
An infinity of the classical theory of fluctuations in a
nondegenerate electron gas

A. A. Andronov and Yu. A. Ryzhov

Institute of Applied Physics, Academy of Sciences of the USSR, Gor'kii and Scientific-Research
Radiophysics Institute, Ministry of Higher Eduaation and Special Secondary Education, Russian Soviet
Federated Socialist Republic, Gor'kii
Usp. Fiz. Nauk 126, 323-331 (October 1978)

The singularities of the fluctuations of the density and electric field in a nondegenerate ideal electron gas

are discussed. Classical calculations for a point electron lead to an infinity in the spectral energy

distribution of the Coulomb field. Measurements of the spectral energy distribution in the classical

frequency region and the elimination of the singularity by incorporating quantum fluctuations are

discussed. The space-time correlation function of the density fluctuations in a nondegenerate ideal gas is

discussed.
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1. INTRODUCTION

In this paper we will discuss some singularities of the
space-time fluctuations in a nondegenerate ideal gas. It
turns out that quantum fluctuations can be important in
cases which appear to be completely classical.

2. INFINITY IN THE SPECTRAL ENERGY
DISTRIBUTION OF THE COULOMB FIELD IN THE
CLASSICAL THEORY

a) The classical theory of thermal radiation leads to
the well-known "ultraviolet catastrophe," which Planck
used as the starting point for the formulation of his
quantum radiation law. The "catastrophic result, " of
course, is that if the energy is distributed uniformly a-
mong the various degrees of freedom the total energy of
the transverse (electromagnetic) field, W** = /JT W^du,
turns out to be infinite because of the infinite number of
field oscillators. In a certain sense, there is a worse
"catastrophe" in the classical theory of thermal fluctua-
tions in an electron gas: In this case it is the spectral
energy distribution (rather than the total energy) of the
longitudinal (Coulomb) field, W'a, which turns out to be
infinite. This divergence of the spectral energy distri-
bution of the Coulomb field follows from the assumption
that the electron is a point particle, as we will see be-
low. We believe it is interesting and instructive to an-
alyze and remove this divergence (in some form or oth-
er).

b) We begin with a formal discussion of the equations
of the standard theory of thermal fluctuations, which re-

late the correlation function of the electric field at the
frequency ω, (£, (r t) Et (Γ2))ω, to the dielectric permit-
tivity. For a medium with a dielectric permittivity
ε^(ω) = ε(ω) 6U and with μ= 1 we can write1·2

<£( (r,) Et (rj)), — (E[ (rx) E\ (r,))(0 + (i'fI 0Ί) E\' (rj)^

? _ r r i m e (a» Im«(M) 1 , u

2π»ω J a K L |e(m)|! + i " |*»-*}ε(ω)|= J '

βχρ(Αω/Γ)-1
(1)

where Γ is the temperature, tt is Planck's constant, and
ko=uj/c. We write the correlation function for the elec-
tric field as the sum of the correlation functions of the
longitudinal and transverse fields. We will see that the
spectral energy distribution of the longitudinal field,
((Εψ)ω, turns out to be infinite.

It is usually assumed, explicitly or implicitly,1 that
spatial dispersion, i.e., the nonlocal relationship be-
tween the current and the electric field [which, for ex-
ample, causes the dielectric permittivity of the medi-
um, εα(ω, k), to vary with not only the frequency ω but
also the wave vector2 k], should lead to a "smearing
out" of the δ-function dependence of the correlation
function on r t - r 2 and to the elimination of the divergen-
ce of <(£1)2)ω.

c) But let us examine the correlation function of the
Coulomb field in a classical electron gas. With spatial
dispersion taken into account, the correlation function
of the longitudinal field is 2 ' 3
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(2)

where ε'(ω, k) is the longitudinal dielectric permittivity
of an isotropic medium with spatial dispersion taken in-
to account. In the limit R = r t - r 2 — 0 we need to take
into account only the collisionless losses in the dielec-
tric permittivity (those losses which give rise to the
Landau damping of the longitudinal waves in the electron
gas). If ω » ω 0 , where a>0=V4ireW/»M, we can approxi-
mate Ι ε ' (ω, k)\ by unity in the denominator of the inte-
grand in (2). Substituting into (2) the well-known ex<-
pression for \ταέ(ω, k) for a nondegenerate electron

