to resonant charge ex-
change .

σ = \ 2npa'psin2 f A (Β) dt

Έί (3.2)

The main contribution to this cross section is due to
large impact parameters p~R0. Bearing this in mind,
we shall evaluate (3.2) on the basis that the exchange
interaction potential Δ(β) is largely an exponential func-
tion of the distance R between the nuclei [see (1.11)],
i. e., A(R) = A(fl0) «.-««-«ο) ί 0 Γ R ~R^ T n i s means that
our calculation will be equivalent to the expansion of the
integral (3.2) in powers of l/yu o «l . Accordingly, we
divide the integral (3.2) into two parts so that, in the
first, the phase is

and, in the second, we can use the exponential approxi-
mation for this quantity. In the first region, the inte-
grand oscillates rapidly around the value of 1/2 and can
be replaced by this value, and, in the second, the inte-
gral can be evaluated exactly, bearing in mind the small
range of the impact parameters that define it. To within
terms of the order of l/y2, we have

+ In 2ζ) — ^ 1η*ζ + ^ ( C + In2)--ψ- + ψ (I» t

where C =0.577 is the Euler constant. The quantity Ro

can be obtained from the condition that the terms linear
in Ro in the cross section for the resonant charge-ex-
change process must vanish. Asa result, we obtainCS8]

° 2 W ^ \ γ»Λ0 / '

where £(R0) =e'c/2 =0.28.

(3.3)

Let us examine this result in detail. The very idea
of the asymptotic approach consists of the expansion of
the transition cross section in terms of a small parame-
ter. This enables us to estimate the magnitude of the
neglected terms and hence the precision of the calcula-
tion. Let us estimate the precision first. In the evalua-
tion of the integral (3.2), the main error is connected
with the fact that we have excluded all information about
the behavior of the system at distances comparable with
the dimensions of the atom. This means that we use
asymptotic expressions for the exchange interaction po-
tential, and that inelastic transitions may occur at these
distances and the two-level approximation will be vio-
lated.4' It follows that the uncertainty in the calculated
cross section turns out to be of the order of the cross

4>The behavior of the exchange interaction potential at dis-
tances comparable with the atomic dimensions, and the ap-
pearance of inelastic channels in close encounters, result in
oscillations of the total cross section for the resonance
charge exchange process (see for example, Smirnovt43). The
amplitude of the oscillations of the cross section, which
characterizes the precision of our calculations, turns out to
be of the order of 1/γ2.
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section of the atoms, i. e., of the order of 1/y2.

Let us now examine the expression given by (3.3) for
the resonant charge exchange cross section. Assuming
that both the ion and the atom move along straight paths,
and using the exponential dependence of the exchange
interaction potential Δ on the separation between the
nuclei, we obtain the following expression in the limit
under consideration:

(3.4)

TABLE ΙΠ. Parameters determining the resonant charge ex-
change cross section.

where 1 / ^ Δ (fio) = 0.28.

This formula, together with the expression given by
(1.11) for the exchange interaction potential, enables
us to calculate the resonant charge exchange cross sec-
tion connected with an s-electron transition. Some of
the results159-1 are listed in Table ΠΙ. Let us examine
them in detail.

We begin by considering the dependence of the reso-
nant charge exchange cross section on the collision ve-
locity. Since the exchange interaction potential is an
exponential function of distance, we can write (3.4) in
the form σ =ΤΓΛ$/2, where (l/v)f(R0) e'^o = 1 and f(fl)
is a power-law function of the separation between the
nuclei. The final result turns out to be"1*"623

Type of
ion

and atom

Η
He
Li
C
Ν
0
F
Ne
Na
Mg
Al
Si
Ρ
S
Cl
Ar
Κ
Ca
Ο
Fe
Cu
Br
Kr
Pb
Ag
Ca
In
J
Xe
Cs
Ba
Au
Hg
Tl

State of

ion

3 5
15
2P
3/>

*5
ΆΡ
2p
2S
»S
ip
3p

*5
3P
-P
I S

•seZJ
'S
3 P

«P
I S
'S
2 S
*s3 P
2 p

*s
«s
»s2 S
2/>

State of
atom

2 S
' S
2 S
ip

*s3p

*sa S
•s2 P
3 p

I S
3P

ip

*s! S
I S
' S
5/>
*sS P
'S
*s2 S
'S
2i>
'P
' S
2 S
'S
2 S
I S
! S

V

1.00
1.344
0.629
0.910
1.033
1.000
1.132
1.259
0.615
0.749
0.663
0.774
0.878
0.873
0.978
1.070
0,565
0.670
0.705
0.762
0.753
0.933
1.014
0.555
0.746
0.813
0.652
0.876
0.944
0.535
0.619
0.823
0.876
0.670

