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"The space between molecules is thought by some to be filled with air. "
A. S. Kompaneets

INTRODUCTION

Knowledge of the intermolecular interaction poten-
tials1 ' is essential for a broad range of problems in
physics, chemistry, and biology. The very existence
of liquids and solids relies on these intermolecular
interactions. The thermodynamic properties of gases
and liquids and, in particular, their transport charac-
teristics (the coefficients of thermal conductivity, dif-
fusion, and so on) are determined by the nature of the
intermolecular interaction. Intermolecular forces de-
termine most of the properties of crystals, including
equilibrium geometry, cohesion energy, phonon spec-
tra, and so on.

The intermolecular interactions are responsible for
the formation of chemical complexes involving charge
transfer and hydrogen bonding, and lie at the basis of
the formation of colloids. Elementary chemical events
cannot be investigated unless one knows the processes
involving energy transfer between translational and

"For brevity, we use the single phrase "intermolecular inter-
action" which is meant to include interatomic interactions
that do not result in the formation of a chemical bond.

electronic-vibrational degrees of freedom, which de-
pend on the interaction between particles in the course
of collisions. The potential surface characterizing the
relative trajectories of reagents must be known before
one can calculate the rates of chemical reactions.

Intermolecular interactions are also of major impor-
tance in biology. It will be sufficient to mention that it
is precisely these forces that ensure the stability of
such important life-supporting compounds as DNA and
RNA.

Modern technology demands data on the macroscopic
properties of gases under conditions in which measure-
ments are difficult to perform (ultrasonic velocities,
high temperatures T> 1000°, ultrahigh pressures in
shock waves, and so on). The required gas parameters
can be calculated but only if the necessary potential-
energy curves have been obtained independently for a
broad range of separations. Knowledge of the intermo-
lecular interaction forces is also required in the theory
of molecular lasers.

The following are the most important sources of in-
formation that we have on molecular forces:

a) scattering experiments performed with atomic or
molecular beams, which often provide experimental
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data from which the potentials can be directly deter-
mined;

b) spectroscopic measurements (vibrational-rotation-
al spectra, predissociation, pressure broadening of
spectral lines);

c) data on thermophysical properties of gases and liq-
uids (virial coefficients, viscosity, and transport coef-
ficients generally);

d) data on the properties of crystals (elastic con-
stants, phonon spectra, sublimation energies);

e) experiments on radiation damage in solids (focus-
ing energy, threshold displacement energy, channel-
ing, and so on);

f) experiments on nuclear magnetic resonance in sol-
ids and liquids (spin and spin-lattice relaxation time).

Various two-body interaction potentials are used in
the analysis of experimental data and the parameters
of these potentials are obtained by fitting the theoretical
values to the experimental data.1·2 Depending on the
particular system under consideration, the Lennard-
Jones, Morse, Kihara, and many other potentials are
often used. We note that none of these semiempirical
potentials can provide a correct description of the actu-
al intermolecular potential over a broad range of sepa-
rations. Moreover, a given potential with parameters
established on the basis of a particular property is
often unsatisfactory for other properties, since differ-
ent physical properties may be sensitive to different
parts of the potential curve.

It is important to emphasize that the intermolecular
forces cannot be directly measured. In fact, one mea-
sures certain other characteristics such as the angle of
scattering, transport coefficients, and so on, which are
functionally related to the intermolecular potential. In
some experiments, it is possible to solve the so-called
inverse problem, namely, to determine the form of the
potential from experimental data but, as a rule, only in
a restricted range of separations (these are the scatter-
ing experiments involving molecular beams and vibra-
tional-rotational spectra of diatomic molecules). When
the reliability of the resulting potential is estimated,
one must take into account not only the approximate
character of the measurements (the experimental un-
certainty), but also the approximate nature of the for-
mulas relating the measured characteristics to the mo-
lecular potential (the uncertainty of the theoretical ap-
proximation).

A very common procedure is to choose a model po-
tential and vary its parameters until a satisfactory fit
to the experimental data is achieved. It is then impor-
tant to remember that different model potentials can
often predict the same experimental relationship. The
experimental confirmation of the theoretical model
must then be regarded as a necessary though not suffi-
cient condition for the validity of the theoretical model.
Thus, the magnitude of the second virial coefficient is
not very sensitive to the shape of the potential curve or
the position of its minimum, and depends only on the
ratio of the width to depth of the potential well.3 Vis-

cosity is also relatively insensitive to the dependence
of the potential on distance.

All this demonstrates the importance of theoretical
determinations of potential curves. More realistic
model potentials can be constructed once the analytical
form of these potentials is known, at least qualitative-
ly. Substantial success has in fact now been achieved
in the development of a theory of intermolecular inter-
actions.

It is very difficult to illuminate all the questions con-
nected with the theory of intermolecular forces in a
single review. We have tried to provide a general
physical picture of the interaction between molecules,
to analyze the contributions of different types of inter-
action as far as possible, and to identify among them
those that are the most important for each range of sep-
arations. Considerable attention is devoted to the anal-
ysis of approximations used in different theoretical
methods. Unfortunately, lack of space has prevented
us from examining such important points as the nonad-
ditivity of intermolecular forces, the choice of model
potentials, the determination of potentials from experi-
mental data, and certain other questions. Inclusion of
these topics in the review would have resulted in an
excessive degree of conciseness.

Before we proceed to the description of modern ideas
on the nature of intermolecular forces, it will be in-
structive to examine the evolution of these concepts.
The history of the subject is no different from that of
other branches of knowledge in that it shows that many
errors and misconceptions had to be resolved before
the present level of understanding of molecular inter-
actions was achieved.

1. DEVELOPMENT OF CLASSICAL IDEAS ON
INTERMOLECULAR FORCES

The atomistic theory of the structure of matter is due
to ancient philosophers. They believed that all bodies
consisted of minute indivisible particles (atoms) sepa-
rated by empty space. Interactions between atoms oc-
cured only on direct contact. In his poem, "De Rerum
Natura," Lucretius presents the teaching of Epicurus
and writes:4

"Once again, things which seem hard, compact,
Are made of atoms far more closely hooked,
Are held more closely at their roots,
(If such a metaphor I dare use)
By branching particles.
Of things like these, the diamond takes its stand
in vanguard rank.
It's schooled to disregard, despise all blows;
Furthermore, things that seem hard and tightly

packed
must consist of atoms closely hooked together,
and linked in a compact body by their branchlike

connections.
In the first rank of this category are diamond-

stones,
with their capacity for stountly swimming blows...
But liquids, on the other hand, with their fluid

nature
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must consist of elements that are smooth and
round

The decline in the development of science in the Middle
Ages was eventually followed by a resurgence of inter-
est in the work of the ancient atomists, but not until the
middle of the seventeenth century. Thus, the theories
of Galileo are still devoid of any degree of realism. He
describes matter in terms of particles in the form of
mathematic points separated by empty space, and ex-
plains the rigidity of bodies in terms of the "abhorrence
of vacuum", i.e., by the resistance of the minute empty
spaces to any increase in their size.

The ideas of Descartes have had a major influence on
the development of theories of the physical universe.
According to Descartes, matter consists of particles of
different shape and size. In contrast to the ideas of the
ancient philosophers, each particle can now be sub-di-
vided indefinitely. Descartes regards solid bodies as
consisting of immobile particles in intimate contact
with one another, and describes liquids as consisting of
particles that move relative to one another. All the mo-
tions are purely mechanical displacements. Des-
cartes' theory does not involve any "latent" interaction
forces.

The basic difference between the atomistic theories
of Newton and those of his precursors is that he does
not restrict himself to purely mechanical interactions.
"The parts of all homogeneal hard bodies," writes New-
ton,5 "which fully touch one another stick together very
strongly. And for explaining how this may be, some
have invented hooked atoms... Others tell us that bod-
ies stick together by conspiring motions I had

rather infer from their cohesion that their particles at-
tract one another by some force, which in immediate

contact is exceeding strong " Newton then discusses
the possibility of attraction with the aid of the forces of
gravitation, magnetism, and electricity, but also ad-
mits that "there may be other attractions extending to
such small distances that they have so far escaped ob-
servation." (Compare this with modern ideas on inter-
actions !)

However, neither Newton nor any of his precursors
gave a specific expression for the interaction force as
a function of distance. The law of interaction between
particles of matter was first introduced by the Croatian
scientist, R. G. Boscovich (1711-1787). His fundamen-
tal work is, in fact, entitled "A Theory of Natural Phi-
losophy Reduced to a Unique Single Law of Forces Ex-
isting in Nature.>>6 Boscovich assumes than an oscilla-
tory force operates between any two mass points and
increases without limit as the particles approach one
another. It takes the form of the Newtonian force of
attraction -1/r2 at large separations. Boscovich says

FIG. 1. Universal Inter-
action law proposed by
R. Boscovich.

that he arrived at this idea by thinking about the mech-
anism of collision. He regards the alternation of at-
tractive and repulsive forces as essential for the ex-
planation of phenomena such as the expansion of gases,
absorption, and deformation of plastic materials. Bos-
covich's law of interaction may be regarded as the first
model potential used to explain physical properties.

More or less at the same time, the French physicist,
A. C. Clairaut (1743) introduced the idea of forces be-
tween molecules in order to explain the rise of a liquid
in a capillary. The role of molecular forces in capil-
lary phenomena was subsequently discussed by Laplace
(1805) and by Gauss (1830). However, the dependence
of potential on distance was not specified.

In a series of classical papers on the kinetic theory
of gases, Maxwell (1868) introduced the analytic ex-
pression U=kR~" for the repulsion between molecules
as a function of distance. He used this to obtain expres-
sions for the coefficients of diffusion, thermal conduc-
tivity, and viscosity. In the case of viscosity, it was
known that it was independent of the gas density and
proportional to absolute temperature. The former re-
sult can be obtained for any η and had, in fact, been
derived for molecules in the form of noninteracting
rigid spheres. The second result led Maxwell to the
conclusion that η =4. Moreover, Maxwell considered
that U= kR~" was valid at very small distances as well.

We now know that the repulsive part of the potential
is not described by kR~*. In fact, the great Maxwell
fell into a logical trap: the fact that a particular as-
sumption leads to a correct result was used to conclude
that the assumption was correct without checking to
what consequences other assumptions might lead. In
this particular case, the fact that viscosity is propor-
tional to temperature can be derived from an infinite
number of different potentials U[R).

Maxwell's result was erroneous but, nevertheless, it
was very convenient mathematically and enabled him to
obtain closed expressions for the different transport
characteristics of gases, and this played a major role
in the development of kinetic theory.

Different types of model potential were used in subse-
quent investigations. The forces of attraction which act
between neutral atoms and molecules at large distances
eventually became known as van der Waals forces. This
was connected not with specific studies of the nature of
intermolecular forces by van der Waals but with his
well-known equation of state (1873)

{p+-w)<y—b)=RT (i.i)

which takes into account the difference between a real
gas and a perfect gas. The constant a in this equation
represents the attraction between the gas molecules.
In fact, an increase in a for constant V and Τ tends to
reduce P. The attraction between the molecules should
thus reduce the pressure on the walls of the container.
The fact that a correction must be introduced for the
forces of attraction in order to make the equation of
state consistent with experimental data can be regarded
as evidence for the existence of forces of attraction be-
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tween molecules. In addition to phenomenologic ap-
proaches based on various model potentials, there were
attempts at the end of the nineteenth and beginning of
the twentieth century to explain the physical origin of
intermolecular forces, in which these forces were re-
lated to gravitational forces. However, it was eventual-
ly realized that the latter were too weak and they were
abandoned. On the other hand, it was becoming clear
that atoms and molecules contained electric charges,
and this led to the suggestion that intermolecular inter-
actions were of electro-magnetic origin.

Reinganum7 was the first to represent the interaction
between two neutral particles as the interaction between
permanent electric dipoles. Electrostatics shows that
the energy of interaction between two electric dipoles
with dipole moments dx and d2 separated by a distance
R depends on the mutual orientation of the dipoles and
is given by

Udd = ~ BJ— ' (1.2)

If the directions of the two dipoles dx and d2 are char-
acterized by the polar angles θχ, φ^ and θ2, ψ2 and the
ζ axis is taken to lie along the line joining the centers
of the dipoles, the formula given by (1.2) assumes the
form

Udd— ^ji-[2cos9, cos92 — sin θ! sin θ2 oos (φ, — φ2)]. ( 1 . 3 )

The energy UM is a minimum when the two dipoles lie

along the ζ axis (0 1 = Θ2=θ,φί = φ2):

. 2dldt ι Λ Λ\
(C<M)mlD- jjT-· (!••*)

Reinganum looked upon a medium as a set of parallel
dipoles. He then examined the case of free dipoles and
took the statistical average over all the orientations. If
all directions of the dipoles are equally likely, the re-
sult is zero interaction energy, i.e.,

o, (1.5)

where the angle brackets represent averaging over
orientations. However, the probability that the dipoles
have a particular orientation corresponding to an en-
ergy U is determined by the Boltzmann factor exp(-i//
kT), so that, bearing in mind (1.5) and taking U in the
form given by (1.3), we obtain the following expression
for U«kT:

1 2 *Λ (1.6)

It follows that the forces of attraction obtained by
Reinganum for his dipoles tend to zero with increasing
temperature. These forces were eventually referred
to as alignment forces. Since the van der Waals forces
are present at high temperatures as well, the introduc-
tion of alignment forces did not provide a complete ex-
planation of the nature of intermolecular forces. In
addition, the existence of alignment forces required as
a precondition that the molecules had permanent dipole
moments. It was believed at the time that all molecules
had dipole moments. This was based on the investiga-
tions of Debye8 into the theory of dielectric permittivity.
Debye based his theory on the properties of five liquids
which happened to be polar (alcohols) and came to the
conclusion that all molecules were polar.

