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Papers on acousto-optical phenomena in solids and their most important applications to research in solid
state physics and to modern technology are surveyed. The theory of the diffraction of electromagnetic
waves by sound in isotropic and anisotropic solids is discussed. In addition to such "classical" special cases
of diffraction as Bragg and Raraan-Nath diffraction, we also consider some cases of the diffraction of light
by sound in which the reflection of light at the faces of the crystal and modulation of the light by the
sound wave have an important effect on the nature of the acousto-optical interaction. The contribution of
the electron density wave accompanying a sound wave in piezoactive semiconductors is considered and
features of this acousto-optical interaction mechanism are discussed. The quantum theory of the diffraction
of light by sound is examined. Microscopic expressions for the photoelasticity constants are obtained and
the resonance characteristics of these constants at photon energies close to the width of the forbidden gap
in the crystal are investigated. In the experimental part of the paper we review various methods of
investigating the diffraction of light by sound in solids and present the basic results in this field together
with examples of the use of acousto-optical methods in various areas of solid state physics. In the
concluding section we examine some important applications of the diffraction of light by sound to modern
optical and electronic systems.
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INTRODUCTION

The interaction of light with acoustic lattice vibrations
of crystals was first discussed theoretically by Bril-
louin:i] and Mandershtam.t2:l The first experimental ob-
servations of this interaction, by Debye and SearsC3: and
by Lucas and BiquardC41 in 1932, pertained to an impor-
tant special case—the diffraction of light by coherent
sound of external origin. Later many studies, both
theoretical and experimental, were devoted to these phe-
nomena, and interaction constants, the characteristics
of the vibrational spectra of crystals, fluctuation phe-
nomena, and other physical properties of solids and
liquids were investigated.

The possibilities of these methods have considerably
expanded in recent years because of the development of
powerful coherent light sources—lasers. Then with the
appearance of powerful sources of coherent sound with
frequencies of tens of megahertz and higher the phenom-
ena accompanying the interaction of light and sound also
acquired great practical importance, both as means for
effectively controlling (deviating, scanning, modulating,
etc.) luminous radiation, and as optical methods for
processing data expressed as acoustic signals. These
phenomena involving both coherent light and coherent
sound have come to be called acousto-optical effects,
and the study of these phenomena, acousto-optics.

By now there are a number of review articles in the

literature in which physical phenomena associated with
the scattering of light by thermal fluctuations of crystal
lattices1·53 as well as acousto-optical phenomena and
their applications1*-93 are discussed. Recently, how-
ever, in connection with the rapid development of
acousto-electronics, a number of new aspects of these
phenomena have come to light, which are associated,
in particular, with peculiarities of the acousto-optical
interaction in conducting crystals, with the amplifica-
tion of acoustic fluctuations associated with the super-
sonic drift of electrons, with the appearance of specific
acousto-electronic nonlinear effects, etc. Study of these
phenomena will make it possible to extend the range of
frequencies of electromagnetic radiation that can be con-
trolled by acousto-optical methods considerably beyond
the limits of the traditional "optical" range in accordance
with the needs of modern technology.

In this review we attempt to describe the interaction
of coherent electromagnetic waves with coherent acoustic
waves in dielectric and conducting solids from a unified
point of view and to point out some important applica-
tions of these phenomena to physical research on solids
and to modern technology.

1. THEORY OF THE DIFFRACTION OF
ELECTROMAGNETIC WAVES BY SOUND IN SOLIDS

In order to construct a completely general theory of
the diffraction of electromagnetic waves by sound waves
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in solids one would have to treat the interaction between
the two kinds of waves by quantum mechanics. By taking
all the mechanisms for this interaction rigorously into
account one could make an exact calculation of the dif-
fraction efficiency, which will be determined by the
characteristics of the electromagnetic and sound waves,
as well as by those of the solid in which the interaction
between the waves takes place. However, such a gener-
al calculation of the diffraction of electromagnetic waves
by sound would be extremely complicated.