A

2.00
2.87
0.82
1.30
1.49
1.32
1.59
1.75
0.74
1.32
0.61
1.10
1.65
1,11
1.78
2.11
0.52
0.95
1.13
1.40
1.29
1.83
2.22
0.48
1.18
1.59
1.58
1.94
2.37
0.39
0.72
1.41
1.82
0.65

Resonant charge ex-
change cross section
(10-" cm» ) at the
stated incident ion
energy, eV

0.1
6.2
3.5

26
6.2
4.9
5.2
3.6
3.2

31
19
16
9.8
8.1
8.7
5.8
5.5

41
26
21
21
19
6.8
4.8

45
20
17
19
8.0
9.1

53
35
17
15
19

1
5.0
2.8

22
5.0
3.8
4.3
2.9
2.5

26
16
13

7.7
6.5
6.7
4.6
4.5

35
21
18
18
16
5.5
3.9

39
17
14
16
6.8
7.5

45
30
14
12
15

10
3.8
2,1

18
3,8
2.9
3.5
2.2
1.9

22
13
10
6.0
5.0
5.5
3.6
3.5

29
18
14
14
13
4.5
3.1

32
14
12
13
5.3
6.0

38
25
11
10
12

11.9
12,0
15.3
10,8
10,9
10.9·
10.2
10.7
16.3
15.6
12.6
11.6
11.9
12.3
11.2
12.0
17.2
16.3
15.4
16.6
15.6
11.6
10.6
17.8
15.9
16.0
13.6
11.8
13.6
18.6
17.5
16.2
16.2
13.9

(3. 5) *) At 0.1 eV ion energy.

where v0 is a slowly-varying (logarithmic) function of
velocity. The resonant charge exchange cross section
thus turns out to be a function of the logarithm of the
relative collision velocity.

The formulas given by (3.4) and (1.11) enable us to
calculate the resonant charge exchange cross section.
Let us estimate the uncertainty introduced by this pro-
cedure. Experience shows that the maximum uncertain-
ty is due to an incomplete knowledge of the exchange in-
teraction potential because of the uncertainty in the
asymptotic coefficient A. Let us suppose that the uncer-
tainty in A is Δ.Α. Since Δ~_ΑΖ, we can determine the
uncertainty in the resonant charge exchange cross sec-
tion. The replacement of A by A + ΔΛ is equivalent to
the replacement of v0 by v0 [l + (ΔΑ/Α)]2 in (3. 5). This
leads to the following change Δ σ in the resonant charge
exchange cross section (we are assuming that ΔΑ/Α«1):

Δσ Δσ -ίΛ.4 Λ

It follows from Table I that, in realistic cases, the
characteristic value of the small expansion parameter
is l/y.R0~l/10. Hence, we find that our relative uncer-
tainty of ΔΑ/Α = 20-30%. The uncertainty due to the use
of the above asymptotic method is then shown by our
earlier analysis to be of the order of l/(yRof, which is
of the order of 1% in realistic cases.

Now consider the collision between an ion and an atom
with unfilled electron shells. The exchange interaction
potential then depends on the complete set of quantum
numbers of the ion and the atom [see (1.15)], and the
states involved in the transition turn out to be degenerate
in the components of the angular momenta, so that the

two-level approximation can no longer be used. This
means that the charge exchange process is accompanied
in the course of collision by processes involving the ro-
tation of the angular momenta of the atom and the ion,
and, since the exchange interaction potentials between
the ion and atom are functions of the components of the
angular momenta of the ion and the atom, these pro-
cesses are coupled. Nevertheless, if we use the small
parameter of the theory, namely, \/yR0«1, we can
separate these processes and present the results for the
general case in the form of an expansion in terms of this
parameter.