However, it became clear later that even the simp-

lest homonuclear molecules, such as H2, N2, or O2 did
not have a dipole moment. To explain the interaction
between them, Debye made the next important step
toward an understanding of the nature of intermolecular
forces.9 He assumed that the charges in a molecule
were not rigidly fixed but moved under the influence of
the field due to the permanent dipole moment of another
molecule.

Since not all molecules had dipole moments, Debye
considered the case in which the electric dipole moment
was induced in a particular molecule by the permanent
quadrupole moment of another molecule. To do this,
he calculated the electric field cA(R) due to the quad-
rupole moment DA of a molecule A at a distance R from
it. A molecule Β with polarizability aB placed in this
field would interact with molecule A so that the interac-
tion energy would be UAB = - ?Adfl = - 1 aB εΑ. By taking
into account the fact that molecule A was affected in a
similar way by the quadrupole moment of molecule B,
and by averaging over all the equally probable orienta-
tions, Debye succeeded in obtaining the following tem-
perature-independent expression for the interaction en-
ergy:

φΑ ) = _ α Α _ 3 _ ϋ ! a ±fk. (17)

where DA and DB are determined by the components of
the quadrupole moment of the molecules. The interac-
tion induced by dipole moments was subsequently ex-
amined by Falkenhagen.10 Forces of the form given by
(1.7) are now called the Debye-Falkenhagen induction
forces.

Debye considered the induction interaction between
molecules with large quadrupole moments, but did not
examine the direct electrostatic interaction between the
quadrupole moments of the molecules. This was sub-
sequently done by Keesom,11 who generalized the Rein-
ganum calculations by including the dipole-quadrupole
and quadrupole-quadrupole interactions in addition to
the dipole-dipole interactions. As in the case of UM, it
was again found that {Uqd)= (Um)=0, but the Boltzmann
factor favors the states involving attraction. Alignment
forces are occasionally referred to as Keesom forces.

Thus, classical physics has succeeded in explaining,
at least qualitatively, two types of interaction: the
interaction between molecules with permanent multi-
pole moments and the interaction between permanent
and induced moments in molecules. This was done by
introducing alignment forces that decreased with in-
creasing temperature and induction forces which were
practically independent of temperature. For polar mol-
ecules, for example, H2O, these forces provide the pre-
dominant contribution to the intermolecular interaction.
However, for other molecules, for example, HC1, they
explain only a small proportion of the interaction.
Classical theory has also encountered a particular dif-
ficulty in the case of the interaction between noble-gas
atoms. The electronic shells of these atoms are spher-
ically symmetric, which means that such atoms have
neither a dipole nor any other multipole moment. How-
ever, the interaction forces between them are of the
same order as the interaction forces between polar
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molecules.

An explanation of the interaction forces between non-
polar molecules, and between the atoms of noble gases,
has become possible only since the advent of quantum
mechanics. Dispersion forces were first considered by
Wang.12 This was followed by the fundamental papers
of London.13"16 A rigorous theory of intermolecular
forces giving a correct description at both small and
large distances is based on the quantum-mechanical
theory. It will be described below.

2. MODERN QUANTUM-MECHANICAL IDEAS ON
INTERMOLECULAR INTERACTION

A. The concept of intermolecular potentials and
classification of types of interaction

Intermolecular forces are due to electromagnetic
interactions between the electrons and nuclei forming
the molecule. The quantum-mechanical character of
the motion of these particles must be taken into account
when a rigorous theory of intermolecular forces is
constructed. Consequently, the problem reduces to a
solution of the Schrodinger equation for a system of
interacting molecules, and can be solved only approxi-
mately. A substantial simplification and clarity are
achieved by the fact that the electronic and nuclear mo-
tions can be separated, and by the introduction of the
concept of potential-energy curves. We shall illustrate
this problem by considering the example of two inter-
acting atoms.

We shall represent the laboratory set of coordinates
by R£, R£ (the coordinates of the nuclei) and τ'{ (the co-
ordinates of the electrons). Since the interaction ener-
gy is a function of only the relative separations of the
particles, it is natural to transform to the center-of-
mass system. This can be done in a number of
•ways.17·18 The following is a convenient set of relative
coordinates:1 9 '2 1

(2.1)

When the motion of the center of mass has been sepa-
rated out, we obtain the Hamilton for the relative motion

Η = He "Γ Λ Β >

where He is the Hamiltonian in the approximation of
frozen nuclei21

(2.3)
•<j

r a J is the distance of the i-th electron from the α-th nu-
cleus, ru is the distance between electrons i, j , and Za

is the charge of the nucleus a. The operator KR is
made up of the kinetic-energy operator describing the
relative motion of the nuclei and the so-called mass-
polarization term

2μ (2v,)f. (2.4)

where μ = MaMi/(Ma + Mb) is the reduced mass of the

nuclei. Since the electrons have small mass and,
therefore, move much more rapidly than the nuclei, the
latter can be regarded as being at rest in the zero-or-
der approximation. Their motion can be taken into ac-
count in higher-order approximations. In the zero-or-
der approximation, the wave function for the electron
motion, ij)n(r,R), contains the distance Λ between the
nuclei as a parameter (r represents the set of all the
electron coordinates). To each value of R, there cor-
responds its own electron Schrodinger equation

Hrfnir, R) = En(R)qn(r, R), (2.5)

where the energy of the n-th state, En(R), depends on
R.

The solution of the Schrodinger equation for a system
with total Hamiltonian given by (2.2)

#Ψ (r, R) = ΕΨ (r, R) (2.6)

can be written as an expansion over the complete set of
eigenfunctions <pn(r,R) of the Hamiltonian He:

r. R). (2.7)

2)Here and henceforth, we use the atomic system of units in
which K=e = m = l.

The coefficients of this series are, of course, functions
of R. Substituting (2.7) in (2.6), multiplying by φ*(*·,Λ),
and integrating with respect to the electron coordinates,
we obtain the following set of equations:

[ ^ ] Λ), m = l, 2, ...

(2.8)
^ [j r, R)]dvT. (2.9)

The set of equations given by (2.8) is exact. The Born-
Oppenheimer approximation22 (see also Refs. 23-25)
corresponds to the separation of the set of equations
(2.8) by equating to zero the right-hand sides:

[—£rVn + Em(R)-E)xm(R) = O. (2.10)

In this approximation, the energy associated with the
motion of the electrons, Em(R), is the potential energy
for the motion of the nuclei.

The separation of the electronic and nuclear motions
can also be performed by neglecting the off-diagonal
terms Amn(R) on the right-hand sides of (2.8) and re-
taining only the diagonal terms.2 6 Equation (2.10) is
then replaced by

[—~rVk + Vm(R)-E]Xm(R) = 0, (2.11)

where the potential energy Wm(R) is given by

Vm (R) = Em (R) - Amn (R). (2.12)

The diagonal element AmJ,R) can be interpreted as a
correction to the potential energy, due to the coupling
between the electronic and nuclear motions. Although
any approximate method enabling us to separate the
nuclear motion from the electronic motion may be re-
ferred to as the adiabatic approximation, this phrase is
usually taken to represent the approximation defined by
(2.11)-(2.12). It is occasionally also referred to as the
Born approximation.3'

3)We note that me above separation of electronic and nuclear
motions is valid only in the case of nondegerate electronic
states of the system. In the case of degenerate electronic

922 Sov. Phys. Usp. 21(11), Nov. 1978 I. G. Kaplan and Ο. Β. Rodimova 922



The accuracy of both the adiabatic and the Born-Op-
penheimer approximations is very high. Precision cal-
culations performed by Kolos and Wolniewicz29·30 for
the ground state of the H2 molecule have shown that the
results based on the adiabatic approximation are accu-
rate to within about 10"2%. An analysis of the accuracy
of the adiabatic approximation and of the various types
of correction to it can be found in the literature.3 1"3 3

Thus, the motion of the nuclei of the molecules may
be looked upon as occurring in the adiabatic potential
Vm(R), called the intermolecular interaction potential,
or simply the intermolecular potential. Knowing this
potential is sufficient to enable us to investigate the be-
havior of the system of interacting molecules.

A typical intermolecular potential, averaged over the
orientations of the molecule, as a function of the dis-
tance between the centers of gravity of the molecules is
shown in Fig. 2. The curve in Fig. 2 is divided into
three regions, namely: the region of small distances
(1), in which the potential is repulsive and electron ex-
change is very important because of the overlap of the
electron shells; the region of intermediate distances
(II) with the van der Waals minimum, whose position is
determined by the balance between repulsive and attrac-
tive forces; and the region of large distances (III), in
which electron exchange can be neglected and the inter-
molecular forces are essentially attractive. It is also
possible to define the region of ultralarge distances,
for which retarded interactions must be taken into ac-
count.

Each range of distances is characterized by its own
computational approximations which can be used to iso-
late different types of interaction and estimate their
contribution to the overall intermolecular potential. In
region ΙΠ, where the intermolecular interactions are
small and electron exchange is negligible, the standard
Rayleigh-Schrodinger perturbation theory is valid.
First-order perturbation theory yeilds directly the
electrostatic interaction between the molecules. Higher
orders of perturbation theory give the polarization en-
ergy which results from the polarization of one mole-
cule by the electron cloud of another. In second-order
perturbation theory, this subdivides into induction and
dispersion components (this is described in greater de-
tail below). This subdivision can no longer be per-
formed in higher orders. Magnetic interactions are
weak and are therefore manifested only in systems in
which the electrostatic interaction falls off rapidly with
distance (nonpolar molecules with nonzero spins).

For distances R for which the time R/c taken by the
interaction to propagate is of the same order as the

states, the electronic and nuclear motions cannot be separ-
ated because the terms Amn (R) in (2.8) cannot be neglected.
The energy Em (Λ) can then no longer be interpreted as the
potential function for the motion of the nuclei. The states of
the system, often referred to as the electronic-vibrational
(of vibronic) states are obtained by solving a set of equations
analogous to (2.8), the order of which is equal to the degree
of degeneracy of the electronic level. Further details can be
found in the literature. 2 7 · 2 8

FIG. 2. Typical form of intermolecular potential: 7—small
distances; //—intermediate distances; ///—large distances; Ro

is the van der Waals minimum.

time ~h/l of electronic transitions (/ is the ionization
potential), i.e., for R~Hc/l it is essential to take into
account the retardation of the interaction. This effect
begins to be appreciable usually for R<: 400a0. In this
range of distances, one has to use field perturbation
theory in which both the states of the interacting mole-
cules and the states of the electromagnetic field have to
be taken into account.

Electron exchange must be taken into account for R
% 15a0. The energy terms in first-order perturbation
theory, which appear as a result of the antisymmetriza-
tion of the total wave function for the system of inter-
acting molecules, are called the exchange energy. Cor-
rections for exchange in higher-order perturbation the-
ory are usually referred to as the exchange -polariza-
tion energy. At intermediate distances, in addition to
exchange interactions, we also have interactions con-
nected with charge transfer from one molecule to anoth-
er.

At still shorter distances, i.e., for Rs, 4a0, the mol-
ecules lose their individuality and the interacting sys-
tem must be regarded as a single quasimolecule.

Table I shows the classification of the various types
of interaction. Spin magnetic interactions are placed
only in the last column because they can be neglected at
all other distances (see, however, Sec. F).

The above classification of intermolecular interac-
tions is, to some extent, conventional since it is based
on an approximate analysis. The question is whether
this type of classification is physically significant. The
fact is that nature is not aware of our computational
methods and the true potential curve contains contribu-
tions due to all types of interaction.

Fortunately, the answer to this question is in the af-
firmative. The representation of the interaction energy

TABLE I. Classification of types of interaction.

Small distances Intermediate distances Large distances TJltralarge distances

Interactions in
quasimolecule:

1. Coulomb
2. Exchange

1. Electrostatic
2. Exchange
3. Exchange-

polarization
4. Charge transfer

1. Electrostatic
multipole-
multipolc

2. Polarization:
a) induction
b) dispersion

3. Resonance
4. Relathistic,

magnetic

1. Electromagnetic,
retarded

2. Spin, magnetic
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by the sum of different terms enables us to isolate
terms that provide the greatest contribution in a given
range of distances. As we shall see later, each term
has a perfectly specific physical interpretation. This
means that we can relate it to particular physical char-
acteristics of molecules (polarizability, dipole and
quadrupole moments, and so on). This, in turn, en-
ables us to perform a qualitative estimate of the
strength of the intermolecular interaction for different
classes of molecules without having recourse to a com-
plicated quantitative computation.

Let us consider the various types of molecular inter-
action in detail.

B. Direct electrostatic interaction

The energy of the electrostatic interaction in first-
order perturbation theory is defined as the average of
the electrostatic interaction operator over the quan-
tum-mechanical distribution of the molecular changes.

After the separation of the motion of the center of
mass [see (2.2)], the Hamiltonian for a system of two
interacting molecules can be written as the sum of the
Hamiltonians for the isolated molecules H0=HA+HB

plus the energy U of their electrostatic interaction:
(2.13)

j - 1 =1 )=

where a, b labels the nuclei and i,j the electrons in the
molecules A and B, respectively.

At large distances, the energy U may be regarded as
a small perturbation. If we neglect electron exchange,
the zero-order wave functions are given by simple pro-
ducts of the wave functions for the isolated molecules:

where n,m is the set of quantum numbers characteriz-
ing the states of the isolated molecules.