The most widely used approach to the approximate
solution of this problem is to treat the interaction of the
electromagnetic and sound waves phenomenologically,
introducing the photoelasticity constants that charac-
terize the change in the dielectric constant of the speci-
men brought about by the propagation of sound. Such an
approach is valid if the frequency of the sound is low
compared with the frequency of the electromagnetic wave
and with the reciprocal times characteristic of the pro-
cesses that determine the dielectric constant of the mate-
rial. Then by using specific models of the mechanisms
for the interaction of the electromagnetic and sound
waves one can derive specific expressions for the photo-
elasticity constants thus introduced.

In the first part of this section we use the phenomeno-
logical approach to the construction of a theory of the
diffraction of electromagnetic waves by sound in solids.
However, we shall explicitly take into account the con-
tribution to the diffraction made by the conduction elec-
trons, which is associated with the generation of elec-
tron waves that accompany the sound wave. It is as-
sumed that the electromagnetic and acoustic waves, as
well as their interaction with the conduction electrons,
can be treated classically, i. e., it is assumed that the
following two groups of inequalities are satisfied: λ)
«Ζ, Λ, λ, where λ, is the de Broglie wavelength of the
electron, I is the electron mean free path, and λ and Λ
are the wavelengths of light and sound (in this case the
electrons can be treated as localized particles); and hu>
«Eg, ε aT, where ω is the frequency of light, Et is the
width of the forbidden gap in the crystal, and εΜ is the
average energy of the conduction electrons. In this
case the contribution of the conduction electrons to the
(in general complex) dielectric constant of the specimen
can be described by an expression involving the effective
mass of the electrons/10·113 When the absorption of the
light can be neglected and the main contribution to the
diffraction comes from the modulation of the real part
of the dielectric constant by the sound wave, the in-
equality Πω «-E, still remains essential.

In the second part of this section we construct a quan-
tum mechanical theory of the diffraction of light by
sound in conducting crystals for cases in which the above
inequalities may not be satisfied. We shall examine the
most frequently encountered case in which the main con-
tribution to the polarizability of the crystal comes from
the electronic polarizability and expressions for the pre-
viously introduced photoelasticity constants can be de-
rived on the basis of a microscopic calculation. To keep
the calculations simple we shall assume that the inter-
action of the electromagnetic and acoustic waves with

the conduction electrons of the crystal can be treated
in the collisionless regime, i. e., that it may be assumed
that ql, ω τ » 1 , where q is the propagation vector of the
sound and r is the mean relaxation time of the conduc-
tion-electron momentum.

a) Classical theory of the diffraction of electromagnetic
waves by sound in solids

1) Method of calculation and the mean approximations.
When electromagnetic and acoustic waves propagate in a
solid, their amplitudes, because of their interaction with
one another, will be functions of the coordinates within
the specimen. To calculate the amplitudes of these
waves one must simultaneously solve Maxwell's equa-
tions, the equation for the propagation of the sound wave,
and Boltzmann's kinetic equation for the electric cur-
rent density due to the action of the fields of the two
waves on the free charge carriers.

This set of equations has the form t l 2 l l s ::

(re—n o )e,

v/(r,v,<)<J'k,

where

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)
(1.9)

In Eqs. (1.1)-(1.9) Ε and Η represent the electric
and magnetic field strengths in the electromagnetic wave
within the specimen (which is assumed to be nonmag-
netic); η and n0 are the local and equilibrium values of
the free-carrier density, respectively, while j is the
electric current density; U is the mechanical displace-
ment within the sound wave, while Uik is the deforma-
tion tensor of the crystal; the components of the tensors
j3(iW and Aik are the piezomoduli and the deformation po-
tentials of the crystal, respectively; Pim is the elasto-
optical tensor; ε?» is the lattice dielectric permittivity
in the absence of sound; /„„ is the collision integral for
collisions of the charge carriers with the scatterers;
and / is the distribution function for the free charge
carriers.