= 1-3

Ιΐηε'ίω, . . . — - r

&Τγ2πι

and assuming Κω « Τ (when θ « Γ) and vT/<j)R» 1, we
have1'

(3)

(4)

where vT =(2T/m) 1 / 2 is the electron thermal velocity,
and Ν is the number density of the electron gas. The
correlation function of the longitudinal thermal field
thus diverges logarithmically in the limit R — 0, and the
spectral energy distribution of the thermal fluctuations
of the Coulomb field, Wu =(8πΓ1 ((£ ') 2 ) ω , turns out to
be infinite. This infinity is the subject of the present
paper.

The divergence of the total fluctuation energy of the
Coulomb field, W = fS Wadu, which follows from the
assumption of point electrons, is a well-known result.
For example, back in 1919 Holtsmark4 wrote about a
divergence in the second moment of the distribution of
fluctuations in the electric field, P(E) (the Holtsmark
distribution4"6), which determines, for example, the
shape of the emission line of an atom in the case of
Stark splitting.

d) How would we actually measure the spectral ener-
gy distribution of the longitudinal electric field in an e-
lectron gas? We could use a small dipole antenna con-
sisting of two straight conductors of length L. Then the
square of the spectral emf induced in the antenna, # „ ,
is a measure of Wl

u.

The emf which arises in a small dipole "immersed" in
an electron gas is actually the shot-effect emf due to the
point electrons which pass near the dipole. This emf
can be calculated by the standard methods,7 so we will
proceed immediately to the result21 (Ref. 7):

lyli ω £, ω0, we cannot assume Ι ε I = 1 in calculating the corre-
lation function. If ω « ω0, by using ε « 1+ (wl/tfvij), we find

2 )The values given in Ref. 7 for the dipole resistance R due to
the shot effect contain an incorrect numerical factor. The
correct expression is

tsee Eq. (6.7) in Ref. 7].

(5a)

(5b)

The averaging effect of a dipole of length L thus leads to
a finite value for the measured spectral density W'a.
The result, however, is strongly dependent on the length
of the antenna, increasing as the antenna is made short-
er. This latter effect is a direct consequence of the as-
sumption of point electrons.

3. QUANTUM FLUCTUATIONS OF THE COULOMB
FIELD

a) The formal reason for the infinite value of W'a is
that the quantity Ime'(u>, k) (the Landau damping) turns
out to be too large for the Fourier field components with
large values of k. At the same time the Landau damp-
ing is the only fundamental mechanism for a transfer of
field energy to the particles at large values of k. There-
fore, we would like to eliminate the divergence in Wl

a

while keeping the Landau-damping mechanism. There
is in fact such a possibility; it involves taking into ac-
count the finiteness of the quantum of action, K. In this
case, momentum and energy conservation in the inter-
action of the k component of the field and the electrons
automatically leads to a reduction of the damping at
large values of k. With K*0, the dielectric permittivity
of a nondegenerate electron gas in equilibrium can be
derived from the general equations (see, for example,
Ref. 2):

ε ' ( ω , * ) = - ϊ

u'du.

(6)

For real ω and k, for example, one obtains

(6a)

Ψ-+^)]· (6b)

The quantity Imc'(w, k) thus approaches zero exponen-
tially, in both the limit fe— 0 and the limit fe— ». This
is true in the case k — °° because energy and momentum
conservation in the absorption of a photon (ω, k), Κω
+ g? = gp' and #k + p = p' (gf and ρ are the electron energy
and momentum), simply leads to the result that the
transitions occur from states with momenta p=#k/2 to
states with momenta p' = -Kk/2, whose populations are
exponentially small at large values of k. Substituting
(6b) into (2) and carrying out the integration with r t = r a

and ω » ω0, we find

wl mjm'B »Η>Ιω/2Γ) „ I hat \
V '

where K0(x) is the modified Hankel function.

