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B. Ya. Zel'dovich and V. V. Ragul'skiL Wave-front
inversion in induced light scattering. One characteristic
feature of induced light scattering is the high directivity
of the scattered radiation. It was observed already in
1965 that the divergence of the radiation scattered in
induced Mandel'shtam-Brillouin scattering is about the
same as the divergence of the exciting light.1 A simi-
lar result was later obtained for Rayleigh2 and Raman3

scattering. The high directivity of the scattered light
was usually explained by geometric factors, and the
question of a relation between the wave fronts of the
exciting and scattered radiation was not raised for some
time. The problem was first formulated in 1972 at the
P. N. Lebedev Physics Institute.4 It was found that
inversion of the wave front may occur on induced scat-
tering of light (Fig. 1). In this effect, the wave front
of the backscattered radiation coincides exactly in shape
with the exciting-light front, but the phase shifts at
these fronts are of opposite signs. In other words, a
phase lead gives way to an equal phase lag and vice
versa in induced scattering.

Figure 1 shows a schematic diagram of the experi-
ment that made observation of this effect possible.
Radiation from a ruby laser with a nearly planar wave
front (with the diffraction divergence) was passed
through a spatially inhomogeneous phase plate. The
wave front was strongly distorted as a result, and
the divergence of the light increased by a factor of «25.
This light entered a condensed medium (compressed
gas in the first experiment), where induced scattering
was excited. The divergence of the backscattered light
was just a great as that of the exciting light; however,
after passage back through the phase plate, the diver-
gence of the scattered light was much smaller and com-

sxciting

_~ scattering
_~ medium _

parable to the divergence of the original laser beam.
Figures 2 (a) and 2(b) show the angular distributions
of these beams; they coincide at the diffraction level.
Calorimetric measurements indicated that 26% of the
laser radiation was scattered in this experiment.
Photometry of the negatives in Figs. 2(a) and 2(b)
showed that the brightness of the scattered radiation
after passage through the plate is also 26% of the
brightness of the original laser light. Therefore the
wave front of the scattered light was fully "corrected"
on passage through the phase plate. The scattering
medium was replaced by a plane mirror in a control
experiment. In this case the reflected radiation pass-
ing back through the plate was not "corrected" at all,
but, to the contrary, was distorted further [Fig. 2(c)].

The results described above indicate that the wave
front is inverted on induced scattering. In fact, sup-
pose that the laser field has the form EL (r), where r
= {x, y) are coordinates perpendicular to its propaga-
tion direction. Then the exciting-radiation field has the
the form E0(r) = EL{r)eivW\ where cp(r) is the phase
shift introduced by the plate. The scattered field Es(r)
after passage back through the phase plate acquires
the same phase shifts and has the form E1 = Ese

iv. It
follows from the agreement of E^ with EL that Es

~ELe ~lv
i.e.,

(1)

The implication of this equation is precisely that in-
version of the wave front occurs. The effect comes

FIG. 1. Correlation between wave fronts of exciting and
scattered light (a) and diagram of experiment to observe it (b).

FIG. 2. Far-zone distribution patterns: laser radiation (a);
backscattered radiation passed through phase plate (b); light
reflected by plane mirror (c); scattered light in absence of
phase plate (d).
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about on scattering of radiation with a spatially in-
homogeneous intensity distribution. However, if the
intensity of the exciting light varies little along the
transverse coordinates, there is no inversion [Fig.

The first paper was followed by experimental and
theoretical studies that established features of the wave
front inversion phenomenon and determined the limits
within which it exists (see, for example, Refs. 5-11).
It was found that this phenomenon occurs in a broad
range of conditions. It is observed in various experi-
mental geometries on scattering of both small (<1%)
and large (>50%) fractions of the exciting radiation and
at small and large (much larger than the spontaneous
scattering linewidth) spectral widths of this radiation.
The effect is insensitive to frequency variation for
scattering in the range from Δν/ν ~ 10"5 {Mandel'shtam-
Brillouin scattering) to At>/i>~10"1 (Raman scattering).
A number of other parameters may also be varied.