In the subsequent calculations we assume that the in-
tensity of the sound wave is low enough (and that of the
electromagnetic wave high enough) that the change in the
intensity of the sound resulting from diffraction may be
neglected and induced scattering of light1' need not be

1'induced scattering of light by sound is of considerable inter-
est, but it requires special treatment—see, e.g., Ref. 5 (a
review article), as well as Refs. 7 and 16-19.
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considered. In this case the calculation of the fields of
the electromagnetic wave in the specimen is much sim-
pler—it reduces to the solution of Maxwell's equations
under the boundary conditions that the tangential compo-
nents of Ε and Η be continuous at the boundaries of the
specimen.

This method of calculation, based on the solution of
Maxwell's equations, is the most convenient for calcu-
lating the fields of an electromagnetic wave in the near
zone when diffraction effects due to the finite aperture
of the incident electromagnetic radiation are small and
can be neglected.

To solve the problem one can also use the method of
integral equations, which is developed in Refs. 15 and
20 for the case of dielectrics; in this case the calcula-
tion is simplest in the distant-field approximation.

To simplify the calculations we shall limit ourselves
henceforth to the following geometric situation, which
usually obtains in experiments on diffraction of light
by sound (Fig. 1).

The sound wave with propagation vector q and frequen-
cy Ω propagates in the specimen along the χ axis, while
a plane electromagnetic wave of frequency ω (ω » Ω),
whose propagation vector k lies in the (x, y) plane and
makes an angle θ with the y axis, strikes the face y =0
of the specimen, it being assumed that nothing in the
specimen depends on the coordinate z. In this case
Eqs. (1.1) and (1.2) yield the following equation for the
electric field of the electromagnetic wave in the speci-
men:

4.1

where zik is given by Eq. (1.9); here J is the electric
current density induced by the propagating electromag-
netic wave and is to be found by solving the kinetic equa-
tion.

In what follows we shall use the expression

(LID

for j , where ση = σ«(ω) is the high-frequency conductivity
of the specimen.8' In the region ωτρ»1, which is the
most interesting region from the standpoint of acousto-
optics, and in the effective mass approximation for the
conduction electrons, we have σ« = (ίβί/ω)«(»Μ|'»Γ1, where
TP and (m*^'1 are the momentum relaxation time and the

2)Expression (1.11) is valid in the linear approximation in the
amplitude of the electromagnetic wave provided one can ne-
glect terms (which are usually small) of the type ([VH]/c)8/i/8p,
vdfi/dr, and F8/t/8p, where F is the force exerted by the
sound wave on the conduction electrons and/j is the electron
distribution function in the high frequency field of the light wave.

reciprocal effective mass tensor, respectively, for the
conduction electrons.

For the propagation of a sound wave in a crystal, the
quantities clk and aik can generally be written as fol-
lows":

*. y,t)

(χ, y,t)= Σ <*K (*. ν) β""<«*-Οί>,

(1.12)

(1.13)

where Ω =2π/Τ and q =2ττ/Λ, where Τ and Λ are the
period and wavelength of the sound wave. The χ and y
dependences of ε™* and σ,™ arise, for example, in con-
nection with the propagation of acoustic surface waves
(ASW) with allowance for their absorption in the crys-
tal (it is assumed that σ"* and ej1* vary much less rapidly
with χ than eiw).

Now we write the solution of Eq. (1.10) as the series

) = Σ sin Θ + Iq) χ- (ω + ΖΩ)«]} (1 .14)

and, substituting (1.11)—(1.14) into (1.10) and equating
coefficients of identical exponentials, we obtain the fol-
lowing recurrence set of differential equations for the
functions Vul which is accurate to terms of the order of
Sl/ω:

where

for i =

By solving Eqs. (1.15) with the exact boundary condi-
tions we can find the unknown fields inside and outside
the specimen and thereby solve our problem. In the
general case, however, it is extremely difficult to find
an exact solution, so investigators in this field generally
consider various special cases of the problem for which
Eqs. (1.15) and the boundary conditions can be simpli-
fied. In the following we consider some characteristic
features of the diffraction of electromagnetic waves by
sound, and for this purpose we shall simplify the prob-
lem; specifically, we shall assume that there is little
absorption of sound along the width of the front of the
incident electromagnetic wave and shall neglect the pos-
sible distortion of the crystal surface resulting from the
propagation of the sound wave, i. e., we shall assume
that U is very nearly parallel to the (z, x) plane.*

3'The use of these expressions in Eq. (1.10) is valid if the fre-
qeuncy dependence of the complex dielectric permittivity of
the material is smooth enough.