The direct electrostatic interaction energy is defined
by first-order perturbation theory and is given by

At large distances between the molecules, the elec-
trostatic energy may be satisfactorily represented by
the sum of the first few terms of the expansion of £<*'
into a series in powers of l/R. This expansion is based
on the introduction of the multipole moments of the
charge distribution. At distances that are large in com-
parison with the linear dimensions of the system, the
potential corresponding to the field produced by the sys-
tem of charges can be written as an expansion in terms
of the multipole moments. In Cartesian coordinates,
the first three terms of this expansion at a point char-
acterized by radius vector R are:

R·
(2.17)

^ (2.18)

where the sum over i is the sum over all charges of the
system, xta,Xa are the Cartesian coordinates corre-

sponding to the position vectors rpR,d is the dipole
moment of the system, and Dai are the components of
the quadrupole moment tensor of the system of charges.
In their general form, the multipole moments written
in terms of spherical polars are expressed in terms of
irreducible tensor operators.34·35

In the case of electrically neutral systems, the ex-
pansion given by (2.17) begins with the term corre-
sponding to the first nonzero 2'-pole moment. We note
that only the first nonzero moment is independent of the
choice of the origin of the coordinate system.36 The
values of I for the ground state of the molecules be-
longing to different point symmetry groups are listed in
Table Π.

To ensure that a molecule has zero dipole moment in
the ground state, it is sufficient to demand that it should
have neither more than one symmetry axis, or a mir-
ror rotation axis, or a center of symmetry. Such mole-
cules include all the homonuclear diatomic molecules,
ethylene, benzene, and many other molecules, for
which the first nonzero moment is the quadrupole mo-
ment. The potential due to molecules of this type is
proportional to Ι/Λ3. In the case of the ground state of
molecules with cubic symmetry, the first nonzero mo-
ment is the octupole moment (CH4, SF6, and so on) and
the corresponding potential is ~1/Λ4. Finally, for sys-
tems with spherical symmetry (atoms in the s state),
all the multipole moments are zero. The most com-
plete tables of dipole moments for different classes of
molecular compounds are given in Ref. 37. Table III
lists the mean values of quadrupole moments for a num-
ber of molecules.38

The energy of electrostatic interaction between two
molecules may be looked upon as the potential energy
of the charges belonging to one of the molecules in the
field produced by the other:

ϋ=Σοιφ(η)· (2.19)

If the two molecules are at a large distance from one
another, the potential <p(rt) will be a slowly varying
function of position in the region occupied by the first
molecule. If we take the potential at some point 0 of
this space, we can conveniently expand (2.19) into a
series in powers of r,. The terms of this series will
be characterized by the multipole moments of the first
molecule, namely,

- - ί Γ Ζ ° ° Μ a,..*- L + •·· (2.20)
i of)

We now substitute the multipole expansion (2.17) for the
potential φ in (2.20). The first term in (2.20) will then
give the monopole-multipole interactions, the second
will give the dipole-multipole interactions, and so on.
Buckingham36 has given an analysis of the number of

TABLE II. Values of I for the first nonzero 22-polc
ground state of molecules of different symmetry

Point group

I

C " i
[

1 1

c.

1 2

Sn

2

D ,

2 2 2

! moment in the

Td

3 3

Kft

Η β τ
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TABLE III. Quadrupole moments of nonpolar molecules (in atom-
ic units).

Molecule

Quadrupole

moment

H2

0.6

N2

1.6

Oz

1.0

CO

2.1

NO

2.0

CC2

4.1

XjO

4.2

C2H 4

3.2

independent constants in (2.20) for the different point
symmetry groups encountered in the case of molecules.

For electrically neutral polar molecules, the first
term in the interaction energy is the dipole-dipole term
giving a ~1/R3 dependence. The expression for this
term is given by (1.2)-(1.3). In first-order perturba-
tion theory, the inclusion of quantum-mechanical ef-
fects reduces only to the inclusion of the distribution
of the charges in space. To determine the dipole-di-
pole interaction energy, the expression given by (1.2)
must be substituted in operator form into the matrix
element (2.16):

(2.21)

where

(2.22)

According to Table Π, the expectation value of the di-
pole moment is zero in the ground state, with the ex-
ception of molecules with point symmetry Cn and Cm.
The mean dipole moment may no longer be zero in the
excited states of such molecules. States in which the
average dipole moment is not zero can be obtained by
decomposing the symmetric product of the correspond-
ing irreducible representation with itself into irreduc-
ible parts. 3 9" 4 1

The electrostatic interaction between homonuclear
diatomic molecules is described by the quadrupole-
quadrupole term ~1/R5, and the interaction between
methane molecules is described by the ocupole-octupole
term ~l/R7. Table IV shows the distance dependence of
the multipole-multipole interaction energy.

As already noted, the multipole expansion is valid for
large distances between the interacting systems. The
necessary condition for its validity is the absence of
overlap between the charge distributions. Moreover,
the quantum-mechanical "smearing out" of the charges
ensures that this overlap will always occur. Since it
decreases exponentially with distance, an expression
for the interaction energy in the form of a multipole
series implies that exponentially decreasing terms have
been neglected. It is also important to emphasize that
the multipole series converges only asymptotically to

TABLE IV. Distance dependence of different multipole-multipole
interactions.

Monopole
Dipole
Quadrupole
Octupole
Hexadecupole

Monopole

1/Λ
i/R3

i/R3

i/R'
i/R'

Dipole

i/R'
i/R3

1/7?·
1/Λ6

i/R»

Quadrupole

i/R3

i/R1

to

i/R«

Octupole

i/R1

l/R*
i/R»
i/i?7

1/Λ»

Hexadecupole

i/R'
i/R»

to

i/R'

IS

the true interaction energy. This means that exact con-
vergence occurs only for R - °°. For finite R," further
increase in the number of expansion terms beyond a
certain number will lead to the divergence of the ser-
ies. The question of convergence of the multipole ex-
pansion will be considered below in Sec. 3A.

The strength of the multipole-multipole interactions
depends on the mutual orientation of the molecules.
When all the mutual orientations of the molecules are
equally probable, the average of the interaction energy
over their distribution is zero:

(Udd) = (U.J = : 0. (2.23)

However, the interaction energy does depend on orien-
tation, and this means that orientations corresponding
to lower energies are the more probable. The result
of this is that the average orientation energy evaluated
by taking into account the Boltzmann distribution is not
zero. The expression for ψΜβ'νωικτ) for UM«kT
turns out to be the same as the classical expression ob-
tained by Reinganum and given by (1.6).

C. Polarization interactions

Forces that are due to the polarization of one mole-
cule by the electron cloud of another are called polar-
ization forces. They are described by second and high-
er orders of perturbation theory. The expression for
the interaction energy between two molecules in ground
states, in second-order perturbation theory, is3 9

(2.24)

The prime on the summation sign indicates that the
quantum numbers η and m cannot simultaneously as-
sume values corresponding to the ground states of the
isolated molecules. The sum over n,m can be split into
two parts which have different physical interpretations
and are therefore given different designations. Let us
consider them separately.

1) Induction forces:

£ΐ&=-2 -Σ ι <*£•? ι Ρ Hi*?) i'.(2.25)

The first t e r m corresponds to the electrostatic inter-
action between the charges of molecule A with the e lec-
tron density distribution

Ρίο (0 =• «A J Ι Ψί (1 •••'••• nA) ρ dv<<\ (2.26)

and the charge distribution of molecule Β with the e lec-
tron density distribution

p»0(/) = B j ! j ψ£(1 ... / .. . ηΒ)*ψΒ(1 ... } .. n^d^K (2.27)

Since we a re considering the interaction between mole-
cules in ground s ta tes , the change in the electron-den-
sity distribution in molecule Β must be induced by the
field due to molecule A. Similarly, the second term in
(2.25) corresponds to the interaction between molecule
Β in the electronic ground state and the induced electron
density distribution in molecule A.

The induction energy is always negative for molecules
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in the electronic ground state, i.e., it correspond to an
attraction. For electronically excited states, induction
energy may correspond to either attraction or repul-
sion.

At large distances between the molecules, the induc-
tion force can be represented by a multipole series ob-
tained by expanding U in (2.25) in powers of I/A. The
first term in the series corresponds to the interaction
between the induced dipoles and the field due to the in-
ducing molecule. The dependence on l/A is determined
by the square of the corresponding dipole-multipole
interaction and can be readily obtained from Table IV.
Thus, for the interaction between an ion and a neutral
molecule, the dominant term is I/A4; for the interac-
tion between a polar molecule and an arbitrary neutral
molecule, the dominant term is ~l/Ae; the interaction
between the quadrupole moment of one molecule and the
induced dipole moment in another is ~l/RB, and so on.

In the dipole-dipole approximation, the energy of in-
duction interaction between two polar molecules is ob-
tained by substituting (1.2) in (2.25) and averaging over
the dipole orientations. The result is:

3 R ' m*0 ^ " " O

(2.28)
The sum in this expression can be readily expressed in
terms of the mean statistical polar izability of the mole-
cule

. < ( , )
n — e 0

(2.29)

which can be measured. The result is an expression
which is identical with the classical induction interac-
tion between two dipoles:

ft. (2.30)

Induction forces are very important in ion-molecule
systems as well. In the case of neutral molecules, in-
duction forces are usually very small with the excep-
tion of certain classes of molecules with large induced
dipole moments, for example, long molecules with con-
jugated bonds, a number of biopolymers.

2) Dispersion forces. The interaction that remains
after the polarization energy (2.24) is subtracted from
(2.25) was called by London the dispersion interaction:

(2.31)

The matrix element t ^ c , in this expression corre-
sponds to the electrostatic interaction between two mu-
tually induced electron density distributions:

Dispersion energy does not have a classical analog
and is determined by quantum-mechanical fluctuations
in the electron density. The instantaneous charge dis-
tribution corresponding to the instantaneous dipole (plus
subsequent multipole)moment of a given molecule in-
duces dipole moments in the other molecule. The
interaction between these molecules is, in fact, re-
sponsible for the dispersion energy. For molecules in

TABLE V. Dispersion energy and coefficients Cn for
two if atoms in the Is state according to Kolos*2 (Cn Is
in atomic units, energy is in cm"1).

R, in units of

8
9

10

c.,
Dipolc-dipole

6.499

Cj/fl·

5.44
2.68
1.43

Dipole, quad-
lupole

124.4

Cs/H»

1.63
0.63
0.27

Dipole- c
octupole

2150.»

oQuadiupole-
quadrupole

1135.2

Cie/Bio

0.67
0.21
0.07

the ground state, this is always negative, i.e., it cor-
responds to attraction.

The multipole expansion of dispersion energy begins
with the term ~1/Ae. It is usually written in the form

E$l,p = £ L . _ . £ | . _ C » _ . . . (2.33)

The first term corresponds to the dipole-dipole inter-
action, the second to the dipole-quadrupole interaction,
and the third contributes both as the dipole-octupole and
the quardupole-quadrupole interaction. Both these con-
tributions must be taken into account when the term
proportional to ~l/A10 is calculated. This is confirmed
by precision calculations performed by Kolos42 for two
hydrogen atoms (Table V). Since hydrogen atoms in
the ground state have no electric multipole moments,
their interaction energy in the ground state is of the
dispersion type (see, however, Sec. F).

As already noted in Sec. B, the multipole expansion
converges to the exact energy only asymptotically. For
finite A, the terms in the series SB(Cn/A") begin to in-
crease in absolute magnitude beginning with a certain n.
Nevertheless, this does not mean that the multipole
series becomes useless. For sufficiently large A, the
sum of the first few terms of the series is a good ap-
proximation to the energy. It follows from Table V that,
for AS 10ao, the dispersion energy can be estimated
from the first term, C6/A6, to within about 20%. This
is the explanation for the large number of papers de-
voted to methods of calculating the coefficients C6 and
C8 (Refs. 43-45; see also Ref. 55). For spherically
symmetric systems, or for arbitrary systems after av-
eraging over the orientations, the exact expression for
CK is4>

-τ Σ -
η, τηφΟ

(2.34)

This can be readily expressed in terms of the oscillator
strengths f φ of isolated molecules:

/no = 4<oio|d»oP, (2.35)

and, in particular:

„ 3 ^ ύΛο _ (2.36)

Calculations based on this expression require a know-
ledge of the oscillator strengths for all the transitions
to both the discrete and continuous spectra. Direct

4 )In the atomic system of units, the transition frequency is ω,
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utilization of (2.36) in practical calculations is there-
fore difficult. However, this formula is convenient as
a basis for deriving approximate expressions. The
best known is the London formula, widely used for
qualitative estimates. To derive this formula, we ex-
press the mean statistical polarizability a0 (2.29) in
terms of the oscillator strengths (2.35):

β ο = 1 2 - % - . (2.37)
ηφΟ ω "°

For many molecules, it is possible to identify a narrow
frequency band within which the oscillator strengths are
much greater than elsewhere. The sums in (2.37) and
(2.36) can then be replaced by a single term, and this
leads to the well-known London formula

c, = -f α χ Α

κ0 l\ . (2.38)

The frequencies ω£0 and ω% may be looked upon as em-
pirical parameters. To be specific, they are usually
replaced with the first ionization potentials, and the
London formula is written in the form

„ 3 , R ^i ^l In OQ\

This expression can be readily used to perform qualita-
tive estimates of C6, and the values obtained thereby
are usually the lower limits for C6. However, for two
hydrogen atoms, the exact value of the dispersion en-
ergy is obtained by replacing Jx by ~5/1/6. The rec-
ommended values of C6 and CB in the case of inert gases
are listed in Table VI. For comparison, the last col-
umn lists the values of C6 calculated from the London
formula (2.39).

