V. I. Bespalov, A. A. Betin, and G. A. Pasmanik. Reproduction of the light-beam wave front in induced scattering. It was shown in 1972 that induced backscattering of multimode optical radiation in a lightguide results in inversion of the wave front of the laser wave.¹ It was subsequently found that a similar phenomenon is also observed in focused beams.²

The shaping of the Stokes wave reproducing the pump in bounded and, in particular, focused pump beams with radii r_1 much larger than the transverse-correlation radius ρ_1 differs in some respects from induced scattering in a lightguide.^{3,4} The decrease in the average pump intensity toward the periphery of the laser beam results in localization of the Stokes wave near its axis. The small-scale field distribution of the Stokes beam, which is narrower than the pump, becomes mismatched with the laser-wave field as a result of diffraction. As a result, the preferential am-

plification of the structure reproducing the pump is smaller in bounded beams than the lightguide. An approach based on picking out from the polarization $g |E_t|^2 E_s/2$ the projection $C(z) f E_t$ onto the function fE_1 , which duplicates the small-scale distribution of the laser field E_1 , is used to find a near-optimum structure of the Stokes wave E_s and the value of the increment corresponding to it.⁵ The envelope f, which is slowly varying in the scale of ρ_1 , is determined by the condition for maximum amplification of the excited polarizations CfE_1 of the Stokes components. To find the function f, an integral equation is written for the coefficient C(z) and its solution optimized to determine the largest value of the total increment M and the corresponding envelope f. As a result, we obtain for a monochromatic pump beam with a Gaussian correlation function, a Gaussian envelope, and normal field statistics, assuming $M_c \ll 1$ and $M_I \gg 1$ (M_c and M_I are respectively the total increments on the longitudinal correlation lengths $z_k = k_l \rho_l^2$ and the pump beam diffraction broadening length $z_i = k_i \rho_i r_i$

$$M = 2M_{1_{0}}\left[1 - \frac{\sqrt{2}}{M_{1}} - \frac{1}{2M_{1}^{2}}\left(\frac{k_{1} - k_{2}}{k_{3}}\right)^{2} \frac{z_{1}^{2}}{z_{k}^{2}}\right],$$

$$f = \exp\left(-\frac{r_{\perp}^{2}M_{1}}{\sqrt{2}r_{1}^{2}(z)}\right),$$
 (1)

where

$$\zeta = \arctan\left(\frac{F^2 + z_l^2}{E^2} \frac{z}{z_l} - \frac{z_l}{F}\right) + \arctan\left(\frac{z_l}{F}\right), \quad r_l^3(z) = r_l^3 \left[\left(1 - \frac{z}{F}\right)^2 + \frac{z^2}{z_l^3}\right].$$

With $F = \infty$, $M_l = g \overline{|E_l|^2} z_l \rightarrow \infty$ the value of M reverts to the expression arrived at for induced scattering in the lightguide.⁶⁻⁸

A similar approach has also been used to estimate the increment of the Stokes component reproducing the pump under conditions of four-photon interaction of Stokes and antiStokes components in forward induced Raman scattering. For $M_c \ll 1$, we have for a pump with a plane envelope

$$M = 2g \left[\overline{E_l} \right]^{\frac{1}{2}} \left[1 - \frac{k_l - k_s}{2k_s \delta k z_k} - 2 \left(\frac{g \left[\overline{F_l} \right]^2}{\delta k} \right)^2 - \frac{1}{2} \left(\frac{k_l - k_s}{g \left[\overline{E_l} \right]^2} z_k k_s \right)^2 \right] \quad (\delta k \gg g \left[\overline{E_l} \right]^2)$$
(2)

It follows from (2) that the increment *M* decreases with decreasing mismatch of the wave vectors $\delta k = 2k_t - k_s - k_a (\text{for } \delta k \leq g |E_t|^2)$, the increment satisfies $M \leq g |E_t|^2 z$. At the same time, the increment of the waves that are uncorrelated with the pump is independent of δk for $M_c \ll 1$ and equal to $g |E_t|^2 z$. Comparing increments, we note that four-photon interaction is detrimental to the reproduction effect.*)