Theoretical analysis enabled us to understand the
nature of this phenomenon. It is based on the extreme-
ly high amplification required for development of spon-
taneously scattered photons in a strong scattered wave.
Under typical observing conditions, the amplification
=exp(GZ) ~ 1010, where G is the gain (in cm"1) and I is
the interaction length. A s a result of this high ampli-
fication, even modest (of the order of unity) relative
variations of G influence the characteristics of the
scattered field extremely strongly. A quantitative
treatment can be given within the framework of the
parabolic equations

(2a)

(2b)

where fe0 and ks are the wave numbers of the exciting
and scattered radiation; the ζ coordinate increases in
the propagation direction of the scattered field. In Eq.
(2b), the constant g describes the local amplification of
the scattered field due to pumping. Its numerical value
is determined by the specific scattering mechanism
and by the characteristics of the medium. Analysis of
these equations shows that the gain is determined for
scattered waves of various configurations by the ex-
pression

• )' | Ea (r, ζ) ρ | E, (r, z) I' dr

J | £ , ( r , 2 ) | i i r
(3)

By virtue of (1), the local intensity maxima of \ES

 2 for
the scattered wave with inverted wave front coincide
everywhere in the interaction volume with the maxima
of |·Ε012. However, this coincidence cannot occur for
waves of other configurations (uncorrelated with the
pump). Equation (3) therefore indicates that the gain
is higher for the inverted wave than for any other.

When a large number of interference maxima and
minima are present in the exciting field, the gains for
a wave with an inverted front and for waves uncorre-
lated with Ea differ by a factor of two:

Ginv = 2 < W - (4)

As a result, the power of the inverted component is

-10 s times greater than the power of the other compo-
nents on emergence from the medium. If, therefore,
there are fewer than 10s of them, the inverted compo-
nent in the scattered field will not only exceed all other
components in brightness, but will also carry practi-
cally ail the energy of the scattered field.

Noninversion of the wave front for an exciting field
whose intensity varies little over its cross section can
also be understood from (3). In this case, \E0\

2 can
be taken out from under the integral sign, so that the
gains are equal for all waves.

The properties of solutions of the system (2a), (2b)
have now been studied in detail. They have yielded, for
example, admissible values of the angular divergence,
frequency shift, and interaction length at which wave
front inversion occurs.

This effect can be used to build a number of optical
systems that could not be devised with the tools of clas-
sical optics. For example, it becomes possible to de-
sign a system with a master laser generator and an
optically inhomogeneous amplifier—a system that can
convert the energy stored in the amplifier into a beam
with the ideal (diffraction) divergence. The idea of the
method is to pass the diffraction-quality beam from the
generator through the inhomogeneous amplifier and
then subject it to induced scattering with wave front
inversion. The scattered wave would be passed
through the same amplifier, which can be treated as a
distributed analog of the phase plate, be amplified, and
its front "corrected" to practical planarity. This pro-
gram has been carried out experimentally.12

The phenomenon of wave front inversion can also be
used to aim laser radiation automatically at its target;
through a turbulent atmosphere,13 at a laser-fusion
target,14 and when optically inhomogeneous amplifiers
and optical trains with aberrations are used. The idea
is first to illuminate the target with a broad beam from
another laser. Thus the target becomes a source of
secondary waves. A certain (small) fraction of the
energy of these waves enters the aperture of the power
laser system. The radiation arriving from the target
would be amplified in the power stages of the laser
system, subjected to wavefront inversion, and passed
again through the same amplifiers. The radiation
from the power amplifiers would then be delivered to .
the target as though it had undergone aberration-free
focusing with diffraction precision. The problem of
accurate aiming of the laser radiation at the target is
also eliminated as a bonus. The prospects opened up
here are so intriguing that progress may be expected
from the research now being done in this area.