The Casimir-Polder integral identity56 can be used to
transform the exact formula (2.36) into an integral over
dynamic polarizabilities, taken as functions of an imag-
inary argument44·56

', = — [ aA (ίω) αΒ (ίω) da,

ο

where

f it/(β)

(2.40)

(2.41)

is a generalization to the complex plane of the well-
known expression for the Kramers-Heisenberg expres-
sion for the dynamic polarizability

(2.42)

The formula given by (2.40) has been used in recent
years to perform quite accurate calculations of Ce for

TABLE VI. Recommended values of the constants C6 and C8 for
inert-gas atoms (atomic units).

System

He — H e
!*e—Ne
Ar—Ar
K r — K r
Xe —Xe

C S2

1.4614
6.88

66.9
135.1
281.15

C 62

14.2
73.9

1176
2581
7033

It. «·

24.580
21.559
15.755
13.996
12.127

«0. 0}

1.3838
2.668

11.09
16.72
27.34

Ce according to
formula (2.39)

1.30
4.23

53.25
108
250

a number of atoms and simple molecules.51·52 Nesbet53

used Chebyshev estimates of the dynamic polarizability
integral to obtain a value of C6 for He-He. Tulub54 used
the Markov-Krein theorem,57 well known in the theory
of moments, to determine the extremal values of the
integral given by (2.40). For polar molecules, polar-
ization forces have both dispersion and induction com-
ponents. Their ratio can be easily estimated from
(2.30) and (2.39). For identical molecules, we have58

•Edlsp

Elnd

3 , α (2.43)

D. Resonance interaction

Consider two molecules, one of which is in the ground
and the other in an excited state. Resonance inter-
actions a re said to occur between the molecules if the
energy associated with a transition to an excited state
is the same in the two molecules (the molecules a re in
resonance). This situation will always occur in the case
of interaction between identical molecules.

Suppose molecule D is initially in an excited state and
molecule A in the ground state. The state of this sys-
tem in the absence of interaction is described by the
wave function ψ%ψ£. The resonance condition demands
that the state described by the function ψ$ψ% must cor-
respond to the same energy. It follows that we have
degeneracy. In f irst-order perturbation theory, this
resul ts in an energy matrix of the second rank. This
can be diagonalized by constructing symmetric and
antisymmetric linear combinations of the original z e r o -
order functions:

Ψ«, u="—^-(Ψ^ψί ± ψΒψΑ). (2.44)

The interaction energy in f i rs t-order perturbation the-
ory is

" ° " " " °'(2.45)
The first t e r m in this expression represents the e lec-
trostat ic energy of interaction between molecule D in
the n-th excited state and molecule A in the ground
state, which was considered in Sec. B. The second
t e r m represents the interaction between the transient
electron densities in molecules A and D

U<in, no = \ P?n (*) Ρίο (/) —τ—A>i dvj, (2.46)

and i s due to the t r a n s f e r of excitation f rom molecule
D to molecule A. T h i s i s usual ly called the excitat ion-
transfer matrix element or the resonance integral.

When the distance between the interacting molecules
is large enough, the interaction energy can be expanded
into a multipole series. For neutral molecules, the
first nonvanishing term of this series is the dipole-di-
pole term. The result is that, even in the case of non-
polar molecules, there is a resonance dipole-dipole
interaction, which falls off with distance as ~1/R3.
This resonance interaction has a greater range than the
polarization interaction which falls off as 1/Re and, de-
pending on the parity of the stationary state, the energy
given by (2.45) may be either positive or negative. The
contribution of resonance interactions can also be im-
portant in second-order perturbation theory.59 The
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interaction of a molecule in an excited electronic state
and a molecule in the ground state leads to the forma-
tion of the so-called excimers and appears through the
shift of the absorption and luminescence frequencies.

The form of the functions given by (2.44), which de-
scribe the states of the interacting system, suggests
that the excitation can be found in molecule D with the
same probability as in molecule A. If we suppose that,
at time t, only one molecule is excited, the correspond-
ing state will be nonstationary and the resonance inter-
action between the molecules will ensure that they will
exchange excitation with frequency proportional to the
resonance integral (2.46). This type of energy transfer
resulting from resonance interaction is responsible for
energy migration in crystals60·61 and along a polymer
chain62 in the case of localized excitation of one of its
fragments.

Resonance interaction is the reason for the appear-
ance of delocalized exciton states in molecular crys-
tals.60·63 The width of the exciton band is then deter-
mined by the magnitude of the resonance integral and
may reach quite large values. Thus, the resonance
splitting of the lowest excited state in anthracene and
naphthacene crystals is 220 cm'1 and 575 cm"1, re-
spectively.63

When the excitation transferred from the donor mole-
cule to the acceptor molecule is rapidly dissipated so
that the reverse transport cannot occur because of the
departure from resonance condition, we have the uni-
directional energy transfer process

D* +A^>-D +A*, (2.47)
which is at the basis of sensitized luminescence, reso-
nance quenching, and certain other phenomena. The
transport probability is then proportional to the square
of the resonance integral, and falls off as 1/Λ6 for the
dipole-dipole interactions. The theory of this radia-
tionless energy transfer has been developed by
Forster,64 Dexter,65 and Galanin.66

E. Inclusion of retardation in long-range interactions.
Interaction between macroscopic bodies

It was assumed in the foregoing discussion that the
charges interacted instantaneously. The retardation
connected with the finite speed of light was not taken
into account. However, when the separation between
the molecules is large, such retarded effects may be-
come important. In the case of dispersion forces taking
retardation into account qualitatively alters their de-
pendence on distance. Retarded effects are important
when the separation R between the molecules becomes
comparable with the wavelength λ of molecular transi-
tions from the ground to the excited state.

It is interesting to note that the problem of retarded
effects in the calculation of dispersion forces was en-
countered for the first time in connection with the the-
ory of coagulation of colloids. Colloidal particles usu-
ally carry a charge which attracts ions of opposite sign
in solution. The result is that each particle is sur-
rounded by an electric double layer. These double lay-
ers repel one another as the particles get closer, and

the forces of repulsion compete with the van der Waals
attractive forces. The potential curve then exhibits a
minimum which ensures the stability of the colloidal
solution. A reduction in the thickness of the double
layer leads to the predominance of attractive forces,
the particles stick together, and are precipitated out
(gel formation). Experimental studies67 have shown
that the observed minimum can only be explained if the
dispersion interaction becomes weaker, as compared
with the prediction based on the London formula, for
distances E>400a,,. Overbeek67 has suggested that this
weakening is due to the retardation associated with the
finite time of propagation of the interaction. The di-
pole-dipole dispersion interaction corrected for re-
tarded effects was first calculated by Casimir and
Polder.68 The calculation involved four orders of per-
turbation theory in the interaction between the mole-
cule and the electromagnetic field.5' The resulting ex-
pression is

Re 2 I <£

duu'e-1""

(2.48)

and can be written in closed form in terms of sine and
cosine integrals [see formula (33) in Ref. 72]. When
R is much greater than the reduced average excitation
wavelength X = x/2ir, we obtain the asymptotic Casimir-
Polder formula

where aA is the static polarizability of molecule A and
α is the fine structure constant. We emphasize that the
Casimir-Polder formula is in no way a correction to
the London formula. For R > fr, the contribution due to
transverse photons leads to the suppression of the term
~R'e. In terms of the atomic system of units, we have
*= (ΔΕα)'1. For He, Δ£= 1.14 atomic units and X
= 120a0. For the Lyman transitions in hydrogen, Htf
~245<z0, and for characteristic transitions in organic
molecules, * is much greater and is of the order of

The physical reasons for the reduction in the strength
of the dispersion interaction in the case of retardation
can be readily understood. The field due to the instan-
taneous dipole moment dA of molecule A reaches mole-
cule £ in a time R/c and induces in it a dipole moment
dB which interacts with dA after a time 2R/c. The di-
pole moment dA may change its direction during this
time and, in particular, it may rotate through 90°, re-
sulting in zero interaction. Naturally, the retarded
interaction will be weaker than the instantaneous inter-
action.

The Casimir-Polder potential is the first term of an
asymptotic expansion in powers of *. For He-He, the
first few terms of the asymptotic expansion are74·75

5>Clearer derivations of the Casimir-Polder formula were giv-
en later. 5 9 · 7 0 Dzyaloshinskii71 has derived the Casimir-
Polder formula by the methods of quantum field theory. See
also the review by P o w e r . η · η
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Attractive forces analogous to the van der Waals
forces between molecules are also found to arise when
macroscopic bodies are brought together. The general
theory of interaction between macroscopic bodies was
developed by Ε. Μ. Lifshitz.76 It is based on the idea
that the interaction is due to fluctuations in the electro-
magnetic field within the body and outside its limits.
Such fluctuations are always present and, like the ther-
mal fluctuations, are of quantum-mechanical origin.
The interacting bodies are looked upon as continuous
media. The validity of this approach relies on the fact
that the separation between the surfaces of the bodies,
although small, is nevertheless much greater than the
interatomic distances within them. The only macro-
scopic characteristic of bodies that determines the
interaction forces between them is the imaginary part
of their dielectric permittivity, ε"(ω). The theory de-
veloped in this way is valid for all bodies whatever their
molecular structure. Since it starts with the exact
equations for the electromagnetic field, it automatically
takes into account the retardation effects. The Lifshitz
theory has been generalized by the methods of quantum
field theory to an arbitrary inhomogeneous medium by
Dzyaloshinskii and PitaevskiL77 A detailed review of
this theory can be found in the literature.7 8 A relatively
simple method of deriving the Lifshitz formula for the
interaction energy between two plates is given by
Pack.84

If it is assumed that the bodies are of sufficiently low
density, the general formulas for the interaction be-
tween macroscopic bodies will eventually reduce to
formulas for the interaction between individual atoms
or molecules. This can be achieved by using the well-
known relation between the imaginary part ε"(ω) of the
dielectric permittivity and the spectral density of the
oscillator strength /(ω). The final result for distances
R «KC/AE is the London formula with the coefficient C6

given by (2.39). For R»Hc/AE, the final result is the
Casimir-Polder formula given by (2.49).

Thus, macroscopic analysis leads to the formula for
the "microscopic" forces. This indicates that the
macroscopic interaction is determined by the London
(Casimir-Polder) dispersion forces. Although the
interaction between the molecules making up the macro-
scopic body falls off with distance as R~6 (R~7), the
interaction between the bodies themselves falls off with
distance much more slowly. In fact, the interaction en-
ergy per unit area of two flat plates separated by a gap
I is obtained by integrating over all the interacting pairs
and is given by76

if each pair interacts according to the law C6/R6, and
«j is the concentration of the molecules in the i-th
plate. When the interaction energy is ~l/R7, the at-
tractive energy between the plates decreases as I'3.

Direct measurements of the interaction force between
macroscopic bodies and of their dependence on distance
have resulted in complete agreement with the theoreti-
cal predictions.79'80 The greatest difficulty in these ex-

periments is to produce pure and smooth surfaces, with
protrusions not exceeding 10"5-10'7 cm, and to achieve
accurate measurement of distance. The latter is per-
formed with the aid of multiple-beam interferometry.81

The most accurate experiments80 have resulted in suc-
cessful measurements of the interaction when the dis-
tance between the surfaces was only 20a0.

F. Magnetic interactions

Corrections for retardation in the case of large sepa-
rations between molecules, which were connected with
the finite magnitude of the speed of light, i.e., correc-
tions of relativistic origin, were discussed in the last
section. Relativistic effects may also be appreciable
at shorter distances, namely, for R<K. They are con-
nected, above all, with magnetic interactions because
the magnetic moment is of relativistic origin.

The exact relativistic Hamiltonian for R <K can be
replaced, to within terms of order a2 by the Breit-
Pauli Hamiltonian

= He (2.51)

where a is the fine-structure constant, He is the non-
relativistic Hamiltonian given by (2.13), and ot2Hrtl

represents the interaction between the magnetic mo-
ments of the system.8 2·8 3·2 1

Meath and Hirschfelder75 have obtained a multipole
expansion for all the terms in HTtl. They found that the
first few terms of the multipole expansion for Hrtl can
be more slowly varying with R than the first terms in
the non-relativistic expansion. Thus, only the disper-
sion energy remains for the interaction between two
atoms in nondegenerate states, since the first-order
energies vanish. For R<%, the result to within a2 is

. . ) . (2.52)

The main relativistic correction to the London energy
is provided by the term ofwjR*, in which the coeffi-
cient Wit like the coefficient C6 [see formula (2.36)], is
expressed in terms of the oscillator strengths and the
transition frequencies:

1-4- 2 (2.53)

Numerical estimates for the interaction between inert-
gas atoms7 4·7 5 show that C6 and W4 are of roughly the
same order of magnitude. It follows that, at large sep-
arations, the relativistic contribution to the interaction
energy becomes very substantial. The ratio of the
leading terms in the relativistic and non-relativistic
parts of the interaction energy is a2R2Wi/ C6.

Let us now estimate this ratio for the He-He interac-
tion. It has been reported74 that, for He-He, the ratio
is WjCs~ 0.45 (see also Refs. 85 and 49). The result is
that, for R~100a0, the relativistic repulsion compen-
sates roughly a quarter of the dispersion attraction. It
must be remembered, however, that (2.52) is valid in
the absence of retardation, i.e., for R<X (for He-He,
X~120<z0). Further corrections in a in the far-field
zone can be obtained from the exact electrodynamic ex-
pression. These corrections are proportional to a3/R3
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and α4/i?2. According to the estimates of Meath and
Hirschfelder,75 the Breit-Pauli approximation (2.52)
differs from the exact expression by not more than 5%
for Λ<0.6Χ.

