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The forces acting on a resonance particle in the fields of laser radiation sources can be large.

Acceleration, heating, and cooling of atoms by using these forces are discussed. Since the forces are of a

resonance type, one can employ them to separate isotopes and excited atoms from unexcited atoms. Light

pressure can play an important role in the spectroscopy of narrow atomic and molecular resonances. The

quantum features of the motion of particles in a standing light wave are manifested in a fine structure of

the absorption coefficient. This review is concerned with analyzing the resonance light-pressure forces and

discussing the application of them in optics and quantum electronics.
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1. INTRODUCTION

Light pressure originates from the recoil that atoms
undergo when they scatter photons.

Whenever light acts on a massive dielectric or a dense
gas the effects caused by light pressure prove to be
small. Thus, in the first experiment of P. N. Lebe-
dev,">8] he measured a force of light pressure of the or-
der of 10"4 dynes/cm2, which was considerably smaller
than the radiometric forces. P. N. Lebedev also mea-
sured the pressure of light on a gas in resonance absorp-
tion. This proved to be even smaller (by two or three
orders of magnitude) since the source had a low spectral
density of radiation. The picture changes substantially
when a monochromatic electromagnetic field acts on a
rarefied gas of resonance atoms. Near resonance, the
scattering cross-section for the photons rises and the
force of the light pressure acting on the individual atoms
can become very large. Therefore laser light sources,
which have high power and a high degree of monochro-
matic it y, open up new possibilities of observing and
utilizing light pressure.

We can easily estimate the force acting on an atom in
a resonance light field by quantum considerations. In
the field of a strong running wave, the atom absorbs a
photon from the light beam and acquires the momentum
ffo of the photon. Consequently the force"1 Sky/2 acts
on the atom, where γ is the spontaneous-transition fre-
quency. It is of the order of magnitude of 10"* eV/cm
for strong optical transitions. The force of light pres-
sure attains an even higher value in the field of a stand-

ing wave. Upon absorbing a quantum with the momen-
tum Ka, and undergoing stimulated emission of a quan-
tum with the momentum - Hk, the atom acquires the mo-
mentum 2W&. within the stimulated-trans it ion time (dE/
KY1. Here d is the dipole moment of the transition, and
Ε is the field intensity. The force of the stimulated light
pressure is of the order of kdE, and it coincides with the
gradient force that acts on a dipole of moment d in an
inhomogeneous field. It is of the order of 1 keV/cm
when £-10* V/cm. This force oscillates in space with
a period equal to the wavelength of the resonance field.
If the atom is accelerated in such a field only to a dis-
tance of half the wavelength, it acquires an energy great-
er than thermal. The acceleration effect can be sub-
stantially enhanced if the frequency of one of the opposing
waves varies with time. Thus the mechanical effect of
a resonance field on atoms can be considerable. Hence
a number of problems arise in optics in which one must
take into account not only the change in the states of the
atom in the field (transitions from one level to another),
but also account for the change in the trajectory of mo-
tion of the atom in this field.

Until recently, the effects of light pressure were
studied mainly in dielectrics"3·1" and in a plasma."5·1"
The effect of stimulated Mandel'shtam-Brillouin scatter-
ing117·1 also involves the action of light pressure, but it
is usually studied far from resonance. Recent experi-
ments"1·12·283 and theoretical studies'5-10·21·501 have
shown a promising approach in applying effects of reso-
nance light pressure in various fields of optics and quan-
tum electronics.
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This review is concerned with analyzing the forces of
resonance light pressure. The fundamental types of
forces that act on an atom in a field are examined, and
they are classified by type of photon emission. The ef-
fects of acceleration of atoms and molecules by these
forces are estimated and possible applications are dis-
cussed.

The set of problems involving resonance light pressure
proves to be very large, and it encompasses an energy
range of the order of 10"10—10* eV. The lower bound of
this range is defined by the recoil energy when an atom
emits one photon.

Accounting for recoil in the interaction of slow parti-
cles with a field becomes necessary when one studies
narrow atomic and molecular resonances/8·7 3 In the
field of a standing wave, one must account for the ef-
fects of quantization of the motion of the atoms ,1*83 Dis-
continuities or narrow lines can arise in the spectrum
of an atom that correspond to the energies of bound
states. In this case dips or narrow peaks appear in the
absorption coefficient.

The quantization of the motion of the atoms in a reso-
nance standing wave has certain features that involve the
fact that the atom generally has two trajectories of mo-
tion." 4 3 Indeed the induced dipole moment of the atom
can be directed with or against the field. In the one tra-
jectory the atom has a positive potential, but negative
in the other. The atom can go from the one trajectory
to the other while moving in the inhomogeneous field.
For example, this increases the width of the resonance
of the bound state. Section 6 treats the effect of the
quantum nature of the motion of atoms on the fine struc-
ture of the absorption coefficient.

The energy range near thermal energy is of especial
interest. Here it takes a field of relatively small power
to act on atoms and molecules. One can accelerate and
decelerate, or heat or cool atoms by light pressure.
Since the interaction with the field is of resonance type,
it proves possible to affect selectively particular atoms
and molecules. This situation is important in such ap-
plications as separating isotopes (Sec. 5) and excited
and unexcited atoms. For example, one can accelerate
metastable helium atoms and cool them to such a low
temperature by using a standing wave that all the excited
atoms take part in laser action in a short-wavelength
transition. This does not require an inverted population
of levels (Sec. 7).

As estimates show, atoms can be accelerated under
special conditions to energies of the order of 10 keV.

It is interesting to compare resonance and nonreso-
nance light pressure. In an inhomogeneous electromag-
netic field a charged particle has an effective potential
that is quadratic in the field.143 The potential of an atom
in a resonance field is linear in the field. In fields
smaller than the critical ionization field, the resonance
potential is considerably larger than the non-resonance
potential. Hence the action of light (e.g., scattering in
a standing wave) is much greater for resonance atoms
than for electrons. And, in addition to the quantitative
difference, there are the following two fundamentally

different features:

1) In a resonance light field, the "atom + field" sys-
tem possesses two states having different effective po-
tentials. Hence, as we have noted, the atom generally
has two trajectories of motion. Far from resonance (or
when the field is slowly turned on), the atom exists in
a definite state and has a single trajectory of motion.
Near resonance itself (or when the field is turned on
quickly), both states are occupied with about the same
probability, and the atom has two trajectories of mo.-
tion. This leads to double refraction of a molecular
beam incident on a vacuum-electromagnetic field bound-
ary, to certain features of the diffraction of atoms by a
standing wave, and to broadening of resonances of bound
states owing to a strong tunneling effect.

2) Spontaneous emission becomes important near
resonance, and it destroys the coherence of the interac-
tion of the atom with the field. Moreover, in sponta-
neous emission the atom goes from one quasilevel to
another having a different potential. This means that it
goes from one trajectory to another. The lifetime of the
atom in each trajectory proves to be finite.

This effect is manifested most distinctly when atoms
move in a standing monochromatic wave. If the frequen-
cy of the field is smaller than the transition frequency,
then the atoms are decelerated by the field and become
cooled. Conversely, if the frequency of the field ex-
ceeds the transition frequency, the energy of the atoms
continuously increases.1 2 1 3 This problem is treated in
detail in Sec. 3.

In the general case it is a complicated problem to find
the forces acting on an atom while taking account of the
cited effects. The fundamental difficulty involves the
fact that one generally cannot assume the motion of the
atom to be fixed in finding the induced dipole moment.
The rigorous description of this effect is discussed in
Sees. 4 and 6. The remainder of the review will use
the approximation of fixed motion of the atom in finding
the forces.

2. THE FORCES ACTING ON AN ATOM IN A
RESONANCE LIGHT FIELD

In a resonance electromagnetic field of the form

Ε (ri)e-i0)«' +complex conjugate

the following force acts on the induced dipole moment
ρ (t) e"1"0' + complex conjugate"83:

F = 2 PiV£? + complex conjugate, ρ (t) = Sp [dp (ί)], (1)

Here ω0 and d are the frequency and the dipole-moment
operator of the transition, and ρ is the density matrix
for the atom. The amplitude E(rf) of the field varies
little within the period 2ττ/ω0. The force F is averaged
over this period (the resonance approximation). In or-
der to find the dipole moment p(i), we must use the
equation for the density matrix taking the relaxation
operator γ into account:

v ) p = i ^ . PI.

dE* + complex conjugate.

(2)

(3)
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Henceforth we shall neglect polarization effects and treat
the atom as having two levels, while the field varies only
along the χ coordinate. Then the formula for the force
has the form

F = ρ -τ- + complex conjugate. (4)

Let us write Eq. (2) for the individual components of the
density matrix: for the dipole moment p =dpiZ and for q
=Pi2-pa (difference in population of levels):

1+Τ/>=7<^№?. * - * . (5)

4f + V (1 +9) = 2ί£(ί)Ρ* +complex conjugate. (6)

Here ν is the velocity of the atom.

The lower level of the atom is assumed to be the ground
state (or a metastable state), while the lifetime of the up-
per level is γ'1. However, Eq. (4) has a very restricted re-
gion of applicability in a resonance field, since it neglects
two important circumstances. First, Eq. (1) does not ac-
count for the fluctuations of the force arising from quan-
tum fluctuations of the dipole moment. The latter can
become very great near resonance and can split the sin-
gle trajectory into two. Second, Eq. (4) actually as-
sumes that the variation of the motion of the atom in the
field has little effect on the size of the dipole moment.
That is, the force depends adiabatically on the velocity
of the atom. We shall call this approximation the fixed-
motion approximation. A rigorous formulation of the
problem requires solving the quantum kinetic equations
(see Sec. 4). Here we shall treat the simpler character-
istic cases in which one can either disregard the fluctua-
tions of the force in (1) or neglect spontaneous emission,
or treat the motion of the atom as fixed.

The recoil that the atom suffers in interacting with the
field substantially depends on the rate of emission of
photons. Hence one can naturally classify the forces of
resonance light pressure in terms of the type of photon
emission. From this standpoint there are three funda-
mental types of forces, which are defined by sponta-
neous and stimulated emission and emission of mixed
type.

A. The force due to spontaneous emission

In the field of the following plane running wave (Δ is
the detuning):

Ε (xt) = £

the force is proportional to Im (pE*), a quantity that
determines the energy of the field that is absorbed by
the atom per unit time. Upon finding the induced dipole
moment from Eqs. (5) and (6), we get'"

(7)

Here W is the probability of population of the upper level.