In fact, the transition occurs for large impact parame-
ters for which the angle of rotation of the line joining the
nuclei is small (see Fig. 9) and is of the order of l/Vy/l0.
This enables us to separate the charge exchange process
from the process involving the rotation of the angular
momenta, and to use this to carry out an expansion of

Transition Region Path of
->- relation

motion

Center

FIG. 9. Region of electron transition during resonant charge
exchange. Because of the exponential interaction A~e" r S, the
transition occurs in the region ΔΛ~ Ι/γ. The relative motion
of the particles is such that R2 = p2 + vV and this is used to ob-
tain the following result for the characteristic time interval
of the transition: (υΔί)2» RAR ~R/y and the angle of rotation
of the line joining the nuclei is 6<p~v&t/R ~ l/V Ry« 1.
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FIG. 10. Cross section for resonant charge exchange between
an ion and an atom of potassium: solid curve—asymptotic
theory™1,: 1, 2, 3, 4, 5, 6—experiment. [63.64,65,66,67,68]
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FIG. 11. Cross section for resonant charge exchange between
an ion and an atom of rubidium: solid curve—asymptotic
theory1171; 1, 2, 3—experiment. [65·69·681

the resonant charge exchange cross section in terms of
the small parameter of the theory.

The asymptotic theory thus enables us to calculate the
resonant charge exchange cross section with the inclu-
sion of all the features of the real situation. Table m
lists the resonant charge exchange cross sections for
different pairs, together with the parameters which de-
termine them and the values of the small expansion pa-
rameter of the asymptotic theory.s> Figures 10—13
illustrate the comparison between theory and experi-
ment for the charge exchange cross sections in some
specific cases.

So far, we have confined our attention to the case
where the relative collision velocity was small in com-
parison with the characteristic velocity of an electron
in the atom, so that the nuclei could be assumed to be
stationary during the electron transition. The main
assumption of the theory is then connected with the fact
that the electron transition proceeds from the "tail" of
its wave function. Within the framework of this assump-
tion, we can extend the results of the asymptotic theory
to the case of high velocities as well.

Indeed, following Demkov et al.,lWi we find that, when
the nuclei are allowed to move, the exponential e'yr in the
asymptotic expression for the wave function of the elec-
tron, given by (1.11), is replaced by exp[- γτ + {imvr/
2fO], where r is the separation between the electron and
the nucleus, ν is the relative velocity of the nuclei, and
m is the electron mass. The inclusion of this factor
corresponds to the replacement of γ in the resonant
charge exchange cross section (3.5) by V y' + faF
so that (3.5) now assumes the form

In»?-. (3.6)

This is a generalization of (3.5) and is valid as long as
the resonant charge exchange cross section is large in
comparison with the characteristic atomic cross section,
i. e., σ » 1/y8. This leads to the following restriction
on the velocity:

5)Asymptotic methods for calculating the resonant charge ex-
change cross sections have been used in recent years by
Bardsley et al.,t168·1691 whose results differ only slightly
from those presented here.

v€^-R>y, (3.7)
> T O

where Ro is given by (3.4) and is a slowly-varying func-
tion of velocity. Since Ro γ » 1 , the formula given by
(3.6) is valid even when the velocity substantially ex-
ceeds the velocity of the electron in an atomic orbit
(Κγ/m).

We note that (3.6) describes the case of charge ex-
change that is the preceise opposite of the classical
case of Brinkman and Kramers'·79""8" which, in turn,
corresponds to charge exchange in the limit of very
high collision velocities. In the Brinkman-Kramers
case, the charge exchange process involves the partici-
pation of the electron-distribution region near the nucle-
us, where the electron velocity is comparable with the
relative collision velocity. In our case, on the other
hand, the transition takes place from the "tail" of the
electron wave function.

The entire foregoing analysis was concerned with
resonant charge exchange between an atomic ion and a
neutral atom of the same kind. The theory encounters
additional difficulties in the case of resonant charge ex-
change between a molecular ion and a diatomic molecule.
These are connected both with the complexity of the sys-
tem and the presence of vibrational and rotational transi-
tions both in the molecule and the ion. The theory be-
comes much more unwieldy and, since the parameters
of the electron distribution in the molecule are known

v, cm/ sec

FIG. 12. Cross section for resonant charge exchange between
an ion and an atom of krypton: solid curve—asymptotic
theory™; 1, 2, 3, 4, 5, 6, 7—experiment. t70,7l,72,63,73,74,75]
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FIG. 13. Cross section for resonant charge exchange between
an ion and an atom of xenon: solid curve—asymptotic
theory™; 1, 2, 3, 4, 5-experiment.C 7 6 · 7 1 · 7 2 · 6 3 · 7"
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, I/O