4 'This effect does not arise in the case of acoustic body waves,
when U is strictly parallel to the (z,x) plane, but in the case
of Rayleigh ASW the distortion of the crystal surface contrib-
utes substantially to the diffraction and must be taken into
account.1 2 1"2 3 '
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2) Diffraction of electromagnetic waves by sound in
isotropic conducting crystals. Let us assume that the
sound intensity is low enough that nonlinear effects in
the propagation of the sound wave are virtually absent
and that both Ιε« I and Ισ^Ι are close to zero for I ml
> 2. In this case Eqs. (1.15) for isotropic conducting
crystals, for which ε™*=ε111δ« and σ"» = σΜδ« (i.e., y™ft

= )Ί»δ«), take the form

l. I (V)

dp

where

δ,

(1.16)

- e 0 (ω) — (* sin θ + iqY, and ε0 (ω) = ε 0+
4πίσ0

It is evident from Eq. (1.16) that the equations for
Ve,| and ν χ , Λ , are independent of one another (this is as-
sociated with the assumption that the specimen is uni-
form in the direction of the ζ axis). Hence if the inci-
dent electromagnetic wave is polarized along the ζ axis,
the diffracted wave will also be polarized along the ζ
axis. In the following we shall assume that the electric
field vector Eo of the incident electromagnetic wave is
parallel to the ζ axis.

Here too, however, it is very difficult to obtain a gen-
eral solution to Eqs. (1.16) that satisfies the exact
boundary conditions. Hence we shall discuss several
special cases that illustrate the principal characteristic
properties of diffraction.

a) Let us assume that the intensities of the diffrac-
tion orders fall off rapidly with increasing order number
121. In this case, to solve Eqs. (1.16) we may use the
successive approximation method (SAM), U l M ' A > O l ) i I

which make it possible, in principle, to calculate the
intensities of the diffraction orders as accurately as may
be desired without any additional limitations. However,
even the expressions for the amplitudes Elf and El\ of
the reflected and transmitted diffraction waves of the
lowest orders Ζ =±1 obtained by using the exact boundary
conditions in the first SAM approximation turn out to be
rather cumbersome. Here, therefore, we give the sim-
plest expressions for the Ε \τ under the assumption that
the functions y±1(y) and the amplitudes of the diffracted
waves vary little over a wavelength of light and that re-
flection of light from the specimen may be neglected.
In this case Eqs. (1.16) can be reduced to the following
set of first order equations:

where

Here we have written Vt{y) = tf»(y)exp(iV^y) and have
assumed that 17, (y) varies little over a wavelength of
light.

Within the limitations of the SAM, the solution of
(1.17) for Z>0 has the form

2 V 6o J

and in particular, for I = +1 we have

(1.18)

(1.19)

When y*i(y') =const, we have

and when the absorption of light is neglected the expres-
sion for I Vn(d) I2 takes the form (d is the thickness of
the specimen in the y direction)

<«*)!* = - (1.20)

Equations (1.18)-(1.20) were obtained using this sim-
plified boundary conditions Ut{y=0)=E06,t0) which ne-
glect the reflected series of diffracted beams. Analysis
shows that the simplified boundary conditions can be ap-
plied when the following two conditions are satisfied:

k cos Θ - / 6 0 <l,and|6,-fio|«|eo

These conditions permit one to neglect reflection of light
in the zeroth and higher diffraction orders. In addition,
the second condition, as a rule, makes it possible to
pass from Eqs. (1.16) to Eqs. (1.17). When Ι δ, - δο1
~ Ιδο1, one cannot assume that the amplitudes Ut(y) of
the diffracted waves are slowly varying functions of y
and must take into account the modulation of the reflec-
tion coefficient R by the sound wave, which gives rise
to diffraction in the reflected light even when R «1, and
in this case, generally speaking, \Ef'a\~ \Ε\τ\.