Upon absorbing a photon from the light flux and spon-
taneously emitting a spherical wave, the atom acquires
the momentum Kk. in the direction of propagation of the
wave within a cycle of duration γ"1.

However, the spherical wave corresponds to the clas-
sical limit. From the quantum standpoint each elemen-
tary event of photon emission bears away a momentum
equal in magnitude to fife in an arbitrary direction. As
we know, the probability of emission of a photon in a
given direction is determined by the intensity of the
spherical wave emitted by the dipole. The quantum na-
ture of the emission leads to fluctuations of the light-
pressure force about the mean value of (7). However,
the relative contribution of these momentum fluctuations
falls off approximately as 1/Vtf when there is a large
number of scattered photons N = yt, where t is the inter-
action time.CS21

We note that stimulated transitions in the field of a
running wave do not contribute to the mean force of the
light pressure. Therefore, in a strong field the force
does not depend on the intensity of the field, and is de-
termined only by the rate of spontaneous emission of
photons F0=Kky/2. For example, in this case we have
f0 = 2xl0"1 eV/cm for the resonance line of Na. The
scattering of atoms by the force (7) has been studied ex-
perimentaUy t U f l 2 f M ] (see Sec. 5).

The force Fo shows a resonance-type dependence on
the frequency of the field. In a strong field the width of
the resonance is determined by the Stark shift dE/K, and
in a weak field by the natural width y/2 of the line.

We note that the formula for the force Fo at low emis-
sion intensities was established by P. N. Lebedev, who
studied the pressure of a high-frequency field on a vi-
brator.

B. Stimulated light pressure

Now let us study the force of light pressure in the in-
homogeneous field of a standing wave:

Ε (xt) = e-'4' Ε (χ), E(x) = Ε cos (kx + φ), (8)

Here φ is the phase of the wave.

In a strong field (dE» Ky), we can neglect damping in
a first approximation. This approximation is rigorous
if the atom interacts with the field for a short time less
than γ"1.

In this case the fluctuations of the dipole moment can
be large. Since the system of equations (4)-(6) does not
account for them, we shall start directly with the Schro-
dinger equation for an atom of mass Μ having two states:

2M dx' —ίΔ/2/ -ψ, (9)

When Δ = θ, the system of equations (4) after transform-
ing to the wave functions φ± = (#t ± ψ^/^Ζ breaks down
into two wave equations that describe the motion of the
particles in the potentials ± V(x), where

V (x) = dE (x), | Δ (10)

Although the field is a quantity that oscillates in space,
the dipole moments in the states ψ± have the constant
values p±=±d. We shall call the small frequency inter-
val near resonance where Ι Δ|< Δ,, in which the dipole
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FIG. 1. The resonance V(x) and
the nonresonance potential U(x) of
an atom in a standing wave.

-May

moment does not follow the field the nonadiabatic inter-
val.

When the detuning is large, one can diagonalize the
equations of (9) in a quasiclassical approximation. Then
we have two groups of particles that move in the poten-
tials ± U(x), where

|Δ|>Δ 0 . (11)

The wave functions of the independent states and the di-
pole moments have the form

_ ψ] — a(-r)4'2

p± = ±da (x (12)

In this case the dipole moments "follow" the variation
of the field. Therefore we shall call the frequency in-
terval ΙΔ | > Δ,, the adiabatic interval.

Figure 1 shows the resonance and nonresonance poten-
tials of the atom. The depth of modulation of the poten-
tial V(x) exceeds that of U(x) by a factor of more than two.
This fact is essential in the selective scattering of atoms
in the field of a standing wave'433 (see Sec. 5).

As Δ —0, we have U(x)=signA\V(x)\, i .e . , the non-
resonance potential of the atoms does not convert into
the resonance potential. The lack of a limiting transi-
tion involves the breakdown of the quasiclassical approx-
imation at small detunings at the nodes of the standing
wave, where U(x) has a sharp discontinuity. In the vi-
cinity of the nodes of the standing wave, we can consider
E(x) in Eq. (9) to be a linear function of x. Then one can
use the Landau-Zener theory"" in the quasiclassical
limit. After passing the node of the standing wave, the
atom has a trajectory that corresponds to the "deep"
potential V(x) with the probability exp(—Δ2/Δ§), where
Δο = ^ZdEkv/trK . Correspondingly, 1 - exp(- Δ2/Δ§) is
the probability that it will lie in the "shallow" potential
U(x)~\V{x)\.

If the atoms are trapped in the potential wells of the
standing wave, then kv coincides with the characteristic
oscillation frequency Ω =k^dE/M. For trapped atoms
the frequency that separates the resonance from the non-
resonance region (or the nonadiabatic from the adiabatic
region) has the form

/ 2dEB (13)

In a strong field the following relationship obtains be-
tween the characteristic frequencies: Sl«\«dE/H.
The criterion for a strong field coincides with that for
quasiclassical behavior: dE» (Hk^/2M. For allowed
dipole transitions the latter condition is satisfied even

in weak fields £>10"* V/cm. Thus the atom can have
the definite potential V(x) or U(x) only in the two limit-

ing cases |Δ|»Δ,,. When |ΔΙ»Δ 0 , the
atom randomly goes from the one trajectory to the other,
while spending about the same time in each potential.
In particular, this effect broadens the levels of bound
atoms, as can be noted from the absorption coefficient
(Sec. 6).

In the state described by the wave function ψ. the atom
has the potential U(x), and it has the potential - U(x) in
the state ipt. As the field is slowly turned off, the first
state goes over into the ground state ψ1 and the second
into the excited state ψ2. Henceforth for brevity we
shall call the state φ. the "lower" state and the state ψ+

the "upper" state.

As the field is turned off adiabatically, the atom is
found all the time in the "lower" state and it has the po-
tential U(x) (apart from the small nonadiabatic frequency
region). Curve 1 in Fig. 2 shows the relationship of U
to Δ. The adiabatic potential of the atom is determined
by the Stark frequency shift. When \Δ.\>2άΕ/Κ, the
shift is quadratic in the field, and we have U(x)
=[dE(x)]z/HA. The potential of the atom far from reso-
nance is treated in Ref. 5. The force Ft of stimulated
light pressure is the gradient force:

dU

(14)

From the quantum standpoint, stimulated light pressure
arises from the absorption of a photon from one light
flux with stimulated emission of it into the opposing flux.
Since a change in the sequence of transfer of quanta re-
verses the sign of the force, Ft in a standing wave de-
pends on the phase of the wave, and it oscillates with
the period λ/2 = ττ/fe. The frequency of quantum transfer
is of the order of dE/K, so that F1~kdE. In a field of
intensity 10e V/cm (alkali-metal atoms and metastable
helium atoms" 3 1 have critical fields with respect to
ionization in this range) and with d" 5 Debye, we have
Fx ~ 1 keV/cm. The quantity F1 /F0~dE/Hy is the ratio
of the frequencies of stimulated and spontaneous transi-
tions. Even in fields greater than 1 V/cm, the force
of stimulated light pressure exceeds Fo.

When the field is turned on rapidly the two mixed
states, the "upper" and the "lower," are excited with
equal probability. Although the mean potential of the
atom is zero in this case the effect of the light on the
atoms does not at all vanish. Simply two groups arise
containing the same number of particles that move in

FIG. 2. Dependence of the potential (minus the constant com-
ponent) on the detuning. Curve 1—adiabatic potential for γ ί<1,
curve 2—mean potential for Tf >1.
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FIG. 3. The effect of double refraction of a
molecular beam in a resonance electromag-
netic field.

potentials that differ in sign. The trajectory of an atom
is split into two trajectories. The criterion for sudden
perturbation (where r is the time for turning on the
field) is:

2Ux
< 1 (15)

ft can be realized not only when the field is turned on
rapidly, but also when the atom is excited rapidly (e. g.,
by electron impact) to a state on which the resonance
field acts. Another example can be the passage of atoms
or molecules through a vacuum-electromagnetic field
boundary.

1) Double refraction of a molecular beam.aa Let us
examine the passage of a monoenergetic molecular
beam11 through the boundary of a light beam. The beam
amounts to a plane wave running along the y axis. We
can conveniently take the cross-section of the beam
(cross-hatched in Fig. 3) to be an ellipse of dimensions

At exact resonance (Δ = 0), the light beam acts as a
semitransparent mirror. Actually, half of the mole-
cules has the negative potential - dE(x), is attracted into
the light beam, and moves on in the original direction.
The other half of the atoms has a positive potential and
is reflected from the light beam as from a mirror. This
happens in a sufficiently strong field dE(0)>Mvl/2,
where £(0) is the field intensity at the center of the
beam, and vx is the velocity of normal incidence. From
this condition we can express the necessary radiation in-
tensity J in terms of the kinetic energy Τ of the particles
and the angle of incidence 0:

) (16)

Here the time of longitudinal motion must not be smaller
than the time of normal motion: l,/vt>lx/vx or lt>lx/6.
If we assume that lx = 10"* cm, Zt =1 cm, d=0.3 Debye,
Τ =300 "Κ, and 0 = 10"* radian, we get J=125 W. Of

when Δ>0. The potential diminishes at large detunings
and the reflection effect disappears. The width of the
resonance with respect to reflection of molecules from
the light beam is 2dE/K, and in this case it amounts to
10» MHz.

We note that the effect of double refraction of a molec-
ular beam is analogous to the well-known Stern-Gerlach
phenomenon.

Thus atoms and molecules have two trajectories when
a resonance field is rapidly turned on. Another source
of doubling of trajectories is spontaneous emission.

2) The effect of spontaneous emission. Thus far we
have been assuming the time of interaction of the atoms
with the field to be less than the spontaneous emission
time. When yi>l, we must account for transitions from
the "lower" to the "upper" state and vice versa. The
lifetimes in the trajectories are estimated in Sec. 4.
Outside resonance (fi&»dE), the lifetime of the "lower"
state is long, while that of the "upper" state is of the
order of γ"1. In a region of strong saturation (η~Δ«άΕ),
both states have about the same lifetime 4/y. In order
to illustrate the influence of spontaneous emission let
us study the mean potential of an atom in a standing
wave. This quantity has meaning for an atom for which
the kinetic energy is larger than the potential energy,
and for which the fixed-motion approximation holds.