Kinetic energy of JVjflab.), eV

FIG. 14. Cross section for resonant charge exchange between
a molecular nitrogen ion and a nitrogen molecule: curves 1,
2—asymptotic theory1823 in the limit of large and small colli-
sion velocities relative to the excitation of vibrational states;
points 1, 2, 3, 4, 5, 6, 7—experiment. £83,71,84,85.74.86,87]

with lower precision compared with the atom, the un-
certainty in the results obtained from the asymptotic
theory is then greater than in the case of resonant
charge exchange involving atomic ions. Without dwelling
on the special features of the asymptotic theory of reso-
nant charge exchange involving molecular ions we dem-
onstrate its possibilities in Fig. 14, which gives a com-
parison between theory and experiment in the case of
the cross section for the resonant charge exchange be-
tween a molecular ion of nitrogen and a nitrogen mole-
cule. It is clear that also in this case, the possibilities
of the theory exceed those of current experiments.

4. QUASI RESONANT PROCESSES IN COLLISIONS
BETWEEN ATOMS

Table IV summarizes quasiresonant collision process-
es between atoms that can be accompanied by small
changes in the electron energy and that occur with cross
sections large compared with the geometrical cross sec-
tion of the atom. The above asymptotic methods of
analyzing theoretically the cross sections for these pro-
cesses are, therefore, valid. Let us briefly consider
each of these processes.

Spin exchange is physically analogous to resonant
charge exchange. Indeed, consider a collision between
two atoms with spin 1/2 and suppose that the atomic
spins are oppositely directed, i. e., that the component

of the resultant spin along a particular direction is zero.
The coordinate eigenfunctions of the quasimolecule con-
sisting of the colliding atoms will then have the form

(4.1)

where a and 6 label the atomic residues with which the
corresponding electron forms a bond, and the numbers
in parentheses label the electrons. Positive signs cor-
respond to zero resultant spin and negative signs to unit
resultant spin.

The wave function of the system of atoms prior to col-
lision corresponds to the situation where the first elec-
tron is in the atomic residue α and the second in the
atomic residue b. It is a combination of the wave func-
tions in (4.1). Interference between the two states in the
course of collision between the atoms may lead to elec-
tron exchange, i. e., to the transition of the first elec-
tron to the field of the atomic residue b and of the second
electron to the field of the atomic residue a. Using the
complete analogy with the process of resonant charge ex-
change, we have, in accordance with (2.9), the following
expression for the probability of spin exchange:

(4.2)

where the exchange interaction potential Δ is equal to

TABLE IV.

Process

1. Spin exchange

2. Excitation transfer

3. Depolarization of atoms

4. Transitions between fine
structure states of atoms

Scheme

At + Bt— .Ai + Bt

Λ*+Β — A + B*

A(m)+B~A(m') + B

A(J) + B~A(J') + B

Notes

Arrow shows spin direction for each
of the colliding particles

Asterisk shows the electronically
excited particle

m is the component of the angular
momentum of the atom along a
particular direction

J is the total angular momentum of
the atom and is equal to the sum
of the orbital and spin angular
momenta.
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TABLE V.

Collidinf
particles

H - H
Na—Na
K-K
Rb —Hb
Rb-Cs
Cs-Cs

Spin exchange cross section, 10~" cm3

Theory

2.0
11
15
17
18
19

Experiment *)

2.489-95
ΙΟ»6· g?
2197. 88
1997. 99-107
2410B-108
2297. 103, 103. 109

Small expansion
parameter of the
theory, l/27««

0.074
0.051
0.048
0.046
0.045
I) .045

Φ ) Table includes averaged experimental cross sections, reported
in the references, as indicated.

the difference between the energies of the states de-
scribed by the wave functions (4.1). Thus, by calculat-
ing Δ within the framework of the asymptotic method,
we can determine the spin exchange cross section in
complete analogy with resonant charge exchange. The
corresponding comparison between the asymptotic the-
ory and experiment is given in Table V.

Spin exchange governs possible changes in the hyper-
fine structure of an atom. Indeed, suppose we have a
gas consisting of atoms with electron spin 1/2 and nu-
clear spin J, so that the hyperfine states are character-
ized by resultant spin of the atom F = J± (1/2). Suppose
that the two colliding atoms are in a state with resultant
spin F. The effective cross section for the transition
of one of the atoms to a state with resultant spin F' is
then given by

where σβΜΟ is the spin exchange cross section, the first
factor represents the fact that there are two identical
atoms, and the second factor represents the probability
that the spins of the valence electrons are oppositely
directed. After the spin exchange process, the atom
"forgets" its hyperfine state and the factor (2F'+1)/
(4 J+2) is the probability that it will be in the new spin
state. The spin exchange process is important for ma-
sers whose operation is based on hyperfine structure
transitions. Spin exchange affects the maser parame-
ters.