For systems in degenerate states, the interaction en-
ergy may be nonzero even in first-order perturbation
theory. The interaction may then be considered86 with-
out taking retardation into account for all R. This fol-
lows qualitatively from the fact that, in this case, X
= Kc/AE~°°. For molecules with nonzero dipole electric
and magnetic moments,

(2.54)

Meath87 has calculated the interaction energy for two
hydrogen atoms in the ground state (La=Lb= 0) but dif-
ferent spin states:

β.50 , 0,46α'

6.50 , 0.46α' , α·

6.50 0.46α' α*
+

(2.55)

The magnetic spin-spin interactions appear only for
the triplet states. The resultant relativistic energy for
the term 3 Σ 0 is 10% of the London energy already at
distances Λ~22θο, whereas, for the 3 Σ ± 1 terms, the
corresponding distance is R ~ 30OQ. The spin-spin
interaction becomes dominant for Λ> 100α0. Since
these interactions are static, they retain their form for
R>K. It follows that, at large distances, the dominant
term in the interaction energy for systems with zero
dipole moment but nonzero spin is a2W3/R3.

Chang88 has estimated that the contribution of rela-
tivistic interactions to the O* term of the oxygen mole-
cule is about 10-20% of the quadrupole interactions for
R= 30a0 and 35-60% for R = 50a0. The inclusion of rela-
tivistic interactions is very important in the analysis of
the interaction between electronically excited molecules
and atoms and, in particular, for resonance inter-
actions.2 1·8 6·8 7·8 9-9 4

The effect of spin interactions on molecular terms
was investigated in detail by Harriman et al.9S (see also
Hirschfelder and Meath21) by considering the interac-
tion between two hydrogen atoms. The effective Ham-
iltonian for the spin states of the two electrons with
spins S 1 ;S 2 and the two protons with spins la,lb can be
written in the form

Se = *cooi- (4" + 2SiS») £««h + (S,S,-3SA) -g- + A (S,Ia + 8,Ι»),_
(2.56)

where A= 0.047 cm' 1 is the hyperfine interaction con-
stant. For Λ<9α0, terms due to the hyperfine interac-
tion are small and it is sufficient to take into account
only the electron spins. For 9αο<Λ<12αο, it is essen-
tial to take into account all terms in the Hamiltonian
given by (2.56). When R= I2ao Encb=A/l2, the singlet-
triplet splitting becomes smaller than the hyperfine
splitting. Thus, for R » 12a0, the H2 terms can no long-
er be classified as singlet and triplet on the basis of
electron spins and one must start with the atomic
states, described by the angular momentum, i.e., the
sum of the electron and nuclear spins. Similar results
have been reported by Milleur et al.96 for HD and D2.

Inclusion of the hyperfine interaction is important in
scattering involving spin exchange. This influences the
intensity of the 21-cm line familiar in rf spectroscopy,
the polarization in electron spin resonance, optical
pumping, hydrogen masers, and a number of other pro-
cesses connected with spin interactions.

G. Exchange interactions

For R% 15a0, it is essential to take into account elec-
tron exchange effects that are the consequence of
Pauli's principle. According to this principle, the
wave function of a system must be antisymmetric under
the interachange of electrons not only in each of the
molecules but between the molecules as well. In the
zero-order approximation in the interaction between
the molecules,

Ψο = Λν£(-ΐ)'<?ΨΜ>?. (2.57)

where Q is a permutation of electron exchange between
molecules, q is the parity of the permutation, and NAB

is a normalizing factor. The expectation value of the
interaction energy for the wave function given by (2.57),
normalized for each R, and corresponding to the first-
order perturbation theory, can be written in the form:

O ? |U1 <Ti f? |V | ̂  ( - O . (2.58)

where the first term represents the electrostatic ener-
gy (2.16) and the second the exchange energy ££>„. To
determine this energy, we must include the overlap
integrals in the normalizing factor. NQ=(NA + NB)l/
(NAlNB\) is the number of permutations Q of the mole-
cules, including the unit permutation. We emphasize
that the sum over Q includes all the possible permuta-
tions of electron exchange between the molecules and
not simply single transpositions of pairs. The exchange
energy falls off exponentially to zero as the separation
between the molecules increases.

When electron exchange is taken into account, the
standard Rayleigh-Schrodinger perturbation theory can-
not be used because the zero-order function (2.57) is
not an eigenfunction of the zero-order Hamiltonian Ho

= HA+HB. Many different variants of the theory97"119

have been constructed since the original paper by
Eisenschitz and London.13 They will be reviewed in
Sec. 3B. Here, we merely mention that, in second-
and higher-order perturbation theory, the exchange and
polarization contributions to the energy cannot be sep-
arated and form the combined exchange-polarization
energy. The omission of exchange in the second-order
for u s 6a0 leads to a substantial change in the polariza-
tion energy. This was clearly illustrated by Murrell
and Shaw,120 who calculated the dispersion energy for
two hydrogen atoms in the ground state, with and with-
out exchange. The contribution of exchange forces to
the dispersion energy was calculated by Kochanski and
Gauget121 for the H2-H2 system.

The total contribution of exchange forces to the inter-
action energy increases rapidly as the molecules ap-
proach one another. For small distances, the interact-
ing molecules can no longer be regarded as separate
systems, and perturbation theory is no longer valid.
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Figure 3 shows the variation in electron-density dis-
tribution in lithium atoms, calculated by a precision
method involving the multi-configurational self-consis-
tent field.122 The electron distribution exhibits an anal-
ogous behavior in the case of interaction moelcules.
In this region of separations, the interacting subsys-
tems must be regarded as forming a single quantum-
mechanical system—the quasimolecule—and the same
methods must be used as in the case of calculations in-
volving the electron shells of molecules. The varia-
tional approach and, in particular, the self-consistent
field approximation with its various improved variants
in which electron correlation is taken into account, has
been found to be very acceptable. The variational
method yields the total energy Ε of the system. The
interaction energy is defined as the difference

E-mt=E-[EA + EB). (2.59)

If we neglect all terms containing the exchange electron
density, we obtain the Coulomb interaction energy
£ C o u l , which includes all the multipole interactions.
The exchange energy is then given by the difference

^exch = ^lnt — ^Coul· ( 2 . 6 0 )

The most accurate calculations of the interaction en-
ergy have been carried out by Kolos and
Vol'nevich29·30·123·124 for the system of two hydrogen
atoms, and recently by Kolos.125"128 These calculations
involve the use of 60-80-term variational functions of
the James-Coolidge type. For the 3ΣΒ term, the van
der Waals minimum with a depth of 4.3 cm"1 (~5 χ 10"4

eV) was obtained for Λ = 7.85α0. The energy of zero-
point oscillations is greater than this figure for H2 but,
in the case of D2, it is found to be smaller. For the
1ΠΒ terms, the van der Waals minimum turns out to be
deeper, namely, ~105.5 cm"1 (~1.3xlO*2 eV), and oc-
curs at R = 9a0.

For diatomic molecules with two valence electrons,
the Coulomb and exchange energies are often21·129 de-
fined in terms of the energies of the lowest singlet and
triplet terms:

Eexch = AEST = ±-[E ('2J) - Ε (3Σ1)]. (2.62)

Whilst, in first-order perturbation theory, the energies

defined by (2.61) and (2.62) for atoms are identical with
the atomic Coulomb and exchange energies, in the case
of molecules, there is a discrepancy even in the first
approximation because of the presence of the overlap
integrals in the normalizing factor [see (2.58)], al-
though the main contribution to (2.61) and (2.62) is, as
before, provided by the Coulomb and exchange ener-
gies, respectively.

Since the Heitler-London function yields the correct
limiting expression for the energy as R~°°, one would
expect that it would provide a better approximation to
AEST as R increases. However, Herring130 and Gor'kov
and Pitaevskii131 have shown that the Heitler-London
function leads to an incorrect asymptotic behavior of
AEST. The correct asymptotic expression is132

A£as = -0.82 №/2e-2« + ο (R-e-2R), (2.63)

whereas the Heitler-London approximation gives

(A£fT)Hi=[~g-+4(v + lni?)]«3^2H + O(№-2R), (2.64)

where y= 0.5772 is the Euler constant. When R s 60a0,
the Heitler-London energy for 3Σ* becomes less than
the energy of the ground state lZ*t The reason for this
is that electron correlation has not been adequately
taken into account. Even the simplest variational func-
tion involving the Is orbitals and taking into account
electron correlation, i.e., the so-called Weinbaum
function, gives nonintersecting singlet and triplet
terms. Calculations performed133 for R = Sa0 in the case
of the singlet-triplet splitting in a hydrogen molecule,
taking into account the superposition of excited and ion-
ic configurations, have resulted in an improved agree-
ment with the exact Kolos-Vol'nevich variational cal-
culation.

Table VII lists the values of AEST, calculated from
the asymptotically correct formula (2.63) and the
Heitler-London formula (2.64). The values of the di-
pole-dipole term in the dispersion energy are also giv-
en for comparison. It is clear from the table that, in
the range Λ = 7αο-12αο, in which AEST is still small,
the departure from the Heitler-London approximation
is small. Substantial departures appear only for R
s= 20a0, for which values of AEST become much smaller
than the dispersion energy. For R<: 3Qa0, magnetic
spin-spin interactions provide an appreciable contribu-
tion (see Sec. F).

Moreover, for R 3= 12a0, hyperfine interactions within
the hydrogen atoms become greater than the exchange

TABLE Vn. Singlet-triplet splitting AEST for
two hydrogen atoms, calculated in different
approximations (atomic units).

* t . 9 » 12 iat.u.

FIG. 3. Behavior of the charge density distribution as Li
atoms approach one another:122 solid curve—calculated binding
energy; horizontal line—experimental binding energy.
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energy. The molecular terms of H2 can then no longer
be classified by the total electron spin because there is
a change in the nature of the coupling (see Sec. F). In
this region of distances, AEST does not determine the
actual splitting of the terms. Nevertheless, accurate
values of AEST are of considerable interest because
the cross sections for collisions with electron exchange
are governed by this difference.134·38

The asymptotic behavior of the exchange term split-
ting in the case of many-electron atoms has been in-
vestigated in the literature135"137 and is reviewed in de-
tail in Smirnov's monograph.38

Charge transfer in which a valence electron is trans-
ferred from a neutral atom to an ion has a large cross
section134·38 in the case of collisions between ions and
atoms (molecules). The charge-transfer cross section
is determined by the exchange splitting of the symmet-
ric and antisymmetric terms. In the case of H*, the ex-
change splitting is given by

&Eaehr=±.[E{^i)-E(^t)]. (2.65)

It was first noted by Landau39 and Herring130 that the
use of linear combinations of atomic orbitals leads to
incorrect asymptotic expressions for (2.65). The as-
ymptotic series for the energy of exchange interaction
between a proton and a hydrogen atom in the ground
state has been examined in the literature.138"141 The
first five terms of this series are

«^(HD-aa.---· (i +^~^--jW--.»».-...). (2.66)

In evaluating the asymptotic expansion for each value
of R, only those terms are retained that are not greater
than the preceding terms. Beginning with R =10«0, cal-
culations based on (2.66) agree with those obtained from
the exact solution of the problem.142

Electron transfer can also occur in the case of inter-
action between neutral molecules.143"144 This happens
when the potential energy curves that correspond at in-
finity to neutral molecules A, B and ions A*,B~ approach
one another very closely in a certain range of distances
(in the absence of interaction, the curves will cross).
Electron-transfer effects have been found in the case of
collisions between alkali-metal atoms and halogen and
other molecules with high electron affinities. The nec-
essary energy can be drawn not only from the initial
kinetic energy of the partners but also from the disso-
ciative chemiionization.144

Allowance for energy transfer may lead to the stabil-
ization of the system. In the zero-order approximation
in the interaction, degeneracy is found to set in in the
region of the AB and A*B~ term crossing. The wave
function for the system can be written as a superposi-
tion of the antisymmetric functions

ψο = Ψο(4£) + αΨ0(4+£-), (2.67)

where the coefficient a governs the contribution of the
ionic states. If the molecule A has a low ionization po-
tential and the molecule B? high electron affinity, the
contribution of states with energy transfer may sub-
stantially reduce the total energy of the system. This
should lead to stable donor-acceptor complexes, as

was first demonstrated by Mulliken.145 Examples of
such complexes are quinone-hydroquinone and J2-ben-
zene.

The inclusion of ionic terms leads to a reduction in
the energy of the system in the case of identical mole-
cules as well. Instead of (2.67), we then take

Ψο = Ψο (AB) + α [Ψο (Α+Β-) + ψ0 (AS*)]. (2.68)

The use of the functions given by (2.67)-(2.68) in sec-
ond-order perturbation theory results in corrections to
the induction and dispersion energies, known as '
charge-transfer corrections.146·147

Transfers of charge and polarization are also addi-
tional stabilizing factors in the case of complexes with
hydrogen bonding,148"150 which is characterized by a
relatively large stabilization energy (5-30 kcal) and
forms in many hydrogen-containing compounds in the
presence of an unshared electron pair. Characteristic
complexes with hydrogen bonding are, for example,
dimers of water, dimers of organic acids, and many
protein structures. The hydrogen atom forms a kind of
bridge between the interacting molecules in such com-
plexes. The idea of charge transfer in compounds with
hydrogen bonding (the donor-acceptor model) was put
forward by Sokolov.151"153 Several qualitative models
were later suggested and analyzed.148"150·154"156 It has
become clear in the course of the last few years that a
quantitative description of the hydrogen bond can be
achieved only as a result of a complete quantum-me-
chanical calculation, including all the electrons in the
complex and not merely the triatomic fragment con-
taining the hydrogen atom. Such calculations rely on
the variational method or the exchange perturbation
theory (see below). A number of reviews have exam-
ined this question.157"159

H. Contribution of different kinds of interaction to the
energy of the system of two hydrogen atoms

The analysis of different types of interaction given
above in Sees. B-G enables us to represent the total
interaction energy at large and intermediate distances
as the sum of terms whose relative weight varies with
the intermolecular distance. In the simplest case of
two hydrogen atoms, the expression for the total energy
for 8θο<Λ<200α0 can be written in the form of the fol-
lowing asymptotically convergent series:21 6 )

£„_„ = =ρΟ.82Λ'/*βχρ (-2Λ) + (W3a* — 0.3714a3) R-» -0.4628a*i?-*

- 6.49927 (1 + 0.00723) Λ"" -124.4 (1 + 0.0038) Λ"8

—(1135 +2150) (1 +0.0049) Λ"10 -3986 (1 + 0.0054) Λ " " + . . .