In a strong and slowly varying field (Δ» kv), we can
represent the solution of Eq. (5) as an expansion in Δ"1;

. (17)

The second term in this expression is small, but it is
the only one that contributes to q(t) in Eq. (6):

[ ]
(18)

The parameters χ and γ characterize the saturation and
damping in the atom. They vary in time as the atom
moves in the standing wave. Upon substituting the solu-
tion of Eq. (18) into the formula (4) for the force, we
find the following value of the mean potential Un(x) for

(19)

The bar denotes averaging over a period of oscillation
of the field. Curve 2 of Fig. 2 shows the relationship
of Un to Δ. Outside resonance, the atom spends prac-
tically all its time in the "lower" state, and we have

course, a lower radiation power is required for slower Un{x)aU(x). When #Δ«dE, the mean potential de-
molecules. The time of passage through the beam τ
= lx/vx~2xlCTs sec is shorter than the spontaneous emis-
sion time. The double-refraction effect as a function of
the frequency has the form of a sharp resonance having
the width A0=Vdl7Sf~0.5 MHz. When ΙΔ^Δ,,, the
molecule has a single trajectory: it either passes
through the beam when A<0 or it is reflected from it

"For vibrational transitions in molecules, it is easier to real-
ize the condition Tt < 1.

clines strongly, since the lifetimes in the different states
become almost equal. Here an increasing role is played
by fluctuations of the gradient force, which should be de-
scribed by using the kinetic equations.

C. The force of mixed type1211

If we neglect spontaneous emission, then in a strong,
slowly varying field the induced dipole moment of the
atom follows the field adiabatically. Then the force of
the stimulated light pressure has the form of the gradient
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of (14) and its average in the standing wave is zero, Ft

= 0. Spontaneous emission leads to a jump in the phase
of the atomic oscillator, and the theorem of the adiabatic
variation of the dipole breaks down. If the dipole mo-
ment changes sign upon spontaneous emission of a pho-
ton, then the force averaged over the period of oscilla-
tion of the field becomes different from zero. Let us
denote it by Fz :

ι——(-complex conjugate. (20)

The force Fz does not depend on the coordinate, but it
depends substantially on the velocity ν of the atom with
respect to the standing wave. The probability of spon-
taneous emission while the atom is passing through one
period of the field is of the order of y/kv. Hence we
have the estimate Ft~Fiy/kv~ydE/v. For an exact cal-
culation of Fz we must use the solution of Eq. (18). We
can express the result in terms of the correlator of the
parameters χ and γ:

F,- = 4|£iS._i (21)

Figure 4 shows the relationship of the force Fz to the
velocity by the solid line for I v I > vB and by the dotted
line for \v\<vE, where vB=^ldE/M is the characteristic
depth of modulation of the frequency. Equation (21)
holds only in the region of large velocities \v\>vE where
we can consider the motion of the atom to be fixed. The
dimensionless coefficient C depends on the parameter
K\&\/dE (Fig. 5). Here we have C«l in the frequency
interval U\ Δ | « 0.2 dE, while C rapidly declines outside
this interval as the detuning is increased. The force Fz

reaches a maximum at the edge of this interval, and it
amounts to Fz

a0.2 sign ΔγάΕ/ν. This agrees with the
estimate given above. In a weak field, the mixed-type
force is proportional to the cube of the radiation intensi-
ty. We can understand this relationship by the following
arguments. The emission from the atom in the external
field has coherent and incoherent components (see, e.g.,
Ref. 25). The force Fz is proportional to the gradient
force (the first power of the intensity) and to the intensity
of the incoherent photon emission. In the case of reso-
nance fluorescence, this quantity is proportional to the
square of the intensity of the external field. t8ei

One can also consider the mixed-type force as result-
ing from Raman scattering of light. The atom absorbs
a quantum of the external field of frequency ω0 + Δ,
while it spontaneously emits a quantum at the transition
frequency a>0. Depending on the sign of the detuning, the
energy goes from the atom into the field or vice versa.
The rate of variation of the energy of the atoms arising
from the force (21) is

FIG. 4. Dependence of the
mixed-type force on the
velocity of the atom.

ι ^ - — _

C

1.0

0,5

FIG. 5. Dependence of the function
C that characterizes the value of the
force F2

 o n t n e detuning.

O.I Ο.Σ

d Mv* (22)

When Δ>0 the atoms are heated, while they are cooled
when Δ<0. The entropy of the "atom + field" system
does not decrease, since the entropy of the field in-
creases in spontaneous emission.

For estimates we replace the velocity in the formula
Fz = sign ydE/v by the characteristic velocity vB of the
atom in the standing wave. Consequently we obtain

F?** 0.1γ VdEM. (23)

In a field of intensity 10* V/cm we have ^ " - 1 eV/cm.
In a strong field the mixed-type force considerably ex-
ceeds Fo, but is much smaller than Flm

3. ACCELERATION AND DECELERATION OF ATOMS
BY LIGHT

Forces of light pressure can be used to accelerate or
decelerate atoms and molecules. Here it is important
to know not only the maximum energy that the field can
transfer into the kinetic energy of the atoms, but also
the efficiency of this transfer. The simplest possibility
of acceleration arises when an atom moves in the field
of a plane running wave under the action of the force Fo.
In a saturation regime, an Na atom must travel a path
of ~ 15 cm to be accelerated to an energy of 300 °K.
Here one photon of the light beam of energy Λωα2 eV is
spent for each recoil momentum Kk received by the atom.
The number of photons scattered during the acceleration
time is 2xlO4. The efficiency of this method of accel-
eration proves to be very low, of the order of 10"6.

A. Acceleration of atoms in a field of opposing waves

In a strong field, an appreciable fraction of the atoms
can lie in the potential wells of a standing wave. Thus,
when E~ 10e V/cm, the depth dE~ 10"2 eV of the potential
well is comparable with the kinetic energy of the atoms
at room temperature. The trapped atoms can be accel-
erated by varying the frequency of the opposing waves.
This method was first proposed for accelerating charged
particles by radiofrequency fields.143 If the phase of the
wave (8) has the form

(24)

then the trapped atoms move with the acceleration a
= u>/k. Here the potential wells exist only under the con-
dition a<ac=F1/M, which limits the rate of variation of
the frequency. As an example, let us estimate the ac-
celeration of metas table He (2 3S) atoms by a field that is in
resonance with the 2 sS-2 3 P transition (λ = 1.08 μΐη). In
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a field Ε = 108 V/cm we have ae = 3.7x 10u sec"1. When
α =3xlO14 sec"1, one can accelerate the atoms to an en-
ergy of 10 keV in a time 2xlO"7 sec. The acceleration
path length is 10 cm. If the diameter of the beam is
0.1 cm, then the energy of the light in the pulse is 15 J.
The density of the atoms being accelerated is limited by
the diffraction of the light field by the grating that arises
from the modulation of the density by the field."·811 One
can find the reciprocal scattering length q of the photons
frdm the relationship q =c'k/2, where ε' is the variable
(modulated) component of the dielectric permittivity of
the medium. In this case ε' ~ 10"80 n, where « is the
density of atoms. Hence we find for a layer of gas 1 cm
thick that η<1θ" cm"8.

Variation of the frequency of the field. For accelera-
tion we must have ω = 2x 101* sec'8. During the accelera-
tion time the frequency must vary by 4x 1018 sec"1.
Such a frequency change can be achieved either by using
the Doppler effect in a resonator with fast-moving mir-
rors1 1 0 1 or by phase-modulating the light beam.U13 In
the latter case one of the light beams must pass through
a transparent dielectric in which the dielectric permit-
tivity δε =ε - 1 varies uniformly with time throughout
the volume (e. g., by varying the polarization vector in
an anisotropic dielectric). The change in the phase dif-
ference after passing through a dielectric of length I is
<p(t) =kl6e(t)/Z. The "turning on" of the dielectric should
obey the law δε(ί) = δεο(ί/τ)8, where τ is the acceleration
time.8) Hence we get

Μδε<> Ρ>ζζ\

ω = -^-, {it))

We can obtain the value ω =2xlO19 sec"1 that we are in-
terested in for τ =2xlO"7 sec with δεο = 1 and Ζ =15 cm.

B. Autophasing in velocity space

Let us study the acceleration of atoms by the force
Ft. For the sake of definiteness, let us take Δ>0, so
that the force Fz is an accelerating one.

According to Eq. (22), the energy of the atom varies
rather slowly in a stationary field: the atom acquires
an energy of 1 eV in a field of 10* V/cm in a distance of
10s cm. One can considerably enhance the acceleration
effect if the frequency of one of the opposing waves var-
ies linearly with time so that the atom lies in the field
of a uniformly accelerated wave. In this case we can
understand the pattern of acceleration from Fig. 4. In
a system with the wave at rest, the force Fz comes into
equilibrium with the inertial force Μα (a is the acceler-
ation of the wave) at a certain velocity v0. Here the
equilibrium point v0 is stable with respect to small per-
turbations of the velocity. In other words, the particles
are autophased in velocity space. The acceleration must
not be too great, since the condition vo> vE must be satis-
fied. When vo = vB, the trapped atoms move in the field
of the force (23). Then in a limiting field the atoms ac-
quire the energy 108 eV in a distance of 108 cm.

The acceleration effect of the force Ft is considerably
smaller than that of the gradient force. Yet the accel-
eration of particles in a velocity autophasing regime has
two important advantages.

First, all the particles are accelerated by this method.
If the depth of the potential wells is small (dE« T), then
the number of atoms trapped in the wells and accelerated
by the gradient force proves to be small and of the order
of V dE/T . In acceleration by the force Fz, in which the
phase velocity of the wave varies from -vT to +vT (vT

is the initial thermal velocity), all the atoms prove to
be trapped. Consequently all the atoms in the coordi-
nate system associated with the wave acquire the same
velocity v0 (apart from a small field modulation of the
velocity). Thus the gas being accelerated becomes
cooled. Second, the acceleration time can be large.
In the case in which the trapped atoms are accelerated
by the gradient force, the duration of acceleration is re-
stricted by the lifetime of an atom on the trajectory (see
Sec. 4). This fact is not important when the atoms are
accelerated by the force Fz, provided only that v0 does
not approach its critical value vB too closely.