The transfer of excitation during collisions between
excited and unexcited atoms may be of two types. In one
of them, the spin conservation laws require that the
transfer of excitation be accompanied by electron ex-
change. For example, when transfer of excitation oc-
curs in the process He(2 SS) + Heft XS) - He(l *S) + He(2 aS),
the electric interaction does not lead to a transition be-
tween the ground and metastable states of the helium
atom, so that electron exchange is essential for this pro-
cess to proceed. In this case, we can readily estimate
the upper limit for the excitation transfer cross section
if we suppose that the electrons are not equivalent. The
process is complicated by the transition of the unexcited
electron. It follows that, if we suppose that the size of
the orbit of the excited electron is sufficiently large,
the cross section for the process will be determined by
the transition of the unexcited electron and will be equal
to the resonant charge exchange cross section. When
this condition is violated, the resonant charge exchange

cross section will be the upper limit for the excitation
transfer cross section.

When the transfer of excitations can proceed without
electron exchange, the excitation transfer cross section
may turn out to be very large. The largest value occurs
in the case of a collision between an atom and a reso-
nantly excited atom, when the splitting of the levels of
the quasimolecule formed by the colliding atoms for
large R is A~d2/Bs, where d is the matrix element of
the dipole moment operator taken between the ground
and excited states of the atom. According to (3.3),e)

the excitation transfer cross section is, in this case,
given by

σ ~ w < 4 · 3 )

and its order of magnitude may reach 10"la cm2 at ther-
mal energies. Because of the large cross sections,
this process will affect the shape and width of the reso-
nance emission line.

Collisions between an atom and a resonantly excited
atom have been investigated in the literature in some
detail.CU0~124:l Calculations have been reported of the
total cross section for collisions between atoms in this
case, which determines the emission linewidth, of the
excitation transfer cross section, and also of the cross
sections for the accompanying processes such as de-
polarization and transitions between fine and hyperfine
states of atoms for different values of the orbital angu-
lar momenta of the atom in the ground and excited states.
We shall confine our attention to transitions between
fine-structure states of the atom in this type of colli-
sions.

To be specific, we shall consider the change in the
fine-structure state of atoms in the case of a collision
between two alkali metal atoms, one of which is in the
ground state and the other in a resonantly excited state.
Figure 15 shows the level scheme11803 for the quasimole-
cule, where the distance Ro~ (d*/tT)

1/3 (εΓ is the spin-
orbital level splitting) corresponds to the crossing of
two levels of the quasimolecule corresponding to the
same symmetry of states and different fine-structure
states of the atoms. This crossing is the feature re-
sponsible for the transition.

Let us estimate the cross section for the above pro-
cess, assuming that ii0 « W , where σ is the excitation
transfer cross section given by (4.3). This relation is
well satisfied for alkali metal atoms. The transition un-
der consideration occurs in the neighborhood of the
crossing point, where the energy difference is less than
or of the order of ΚΘ, and 6~v/R is the angular velocity.
Next, the transition is adiabatically of low probability,
so that the range of distances ΔΛ within which the
transition will take place can be estimated from

^Like most of the resonant processes which we have considered,
this process is very dependent on the interference between
the states of the quasimolecule and, therefore, its cross sec-
tion can be estimated from the formula σ~ BJj, where Λο is
the impact parameter satisfying the condition fAdt~K.
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FIG. 15. Energy level scheme for the quasimolecule consisting
of two alkali metal atoms in the ground and resontly excited

The transition probability corresponds to a rotation of
the molecular axis in this region, given by Δ0- AR/R0

~R%/a« 1, where σ is the cross section given by (4. 3).
Hence, we obtain the following estimate for the cross
section for the transition between the fine-structure
states" 1 9 3 :

\R Rl (4.4)

This compact expression has a restricted range of
validity because, in practice, exchange interaction be-
tween the alkali metal atoms is important at distances
of the order of Ro Ζ1 2 5 3 The inclusion of this fac-
tor 1 1 2 0 · 1 2 5 · 1 2 6 1 complicates the overall picture of the pro-
cess and permits only numerical calculations of the
cross section. These results are not, at present, in
good agreement with experimental data,CU7~1343 and there
also are appreciable discrepancies among the experi-
mental data themselves.