We see that the incorporation of quantum effects leads
to a finite value for the spectral energy distribution of
the fluctuations of the Coulomb field in a plasma. Com-
paring Eqs. (7) and (4), we see that the role of a cutoff
parameter in the equation for Wl

a in the case Κω« Τ (in
the classical frequency region) is played by the de Bro-
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glie wavelength λτ = 2irK(2irmT)'1 '2 for electrons at the
thermal velocity vT:

τ
w' 7S (8)

Interestingly, in the quantum region (Κω»Τ) the value
of Wl

a is independent of the temperature. It is thus gov-
erned by quantum fluctuations of the electrons in this
region; we will return to this point below.

b) Integration of Eq. (7) over the frequency leads to
an infinite total energy for Coulomb field, but this is not
surprising: it is a well-known fact that quantum effects
cannot save us from a divergence due to the point nature
of the electrons. Nevertheless, it is interesting to
see that the divergence of the total energy is a conse-
quence of the integration of the energy of the zero-point
vibrations of the field, which are represented by the
first term of the function

The energy of the Coulomb field associated with the
zero-point vibrations is

» f fd.jfc'""'»'·*»
2 (.in)* J J | „! ( ( 0, i) |2 ·

(9)

Substituting into (9) the quantum equation (6b), and ap-
proximating (ε ι(ω, k) | by unity in the denominator of the
integrand (this simplification can have no effect on the
nature of the convergence at large ω and k), we find

2 <2π)» J *= \i\/n >' (10)

where

) = -WC'''dt

is the probability integral. We rewrite Eq. (10) in the
form

ι 4πΛν e Λ l to'jv f ft r / U T \ -ι

2-(2π)* J ** 2 (2n)» J *· L* V 4 Vn IJ' (11)

where the second integral converges, while the first is
the spectral representation of the infinite self-energy of
the electrons (cf. Refs. 3 and 8 and the discussion be-
low). On the other hand, an integration of the second
term in the function θ leads to a finite result:

The energy W'T is the energy of the thermal Coulomb
field without the energy of the zero-point vibrations.

When quantum effects are taken into account, the di-
vergence of the total energy of the longitudinal field in
an electron gas is thus manifested by the zero-point vi-
brations of the electric field. This circumstance means
that the high-frequency behavior of the spectral energy
distribution of the electric field is governed by the un-
certainty relation. This point will be shown directly
later on in this paper.

c) One of the most important quantities governing the
thermodynamic properties of the electron gas is the en-
ergy of the Coulomb interaction of the charges:

(13)"(..-(ΤΣΤΪΙ^ΤΓ).

where r< and r^ a r e the radius vectors to the positions of
the two electrons, and the angle brackets denote an av-
eraging over the equilibrium electron distribution. This
expression can be converted to the form (see, for exam-
ple, Ref. 8)

(14)

As mentioned ear l ier , the last term in (14) is the infin-
ite self-energy of the " b a r e " point charges. Clearly, in
the class ical region for a nondegenerate electron gas the
expression in (14) should yield the well-known classical
equation for the energy of the Coulomb interaction. As
we saw above, however, when quantum effects a r e taken
into account the integral J W'adtj) diverges in the classi-
cal region only when zero-point vibrations a re taken into
account in the Planck equation. Then to find the class i-
cal expression for the Coulomb-interaction energy from
(14) with the aid of the quantum expression for the die-
lectr ic permittivity (6), we must use the complete ex-
pression for the Planck function. Finally, in order to
obtain a finite interaction energy W'lnt we must take into
account the difference between ε ' ( ω , k) and unity. These
circumstances make it difficult to find W[nt from the
quantum equations. Nevertheless, such calculations can
be carr ied out, and they a r e of definite interest .

We consider the quantity

\ Im-
e< (ω,

(15)

To calculate it, we examine the integral

-eth-ssr

over a closed contour around the upper half-plane of the
complex variable ω, excluding the point ω = 0. Within
this contour, ε '(ω, k) has no zeros and no poles. The
integral along a semicircle of infinite radius, Ι ω I— °°,
is easily evaluated since ε'(ω, fc)— 1. We thus find (cf.
Ref. 3)

(16)

where ωπ = 2ττΐηΤ/Κ and ImE(w, k) = 0.