C. Cooling of atoms by light

Cooling in the field of a standing wave. When Δ<0,
the resonance atoms are retained by the field of the
standing wave. We get from Eq. (22) the characteristic
cooling time r t of the atoms:

( T O ' 1 Τ
ft |A I (26)

2)The case in which e(t) is varied sharply in order to excite the
opposing wave has been treated in Ref. 22.

Another cooling regime arises in the field of a uniformly
accelerated wave. The atoms are cooled by the force
F%a (they are grouped near the velocity v0) within the
time

(27)

When dE« Τ we have τ 2 « τ χ. This method of cooling
and accelerating atoms can be useful for obtaining in-
version-free laser action using metastable atoms (see
Chap. 7).

Cooling of resonance atoms in a standing wave can also
arise from the force Fo."" Let us study the field of a
standing wave in which the amplitude satisfies the condi-
tion dE/K<,kvT, while the detuning is negative and ap-
proximately equal to kvT. An atom moving with a posi-
tive velocity of the order of vT will interact mainly with
the wave propagating in the negative direction, since
only the latter will be in resonance with the atom (see
Eq. (7)). Therefore the atom will be decelerated by the
force Fo. Within the time

(28)

its velocity will become appreciably less than thermal.
More detailed calculations of this case have been made
in Ref. 55. For example, for Mg atoms we have τ3~10"5

sec, while the required radiation power is ~1 kW/cm8.

Cooling by the mixed-type force is more efficient than
that by the force Fo in relatively weak fields where Ε
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(mf/2Md~l eV/cm. Thus, Mg atoms can be
cooled in the same time of 10"s sec in a field of power
0.2 W/cm2. We stress the difference between the mech-
anisms of cooling by the mixed-type force and by the
force of spontaneous light pressure Fo. In a strong field
dE/K>kv, an atom interacts to about the same extent
with both opposing running waves. In this case stimu-
lated transitions contribute substantially to the cooling
effect. When dE/K<kv, the atom interacts effectively
only with one of the waves, and the cooling rate is de-
termined by the rate of spontaneous transitions. Cooling
by the force F2 is most effective in a frequency-scanning
regime.

Cooling and heating of atoms in a light field by colli-
sions. In the absence of an external field collisions of
atoms are usually elastic. In other words, the work
done by the interaction forces between the particles is
zero. In an external field (let it be the field of a plane
running wave), the work done by these forces can be-
come different from zero. This happens whenever one
of the atoms spontaneously emits a photon during colli-
sion, and its dipole moment changes sign.

From the quantum standpoint, the collision becomes
inelastic owing to Raman light scattering, absorption of
a quantum of frequency α>0 + Δ and spontaneous emission
of a quantum of frequency ω0. When Δ < 0, the atoms are
cooled, while they are heated when Δ>0. The change 6T
in the kinetic energy of relative motion per collision
can be estimated from the relationship (22): δΤ-Κ^γτ^ι,
where τφ1 is the collision time. In order to find the rate
of temperature variation, we must multiply this expres-
sion by the rate of collisions «α'/τβ,ι:

fik Ztlk

-^j- ~ yn&na3, (29)

Here a is the range of the forces such that the kinetic
energy of the atoms changes by not less than K\A I. Of
course, we also need the condition ΛΔ ~ dE. In the case
of a dipole-dipole interaction we have dz/a3 ~ΗΔ. Hence
we get the final estimate of the rate of variation of the
temperature

(30)

At a density η = 1017 cm"3, the temperature of Mg atoms
varies by a factor of two (it increases when Δ>0 and
decreases when Δ<ο) within 10"4 sec in a field of power
1 MW/cm2.

D. Acceleration of atoms by π-pulses'21'

We examine the acceleration of atoms by modulated
light beams. Here we can deal only with small energies
of acceleration in which the,momentum of the atom var-
ies by an amount of 102-103 Kk. Let a running light
pulse be turned on between the instants of time tx and tz

and be incident on an atom. Then after it has passed,
the momentum of the atom changes by the amount

(31)

a) b)

FIG. 6. Acceleration by a π-pulse of an atom in the ground
state (a); acceleration of an excited atom by a π-pulse running
in the opposite direction (b).

This expression is derived by using Eq. (6) upon neglect-
ing relaxation (brief light pulses).

Let a π-pulse be incident on an atom in the ground
state (^(ίι) = — 1). Then the atom goes into the excited
state (q(tz)= + l) and it changes its momentum by Kk
(Fig. 6a). If a π-pulse traveling in the opposite direc-
tion again acts on the atom, then the atom returns to the
ground state and its momentum is increased again by Kk
(Fig. 6b). The total change in the momentum of the
atom per cycle is 2Kk.

It is important that the π-pulse traveling in opposite
directions should act strictly alternately on the atom.
These conditions can be realized approximately either
inside the resonator of a laser that operates in a self-
synchronized regime1453 or by using single-direction
pulses and a weak constant opposing field. However,
the conditions that define a jr-pulse (Δ=0 and djffE(f)dt
= itH/2) are not satisfied strictly. The extent of devia-
tion from these conditions determines the number Ν of
pulses for which coherent acceleration occurs. If the
relative deviation from the ir-pulse conditions is of the
order of ε (the characteristic scale of the detuning is
determined by the duration τ of the pulse), then we have
either Ν~ε'1 or N~z'z, for constant and fluctuating de-
viations.

The Doppler frequency shift leads to a detuning that
increases during acceleration. Analysis shows that, un-
der the condition ε2/τ <kv< 1/r, the change in phase
arising from the Doppler effect becomes random, and
we have Ν~ε" 2. Spontaneous emission also leads to
breakdown of coherence of the interaction of the atom
with the π-pulses. When there is a large number of
scattered quanta, it is hard to attain an acceleration
time shorter than γ"1. Apparently the only way out is
to use pulses of short duration (short duty cycle) and
scattering of the atoms near a mirror, where the time
interval between the oppositely running pulses is small,
so that the atom is in the ground state during the rela-
tively long interval between pulses in the same direction.
Acceleration of atoms by π-pulses is of interest for reso-
nance scattering of atoms at small angles in an atomic
beam. When JV-IC^-IO8, the deviation angles are of the
order of ΙΟ^-ΙΟ"1 radians. As a function of the frequen-
cy, the mean force arising from the «--pulses has the
form of a narrow peak of width l/τΝ that is smaller than
the characteristic field broadening 2dE/K. Acceleration
of atoms by pulses of variable frequency has been treated
in Ref. 27, while acceleration by a π-pulses has also
been discussed in Ref. 58.

E. Acceleration of atoms by a two-frequency field|201

A force that is constant in space (of non-gradient type)
can arise not only from dissipative processes, but also
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FIG. 7. Effective potential of an atom in the field of (32)
(shown by the heavy line).

from a breakdown of the adiabatic approximation, which
can happen in a nonmonochromatic field. Below we dis-
cuss a simple example of a special form of field in which
the effective force proves to be sign-defined at a dis-
tance much greater than the wavelength, and we estimate
the possible acceleration effect.

In the field of two standing waves of the form

Ε (xt) = Ε cos kx + E1 cos (fcr + π/4) «»*»-"!,
(32)

work is done mainly by the strong field of the standing
resonance wave Ε cosfce. Here half of the atoms have
the potential +dE coskx, and half have -dE coskx. We
shall consider the motion of an atom to be slow: kv
« dE/K. The field Ex acts everywhere as a small per-
turbation, except for the points kx = — ir/4+mir (m is an
integer) where resonance occurs: the frequency of the
weak field coincides with the Stark splitting of the levels
by the strong field.

If the criterion is satisfied that dE^> -JKkvdE , then
we shall be dealing with the so-called slow passage
through resonance. Then, after the point kx = — π/4 has
been passed, the atom goes from one quasilevel to the
other, and the potential changes sign. The effective po-
tential energy of the atom in the presence of the weak
signal is shown in Fig. 7 by the heavy line, while the
transitions are indicated by the dotted lines. Resonance
also occurs at the points kx = π/4 +mir, but the amplitude
of the weak field vanishes here, and transitions from the
one level to the other do not happen (fast passage through
resonance). Absorption (or emission) of a quantum of
the weak field occurs at the points of discontinuity. The
mean variation of the energy upon passing through one
period of the field (the wavelength) now differs from zero,
and it equals 4d£cosir/4. That is, a force appears that
is constant in space.

However, such a mechanism of acceleration cannot
operate for an unlimited time. As the velocity increases,
the criterion of slow passage through resonance breaks
down, and acceleration ceases. Hence one can actually
speak only of a small increase in velocity. For exam-
ple, it takes a resonance-field power of the order of
0.3 W to scatter thermal Na atoms in an atom beam by
an angle of ~ 0.1 radian. This value is about ten times
smaller than the power of the stationary monochromatic
wave (see Sec. 5) that is needed to scatter atoms by the
same angle. The gain in power arises from the fact that
the atom "employs" the energy of not one but many po-
tential wells, of the order of tens.

The acceleration effect depends substantially on the

frequency of the weak field. The width of the resonance
region is considerably smaller than the Stark splitting
dE/K.

4. THE STIMULATED RECOIL EFFECT

As we know, the recoil effect in a weak light field is
manifested in the fact that the absorption contour is
shifted by ε{Kk)/K toward the violet, and the emission
contour by e(Kk)/K toward the red with respect to the
transition frequency of an infinitely heavy atom. Here
c(kK) = {Kkf/ZM is the recoil energy upon absorption or
emission of one photon. The recoil effect can become
appreciable under the condition

2ε (ft*:) > fry, ( 3 3 )

This condition can be satisfied in optics only by very
narrow atomic or molecular resonances. If we express
λ in micrometers and A is the atomic weight, then t(Kk)/
Η = 1.2 x 10β Aml\'z sec"1. The features of the processes
of stimulated emission and absorption with account taken
of recoil by perturbation theory have been studied"·3 1 3

in connection with the theory of the Lamb dip.

In a strongly inhomogeneous field the atom reemits
many quanta and its trajectory can vary substantially.
The question arises of how the movement of the atom
affects its response, i .e . , the main dipole moment/)
(or conversely, how will the response affect the move-
ment of the atom?) Let us give a simple example of
strong correlation between the movement of an atom and
its response. The topic is the double refraction of a
molecular beam. In the case of exact resonance, the
mean induced dipole moment of the molecules that cross
the boundary of a light beam with the velocity ν is

p(x)-
<PE(x) (34)

When Δ=0 we can assume that half of the atoms have a
dipole moment directed with the field and half against i t .
The atoms that have the potential -dE(x) are attracted
into the light beam and their density becomes less than
that of the atoms having the potential +dE(x). Conse-
quently a mean dipole moment arises. Thus, in a strong
inhomogeneous electromagnetic field, the induced dipole
moment depends not only on the magnitude and the fre-
quency of the field, but also on the kinetic energy of the
atom.