Transitions between fine-structure states of alkali
metal atoms colliding with inert gas atoms have been
examined in sufficient detail both theoretically^38"1503

and experimentally. t l53~ lee3 Below, we shall formulate
some general results relating to the change in the fine-
structure state of an atom on collision.

The reason for the transitions between the components
of atomic fine-structure during collisions is the tempo-
rary breaking of the spin-orbital coupling due to the po-
larization of the orbital angular momentum of the elec-
trons L along the axis of the quasimolecule, which com-
petes with the Coriolis interaction impeding this polar-
ization. It follows that in order to elucidate the mecha-
nism responsible for intra-multiplet transitions and to
calculate the cross sections we must take into account
three types of interaction, namely, the electrostatic in-
teraction between the electrons in the colliding atoms

TABLE VI. Cases

Hund
case

a
b
c
d
e

Ve, L,n
coupling

Strong

Intermediate
Weak

It

af Hund coupling.

Vm, S, L
coupling

Intermediate
Weak
Strong
Intermediate
Strong

Vr, effect
of rotation

Weak
Intermediate
Weak
Strong
Intermediate

Electron quan-
tum numbers

Λ, S, Sn

A, S, SN

Ώ

L, S, LN, SN

J, JN

Ve (the so-called interaction between the electron angu-
lar momentum L and the molecular axis n), the spin-
orbital interaction Vu (the L, S interaction), and the
Coriolis interaction of the spin and orbital angular mo-
menta of the electrons in the quasimolecule with the ro-
tation of the molecular axis Vr (this is the interaction of
L and S with the angular momentum of the nuclei).

An analogous problem of the competition between the
three types of interaction arises also when one tries to
construct the wave functions for rotating stable diatomic
molecules. The corresponding solutions for the various
limiting cases are known as Hund coupling rules . C l i o ' m : l

The various types of Hund coupling are summarized in
Table VI together with an indication of good quantum
numbers when the quasiclassical conditions are satis-
fied, i. e., when the total angular momentum of the
quasimolecule is assumed to coincide with the classical
relative angular momentum of the atoms.

For stable diatomic molecules, transition from one
type of coupling to another occurs either as a result of
vibrational excitation (increase in the mean separation
between the atoms leading to a reduction in Ve) or of
rotational excitation (increase in the Coriolis interac-
tion), and the transition is characterized by a definite
intermediate type of coupling.

A similar classification of states can be used in the
case of atomic collisions. One then has time-dependent
Hund coupling, i. e., a successive variation in coupling
types along the path of the relative motion. If this type
of time-dependent basis is used to describe the electron
state of the quasimolecule, it is found that the nonadia-
batic transitions are localized in relatively small regions
of variation in the coupling type. A s a result, the com-
plete scattering problem becomes much simpler, as in-
dicated at the beginning of Sec. 2, and the scattering
matrix can be constructed with the aid of the matrices
for nonadiabatic transitions.

For a qualitative description of time-dependent Hund
coupling in the system of colliding atoms, it will be use-
ful to introduce the characteristic distance Ro at which
the electrostatic interaction becomes comparable with
the magnetic interaction. It will also be useful to in-
troduce the dimensionless parameters /3 = ρ/Λ0 and ξ
=z/R0, the first of which is proportional to the impact
parameter ρ and the second to the linear coordinate ζ
determined by the rectilinear trajectory. Finally, we
introduce the dimensionless velocity ΐ/ = ω/ι>Λ0, where ω
is the characteristic frequency of fine-structure transi-
tions. We can then construct different regions in the
space (β, i, ω) in which there will be preserved a definite
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FIG. 16. Dependence of Hund
coupling types on the ratios of
different interaction potentials.

hierarchy of interactions, i. e., definite Hund coupling
types. These regions will be separated by surfaces
across which one type of coupling will be replaced by
another. Figure 16 shows the separating surfaces for
Λ*0, S*0 and ΑΦΟ, S=0. When ΛΦ0 but S = 0, we have
only one surface (m) which separates cases b and d.
The sectioning of the surfaces by the ξ plane produces
different regions of Hund coupling for stable diatomic
molecules. However, other sections are of greater in-
terest for collision processes.