(2.69)
In this expression, the exponential terms provide an
asymptotically correct exchange energy [see (2.63)] and
the negative and positive signs refer to the singlet and
triplet electronic states, respectively. The term
W3a?R~3 describes the spin-spin interactions. For R

e)Bukta and Meath236 have given an Improved value for the co-
efficient of Λ"11 which appears in third-order perturbation
theory. They have also calculated the coefficient of Λ-12,
which contains contributions of second- and fourth-order per-
turbation theory. These terms are: 3475Λ-"-122728Λ-12.
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<9α0, electron spin is a good quantum number and, at
the same time, W3=0forS=0, W3=1 for S=l, Ms=0,
and W 3=l/2forS=l,A/ s=±l [see (2.55)]. For R>9a0,
electron spin is no longer a good quantum number since
the interaction between the electron spin and the spin of
the corresponding nucleus becomes greater than the
interaction between the spins of the two electrons. The
values of W3 in this case were calculated by Harriman
et al.95 (see also Hirschfelder and Meath21). The terms
proportional to a3R'3 and α2Λ"4 are the relativistic
corrections obtained from the exact electrodynamic ex-
pression for R<K (see Sec. F). The terms
-6.499 027/Γ6, -124.4iT8, 1135Λ"10, and 2150JT10 cor-
respond to the dipole-dipole {E™), dipole-quadrupole
(£j2)), quadrupole-quadrupole (El

qf), and dipole-octu-
pole (E{

dllct) contribution to the second-order disper-
sion energy. The term 3989Λ'11 represents the third-
order dipole-quadrupole-dipole dispersion energy
(E^Jj). Finally, the small corrections to unity in paren-
theses are the nonadiabatic corrections to the Born-Op-
penheimer approximation.

Table VIII lists the values of the different contribu-
tions to £H_ H. It follows from these data that, for R
> 30aQ, all the terms are smaller than the dispersion
dipole-dipole term by at least two orders of magnitude,
and only the contributions of the spin-spin interaction
are comparable with the latter and even exceed it for

can be used to calculate the tail of the potential energy
curve. We shall follow this by a discussion of the re-
cently developed numerous perturbation-theory formal-
isms which take into account electron exchange between
subsystems. Finally, in the last section, we shall ex-
amine variational methods which can be used to calcu-
late the entire potential curve rather than just its in-
dividual segments, as in the case of perturbation theo-
ry.

A. Perturbation theory for long-range forces and the
multipole expansion

For separations R2 10αο-15αο between the mole-
cules exchange effects are negligible and the interaction
energy can be calculated by standard Rayleigh-Schro-
dinger perturbation theory. The Hamiltonian for the
system

He = HA + HB + £/(/?) = #„ + U(R) (3.1)

then contains the intermolecular interaction potential
U(R) which is regarded as a small perturbation to the
zero-order Hamiltonian Ho. The zero-order wave func-
tion is taken to be the simple product of the wave func-
tions of the isolated molecules. The interaction energy
is then obtained in the form of the perturbation-theory
series

We also note that, if we take into account the terms
proportional to R'B,R'i0 in second-order dispersion
theory, we must also take the term ~R~11 in third or-
der. For R> 20a0, the contribution of the terms ~α2Λ"4

and a3R~3, which are due to relativistic corrections,
are comparable in magnitude with ~R~10 and, for R
>40a0, with~iT8.

3. METHOD OF CALCULATING THE POTENTIAL
ENERGY CURVES AND THE CRITERIA FOR THEIR
VALIDITY

In this section of our review, we shall briefly discuss
the main methods for calculating different parts of the
potential-energy curve. We shall devote particular at-
tention to the criteria for the validity of the methods
and to the analysis of the attendant uncertainties. We
shall begin by considering the most commonly employed
multipole expansion for the interaction energy, which

TABLE v m . Contributions to the interaction energy between two
hydrogen atoms (atomic units).
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whose terms can be calculated from standard formulas
of quantum mechanics.24·39 We emphasize that electron
exchange is not taken into account in (3.2), i.e., the
latter is the purely Coulomb energy.

At large distances, the Coulomb energy is usually
written as a series in inverse powers of the intermo-
lecular distance:

«Coul as x*1} j£J Dm ' \**··*/

tn=A

The value of k depends on the number of the first non-
zero multipole moment of the molecules (see Sec. 2B).

Theoretically there exist two equivalent methods for
obtaining the expansion (3.3). The first method consists
of the exact evaluation of the terms in the perturbation-
theory series (3.2), followed by the expansion of each
expression in powers of R'1. This method is realistic
only for simple systems, for example, H+. In practice
the second method is used, namely, the interaction op-
erator in the matrix elements of the perturbation-theory
formulas is expanded into a multipole series.

When the energy is written in the form of a series in
powers of R~l, this means in relation to (3.2) that ex-
ponentially decreasing terms have been neglected. The
presence of the exponentially decreasing terms in the
Coulomb energy is connected with the exponential de-
crease in the density of the charge cloud. We empha-
size that, although these terms do have the distance de-
pendence characteristic of exchange terms, they have,
in fact, a different origin. It is therefore surprising to
see the attempt160 to obtain an asymptotic expansion of
the singlet-triplet splitting with the aid of the perturba-
tion-theory series (3.2).
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Dalgarno and Lynn161 have demonstrated the equiva-
lence of the above two methods of deriving (3.3) by con-
sidering the energy of interaction between the ground-
state of the hydrogen atom and H* in second-order per-
turbation theory. After neglecting the exponentially de-
creasing terms in the exact expression for the energy
£p2), and then expanding in powers of 1/R, these workers
obtained the following expression:162

Dpol.«
(21+2)1(1 + 2) (3.4)

This is identical with the expression obtained by ex-
panding the interaction operator into a multipole ser-
ies.1 6 3 In the case of the excited states of H£, the error
introduced by expanding the energy in powers of 1/R
may be quite large.1 6 4

Summation of the expansions in terms of powers of
R'1 for each order of perturbation theory leads to (3.3).
We note that if, in this procedure, we retain only the
first two orders of perturbation theory, there is the
danger that the neglected terms will be of the same or-
der as those retained. Thus, in the case of Ή*, expan-
sion of the interaction potential into a multipole series
has been used165 to obtain the following expressions for
the first few corrections to the energy:

(3.5)

It is clear from this that the retention of terms up to
R'10 inclusive in second-order perturbation theory is
sensible only if one also calculates the corrections to
the interaction energy in the third and fourth orders.

It must, however, be remembered that the tendency
to retain a large number of terms in the expansion in
powers of R'1 may lead to a deterioration rather than
an improvement in the results because the series in
(3.3) converges only asymptotically, i.e., for Λ-°°.
Thus, it is readily verified that the series (3.4) di-
verges for any finite R. To do this we determine the
ratio of the (n+ l)-th term to the n-th term:

1 2n(2n + 3)(nH
(2Λ)» (n+2) (3.6)

This ratio tends to infinity with increasing « for any
finite R.

One of the first papers devoted to the convergence of
the expansion in powers of 1/R was that due to
Brooks,166 who considered the interaction between two
three-dimensional isotropic harmonic oscillators in
second-order perturbation theory by writing the inter-
action potential in the form of the multipole series.
Having evaluated the terms of these series analytically,
he showed7' that the expansion of the interaction poten-
tial in powers of 1/R represented the exact value of
E*$ only asymptotically. At this point, it is obviously

7)A critique of Brooks' proof has been given by Young.16?
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useful to introduce the definition of an asymptotic ser-
ies.1 6 8

A series Σ * CjR" is called asymptotic to the function
E(R) in the sense of PoincarS if for any positive integer
Ν

Ν

limR"\E(R)-V. -%-]=0 forgivenjV, (3.7)
H-*oo L ι Rk J

even if

= °o for given R. (3.8)

Although the asymptotic series diverges for each giv-
en R, there is an optimum Ν for which the representa-
tion of the function by the series is the best. For a giv-
en N, the asymptotic series will represent the function
with any given precision for sufficiently large R.

A rigorous proof that the multipole expansion is as-
ymptotic has been given only for the ground states of
simple systems such as H * 1 6 1 · 1 6 3 · 1 6 9 and H2.

167 For
complicated systems, the divergence of the expansion
is indicated by the behavior of the terms with decreas-
ing R: successive terms in the series become compar-
able in magnitude.1 8 4·1 7 0 '1 7 2·4 2 Convergence of multi-
pole expansions is worse in the excited than in the
ground states because of the greater smearing out of
the electron cloud in the former. Kolos126 has calcu-
lated the interaction energy of H2 in the ̂ Σ * state dis-
sociating into hydrogen atoms in Is and 2/>σ states, and
has shown that the multipole series for £ p u l as is, is a
poor approximation to EvoX up to R ~ 10σ0 (Table DC).

For sufficiently large distances, the multipole expan-
sion provides a satisfactory description of the interac-
tion energy. In practice, the asymptotic series is trun-
cated at the term after which an increase begins. One
then takes the sum of all the terms up to the smallest
plus half the smallest term.1 6 5 For qualitative esti-
mates at large R, it is sufficient to calculate the first
term in the expansion. In the case of neutral systems,
this term is CjR6 (the methods for calculating C6 are
described in Sec. 2C.)

Direct evaluation of the perturbation-theory series
(3.2) is a much more difficult problem than evaluation
by expansion into powers of 1/R. Nevertheless, this
complication can be justified because, as a rule, the
approximation (3.2) remains valid down to smaller dis-
tances than the expansion in powers of 1/R. The con-
nection between (3.2) and (3.3) has been investigated by
Kreek et al.169'"3'"7 In each order, the energy is writ-
ten as the sum of terms, the so-called "unexpanded en-

TABLE EC. Estimated accuracy of the multipole expansion for the
Β1 Σ ; state offf2 (cm"1)126.

Β, «ο

12
15
18
20

•a·

—155
- 7 3
—41
—30

41
37
86
46

"%l.as

—140.96
—72.17
—41.77
- 3 0 . 4 5

100 -
4'o'ul

9.3%
1.6%
0.2%
0.03%

E(2>E pol

—44.8
—7.4
—1.9
-0.88

«a·.
— 5 .
- 1 .
— 0 .

as

6
6
71

c ( 2 ) i.(2)
100 P o 1 """"'• "

"pel

24%
15.8%
19.3%
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ergies," each of which (or their combination) tends with
increasing R to zero or to one of the terms of the ex-
pansion in powers of Ι/Λ in (3.3). The unexpanded en-
ergies contain exponentially decreasing terms due, as
already noted, to the overlap of the charge distribu-
tions. Kreek and Meath169 assert that the convergence
problem does not arise in the case of the "unexpanded
energy" series because each term is smaller than the
preceding one. The sum of unexpanded energies con-
verges smoothly to E'P

2J at all distances. Calculations
have been performed169'173"176 for H*, H2, He2, He, and
H. The validity of the multipole expansion for the Cou-
lomb energy in the first order has been discussed by
Kin-Chue Ng et a?.177 in the case of the H2-H2 system.

B. Exchange perturbation theories

In the intermediate range of distances, 4 e o s i ? s 15a0,
the interaction between the molecules can still be
looked upon as a perturbation but exchange effects must
be taken into account in this region. The zero-order
wave function must be antisymmetrized by introducing
the wave functions of the isolated molecules:

ψ<°> = A\lpk ss Λψ£ψ&. (3.9)

Since the functions ψ$ and tfa are antisymmetric, the
operator A contains only the exchange permutations Q:

ZEAEsL.
(NA+NB)\

(3.10)

However, the function (3.9) is not an eigenfunction of
the zero-order Hamiltonian Ho since the latter is not
invariant under the interchange of electrons between
molecules.8' The symmetry group of the total Hamil-
tonian turns out to be broader than the symmetry group
of the zero-order Hamiltonian. In other words, the
total Hamiltonian He [see (3.1)] commutes with the
antisymmetrization operator:

,, 41 = 0, (3.11)

while the zero-order Hamiltonian and the perturbation
operator do not commute with A:

IHO, /, Α)Φ0. (3.12)

Consequently, the use of the antisymmetrized func-
tions (3.9) as the zero-order functions will not allow us
to employ the standard formulas of the Rayleigh-Schro-
dinger perturbation theory or the Brillouin-Wigner the-
ory. On the other hand, if the zero-order eigenfunc-
tions of the operator Ho are taken to be {ί/>£ψ£}, this
leads to nonphysical solutions.178

The set of antisymmetric functions {Aip,}, where ipk is
the product of the eigenfunctions of the isolated mole-

8 ) For example, for the simple case of two hydrogen atoms,

It is clear that J?o is not symmetric under the interchange of
the numbers labeling the electrons. The symmetric
Hamiltonian is obtained only by adding to H9 the interaction
operator U

1 1 1 1

cules, has a number of undesirable properties. The
functions Aijik are not orthogonal to one another which,
apart from computational difficulties, means that the
functions Aijik cannot be the eigenfunctions of a Hermit-
ian Hamiltonian. Moreover, the set of functions {A$J
is not complete because the Aipk are not linearly inde-
pendent. The proof of the last assertion can be given in
a more general case.