However, the case in which Ι δ, — δο1~ Ιδο1 for Z = ±l,
± 2 , . . . is, as a rule, uninteresting from the point of
view of obtaining efficient diffraction at relatively low
sound power because of the lack of spatial synchronism
between the zeroth and higher orders of diffraction.5'
For example, spatial synchronism between the zeroth
and first orders arises just when 15+1 — δο| is fairly
small, and then, because of the increase in the size of
the region in which light and sound interact, consider-
able diffraction efficiency can be achieved even at low
sound power. It is evident from Eq. (1.20) that IF+1(d)l8

~ d8 when Ι (δ0 - δη) d/Vĵ  I«1, and IV+1 (d) I ~ Eo when d

Further, let us consider some cases in which the dif-
fraction efficiency in reflection and transmission can be
considerable and the SAM is not applicable; moreover,
in the next two items b) and c) we shall assume that R
«1 and Ι δ, - δο1« Ι δ0 I for the diffraction orders I con-
sidered, when Eqs. (1.17) are valid and simplified

5'Here we have not yet considered the case Ι δ01 «0, which may
be encountered when ω ».^, where ωρ is the plasma frequency
of the conduction electrons; in that case the diffraction effi-
ciency may be fairly high because of the modulation of R by
the sound. Moreover, when Ι δ01 « 0 one cannot pass from
Eqs. (1.16) to Eqs. (1.17).
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boundary conditions can be imposed in solving them.

b) If we neglect the absorption of light, i . e . , if we
assume that Im6 0 -0 and ytl =γ*χ = \ y+1 le", and if the
wavelength of sound is also long enough that a term of
the order of lzqzU, can be neglected, we can rewrite
Eqs. (1.17) in the form

(1.21)

where U,(y) = )βχρ(ί((π/2) + φ)1).

On solving (1.21) under the assumption that the γ±ι are
independent of y, we obtain the following expression for

χ / , / H t d L μ,, (*•!££«- y)

(1.22)
where Jt is the Bessel function of order I.

It is evident from Eq. (1.22) that efficient diffraction
is possible in several orders at once in the case under
consideration when ly^l y/ifii^~l. This diffraction re-
gion is called the Raman-Nath region for historical rea-
sons. The principal characteristic of diffraction in this
region is, as follows from (1.22), that when R «1 the
electromagnetic wave on leaving the crystal is purely
phase modulated, i. e.,

when θ~0 (Refs. 24-27). To calculate the diffraction
in this region one may assume that in the specimen there
is a plane phase diffraction grating accompanying the
acoustic wave, which does not affect the direction of
propagation of light in the specimen.124·273

c) Now let us assume that sin<?«— q/2k, i.e^, that
δο«δ+1 and<72d/|Vig»l, so that |60— 6_i|rf/|V^|»1.
In this case, as is evident, for example, from (1.20),
\El\\»\Et[\ (analysis shows that in this case the higher
order diffracted waves are weak). Thus, in solving
(1.17) one need consider only two diffraction orders, the
zeroth and the +l-th:

dU0 ' y -

' I Y-tl I r ;

(1.23)

(1.24)

For the case R « 1 when ytl and γ*ι are equal and in-
dependent of y and Im5 0

e 0, the expressions for the in-
tensities of the zeroth and -t-l-th orders in transmission
are as follows126·373:

T" — τ τ*''0 —h — '+i (1.25)

(1.26)

where

q'd

It is evident from Eqs. (1.25) and (1.26) that when ν
< 1 and Q »1 the quantity ill w i l 1 depend strongly on the
angle of incidence θ and will reach its maximum value at
sine = -q/2k, where 1% =/„sin2(v/2) and /J r =/„cos2(t>/2);
then III- ( ( ^ W ) H *

= _-sin6.