For slow atomic collisions, when the overlap of elec-
tron wave functions for the atoms is small, the interac-
tion between L and S can be assumed to be independent
of R. This means that, for fixed v, the parameter ν
will be independent of R, i. e., the collision will be de-
scribed by the motion of the representative point in the
u = const plane. Along any trajectory (which need not
necessarily be rectilinear), the coupling type will vary
only near the boundaries of the regions. Consequently,
the determination of the scattering matrix reduces to
the determination of the nonadiabatic transition ma-
trices JVW on the boundary across which the k — I coupling
change takes place. Hence, it is clear that the dominant
parameter determining the transition probability is the
rate at which the type of coupling changes. When this
rate is high, the matrix Nti is determined simply by the
projection of the basis life) onto the basis \l), so that we
can use the well-known results relating to basis trans-
formation (Chang and F a n o t m l for d~b and Chin t l 7 3 ] for
a —6). If, on the other hand, this rate is low, we must
solve the nonadiabatic transition problem in a small re-
gion near a boundary. Let us illustrate this by the sim-
plest example of a collision between a resonantly ex-
cited sodium atom and a helium atom.

Figure 17 gives a qualitative picture of the terms of
the Na-He system with a highly exaggerated spin-orbital

f2 Κ, R

FIG. 17. Electron terms of the quasimolecule consisting of a
helium atom and a sodium atom in ground and resonantly ex-
cited states.

interaction. The radius Ro, defined qualitatively above
by the condition Ve(R0)=cT (εΓ is the fine structure split-
ting of the 2 P term) or, more precisely, as the distance
corresponding to the maximum of the matrix element of
the nonadiabatic interaction between terms of the same
symmetry with Ω = 1/2, will be in the range 12-14 atomic
units, depending on the method of calculation. For tra-
jectories with impact parameter p>R0, the vibration in
the Hund coupling types is described by e - c - e, and,
for p<R0, by the general scheme e—c — a or 6 — c~e.
However, this general scheme can be substantially sim-
plified for the Na-He system. In particular, since the
Massey parameter (2.1) defined as cTR0/Hv turns out
to be less than unity for thermal collision velocities,
and since the splitting is relatively slight (εΓ=17 cm"1),
coupling type b predominates for p<R0. Moreover, the
size of the region of type c turns out to be small in com-
parison with Ro, and this is a direct consequence of the
condition Ro γ » 1. A s a result, approximate calculations
of the probabilities for p<R0 can be based on the simpli-
fied scheme e - 6 -e. Moreover, the same simplified
scheme can be extended to all impact parameters in the
calculation of the total cross sections if we neglect rela-
tive uncertainties of the order of \/Ry.

The use of this rough approximation which, in prac-
tice, means complete and instantaneous breaking of the
spin-orbital coupling for R <R0, along with the use of
rectilinear trajectories for the relative motion, leads
to cross sections that are already in satisfactory agree-
ment with experimental data. In particular, the cross
section for the transition between fine-structure states
of the sodium atom at thermal energies, calculated in
accordance with this scheme,"7 2 3 is practically in agree-
ment with the experimental results.1 1 5 3·1 5 9 3 Figure 16
illustrates the sequence in which the coupling types vary
as a result of the variation of the impact parameter and
of the collision velocity.

If for certain reasons the contribution of some particu-
lar ranges of impact parameters can be neglected in the
calculation of the total cross section, then the number of
coupling types becomes smaller still and this, of course,
simplifies the problem still further.

Depolarization of the angular momentum of the atom
may accompany the processes considered above when
the angular momenta of the colliding atoms are nonzero,
and is of independent interest when these processes are
absent. The depolarization of atoms affects the polar-
ization of the radiation emitted by an excited gas, and
determines the various optical effects associated with
the propagation or emission of polarized radiation in a
gas (Hanle effect/174·1753 double and parametric reso-
nance/176""1813 optical pumping in gas magnetome-
ters, t l f f i ~ l e 7 3 nonlinear effects associated with the pass-
age of laser radiation through a gas,C1883 and so on).