Consider an arbitrary symmetric function <pt. Let us
expand it into a series over a certain complete set {<?„}.
This set can be taken to be, for example, the set
{φ^φ^}, if φ, is defined in the space of the NA + NB elec-
trons:

<P« = ECSn<I>n· (3.13)

If we apply the antisymmetrization operator A to both
sides of (3.13), we obtain

^φ ί = 0=Σ^η<4φη. (3.14)

This shows that the set {A<pJ- is not linearly indepen-
dent.

Since an expansion over a set that is not linearly in-
dependent is not unique, we have the possibility of con-
structing different variants of perturbation theory with
the aid of the functions given by (3.9). It can be
shown179 that the expansion coefficients of a certain
function/ based on the antisymmetric set (3.9), i.e.,

f = -gckA<tk (3.15)

have the following form:

Βξ), (3.16)

where NQ=(NA + NB)l/(NA\NBl) is the number of ex-
change permutations, B= I -N"ll2A, and ξ is an arbi-
trary function of electron coordinates. Eisenschitz and
London13 define the coefficients Ck by demanding that
the sum of the squares of the absolute values of the co-
efficients Ck be a minimum, which corresponds to ξ
= 0. This choice is, in general, arbitrary and has no
advantages as compared with the different choices
characteristic of other formalisms.179

The Eisenschitz-London perturbation theory (EL)13

was reformulated in the language of wave opera-
tors1 8 0"1 8 1 by Van der Avoird.106 This resulted in com-
pact formulas for the energies and wave functions in
arbitrary order of perturbation theory. For the first
two orders, the interaction energy is

*••!>- <*.Ι'«ΤΙΨ.> ί 3 . 1 7 ϊ

U=-
Κ<ΰ RH r12 Rat>

Expressions identical with these have also been obtained
by Hirschfelder.108 We shall refer to this particular
variant of perturbation theory as EL-HAV (Eisenschitz-
London-Hirschfelder-Van der Avoird).

The fact that the expansion in terms of the anti-sym-
metric functions is not unambiguous has led to the ap-
pearance of a large number of different exchange per-
turbation theories. They can be divided into two
groups, depending on the zero-order Hamiltonian em-
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ployed. "Nonsymmetric" theories1 0 6"1 1 9 use H0=HA+HB

as the zero-order Hamiltonian.9' The theories differ
by the different methods used to choose the zero-order
functions. In "symmetric" formalisms,97"105 the pro-
cedure is to construct a symmetric zero-order Hamil-
tonian Hs with antisymmetric eigenfunctions. Once this
is done, the usual Rayleigh-Schrudinger perturbation
theory is employed.

Symmetric theories encounter considerable difficul-
ties when the number of electrons is greater than two.
Moreover, the Hamiltonian Hs is not Hermitian. "Non-
symmetric" theories are much more widely used. Be-
fore we review the various non-symmetric approaches,
we define the following abbreviations: AM (Amos-
Musher112), MS-ΜΑ (Murrell-Shaw-Musher-
Amos109"110), HS (Hirschfelder-Silbey114), CBH (Chip-
man-Bowman-Hirschfelder118), and MJ (Matsen-Junk-
er 1 1 5).

An analysis of the ambiguities of nonsymmetric for-
malisms and a discussion of the connection between
them can be found in the literature. 1 8 2" 1 8 5 · 1 1 5 · 1 1 8 When
the symmetry of a Hamiltonian is examined, it must be
remembered that the symmetry of the Hamiltonian Η
may be different from that of Ho both with respect to
permutations and operations of spatial transformation.
In general, one must start with the symmetry group G
that is the outer product of the permutation group by
the point symmetry group of the system. The basis
function corresponding to the representation Τ of the
group G can be constructed from the nonsymmetric
function ξ with the aid of the projection operator41

(3.19)

where "/ is the dimensionality of the representaion T ,
g is the number of elements in the group, and ρχ(Λ) is
the character of the representation. The operators "A
are idempotent, orthogonal, and complete:

\4Μ=<νν

νΛ, 2vA=t. (3.20)
V

The function that is the solution of the Schrodinger
equation with the total Hamiltonian He can be written as
follows:

** = ̂ | v , (3.21)

where ξν is a nonsymmetric function. The subscript ν
on the function %v indicates that, for each representa-
tion T , one can, in general, take its own nonsymmet-
ric function ξμ.

When the wave function is taken in the form given by
(3.21), the perturbation-theory equations assume the
following form:
VAB,I«»=E,-AI«>>, (3.22a)

•"Α (Η,-Βύ "ξ'1' = νΛ CEV-U) £<«>, (3.22b)

(3.22c)

9>A common phrase used in English-language literature is
"symmetry adapted theories,"which reflects the fact that,
although the Hamiltonian Ho is not symmetric, the zero-order
functions have the right symmetry.

Byers Brown182 (see also Amos183) was the first to note
that these equations would not define "Elm) because
there was no function which, when multiplied by the
left-hand side and integrated, would yield zero. This
means that Eqs. (3.22b)-(3.22c) can be solved for any
" £ < m ) , i.e., "ξ*1"' are not uniquely defined by the set of
equations (3.22).1O) This was to be expected in view of
the ambiguities mentioned above.

Amos183 has shown that many of the variants of ex-
change perturbation theory can be obtained by eliminat-
ing the operator "A from (3.22). This, in fact, means
the imposition of additional conditions on ξμ and ensures
that it is uniquely defined.

Thus, the EL-HAV method1 3·1 0 6·1 0 8 corresponds to the
solution of (3.22) without the operator "A on the left-
hand side of the equations. This is equivalent to the as-
sumption that

(1— V4)(ff0—Ε) ξν"' = Ο foralln, ( 3 . 2 4 )

or, on summing the equations over n,

(1 -VA) (//„ - £0)ξ = 0; (3.25)

which, according to Amos,183 is the additional condition
on ξ,,. When this condition is taken into account, the
Schrodinger equation yields

<#„ - Ea)U +VAW -CB - £0)]ζν = 0, (3.26)

which is, in fact, the basic equation of the EL-HAV
method.

The exclusion of "A from (3.22) everywhere except for
the terms in which this operator precedes U leads to
the equation of the AM method:112

t,H,+ ->AU)U=vEU (3.27)

with the following condition on ξν:

(i - Ά) (#„ - •"£) ξν = ο. (3.28)

The MS-ΜΑ method109"110 is obtained from (3.22) by
eliminating "A from the first term in (3.22b) and from
all terms of (3.22c):

(H - "Ε) ξ, = (1 - "A) (H - -Ε) ξ'·), (3.29)

and this corresponds to the additional condition

(1 - "A) (H - VE) ( | v - ξ<·>) = 0. ( 3 . 3 0 )

Further conditions are imposed on the wave function in
the HS114 and MJ115 methods.

The above procedures correspond to the subdivision
of the equation

{H-E)Al=0 (3.31)

into the basic equation of the method

i,V = o, (3.32)

and the equation

1 0 )In traditional Rayleigh-Schrodinger perturbation theory, Ho

commutes with A. If we multiply (3.22b) by ξ(0> from the left
and integrate, we obtain

(ξ'°)|ϋ|ξ'"> /g 23)

and ξ α ) is uniquely determined by (3.22b).
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£,ϊ' = Ο, (3.33)

which is referred to 1 8 3 " 1 8 4 · 1 1 5 as the additional condition
on the function ξ'. The interpretation of (3.33) as the
condition that must be satisfied by ξ' means that we
must solve (3.32) and (3.33) simultaneously.

In actual fact, Eq. (3.32) is the only to be solved in
exchange perturbation theories, i.e., the functions ob-
tained by these methods do not necessarily satisfy the
additional conditions. Moreover, it has been shown184

that additional conditions cannot be satisfied in EL-
HAV, AM, MS-ΜΑ by the functions ξ' used in these
methods. On the other hand, Suzuki and I'Haya184 have
concluded that this means that the basic equations of
these methods are not physically consistent. This con-
clusion cannot be regarded as justified. In fact, the
complete equation (3.31) is replaced in these methods
by the approximate equation (3.32) and the quality of
this approximation depends on the size of the neglected
terms. Since the neglected terms are determined by
the exchange of electrons between the molecules, the
corresponding matrix elements will be small for large
enough distances, and the approximation may yield good
results whether or not the additional conditions are
satisfied.

Particular calculations have shown (see, for example,
Chipman and Hirschfelder186 and Certain and Hirsch-
felder187) that the EL-HAV, AM, MS-ΜΑ, HS.CBH, and
so on formalisms lead, in general, to satisfactory re-
sults for real systems. This has been quoted by Chip-
man185 as the main argument in favor of the exchange
perturbation formalisms criticized by Suzuki.184

The question as to which of these methods is the best
can be answered only on the basis of numerical calcu-
lations.

Such calculations have been performed for H 2

1 8 7 · 1 8 8

and HJ.186 (For recent calculations of the triplet state
of H2 by the MS-ΜΑ method, see Magnasco et al.la9)
The sum of the first and second orders of exchange
perturbation theory provides a good representation of
the interaction energy for R & 8<z0. The only exception
is the EL-HAV method. The best results are obtained
by the CBH method whereas other methods are roughly
equivalent at intermediate distances. Although the CBH
method gives the best results, it is much more com-
plicated in computational respects than the other for-
malisms and, in this sense, is comparable with the
variational method. As the distance increases, the EL-
HAV method gives inferior results. Calculations for
the ground and first excited state of H2 have shown187"188

that E'2) (EL-HAV) is about half E^ at R= 8a0 al-
though, at distances at which exchange effects are
small, exchange perturbation theory should give re-
sults that are close to standard perturbation theory.
The relation E<2) (EL-HAV) = 5 ^ , has been obtained
for large distances also in the case of Uf-90 and for
model systems.191·192 The factor 1/2 initially appeared
to be magic. However, calculations186 in the case of
HJ, using a broader basis than that employed by Van
der Avoird,190 yielded a factor of ~3/4. A small modi-
fication of the δ-function model yielded193 a factor of 1.

The asymptotic behavior of the energy in the EL-HAV
method is, therefore, sensitive to the choice of basis.
A sufficiently broad basis should lead to correct as-
ymptotic behavior and, therefore, the proof given by
Basilevsky and Berenfeld105 that the asymptotic behav-
ior of energy is independent of the size of the finite
basis seems to us to be incorrect.

The formalisms examined above are found to differ in
second-order perturbation theory because of the pres-
ence of exchange terms. For noble-gas atoms in ground
states, Murrell et al.191'196 have found that the interac-
tion energy can be represented, to a good approxima-
tion, by the sum of the first-order Coulomb exchange
energy, the second-order polarization energy, and the
"zero-order" energy connected with the approximate
character of the atomic basis functions. The precision
of these calculations is comparable with that of the
variational calculations, and they satisfactorily repro-
duce the experimental curves.

Calculations performed by Kolos125"126 in the case of
the 3 Σ ; and ΧΧΣ* states of H2 have also shown that the
predominant contribution to the interaction energy is
due to the sum of first-order Coulomb and exchange en-
ergies and second-order polarization energy:

£ ~ 4 ! ' + 4 ^ + 4ο.- 0.34)

Since the difficulties encountered in finding the exchange
terms in the exchange perturbation theory begin with
the second order, the formula given by (3.34) enables
us to perform calculations in the case of complicated
systems. In fact, Jeziorski and Van Hemert197 have
used this approximation in the case of the water dimer
(H2O)2. The wave functions obtained by the self-con-
sistent field method were used as the wave functions for
the monomers. These calculations have shown that the
dominant terms in the energy are the electrostatic at-
traction E^ and the exchange repulsion £ ^ h (Table X).
However, in the region of the minimum, these two
terms are not sufficient because they lead to bonding
that is too weak. Hydrogen bonding is stabilized by the
polarization interaction. It is also interesting to note
that, whereas at small distances the contribution of in-
duction forces exceeds the contribution of dispersion
forces, the picture changes as the distances increase.

However, the three-term expansion (3.34) is not al-
ways sufficient to achieve a satisfactory description of
the potential curve. Thus, the energy corresponding to
the molecular term i^EJ, obtained in the case of the
interaction between the Η atom in the Is state and the

TABLE X. Contributions to the (H2O)2 inter-
action energy197 (koal/mol).

Λο-ο·
in units of ao

4.0
4.40
4.80
5.20
5.67
7.00
9.00

15.00

—43.09
—27.10
—17.07
—11.10
—7.12
—2.79
-1.12
—0.21

• III
^ c x c h

105.49
51.58
25.11
12.03
4.90
0.30
0.00
0.00

E ind

—49.30
—2i.no

—9.30
—4.12
—1.03
—0.18
-0.02
—0.00

Edisp

—14.40
—8.41
- 4 . 8 "
—2.P5
-1.54
—0.31
-0.Γ5
-0.00

937 Sov. Phys. Usp. 21(11), Nov. 1978 I. G. Kaplan and Ο. Β. Rodimova S37



Η atom in the 2ρσ state, is determined by the terms 1 2 6

. (3.35)

In the case of the H*-He system, the first-order energy
turns out to be negligible compared with the second-
and higher-order energies:127

We conclude this section by briefly considering sym-
metric variants of exchange perturbation theory. It
has been shown97"98 that, for two-electron systems, it
is possible to contruct the zero-order Hamiltonian Hs

for which the antisymmetric function is an eigenfunc-
tion. This is the so-called Sternheimer Hamiltonian.
This Hamiltonian has been used1 8 7·1 8 8 in calculations of
the interaction in the ground state of H2, and has yielded
satisfactory results. The different modifications of the
symmetric Hamiltonian can be found in the litera-
ture. 9 9 · 1 0 3 " 1 0 4 They are all valid in the case of systems
with not more than two electrons.1 9 8·1 9 9 An attempt was
made by Epstein and Karl1 0 1 to generalize the definition
of the Sternheimer potential to many-electron systems
but no specific calculations were reported. The basic
difficulty in using the above symmetric variants of the
exchange perturbation theory is that the zero-order
Hamiltonian is not Hermitian. Basilevsky and Beren-
feld105 have constructed a variant of symmetric ex-
change perturbation theory using the second quantiza-
tion formalism and orthogonalization of the basis func-
tions.