Let us evaluate the sum in (16):
00

Ψι(*. λ τ)= 2 "7 ' βη= ε ( ω η. *)·

It would seem perfectly natural that we could find a good
approximation to this sum by replacing εΠ by unity in the
denominator of each term. Indeed, if we seek an expan-
sion of the integral / <px(k, \T)d]s. (the contribution of the
sum being evaluated to the interaction energy), it will be
of the form a.jXJ.1 +0^ + 0^ +.... It can be shown that
when we use the approximate value <p(k, \T) =7X,l(cn- 1)
for the function <p\{k, \T) we find a value for the interac-
tion energy integral which must be of the same as the
actual value within terms of first and higher orders in
λΓ. The subsequent calculations are thus essentially
aimed at determing the coefficients aml and a0, which we
find by evaluating the sum <p(k, λΓ). To find this sum,
we use the following representation for ε'(ωπ, k) at the
points ωΛ:

875 Sov. Phys. Usp. 21(10), Oct. 1978 A. A. Andronov and Yu. A. Ryzhov 875



j . " " { - (17)

This equation, which holds for η = 0, 1, 2 is easily
found from the general expression in (6). Summing over
n, and switching the order of integration and summa-
tion, we find an integral which we can easily evaluate by
using

As a result we find

(18)

(19)

where the function F(x) is defined in (6), and the second
term obviously corresponds to the self-energy of the
point charges. Integrating (16) over k, and using (1),
(14), and (19), we thus find the final expression for the
interaction energy:

l f (*>•**

bT r F(x)iz
(20)

The second term arises in the integration of the first
bracketed expression with ε*(0, k) in (16). Here also
b = (Xr/4/ird)2« 1, and d = (T/cojjm)'; 2 is the Debye length.
We easily find the leading term of the asymptotic expan-
sion of the integral in (20) for λΓ/<ί— 0:

F{x)dx
21/b

with 6 « 1. As a result we find the classical expression
for the interaction energy of the charges (see, for ex-
ample, Ref. 3):

(21)

4. SPACE-TIME CORRELATION FUNCTION OF THE
COULOMB FIELD

We now consider the space-time correlation function
of the fluctuational longitudinal electric field:

2Λ
( 2 2 )

where τ = ί 2 -ί,, R = r 2 - r 1 ( andA = IRI. For small
values of R and τ we can again ignore the difference be-
tween ε'(ω, fe) and unity in the denominator of the inte-
grand. Substituting Ime'(w, k) for (6b) into (22), and in-
tegrating over ω, we find

2ω!ηι
· τ>—7ΠΓ d r . (23)

The integral in (23) is expressed in terms of the function
/ / ϊ Γ · 2

(24)

where ξ=τ,/τ , τ ο =»/Γ, ^ t f

= 2T/m, and υ2, = 2K/rm is the square of the quantum
V%

velocity, which is a measure of the diffusive spreading
of the wave packets in free motion with an energy f»J!f/
τ. This energy is governed by the energy-time uncer-
tainty relation. The time τ 0 actually separates the re-
gions of classical and quantum fluctuations (as of course
follows from general considerations10): it is equal to the
time required for an electron moving at the thermal vel-
ocity to traverse a distance equal to its de Broglie wave-
length.

If τ » T0 ( | « 1), the effective velocity at which the ef-
fect of the process propagates from one point to another
is vtti~vT (wq«w r), and from (24) we find an expression
which does not contain K;

(25)

In the opposite case, τ « τ0, we have the quantum-mech-
anical equation

(26)

1 = 1/ -=r \ cos'ldt.

A slightly different expression for Bl(R, τ) can be found
by requiring that R/vttfr« 1. In this case we find from
(24)

in other words, in the case T»R/vett the correlation
function is independent of R.

If ξ « 1 , the classical equation follows from (27):

(28)

This equation was derived in Ref. 11. If, on the other
hand, ξ » 1 , then (27) leads to

B'<.R, τ)—. (29)

For large distances (Λ »V,UT), we find from (24)

(30)

In other words, the correlation of the Coulomb field in
this case is independent of τ, Κ, and Τ, being governed
by the Coulomb field of the stationary particles.