Note in proof. The above principle of automatic aim-
ing at the target was realized soon after this paper ap-
peared. It has been shown experimentally15 that it does
indeed ensure incidence of practically all the radiation
on the target irrespective of the latter's position in
space and of aberrations present in the optical elements.
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V. G. Sldorovich. The mode theory of the three-
dimensional hologram. At this time, the theory of the
three-dimensional hologram has beendeveloped satis-
factorily only in the kinematic approximation, which
assumes that the wave incident on the hologram re-
mains unchanged in the latter's volume.1 This paper
discusses a method for analysis of the highly efficient
conversion of light waves by a three-dimensional holo-
gram based on representation of the wave to be con-
verted as a superposition of waves matched to this
hologram (modes of the hologram); see Refs. 2-4.
The modes are characterized by the property that pol-
arization waves induced by them in the hologram repro-
duce them exactly by radiating electromagnetic waves.
Therefore the complex-amplitude ratios of the plane
mode components are constant throughout the volume of
the hologram. The existence of electromagnetic waves
that are consistent in the above sense with a medium
having a permittivity that is periodic in space was first
used by P. P. Ewald in his work on the dynamic theory
of x-ray diffraction.5'6

We introduce the following nomenclature: E{r)
=Z/i=oone'*"r is the electric-field amplitude of a light
wave whose energy density distribution has been regis-
tered in the volume of the hologram in the form of local
deviations of the complex dielectric permittivity from
the average value; an and kn are the amplitudes and
wave vectors of the plane components of the registered
wave; r = (x,y,z), and E'(x,y, 0)=Σί'» 0δ 1 1β" 1^ is the
electric field amplitude distribution of the transformed
light wave on the surface of the hologram (the sign 1
indicates the projection onto the Χ0Υ plane, in which
the hologram's surface lies). Matching of the trans-
verse wave-vector components at the interface between
the two media enables us to represent the field of the
transformed wave in the volume of the hologram in the
form

paraxial beams

E(x, ,j, z> 0) (1)

(2)

where ζ is the longitudinal coordinate; D = £0/ε^χ/2;
k0 is the wave number of the wave incident on the holo-
gram; ε0 is the dielectric permittivity of the unexposed
recording medium, vt is the complex proportionality
coefficient between the energy density of the recorded
wave and the local change in the dielectric permittivity
of the light-sensitive medium; c = [co(s), ct(z), . . . , c^(z)]
is the amplitude vector of the plane components of the
light wave propagating in the hologram; A is the matrix
of the hologram, with elements Am = ama*(1 — δ )

5mL; 6mn is the Kronecker delta; ! = a
)

j 2 ; Β

In the approximation of slowly varying amplitudes,
substitution of (1) into the Helmholtz equation gives for

is the matrix for scattering of plane waves propagating
in the hologram by volume gratings in the recording of
which they had not participated; Bmn=J^p<lapa*e<A^i"*(l
- 5m the summation extends over p and q for which
[kn + (k i-k,)]1 = tkJ x,>l^=[(kn-kJ-(k,-k< >)L, and
A*£l different from zero indicates that the Bragg condi-
tion is not satisfied for scattering of a wave with wave
vector k, by the grating formed by waves with wave
vectors kp and k,. If the recorded radiation can be
characterized by the angular divergence parameter Θ,
then (A^)~koe'i, where <) indicates averaging over
p, q, m, and n. We shall denote by I the thickness of
the hologram layer with significant diffraction effi-
ciency. For ktfPl» 1, most of the exponentials eiA*">'
in Β execute many oscillations while the wave incident
on the hologram undergoes significant transformation.
In this case, the contribution to the transformation
from scattering by "foreign" gratings, which is de-
scribed by the matrix B, can be neglected. Since I
~ 1/£0Δε,, where Δε = κεο-ί<, the condition under which
waves that do not carry useful information are of neg-
ligibly low intensity, which corresponds to scattering
by "foreign" gratings, has the form θ2 » δε. If this
condition is satisfied, the second term in the right-hand
side of (2) can be dropped. Since the matrix A is self-
adjoint, its eigenvector system is complete inN + 1-
dimensional space. Therefore the solution of Eq. (2)

1002 Sov. Phys. Usp. 21(12), Dec. 1978 Meetings and Conferences 1002