A. The kinetic equation

In order to take systematic account of the recoil ef-
fect in stimulated and spontaneous transitions, we shall
start with the quantum kinetic equation for the density
matrix p(xt xz t) of the atom:

(35)

Here $S0 is the kinetic-energy operator, Si is the oper-
ator for interaction of the atom with the field of (3), and
γ is the operator for relaxation due to spontaneous emis-
sion.
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Equation (35) allows an exact solution in the case of a
plane running wave of arbitrary intensity. te] Yet here
the recoil is usually not large, since stimulated transi-
tions do not contribute in this case to the recoil effect.
In a standing wave of large amplitude, the change in the
motion of the atoms can become appreciable, but the
equations (35) in this case are complicated. However,
one can substantially simplify them in the important
quasiclassical limit

2 = - V P « , (42)

Mv > hk. (36)

Let us transform to a mixed Wigner representation (to
coordinate space and velocity space)

and restrict the treatment to the first correction term
in the expansion of the Hamiltonian in terms of the field
gradient1843:

dse(x, t) ap
dx dv

dp d-Xjx. t)

dv dx
(37)

The stimulated recoil effect in the kinetic equation (37) is
described by the second term on the right-hand side.
When it exceeds yp, the recoil becomes substantial, and
we arrive at the criterion

| dE (J-. (38)

The left-hand side of this inequality determines the value
of the Doppler shift arising from modulation of the ve-
locity by the inhomogeneous field. The inequality (38)
generalizes the criterion (33) to the case of a strongly
inhomogeneous field and it can be satisfied for broad
atomic resonances having y>107 Hz. Let us write the
equations of (37) for the individual components of the
density matrix, for the distribution function f = pn+pay
for the population difference q=pzz ~Pu> a n d f° r the in-
duced dipole moment p =dp12 :

conjugate,

•jf + v? = 2ip£*(i, i) + complex conjugate.

(39)

(40)

(41)

Here d/dt = B/Bt +vB/Bx is the total derivative with re-
spect to time. The first equation describes the motion
of the center of gravity of the atom when acted on by the
light-pressure force of (4). Equations (40) and (41) de-
scribe the change in the atomic states when acted on by
the resonance field. The distinction of these equations
from Eqs. (5) and (6) involves the second term on the
right-hand side of (40), which account for correlation be-
tween the motion of the atom and the induced dipole mo-
ment. We stress that Eqs. (39)—(41) account for fluctua-
tion of the dipole moment and for the dependence of p on
the state of motion of the atom.

Spontaneous transitions can alter the momentum of the
atom by the amount Kin. We can conveniently write the
relaxation operator γ for the distribution functions of the
atoms in the ground and excited states:

Here F(n) is the probability of spontaneous emission of
a quantum in the direction n.

The first equation of (42) describes the atom leaving
the excited state, while the second describes it entering
the ground state. The relaxation operator of (42) has
been usedt313 to find the form of the Lamb dip and for cal-
culating^-1 the fluctuations of the momentum during ac-
celeration of atoms by a plane running wave.

In the quasiclassical limit the operator γ describes
the slow diffusion of atoms with respect to velocity:

(43)

The diffusion coefficient is smaller by a factor of two
along the direction of the polarization vector (the ζ axis)
than in the transverse direction.

Let us study some features of the stimulated recoil
effect in the monochromatic inhomogeneous field of (8)
by using the quasiclassical equations (39)-(41), while
neglecting slow diffusion due to spontaneous emission
and assuming that y ay.

1) The nonresonance case. Let us start with the non-
resonance case A>kv0, where v0 is the characteristic
velocity of the atoms. Upon applying the procedure of
expansion in terms of Δ"1 (see Chap. 2), we get a sys-
tem of two kinetic equations for the functions S ± =[/

at ^ ' + + '" ~' Μ dx dv ' ' ± ' 4χ2 (χ) '·

(44)
When the field is turned off we have χ— 1, S,.— p&, and
S.— Pn· Thus S., is a function of the distribution of
the atoms in the "upper" mixed state, while S. is a func-
tion of that in the "lower" state. In a weak field the
lifetimes of these states differ strongly: when dE«KAt

we have % * y and y. - y[dE{x)/KA]4. The atom spends
the greater part of the time in the weak field in the "low-
er" state. The lifetime in this state is inversely propor-
tional to the square of the intensity of the field. In a
strong field with hA«dE, the lifetimes in the different
states are the same: y+ « y. » y/4. Of course the total
population of the two states is conserved since the lower
level is the ground state.

Equations (44) describe particles of two types that
move in potential differing in sign. The particles are
unstable and are "transformed" into one another, while
only the total number of particles is conserved. We can
also assume that there is one group of particles having
two trajectories of motion. The atom is situated on one
trajectory for the time 1/y. and has the potential U{x).
Then owing to the phase jump in spontaneous emission,
the dipole moment of the atom can change sign. Then
the atom will have the potential - U(x) during the time
l/y+ . The transitions from one trajectory to the other
are statistical in nature. The coordinate and momentum
of the particle are conserved in these transitions. If an
atom turns out to be trapped in a potential well of a
standing wave while following one trajectory, then when
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FIG. 8. Dependence on the detun-
ing of the diffusion coefficient of
atoms with respect to velocity.

-Bdt/li -Δ* Ο

it shifts to the other trajectory, the atom has only a cer-
tain probability of remaining in the bound state. Gener-
ally it becomes free. In this regard there is a funda-
mental distinction between charged particles and reso-
nance atoms. Charged particles can be localized in
three-dimensional potential wells.Cil The lifetime of
atoms in the bound state proves to be finite. In order
to increase it, one must decrease the field, i. e., de-
crease the depth of the potential well.s>

2) The resonance case. In a strong field with Δ=0,
the population difference q becomes small owing to the
saturation effect and we can neglect it. From (39)—(41)
we have the following equations for the quantities R±

=[/±Re(/>/d)]/2:

(45)

The atom now has two states having the resonance po-
tentials ± V(x). The lifetime on each trajectory are the
same and are equal to 4/y.

B. Heating of atoms by a nonmonochromatic field

If the resonance field of a standing wave is nonmono-
chromatic, then the force of stimulated light pressure is
a random quantity. For simplicity, let only the phase
<p(i) of the wave fluctuate and the phase correlator have
the form

<[<p (i) - φ (0)1» > = 2Γί. (46)

Stochastic acceleration (heating) arises when the fluc-
tuation spectrum has a large width Γ:

Γ>Ω, */¥• (47)

When Γ < Ω , the atoms trapped in the potential wells
adiabatically "follow" the field and there is no heating.
When Γ > Ω , the adiabatic approximation breaks down.
When Γ » Ω , the distribution function (f(v, t)) of the
atoms averaged over space and time obeys the Fokker-
Planck equation:

(48)

If the frequency of the field is at resonance on the aver-
age, then the diffusion coefficient has the very simple
form'8*·*»:

»(»)=
Γ (* d£)' 0. (49)

3)In the nvunerical example involving acceleration of He(2 3S) to
large energies, the acceleration time exceeds the lifetime of
He(23i>) only by a factor of two. The parameter that charac-
terizes the probability of escape from the well is γί/4= 1/2.

There are two characteristic regions in the frequency-
dependence of D(0) with respect to Δ shown in Fig. 8.
In the broad frequency interval ΙΔ | ~ dE/H, the behavior
of the diffusion coefficient is determined by the depen-
dence of the gradient force Fo on the detuning. The nar-
row peak in the center at Ι Δ|< AJ =V dET/H involves the
change in the correlation time of the force as we go
from the nonresonance to the resonance case. Actually
at resonance the question is that of correlation of ampli-
tudes of the field, while outside resonance it is that of
correlation of the intensity fluctuations. The correlation
time is four times smaller in the latter case than in the
former.

The energy of slow atoms increases linearly with time:

Ι,Μν1> = MD (0) t. (50)

Fast atoms "average" the gradient force over the period,
and when kv>T, the energy increases only as Ή.

Let us estimate the heating effect on the atoms by us-
ing Eq. (49). The linear heating regime of (50) quickly
breaks down for small Γ, while this process proceeds
very slowly for large Γ. The most favorable case
arises when T*kv*, where v* is the final rate of heating.
By starting with this condition, we can find the radiation
intensity needed for heating atoms to the effective tem-
perature Τ * in the time τ:

£2 = (to*T)-'(-?^-)2. (51)

A power of 1 MW/cm8 is needed for heating Na atoms to
300 °K in a time of 2xlO"s sec.

Diffusion with respect to velocity arises in the mono-
chromatic field of a standing wave, owing to combination
of spontaneous and stimulated transitions. Just like the
forces acting on the atom, one can classify the diffusion
coefficients in terms of type of emission of photons.

5. SCATTERING OF ATOMS BY LIGHT AND THE
ISOTOPE-SEPARATION PROBLEM

Currently the problem of separating isotopes by laser
methods is being studied very intensively.t34~se] Here
we shall examine the possibility of separating isotopes
by using light pressure. The overall scheme of this
approach is as follows. An atom beam or jet intersects
a light beam at a right angle. Owing to the resonance
nature of the light-pressure forces, only certain isotopes
are scattered out of the beam (or jet) under certain con-
ditions. We shall discuss below the efficiency of scat-
tering of atoms and molecules by using the forces dis-
cussed in Sec. 2.

A. Deflection of atoms by a running-wave field

In 1973 Frisch t 2 ] observed a deflection (very small) of
Na atoms in an atomic beam when irradiated by a reso-
nance lamp. AshkinC81 has shown that the force of the
spontaneous light pressure of a laser beam is sufficiently
large to deflect atoms through large angles. References
11 and 12 describe experiments on deflection of a beam
of Na atoms by using a dye laser and a resonance lamp.
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FIG. 9. Density distribution of atoms over the cross-section
of the beam before irradiation by light (curve 1) and after irradia-
tion (curve 2).