In nonmonochromatic spatially inhomogeneous laserbeam fields, the increment of the pump-reproducing wave depends on the form of its statistics. The properties related to this dependence are manifested most curiously in induced backscattering, for which the force $F \sim E_i E_s^*$ that causes pumping of phonons in the medium is found to be proportional to E_i^2 . If the pump has normal field statistics, F is a random function of the time with zero mean, and the increment of the reproducing wave decreases with increasing ratio γ_i/γ of the pump and spontaneous-scattering linewidths. We have for a pump with a plane envelope and a Lorentz

²⁾Another case in which parametric coupling of the waves lowers the discrimination of the increments is induced Mandel'shtam-Brillouin scattering in media with weak attenuation of sound.⁵ line in the frequency spectrum

$$M = 2\Gamma_0 z \left(1 - \frac{1}{\Gamma_0 l_k}\right) \left[1 - \frac{1}{2} \left(\frac{k_l - k_s}{\Gamma_0 z_k k_s}\right)^2\right] \qquad (\Gamma_0 l_k \gg 1),$$
(3)

where

$$\Gamma_{0} = g \overline{|E_{l}|^{2}} \left(1 + 2 \frac{\gamma_{l}}{\gamma}\right)^{-1}, \qquad l_{k} = \gamma_{l}^{-1} \left(\frac{1}{v_{l}} + \frac{1}{v_{s}}\right)^{-1}.$$

On the other hand, for a pump $E_l = \mathscr{C}_l(zr_1)\varphi(t-z/v_l)$, the Stokes components of the form $\mathscr{C}_l^*\varphi$ are amplified so that the force $F \sim \mathscr{C}_l^2 |\varphi|^2$ retains a nonzero time-averaged component. The increment of these components for a normal distribution law $\mathscr{C}_l(zr_1)$ and $\varphi(t-z/v_l)$ is

$$M = 2\Gamma_{1}z\left(1 - \frac{1}{\Gamma_{1}l_{k}}\right) \left[1 - \frac{1}{2}\left(\frac{k_{l} - k_{s}}{\Gamma_{1}z_{k}k_{s}}\right)^{2}\right] \qquad (\Gamma_{1}l_{k} \gg 1),$$
(4)

where

 $\Gamma_1 = g \overline{|E_l|^2} \left[1 + \left(1 + 2 \frac{\gamma_l}{\gamma}\right)^{-1} \right].$

It is seen on comparison of expressions (3) and (4) that when $\gamma_l/\gamma \gg 1$, $\Gamma_1 \gg \Gamma_0$, i.e., induced backscattering has the property of filtering signals of the form $\mathscr{C}_l \varphi$ against a background of more powerful incoherent radiation.⁹

- ¹B. Ya. Zel'dovich, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, Pis'ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].
- ²A. A. Betin and G. A. Pasmanik, in Tezisy dokladov II Vsesoyuznoi konferentsii po golografii (Abstracts of Papers at Second All-Union Conference on Holography], Fiz. Inst. Akad. Nauk UkrSSR, Kiev, 1975, Chap. II, p. 72.
- ³V. I. Bespalov, A. A. Betin, and G. A. Pasmanik, Pis'ma Zh. Tekh. Fiz. 3, 215 (1977) [Sov. Tech. Phys. Lett. 3, 85 (1977)].
- ⁴V. I. Bespalov, A. A. Betin, and G. A. Pasmanik, Radiofizika, 20, 791 (1977).
- ⁵V. I. Bespalov, A. A. Betin, and G. A. Pasmanik, *ibid.* 21, No. 7 (1978).
- ⁶V. G. Sidorovich, Zh. Tekh. Fiz. 46, 2168 (1976) [Sov. Phys. Tech. Phys. 21, 1270 (1976)].
- ⁷I. M. Bel'dyugin, M. G. Galushkin, E. M. Zemskov, and V. I. Mandrosov, Kvantovaya Élektron. (Moscow) 3, 2467 (1976) [Sov. J. Quantum Electron. 6, 1349 (1976)].
- ⁸B. Ya. Zel'dovich and V. V. Shkunov, *ibid.* 4, 1090 (1977) [7, 610 (1977)].
- ⁹G. A. Pasmanik, Pis'ma Zh. Tekh. Fiz. 4, 504 (1978) [Sov. Tech. Phys. Lett. 4, 201 (1978)].

Translated by R. W. Bowers