In summary, for Λ = 0 the correlation function be-
comes infinite, Bl — °° in the limit τ— 0, in both the
classical case, (28), and when quantum fluctuations are
taken into account. This result contradicts the asser-
tions in Ref. 12. In the quantum case, in contrast with
the classical case, the singularity Bl(fi =0, τ— 0) is in-
tegrable. Accordingly, the quantum characteristics al-
so affect the spectral energy distribution of the longi-
tudinal field even in the classical frequency region. In
the quantum region, the correlation function Bl is inde-
pendent of the temperature. It is actually governed by
the quantum fluctuations of the electron energy, Δ8?,
which are governed by the energy-time uncertainty re-
lation (Δ#τ **Κ). For this reason, the spectral energy
distribution of the longitudinal field (as mentioned earl-
ier) is again in this case independent of the temperature
and is the energy of the zero-point vibrations.
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5. CORRELATION FUNCTION OF THE DENSITY
FLUCTUATIONS IN A NONDEGENERATE IDEAL GAS

Finally, we consider the space-time correlation func-
tion Bf(R, τ) of the charge-density fluctuations in a non-
degenerate electron gas. Since div E = 4irp, we have

exp( —ί

If we approximate Ι ε'(ω, k)\ by unity in (31), we find the
charge-density correlation function for the electron gas
without taking interaction into account. Then dividing Bf

by the square of the electron charge, we find an equation
for the correlation function of the density fluctuation in
an arbitrary single-component nondegenerate ideal gas:

cos |-5-<P —

(32)
This equation can of course be derived by a more direct
method.10'13

In the case T » T 0 , this equation converts into the fam-
iliar classical expression for the density fluctuations in
an ideal gas3:

(33)—Λ e x p ( *i).
^2ji 3/ 2 (iyt)» V ° i T '

It is easy to see the physical meaning of this equation by
noting that the quantity G(R, τ) is proportional to the
probability that the point R is reached by particles which
emerge from the point R = 0 with a Maxwellian velocity
distribution.

In the case τ « τ0, we find the following quantum ex-
pression from (32):

(34)

Hence, in the limit τ—0, using the representation

6(R) = lim | , /s in-^-—cos-^Λ ( 3 5 )

for the three-dimensional δ-function, we find a δ-func-
tion correlation function for the simultaneous density
fluctuations in a nondegenerate ideal gas.10

If τ* 0, the correlation function in (34) is governed by
the quantum diffusive expansion: the spreading of the
wave packets from the point R = 0 to the point R at the
velocity w, = V 2K/rm, related to the uncertainty relation.
The factor

(36)
where 70, the volume in which the motion occurs, is
assumed to be quite large. This equation is easily de-
rived by a direct calculation, by considering the corre-
lation-function operator j[n(x, r, 0) n(x, r +R, τ) +η(χ, r
+ R, τ) n(x, r, 0)], where n(x, r, i) is the operator repre-
senting the particle number density at the point with
radius vector r at time t.

Averaging (36) using a Maxwell-Boltzmann distribu-
tion, we find Eq. (32) for a system of particles with an
average number density N.

6. CONCLUSION

Let us review the basic point of this paper.

1. In the case of a purely classical calculation, the
correlation function for the longitudinal (Coulomb) field
is (E{ (ω, rj) E\ (ω, r2))~ln (vT/uR), and it diverges in
the limit R — 0.

2. When the spectral energy distribution W'a is meas-
ured by a classical "measuring instrument" of dimen-
sions L, the measured quantity turns out to be finite,
but the value found from the measurement varies with
the size of the "measuring instrument."

3. A quantum calculation of the spectral energy dis-
tribution in the classical frequency region {Ηω«Τ)leads
to a finite value, w£~ln (Τ/Κω).

4. The total energy of the Coulomb field, W=f Ψ^άω
turns out to be infinite because of the point nature of the
electron. The result of interest, however, is that this
infinity in the total energy is due to the integration over
the frequency of only the zero-point vibrations in the
Planck function; that is, it is due to the quantum fluctua-
tions.

5. The fluctuations in the Coulomb field are governed
completely by the fluctuations in the electron density.
The distinction between classical and quantum fluctua-
tions is clearly seen in the space-time correlation func-
tion for the density fluctuations of an ideal gas, given
above.
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sin ^ p — cos -^-i

determines the quantum interference effects during this
spreading. The gas temperature enters (34) only through
the thermal de Broglie wavelength λΓ. The correlation
function decays a t i i » X r because the gas particles—
wave packets of dimensions L αλτ—do not manage to un-
dergo any significant spatial displacement during the
time τ « τ0 =λτ/ντ.

Finally, we note that for a single particle (for one de
Broglie wave) with a definite momentum p0 the space-
time correlation function of the density fluctuations is
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