An unusual approach in which standard perturbation
theory can be used to calculate intermolecular interac-
tions has been developed by Daudey et al.200'202 Here,
the Rayleigh-Schrodinger perturbation theory is used to
calculate the total energies of dimers and monomers by
replacing the perturbation operator by the correspond-
ing Hamiltonian. The interaction energy is obtained as
in the variational method in the form of the energy dif-
ference between the dimers and the monomers, calcu-
lated in the same perturbation-theory orders. A pre-
liminary step is the solution of the self-consistent field
equations and the determination of the molecular orbi-
tals of the monomers. To ensure that standard pertur-
bation theory can be used, the molecular orbitals of the
different monomers are orthogonalized and then the
zero-order wave functions are constructed as antisym-
metrized products of determinants for the isolated
monomers, including singly and doubly excited mono-
mer configurations. This approach is close to the vari-
ational method203"205 (see Sec. 3C) except that, instead
of the exact solution of the secular equation on a re-
stricted basis its solution is sought in successive or-
ders of perturbation theory. The procedure has been
applied201·202 to the computation of the potential energy
curve for (He)2 and (H2O)2.

C. Variational methods

At small distances, the individual molecules cannot
be separated in the interacting system. The system
must therefore be looked upon as a single quasimole-
cule and must be treated by the same methods that are
used for isolated molecules. Variational methods are

at present the most commonly used. The interaction
energy is then determined by subtracting the energies
of the isolated molecules from the total energy of the
system [see (2.59)]. At large distances, the interac-
tion energy is very small and this imposes stringent
conditions on the precision of the calculation and re-
stricts R to the region of small and intermediate dis-
tances. We have already discussed the H-H calcula-
tions of Kolos and Wolniewicz.29"30·123"128

In the case of more complicated systems, accurate
variational calculations similar to those of Kolos and
Wolniewicz in the case of H2 cannot be carried out.
The self-consistent field method in which the molecular
orbitals are approximately represented by linear com-
binations of atomic orbitals (LCAO MO SCF) is widely
used in calculations both of electron shells of mole-
cules and of molecular associations. The atomic or-
bitals are usually taken to be the Slater or Gauss func-
tions. The Hartree-Fock equation for the molecular
orbitals is reduced to a set of nonlinear algebraic equa-
tions for the coefficients of the expansion of the molec-
ular orbitals in terms of the given atomic orbitals.
Detailed accounts of the various approximations used
in the SCF method are readily available.206"212

Since the work of Clementi213 and Morokuma and
Pedersen,214 there have been many calculations by the
LCAO MO SCF method in which all the electrons of the
system were taken into account and a sufficiently broad
basis set was employed. Schuster et ai.w™.ns-ne
have given an analysis and a generalization of papers
on ion-molecular complexes and different classes of
compounds with hydrogen bonding. Comparisons with
the more accurate computed data and with experiments
have shown that the ab initio calculations performed by
the LCAO MO SCF method reproduce the geometry of
the complex quite well. The well depths are less sat-
isfactory.

Comparative analysis of calculations based on per-
turbation theory and SCF shows197 that the intermolecu-
lar interaction energy in the case of the SC F method
contains contributions due to the direct electrostatic,
exchange, and induction interactions. On the other
hand, dispersion interactions are not taken into ac-
count55 in the SC F method. The question therefore
arises as to why the resulting potential curves satis-
factorily describe the interaction energy despite the
fact that dispersion energy has been ignored and is
known to be very appreciable in the region of the van
der Waals minimum. Analysis of this question217 · 1 5 8" 1 5 9

has shown that the reasons must be sought in the mutual
cancellation of errors. In particular, such cancellation
also occurs in connection with the use, in the case of
the complex, of a broader basis (belonging to both mol-
ecules) as compared with energy calculations for iso-
lated molecules, which leads to an artificial stabiliza-
tion of the complex. This artefact has been examined
numerically2 1 8"2 2 0·2 0 1"2 0 2 by using the same basis in cal-
culations of the energies of the isolated molecules as in
the case of the entire complex. For small bases, the
error is quite large.

Ab initio calculations by the SCF method consume a
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considerable amount of machine time because they in-
volve the evaluation of complicated many-center inte-
grals whose number increases as ~n4 with increasing
basis length «. A number of semiempirical methods
have therefore been proposed. They are based on
either complete or partial neglect of exchange terms in
the SC F equations and the replacement of the remaining
integrals by parameters. The semiempirical methods
have been reviewed in detail in the linterature.2 0 9"2 1 2

The results of calculations on molecular complexes by
the semiempirical CNDO/2 and INDO methods have
been reviewed by Murphy and Rao.221 This analysis
shows that many of the characteristics of the intermo-
lecular interaction are satisfactorily reproduced by the
semiempirical scheme. Stability of the complexes is,
on average, slightly overestimated in this way. On the
other hand, delocalization of electrons and intermolec-
ular repulsion are highly overestimated. On the
whole, it may be concluded that the subdivision of the
interaction energy into the individual contributions
within the framework of the semiempirical method is
not physically significant because it depends on the na-
ture of the approximations and the number of param-
eters. More or less satisfactory results are due to
cancellation of errors. 2 2 2 · 1 5 8 We emphasize that calcu-
lations of intermolecular forces by the semiempirical
method may lead to qualitatively incorrect results, for
example, to incorrect geometry. This is so in the case
of calculations205 of the ethylene dimer (see below).

Ab initio calculations are essential if more realistic
potential curves are to be obtained. At the same time,
although the LCAO MO SCF method does predict the
correct geometry, it is nevertheless inadequate if cor-
rect values of the interaction energy are desired. The
reason for this is that the SC F method does not take
into account correlations between the relative motions
of the electrons. 2 0 8" 2 0 8 · 2 2 3 ' 2 2 4 Electron correlation can
be subdivided into intermolecular (this leads to disper-
sion forces) and intramolecular which leads to a reduc-
tion in the dipole moment and an increase in polariza-
bility.225

The simplest way of taking into account electron cor-
relation is to write the variational function as a linear
combination of functions describing the different one-
electron configurations of the interacting molecules.
Since the configurational expansion is known to con-
verge, the precision of the calculation increases with
increasing number of configurations that are taken into
account. A colossal number of configurations can be
taken into account when modern computers are em-
ployed. For example, Diercksen et al.20 have reported
calculations on the water dimer in which variational
functions were employed with 56,268 singly and doubly
excited configurations. Their results show that the ab-
solute value of the correlation energy increases with
decreasing distance between the molecules. At the min-
imum on the potential energy curve, the correlation
correction to the binding energy is 1.03 kcal/mole or
about 16% of the total binding energy of the dimer.
Apart from the substantial increase in the binding ener-
gy produced by electron correlation, it also leads to a
small reduction in the equilibrium separation: from

Λο_ο= 3 · 0 0 A in the case of SCF to Ro.o = 2.919 A when
the configurational interaction is taken into account.

The above calculations on molecular dimers, which
take electron correlation into account, start with the
excited electronic configurations of the entire complex,
which corresponds to the inclusion of electron correla-
tion within the framework of the method of molecular
orbitals. Kaplan and Rodimova203 and, independently,
Wormer, Van Berkel and Van der Avoird201"205 have de-
veloped a variational method for calculating the inter-
molecular interaction energy, which starts with the
states of the isolated molecules. In this sense, the
method is close to the perturbation-theory method ex-
cept that the energy is found by solving the secular
equation whose order is determined by the number of
excited states of isolated molecules taken into account.
Each such state is a molecular multiplet 2Sa*1r(a«>,
characterized by total electron spin Sa and index of the
irreducible representation Γ1™"' of the point symmetry
group of the molecule. The variational function φ is
constructed as a linear combination of functions that
are antisymmetrized with respect to all the inter-
changes of electrons between the molecules and corre-
sponding to definite molecular states:

o, 6

The main part of the problem is to evaluate the matrix
elements of the Hamiltonian using the antisymmetric
functions in (3.37). This is solved by the technique of
projection operators and fractional parentage coeffi-
cients.203

The energy obtained by solving the secular equation
corresponds to the inclusion of all perturbation theory
orders on a restricted number of molecular states. The
diagonal matrix element corresponds to first-order
perturbation theory, i.e., the interaction energy is de-
fined in first order as

(3.38)
The difference between the total energy obtained by
diagonalizing the secular equation and the energy (3.38)
provides, after subtraction of the energies of the iso-
lated molecules, the total contribution of the second-
and higher-order perturbation theory. Neglect of ex-
change terms in the matrix elements gives the Coulomb
interaction energy, including all the multipole interac-
tions and corresponding to the inclusion of all pertur-
bation-theory orders in the restricted basis. Exchange
energy is found as the difference between the total
interaction energy and the Coulomb energy [see (2.60)].

The above method has been used to perform calcula-
tions on (H2)2, (He)2, and (C2H4)2 (Refs. 203, 204, and
205, respectively). Let us consider the results for the
ethylene dimer,205 which are of considerable methodo-
logical interest for estimates of the contributions of
different types of interaction. This calculation took
into account only the one-electron excitations of the
monomers. The wave functions for the isolated mole-
cules were taken to be the LCAO MO SCF functions in
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the Gaussian basis. Induction energy was obtained in
the case of excitation of only one monomer, and the
dispersion energy in the case of the simultaneous ex-
citation of both monomers. The energy corresponding
to the singlet state of the dimer then also includes the
contribution due to the dispersion energy corresponding
to the triplet excitations of the monomers. Altogether
about 600 configurations were taken into account.

The two conformations shown in Fig. 4 were exam-
ined. In the conformation shown in Fig. 4a, the molec-
ular planes are parallel to one another and perpendicu-
lar to the plane of the drawing, whereas, in the confor-
mation shown in Fig. 4b, the molecular planes are per-
pendicular to each other.

Figure 4 shows the calculated potential-energy
curves for the two conformations. For purposes of
comparison between the contributions due to the second
and higher-order perturbation theories, we also re-
produce curves obtained in the first approximation in
accordance with (3.38). The stable dimer corresponds
to the conformation of Fig. 4b, and this is mainly due
to the first-order electrostatic interaction. The calcu-
lated depth of the minimum is ε= 33.5 χ 10'5 atomic
units for Ro= 9.4a0. The experimental values deter-
mined from viscosity are ε = 72.0χ 10"5 atomic units
and ε= 65 χ 10"5 atomic units (Refs. 226 and 1, respec-
tively). The discrepancy between the experimental and
theoretical values of ε is explained, on the one hand, by
the insufficient precision of the calculations and, on
the other, by inaccuracies in the experimental deter-
minations of ε. It is emphasized by Flynn and Thodos226

that ε is very sensitive to the conditions under which it
is determined from viscosity. The experimental data
were interpreted in terms of the isotropic (6-12) Len-
nard-Jones potential which bears very little resem-
blance to the real potential in the case of this particu-
lar dimer.

Although the ethylene molecule does not have a dipole
moment in the ground state, direct electrostatic inter-
action exceeds the contribution due to the polarization
forces. Wormer and Van der Avoird205 have also car-
ried out a multipole expansion in the matrix elements
and have found the contributions of the individual
terms. 1 1 ' The results of these calculations show that,
for distances /?S 15a0, it is essential to take into ac-
count such apparently exotic terms as hexadecupole
contributions (in the present case this was due to the
fact that ethylene has zero dipole and octupole mo-
ments). For R<6a0, the fact that the multipole series
diverges affects even the second term. The contribu-
tion of exchange forces is important up to R •£, I0a0. All
these conclusions must be borne in mind in practical
calculations.

We must also note that the calculations performed by
Wormer and Van der Avoird205 in the case of the ethy-
lene dimer by the semiempirical CNDO method have led

n ) A detailed study of the effect of the choice of the different
basis sets on the multipole expansions in first- and second-
order perturbation theory is reported by Mulder et al.m

FIG. 4. Interaction potentials for two ethylene molecules:205

curve 1—E® ; 2—E=Ea> + £ < 2 ) .

to results that are qualitatively in conflict with the ab
initio calculation: conformation I was found to be
stable. This indicates that great caution must be ex-
ercized when semiempirical methods tested in the case
of individual molecules are used in problems involving
intermolecular interactions.

Because of lack of space, we shall not be able to ex-
amine statistical methods of ab initio calculations of
potential curves based on the electron gas model. This
approach was first put forward and developed by Niku-
lin and Gaydaenko228'229 and was subsequently modified
by Gordon and Kim. 2 3 0 ' 2 3 1 Further improvement,232*233

which took into account the contribution of dispersion
forces, has resulted in good accuracy in calculations
of intermolecular potentials for the dimers UF 6-UF 6

and CH4-CH4 (Refs. 234 and 235, respectively).

The authors are indebted to N. D. Sokolov and A. V.
Tulub for useful discussions of many of the problems
touched upon in this review, and to Vladimir Kolos,
John Murrell, Peter Schuster, and Paul Wormer for
preprints and offprints of their papers.
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