Figure 9 shows the density distribution of the atoms over
the cross-section of the beam before irradiation by light
(curve 1) and after (curve 2).ίαΊ The width of the spec-
trum of the laser radiation allowed them to excite only
a certain transition between components of the hyperfine
structure. Therefore nonresonance, unscattered atoms
(curve 1') and resonance, scattered atoms (curve 2')
contribute to the distribution function shown by curve 2.
The number of excitations of resonance atoms by light
amounted to about 60, while corresponds to a scattering
angle of (3-2)xlO"3 radians. Bernhardt et al.lin have
separated Ba isotopes by using spontaneous light-pres-
sure forces.

Deflection by the field of a running wave required a
long exposure of the atoms to the light beam. This situ-
ation can substantially impair the parameters of an
atomic beam or jet, since when resonance excitation
takes place the dipole-dipole interaction is "switched on"
and the collisional scattering cross-section of the atoms
increases sharply. Another reason why prolonged ir-
radiation is not desirable is the transition of atoms dur-
ing irradiation to metastable levels, e. g., as in the
case of Ba atoms.

As the radiation intensity increases, the force F9 be-
comes saturated, while the selectivity of action is im-
paired by field broadening. Evidently the conditions dE
« Δ ΐΒ0 must be satisfied, where Δ1β0 is the isotopic fre-
quency shift. The impossibility of using a strong field
restricts the density of atoms in the beam or jet, and
thus it limits the throughput of the method. Owing to the
small radiation width, it is difficult to apply the force
Fo for scattering molecules in an infrared field.4* Also
the energy balance is extremely unfavorable in spon-
taneous scattering of photons. All these circumstances
substantially restrict the possibilities of applying the
force FQ for separating isotopes. However, one can
eliminate them by using the force of stimulated light
pressure for scattering atoms.

B. Scattering of atoms in a standing light wave

A standing wave gives rise to a diffraction grating with
the half-wave period of λ/2. Kapitza and Dirac£ 3 7 : have
estimated the efficiency of scattering of electrons by such

4 *A report has been published1591 of observing a fall in pressure
of the order of 10"5 Torr in a bulb containing SFegas irradiated
by the resonance field of a CO2 laser.

a grating. With almost normal incidence on the light
wave, the small diffraction angles of scattering θη are
determined by the Vul'f-Bragg condition

Ihkn
Ρ

(52)

Here p is the momentum of the incident particles.

The theory of the Kapitza-Dirac effect has been treated
in Refs. 38 and 39. Scattering of electrons in powerful
light fields has been observed in the first diffraction
maximum."0·4 1 3 For an electron energy of 10 eV that
was used in Ref. 40, we have 0i~lO"3 radians.

Let us examine the features of the scattering of atoms
and molecules in the resonance field of a standing
wave.C303 The angles between the diffraction maxima for
atoms are somewhat smaller than for electrons. For
example, for thermal Na atoms we have 0J~1O"4 radians.
However, the number of quanta scattered by the atoms
can be large. Therefore, in a strong resonance field
the maximum deflection angle for atoms is far larger
than for electrons. In view of the large number of
scattered quanta, one can treat the problem of the dif-
fraction of atoms by a standing resonance wave from the
classical standpoint. Let the light wave of (8) be mono-
chromatic, ψ = const. The atoms of the beam or jet
move along the y axis. The atoms in the impinging beam
have no transverse velocity, vx = 0, and the longitudinal
velocities vy are all the same. For the sake of simplici-
ty we shall assume the boundary of the light beam to be
sharp.

In the region of the light beam, the gradient force F1

directed along the χ axis acts on an atom. One can find
the transverse energy of the atoms from the law of con-
servation, of energy

Μνϊ (53)

Here x0 is the entrance point of the atom into the light
beam.

On leaving the light beam the atom has a certain trans-
verse velocity that is determined by the initial coordi-
nate x0 (x0 is a random quantity) and by the time of inter-
action ly/vs with the field (Z, is the thickness of the beam).
The atom can acquire the maximum transverse energy
in the stationary field U(x) only in a light beam of suf-
ficiently great thickness Zj,>Zc. Here the critical thick-
ness is determined by the condition of matching the time
of transit with the period (more exactly, one-fourth the
period) of oscillation in the potential well

(54)

For estimates we can assume that lc=\/6m, where 9m is
the maximum scattering angle of the atoms for the given
entrance velocity:

dE
Ίίϋζ

(55)

Here we have used the formula for the resonance poten-
tial and have taken account of the fact that the depth of
modulation of the potential is 2dE.
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FIG. 10. Distribution function with
respect to scattering angles.

By averaging the scattering result with respect to x0

we obtain the angular distribution function F(0) for a
monoenergetic beam (or jet), as shown in Fig. 10.
About 30% of the particles is scattered into the angular
range from 6m/2 to ΘΜ.

Let us find the intensity J of the standing wave re-
quired for steady-state scattering of atoms and mole-
cules at the characteristic angle 0m. If we assume that
the light beam is focused (compressed) along the y axis
to the thickness ly=lc, the height of the light beam is I,
= 0.1 cm, andAiw*=300°K, we find that

Γ = 2.5·10ί- •W, (56)

Here λ is expressed in micrometers, 0m in radians, and
d in Debyes.

Table I gives J values characteristic of atoms and
molecules. J increases several thousandfold in going
from atoms to molecules owing to an increase in the
wavelength and a decrease in the dipole moment.

If there were no spontaneous emission, then the scat-
tering of the atoms would be elastic. For example, in
deflection of Na atoms through the angle em = 5xl0"*
radians, we find that the inelasticity parameter is yt
<1. That is, each atom scatters no more than one pho-
ton from the light beam.

1) The pulsed scattering regime. Let atoms cross
an unfocused light beam having the transverse cross sec-
tion of 1 cm2 (Ζν~/,~1 cm). The duration of the light
pulse is Tjun, = 10"8 sec, while the amplitude of the field
at the maximum is 7.5 x 10s V/cm. Under these condi-
tions, the resonance atoms are scattered in a regime in
which the times r w l s e match the period of oscillation λ/
2vB in the potential well. Therefore the atoms can ac-
quire the transverse energy that they could get in a static
potential. The total energy of the light pulse needed to
scatter Na atoms by the angle 0m=O. 1 radian is 2 mJ.

The corresponding parameters for molecules scat-
tered by infrared radiation are: scattering angle 6m

= 3x10"* radians, τ,α1β, = 10"8 sec, total pulse energy
=0.2 J.

2) Selectivity of scattering. When Δ1β0 » dE/K, se-

TABLE I.

Na
Na
SF,

I, cm

0.6
0.6

10.6

e m , radiu»

5-10-"
2 10-'
2-10-»

J, W

2
0.1

200

2ΛΕ/ΙΙ, H2

1010

10»
10»

lectivity of scattering can be ensured by a sharp de-
crease in the depth of the potential U(x) for large de-
tunings.

Let us examine whether one can ensure selectivity of
scattering when Δ1β0 «dE/H. We shall assume that the
frequency of the field of the standing wave is tuned ex-
actly to the transition frequency of the given isotope: Δ
= 0. Then the resonance isotopes are scattered approxi-
mately uniformly into the angular range lel<em, as is
shown in Fig. 11.

The nonresonance isotopes, for which the frequency
shift satisfies the condition ΔΐΒΟ>Δ0) will be scattered
in the potential U(x)« I dE(x) I. The depth of modulation
of this potential is only half that of the resonance poten-
tial. Therefore the nonresonance isotopes will sweep
out the angular range \9\<eJ-f2, while only the reso-
nance isotopes will be scattered at the angles Gm /-fl

<\e\<em.
Thus the isotopes that satisfy the condition

\<^<~, (57)

can be separated with a high degree of enrichment.

For Na in a field of intensity 7.5x10* V/cm, we have
Δ,, = 500 MHz. In this case the effective width of the
resonance scattering Δ,, exceeds by a factor of 50 the
width of the upper working level, and is 60 times smaller
than the field width 2d£A=3xlO1 0 Hz. In other words,
we lose somewhat in selectivity of scattering in the field
of a powerful standing wave as compared with a weak
running wave. On the other hand, the time of interaction
of the atoms with the field is substantially shortened (by
a factor of more than 2000), and the free flight path of
the photons increases considerably. This circumstance
allows one to rely on getting a high productivity of iso-
tope separation in the standing wave.

"Collisionless" isotope separation methods have an
upper bound of productivity that is determined by the
flow rate and the allowable (with regard to collisions)
density of atoms. From this standpoint, powerful gas-
dynamic jets are of great interest, in which the density
of atoms attains values of 1015 cm" s. [4eI The flow rate is
supersonic, while the temperature of the particles is
low. That is, the flow is monoenergetic.

3) Scattering of atoms by a nonmonochromatic field.
When the condition (47) is satisfied, then the atoms are
randomly accelerated in the transverse direction as they
pass through the beam. The angular distribution func-
tion is Gaussian with the variance P :

FIG. 11. Resonance isotopes
are scattered into the angular
interval Ι θ I <6m, while the
nonresonance isotopes are
scattered into the angular in-
terval 16 \<em//2.
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(58)

Thus, in a 7.5xlOs-V/cm field with Tpuise = 10"8 sec and
Γ=4χ10 8 Hz, we have 6=0.02 radian. This scattering
regime can also be used for isotope separation. Since
the mean angle is expressed in terms of the diffusion co-
efficient of the atoms ~θ = const « V D , the dependence of
the scattering angle on the detuning has two characteris-
tic frequencies, ldE/% and Aj. When | A | > A J , the
scattering angle_ Θ(Δ) decreases by a factor of two as
compared with <?(0). Therefore one can separate iso-
topes in a monoenergetic flux of atoms under the condi-
tions of the inequality (57) (with Δ,, replaced by Δ*).

4) Other possibilities. If one deflects trapped atoms
by the field of a uniformly-accelerated wave, then one
can get a narrower angular distribution of the scattered
particles as compared with the function F(B). This type
of deflection of atoms requires a field of lower power.
For example, for deflecting thermal Na atoms through an
angle of 0.1 radian in a time Tp u l s e = 3 x 10"8 sec, the
energy of the pulse should be 0.5 mJ. The variation of
the frequency of the opposing waves within the accelera-
tion time amounts to 100 MHz. This can be carried out
in a phase-modulation scheme with Ζδε0 ~ 10"4 cm (see
Sec. 3).