Without going into the details of this process (this
has been discussed in the literature1 4·1 8 9"1 9 6 3), we note
that, from the physical standpoint, the nature of the
process of depolarization of atoms in collisions is anal-
ogous to other resonance processes involving a set of
states that are degenerate when the colliding particles
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are separated. Interference between these states during
the collision process leads to these transitions/ 1 9 7" 1 9 9 3

CONCLUSIONS

Successful applications of the theory of quasiresonant
processes have relied on the development of asymptotic
methods in collision theory. Calculations of cross sec-
tions for the different quasiresonant processes have
been based on two types of asymptotic approach, which
use two "large parameters" of the problem, namely,
large interatomic distance Ro compared with the mean
radius ί/γ of the electron shell, and large Massey pa-
rameter ΑΕ/Κγν, characterizing a weak nonadiabatic
coupling between most of the electron terms with a char-
acteristic separation of the order of 1 eV or more.

Large values of RQy are used in determining the ex-
change interaction potentials at large distances. For an
essentially quantum-mechanical system for which the
effect under consideration is determined by the "tails"
of the electron wave functions, it is possible to use
quasiclassical methods. This permits the inclusion of
all the real features of the object without the use of
models. The atomic interaction potentials themselves
are relevant to a broader range of problems extending
beyond atomic collision theory. They have been used
to calculate kinetic transport coefficients1200""2023 and
parameters of noble-gas crystals at low tempera-
turesC 2 0 3 t 2 0 4 3 and may be useful in calculations of pa-
rameters of molecular crystals of the biological type.
The general approach used above can be applied to dif-
ferent problems connected with interactions and sub-
barrier transitions in condensed media and on their sur-
faces.

The fact that ΔΕ/Ιίγν is large results in a substantial
simplification of the general dynamic problem of colli-
sion between atoms. It is precisely in this case that one
can investigate transitions in a quantum-mechanical sys-
tem under the action of a slowly-varying perturbation
(in comparison with the characteristic times of motion of
the electrons), the magnitude of which can be large.

Nonadiabatic transitions between the states of a quasi-
molecule will, under these conditions, occur only during
small intervals of time corresponding to a sharp re-
arrangement of the wave functions of the quasimolecule.
The characteristic parameter of this process, which
determines the transition probability, is the product of
the electron transition frequency and the characteristic
time of the external perturbation. When these regions
are excluded, i. e., during the main interval of time,
the quantum-mechanical system develops adiabatically,
but even such development of the system may lead to
transitions because of interference between states.
Methods for the solution of this type of problem in the
theory of atomic collisions have been successfully ex-
tended to the theory of chemical reactions.C 2 0 H The
methods developed so far may find applications in the
theory of nuclear collisions and nuclear reactions, and
also in problems involving interactions between quantum-
mechanical systems and time-dependent external fields.

Finally, we note that, although the possibilities of the

asymptotic method are, by definition, restricted to a
definite range of variation of the interatomic distances
and of the Massey parameters, nevertheless, the method
can be used to calculate total collision cross sections
which, formally, require extensive information about
the transition probabilities. This can be done by using
additional "small parameters" of the system. In partic-
ular, the asymptotic method can frequently be used to
obtain the probabilities providing the main contribution
to the total cross section as was done in the above ex-
ample of resonant charge exchange.

An example demonstrating the wide range of applica-
bility of the asymptotic method is also provided by its
application in the theory of intramultiplet mixing in the
case of a large spin-orbital interaction. In these cases,
the transition cross section is small (smaller than the
gas-kinetic cross section) because the collisions are
adiabatic even though transitions between the terms of
the quasimolecule occur at large separations. The pos-
sible contribution of other channels with transitions at
small separations must, of course, be considered in
such calculations.

Another example of this type is the asymptotic theory
of transport coefficients,C200""202·2073 where a small pa-
rameter can be introduced by using the rapid variation
in the interaction potential between the atomic particles.
The above devices can be used to present the results in
the same form as for the simplest model, i. e., the hard
sphere model, but without introducing model assump-
tions. Another example is the theory of transfer of
infrared radiation in a molecular medium,12083 which in-
volves vibrational-rotational transitions in linear mole-
cules. In this problem, the optical density of the gas
layer at the center of the line emitted as a result of a
transition with a given rotational quantum number is
strongly dependent on the rotational quantum number so
that, as in the previously considered cases, the situation
is substantially simplified.

The asymptotic methods developed within the frame-
work of the theory of atomic collisions are of a general
character and extend beyond the framework of the pres-
ent review. The authors hope that the asymptotic meth-
ods of the theory of atomic collisions presented here, in-
cluding both the general ideas and the individual elements
of the theory, will be found useful in other branches of
physics.
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