Let us estimate the efficiency of scattering of atoms
by the mixed-type force in a frequency-scanning regime.
Here all the atoms are deflected at the same angle,
which can be represented in the form

(59)

Hence we see that deflection by the force F™"* becomes
more efficient as compared with elastic scattering by a
standing wave when yrmlst > 20. Thus, for Na with yTpuiae

= 60, the atoms are deflected through an angle of 0.1
radian at a pulse energy of 7.5 mJ. The width of the
resonance-scattering region is \ea

a0.2 dE/H~300 MHz.
The advantage of this scattering method relates to the
high selectivity when Δ ΐ 8 0 >Δ Γ β 8 .

One can also employ acceleration of atoms by π-pulses
and a two-frequency field for resonance scattering. As
has been noted in Sec. 3, the width of the resonance
scattering in this case is appreciably smaller than the
field width 2dE/H. The variation in isotopic composition
of an atom beam resulting from "longitudinal" illumina-
tion by a resonance field has been studied in Ref. 44.

Thus atoms can be scattered rather selectivity by all
the types of forces. From the standpoint of the problem
of isotope separation, the stimulated light-pressure force
is of greatest interest. The large size of this force al-
lows one to use short light pulses. If the width of the
emission line is small, then a high degree of selective
scattering persists even in a strong field. Here the
atoms scatter a small fraction of the photons from the
light beam, so that we can consider the scattering to be
elastic. Apparently, one can attain the "collisionless"
light of the rate of isotope separation in this method.

6. QUANTIZATION OF THE MOTION OF ATOMS AND
MOLECULES IN AN ELECTROMAGNETIC FIELD

A strong inhomogeneous electromagnetic field acts on
atoms and molecules in a twofold manner: both the en-
ergy levels and the velocities of the particles are altered
by the Stark shift.

The level-modulation effect (the dynamic Stark effect)
has been studied in detail, mainly in connection with the

theory of the gas laser.C47-49] This theory assumes that
the atoms move with constant, unperturbed velocities.
Yet a situation can happen in which both effects of modu-
lation of levels and of velocities are essential. In other
words, the mechanical and optical phenomena become
entangled in a strong resonance inhomogeneous field. It
is of interest to study this problem for the spectroscopy
of narrow atomic and molecular resonances. We shall
call a resonance narrow if it satisfies the condition (31)
and broad if it does not. The resonance is usually very
broad for strong atomic transitions. For example, we
find that z(Kk)/tty~0.01 for sodium atoms. For weakly
allowed transitions resonance can be narrow. For this
to happen, the upper level, which is weakly coupled to
the ground state, must not have strong transitions to
other states. There are apparently few such transitions,
but the intercombination transitions in Mg, Ca, and Zn
satisfy this condition/503 Thus, for Ca in the 4 1 S 0 -4 3 P 1

transition (λ =6572 A), the width of the line is practically
determined by the reciprocal of the transit time through
the beam ~3xlO4 sec"1, and we have ε(fik)/Kya2. For
slow atoms and molecules (e.g., methane) or in beams
of large diameter, the transit width is small and the
resonance becomes narrow.C s l : The shape of the Lamb
dip is altered for narrow resonances. Since the absorp-
tion and emission contours are shifted in different di-
rections in weak fields by the recoil effect, two dips
arise of somewhat smaller depth, which are shifted
from the center of the line by the recoil energy163 ε(#&)/
Κ. An indirect observation has been reported1583 of the
recoil effect in an He—Ne laser with a methane cell.

In the case of broad resonances under the condition
U/H< γ, a small peak of width γ can arise in the center
of the line on the background of the Doppler absorption
contour, owing to atoms trapped by the standing wave.173

The depth of the Stark modulation U/R (where U is the
depth of the potential well) must be smaller than γ so as
to avoid field broadening.

When U/K> γ, the width of the absorption line of the
trapped atoms becomes of the order of U/K as the field
increases. This continues until the field intensity
reaches the critical value /„. When />/ 0, we must take
account of the quantization of the motion of the atoms and
molecules in the standing wave.142'503 Here the absorp-
tion line of the trapped atoms consists of narrow peaks
of width γ arising from the bound states, while the en-
velope of these peaks has the field width U/K. We can
easily find the critical intensity /„ by using the criterion
of the stimulated recoil effect (38). For trapped atoms
of energy z(p)~dE, the latter has the form

Ω >γ. (60)

Here the spacing between the energy levels becomes
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FIG. 12. Absorption coef-
ficient under the conditions
of the inequality (60).

FIG. 14. Shape of an individual
peak for Δ = 0 (solid line) and for
Δ * 0 (dotted line) in the case of
broad resonances.

larger than fiy. We find from the condition β = γ that 70

= (c/4jr)(Af/d)*(y/fe)*. For Na atoms we find that Io~30
W/cm1. For Ca atoms, if we use the known value of the
oscillator strength of the intercombination transition/5 3 1

we have Io = 10"4 W/cm2 when y=3x 10* sec"1. For meth-
ane molecules with the same transit width and with k
=2x10* cm'1, we have Io = 10"5 W/cm2. As we see from
this, the critical intensity can vary over very broad
ranges, mainly depending on the line width. The num-
ber of bound states at the threshold for Na is of the or-
der of 10*, and about three for molecules.

If the field broadening exceeds the Doppler width (dE/
H>kvT; we shall denote the corresponding critical in-
tensity by Ιχ), then the absorption contour substantially
differs from the Doppler contour. For Na atoms we
find Ιχ =500 W/cm2, and for molecules / t >2.5 kW/cm2.

Following Refs. 42 and 50, let us study the shape of
the absorption line of the weak field £ 0 βχρ[-ί(ω 2 0 + Δ 0 )ί
+tftox] produced by a three-level system with states 0,
1, and 2. The frequency of the weak signal is close to
the 0—2a>2o transition frequency; the adjacent transition
is acted on by the strong field of the standing wave of
(8) with a frequency close to the 1-2ω21 transition fre-
quency. In order to take into account the quantization
of the motion of the atoms occupying states 1 and 2, we
must start with the system of wave equations (9) with
relaxation taken into account. The fact that an atom
generally has two trajectories (two states in the field)
leads to certain quantization features that become appre-
ciable near resonance.

The quantization effects are manifested most clearly
in two cases: dE»c(#k), Κγ, and Ηγ«άΕ«ε(Kk). The
first case corresponds to the quasiclassical limit in
which there are many bound states and the second to the
quantum limit in which bound states are lacking, but dis-
continuities appear in the spectrum of the particles.

A. The quasiclassical limit

Let us represent the absorption coefficient of the weak
signal in the form

where qn(^o) is the contribution from the bound state
having the energy Κωπ, and qM(&t>) is the contribution
from the continuous states of the atoms.

We shall assume that the condition (60) is satisfied

FIG. 13. Diagram of the res-
onance levels in a periodic po-
tential.

with some room to spare, so that we can speak of the
structure of an individual agsorption peak. When Δ = 0,
the system of equations (9) breaks down into two wave
equations that describe the particles in the potentials
± V(x). The energies of the bound states lie between
-dE and +dE and they are doubly degenerate. The peak
has a characteristic radical form qn~ (ωη — Δ,,)"1'2, with
Δ0<α>η, since the weak signal mixes the continuous states
of the unexcited atoms and the discrete states of the ex-
cited atoms.5' Figure 12 shows the overall shape of the
curve of the absorption coefficient. When Δ,, = ωη, we
have qn~r~1/i. The degree of contrast of the peaks be-
comes greatest in the center of the absorption line,
where we can neglect the curvature of ^''(Δ,,). We can
characterize the relative peak height near the threshold
by the relationship

e<fiv,
(61)

This quantity is small for broad atomic resonances.
For example it is of the order of IO"8 for Na atoms. The
peak height can be large for narrow resonances.

At finite detunings of a strong field, the degeneracy
with respect to energy is removed and the resonances
are shifted (split) and broadened. The broadening of the
energy of the bound states in the quasiclassical situation
is somewhat unexpected. We can explain this fact by the
effect of the strong tunneling (which is not at all expo-
nentially small) at finite Δ. We see from Fig. 13 that
the wave functions of the bound states that arise in the
different potentials (+ V(x) or - V(x)) can overlap spa-
tially. One potential is depicted in the diagram by the
solid line and the other by the dotted line. When acted
on by a small perturbation proportional to Δ, a particle
of the one type can virtually go from the level η to a
state of the particles of the "other" type in the level η
and fall into a level having the energy Hu>n in an adjacent
well. In line with the Franck-Condon principle, the
turning points of the states η and w should lie close to-
gether. States having the same negative energy are
mixed in the second order with j-espect to Δ, while states
of positive energy (e. g., I and I) are mixed in the first
order with respect to Δ.

Owing to these transitions, the width of the resonance
is broadened by the frequency of jumping into the adjacent
well Γ η . For negative energies, the latter is of the or-
der of Γ π ~ Δ2(ωπ - ω,,)"1, while Γ π ~ Δ for zero energy.
This broadening is manifested in different ways for
broad and narrow resonances. Figure 14 shows the

5 Ή the weak signal were to act on the 1-2 transition, then tran-
sitions would also arise between the discrete-discrete states,
and the peak shape would become Lorentzian.
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FIG. 15. Change in the peak shape with increase in the transi-
tion frequency Γ π in the case of narrow resonances.

change in the peak shape for z(Hk)<Ky in the case of
finite detunings. The peak spreads out while maintaining
its area.

The situation is more complicated for narrow reso-
nances. With increasing Γ η , an additional symmetric
peak first arises, as shown in Fig. 15a. With further
increase in Γ π , when KTn>t{Kk), the symmetric peak
splits into two asymmetric peaks (of radical shape), and
a band of width c(Rk)/K (Fig. 15b) splits off the original
peak. This process of splitting of narrow bands con-
tinues as Γη increases, while their height diminishes.

When Δ~ Δ,,, the potential in which the particles move
readjusts from the resonance potential V(x) to the non-
resonance potential U{x). When Δ » Δ,, in the quasiclas-
sical approximation, we have two groups of particles
that move in the potentials ± Γ7(χ). In this case transi-
tions also arise from one potential well to the other one.
However, the frequency of these transitions rapidly de-
creases with increasing detuning: Γπ ~ Δ'3.

B. The continuous absorption spectrum in a strong field

The absorption coefficient ^"'(Δ,,) is determined by the
contribution from the fast atoms for which the modulation
of the velocity in the standing wave is small. Absorption
of the weak signal occurs only at the space points x0 at
which the law of conservation of energy is obeyed:

(62)2

We can neglect the Doppler frequency shift when
The absorption intensity is proportional to the time of
transit through the neighborhood of the point x0 or to the
quantity [dU(xo)/dxo]-K

We can derive from this condition a simple formula
for the absorption contour

(63)

Here Q=Ztikod\Q/K is the integral absorption coeffi-
cient. In the absence of an external field, the integral
absorption coefficient is also Q (sum rule). In line with
the fact that there are two groups of particles that move
in the potentials ± U(x), two absorption bands arise (Fig.
16b). They merge into one when Δ = 0 (Fig. 16a).

Thus the absorption line is smeared out in the field of
a strong standing wave into a band whose width is 2dE/tt

when Δ = 0. Formula (63) breaks down near the edges of
the band. The resonance levels do not overlap, but
touch at the very edge. In this case the time of transit
of the particles through the resonance region is effective-
ly increased and the absorption reaches a maximum.
The law of conservation of energy (62) is not satisfied
outside the absorption band, andg<c>(A0) sharply declines.

C. The quantum limit

Discontinuities arise in the quantum limit where Κγ
« dE « ε(Rk). When Δ = 0, discontinuities of width 2dE
arise at momenta of the particles of ±Rk/2. When the
detuning of the weak signal satisfies the condition

(64)

the parabola that corresponds to the spectrum of the
atoms in the ground state falls in the forbidden band,
and the absorption declines to the small relative value
of Κγ/dE or to dE/c(Hk). A dip arises in the absorption
coefficient. Its width is determined by the value of the
field dE/K, while its position does not depend on the field,
the depth of the dip can be large. The width increases
with increasing field, while the depth diminishes. The
dip disappears when dE>c(fik).

Thus the effect of light pressure on the spectral char-
acteristics of atoms and molecules can be very substan-
tial. Even in very weak fields (of intensity of the order
of 0.1 mW/cm2), atoms having narrow lines begin to
manifest effects of quantized motion: a fine structure
arises in the absorption spectrum in the form of peaks
or dips. The relative height of the peaks or depth of
the dips can be of the order of unity for narrow reso-
nances.

7. THE SHORT-WAVE LASER BASED ON THE
STIMULATED-RECOIL EFFECT

We shall show on two simple examples that light
pressure can be employed for selection of excited and
unexcited atoms. One can perform this selection most
simply in terms of velocities. Here one can have two
characteristic regimes: slow (during a transit time)
using metastable atoms,, and fast for strong resonance
transitions.

A. The laser based on metastable helium atoms'21'

Let us study a gas of helium atoms with an appreciable
admixture of He (2 3S) which is still small with respect
to the concentration of unexcited atoms. The lifetime of
orthohelium is long at low pressures. Hence one can

(A/2HU/M ΟΔ (Δ/2)*№)
b)

FIG. 16. Absorption contour in the strong field of a standing
wave for Δ = 0 (a) and for Δ * 0 (b).
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-B'P TABLE Π.

FIG. 17. Diagram of the levels of
He and transitions in resonance fields.

-/is1

try to alter the velocity of the metastable atoms with
respect to the atoms in the ground state. For this pur-
pose it suffices to use the resonance field for the 2*S-
2'P transition, λ = 1.08 μπι. Figure 17 shows a level
diagram. Owing to the Fg forces, one can accelerate
the metastable atoms with a light pulse of energy 2 J and
duration 2xlO"s sec to a velocity t>0>i;r. A quite essen-
tial point is that the atoms become cooled during such
an acceleration. This means that subsequently all the
excited atoms can participate In laser action.

As seen as v0 exceeds the thermal velocity of the
atoms in the ground state, the emission and absorption
contours begin to differ substantially. Yet the decay of
the 2*S and 2*P states into 1*S occurs too slowly. One
can overcome this difficulty by using an additional light
pulse that is in resonance with the 2 * 5 - 2 ^ transition
(λ =0.87 μπι)." The intercombination transition should
occur in a time of the order of or shorter than the life-
time τ of the 2 *P state: 2dE > Κ/τ (τ = 0.5 nsec). We
find from this condition with d = 2xlO"3 Debye"" that the
needed power of the pulse is 100 MW/cm*.

In this way we can get a negative absorption coeffi-
cient in the short-wave 2 *P-1 *S transition, λ = 584 A.
Since the excited atoms have no Doppler broadening, the
amplification coefficient is otm η = 10"un, where σΓΜ

=3ιτλ2 is the resonance absorption cross section of the
photon. In order to get appreciable amplification ~ 1
cm'1, one needs a small initial concentration of meta-
stables ~ 1 0 u cm"*. The gain in density as compared
with the inhomogeneously broadened contour amounts to
two orders of magnitude. Perhaps it is more expedient
to use helium molecules to get laser action in such a
scheme.

B. The laser based on the recoil effect1541

We shall now discuss a one-step laser scheme in a
gas of atoms having the working levels 0, 1, and 2. The
transition 1-2 lies in the microwave region, while the
transition 0-2 lies in the short-wave region of the spec-
trum.

The initial concentrations n^ and «g of excited atoms
are smaller than n,,, the concentration of unexcited
atoms. Let us denote by l/y20 the lifetime of state 2
with respect to spontaneous transition to the ground state.
In the strong field of two opposing nonmonochromatic
waves that are in resonance with the transition 1—2, the
excited atoms are heated. The power needed to heat the
atoms to the temperature Γ * is determined by the re-

Ui, A

Η. 2Μ—Ζρ. 6560
He. 2a-3p, 5015
He II. it—6p, 6500
Li II. it-dp. 6100

I. W-cm·

310»
410»
5-10»
5 10'»

λ». Λ

1025
537
234
157

«. cm"1

4-10-Hn,
10-» η,
3 ΙΟ"1· η,
6-10-'· η,

lationshlp (51). In order to avoid broadening of the
emission contour by the strong field, the duration of the
pulse should be shorter than l/y20. If the acceleration
of the excited atoms yields

τ* >r , (65)

where Τ is the temperature of the unexcited atoms, then
the absorption coefficient in the short-wave transition
2-0 (\) In the frequency region feiO»r<Ao<feioi;r* can
become negative (Fig. 18). This happens under the con-
dition

"0 *»"T " (66)

6 Ά scheme for getting laser action in a recombining plasma by
using an intercombination transition has also been treated in
Ref. 57.

The criterion (66) replaces the condition of an inverted
population. In the examples to be given below we have
y ioAiofr~10" i-10"s. The condition (65) and (66) de-
termine the power of the pumping light pulse and the
concentration of excited atoms. As an example, Table
Π gives the values of these parameters that are needed
for getting laser action in hydrogen, helium, and lithi-
um. In order to estimate the parameters, the inequali-
ties are replaced by equalities, the temperature of the
neutral atoms is taken as 300 °K, and that of the ions as
1000 °K.

We see that it takes a density of excited atoms of 3
x l 0 u - 3 x l 0 1 5 cm"3 for an appreciable amplification. One
can select similar transitions for any neutral atoms.
Here the requirements imposed on the light beam are
less rigid than in the case of helium atoms, since the
widths of the resonance levels are smaller for the other
atoms. Evidently the method of velocity-selection of
atoms discussed above is impeded by collisions of the
excited and unexcited atoms, which equalize the veloci-
ties of the particles. The rate of relaxation Γ ι ο due to
collisions involving excitation exchange is related to y80

by the relationship Γ 8 0 « 5.3 yi0 n0 λ Jo. The condition Γ 2 0

<Χ2ο» which is satisfied up to densities no£ 1θ"-1Οιβ cm'',
is required for laser action. In the case of He Π and
Li Π, owing to Coulomb collisions, we have the value
Tgo-lO19 sec*1 for 7 = 10* °K and density n,, = 10 l e cm"8.
This value is of the order of the rate of spontaneous re-
laxation yM.

FIG. 18. Absorption line
shape in the adjacent transi-
tion under conditions of the
inequalities (65) and (66).
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Thus, one can "control" the emission and absorption
contours by using light pressure and obtain laser action
without inversion.

8. CONCLUSION

At the beginning of our century people assigned only a
certain modest role to light pressure in astrophysical
phenomena. Now the situation is becoming different. In
the high-power fields of coherent laser sources of radia-
tion, the pressure forces on a resonance particle can
be very large. A set of phenomena arises in optics and
in quantum electronics in which resonance light pressure
becomes essential or can be utilized in some way.

Usually the mechanical action on individual atoms and
molecules is realized by scattering of particles having
dipole or magnetic moments in an inhomogeneous elec-
tric or magnetic field. Scattering of atoms and mole-
cules in a resonance light field also can be effective. In
the field of a standing wave, in which the field inhomo-
geneity is determined by the wavelength, the gradient
force of light pressure can be so great that it suffices to
use short light pulses for scattering the particles. In
a pulse of duration 10"8 sec and energy 1 mJ, the char-
acteristic time of transit by an atom of a distance of
half a wavelength is also of the order of 10"8 sec. The
energy obtainable in a pulse of tunable-frequency lasers
suffices for scattering atoms through an angle of the
order of 5-10°.

Since the mean free path of the photons is large in a
strong field, one can use in such a scattering scheme
high-density particle fluxes obtainable in high-power
gas-dynamic jets. The scattering of the atoms in this
case differs little from elastic scattering. The selec-
tivity of scattering is sufficiently great even in a strong
field. This circumstance can be essential for the prob-
lem of isotope separation. One can use light pressure
not only to heat but also to cool atoms. Metastable atom
accelerated and cooled by the mixed-type force can all
contribute to coherent emission in a short-wavelength
transition. In order to get laser action in this case a
small concentration of metastables is required. Light
pressure can play a very substantial role in the spec-
troscopy of narrow atomic and molecular resonances.

The author thanks G. A. Delone, A. M. Dykhne, S. G.
Rautian, and G. S. Surdutovich for discussion of the
topics dealt with in this review and for a number of use-
ful remarks.

Note added in proof. The splitting of the trajectories
of motion of an atom in the field of a plane running wave
has been studied recently in Ref. 60. The motion of
atoms in the weak field of a standing wave dE<,Hy (with-
out taking account of the two trajectories of motion) has
been studied in Ref. 61.
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