The diffraction region now under consideration is
called the region of Bragg reflection of light by sound.
The basic characteristic of diffraction in this region is
that only two diffraction orders are significant, for ex-
ample the zeroth and the +l-th, as discussed above.
This is due to the fact that here only one diffraction or-
der is in spatial synchronism with the zeroth order. The
diffraction process in the Bragg reflection region can be
essentially described by acts of emission or absorption
of phonons by photons of the incident electromagnetic
wave, and to illustrate these acts one can use vector
diagrams representing the energy and momentum conser-
vation laws, which are satisfied in these events of inter-
action of light with sound. In this region the fact that the
diffraction grating induced in the specimen by the sound
wave is a bulk grating manifests itself in an essential
manner, and here the electromagnetic wave on leaving
the crystal is modulated, generally speaking, in both
amplitude and phase.

Cases a)—c) discussed above are classical and are the
best investigated cases of the diffraction of light by
sound. It is evident from Eqs. (1.22) and (1.26) that the
basic properties of diffraction are characterized by the
parameters v, Q, and a. The parameter ν character-
izes the extent to which energy is transferred from the
zeroth order diffracted wave to the higher orders pro-
vided the conditions for spatial synchronism between the
zeroth order and those higher order diffracted waves
are satisfied. The parameters Q and a characterize the
extent to which the conditions for spatial synchronism
are satisfied. For Q, Ql a\« 1 with v~l, when the con-
ditions for spatial synchronism can be simultaneously
satisfied for several orders and their coupling with the
zeroth order is sufficiently effective, several important
diffraction orders will manifest themselves; for Q » 1
with v~l the conditions for spatial synchronism and
sufficiently effective interaction will be satisfied only
for one diffraction order (namely Z = + l or l = — 1) if a
-±(1/2).

The criteria for various special cases of diffraction
have been the subject of a number of studies. Analysis
shows that the criterion for diffraction in the Bragg
region is Q» max(l, v), while the criterion for the Ra-
man-Nath region is Q«min(l, l/v).m'3»-m In the inter-
mediate region where the criteria for Bragg and Raman-
Nath diffraction are not satisfied it is very difficult to
obtain analytic expressions for the amplitudes of the dif-
fracted waves of various orders and one frequently re-
sorts to numerical methods.C2e] A method has been de-
veloped by Leroy and others'3 1 ' 40»41] that enables one to
find the amplitudes of the diffracted waves of various
orders as series in the parameter Q/v (for Θ°Ό) which,
however, is suitable only if Q is fairly small (from re-
sults given in Ref. 40 one can obtain the criteria given
above for Raman-Nath diffraction).
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In concluding this subsection let us consider the case
in which there is substantial diffraction in reflected
light.

d) Let us assume that the propagation vector of the
sound is sufficiently small so that the terms (2lkq · sinfl
+ ZVWJ>) in (1.16) can be neglected. Then Eq. (1.16)
simplifies greatly, assuming the form

-i to) + ϊ- to)· (1.27)

According to the technique described in Refs. 20 and 27,
one can find a solution to (1.27) that satisfies the exact
boundary conditions provided y+i(.y) varies little in a
wavelength of the light.

For simplicity we give here the expressions for Ef
and .Ει*1, assuming that y4l(y) = const, that were obtained
inRef. 33:

Co Ι Λ δ ι . 0 \

— I 1 — r )
dxtrtl* H-Ux) &t, 0 ]

TFI

and

where

and

ψ (ζ)

It is most convenient to discuss expressions (1.28)
and (1.29) for two special cases: 1601«I y±i I and 1601

a) Suppose that 15OI» I y t l I. Then neglecting the χ
dependence of ξ(#), retaining only on the first term in the
expansion of ψ(χ) in powers of γ±ι /δ0, and using the inte-
gral representation for the Bessel functions/361 we can
reexpress Eqs. (1.28) and (1.29) as follows:

e, -£.(2-6,, „)- fc

( 2 m l ) ] ,

and

(1.30)

-1)α], (1.31)

where

yTS

if y+1 = yii = Iy*ile"), andfl =
is the reflection coefficient for the light.

For the case ΙΛΙ«1 expressions (1.31) go over into
the corresponding expressions (1.22), where one must
put 6^0 (i.e., l(.kqsine/-JT0)d«l). If the reflection co-
efficient is not small there will be substantial diffraction
in reflected light on account of reflection from the face
y=d.

b) Now suppose that I5 o i«ly+ 1 l. Such conditions may
be encountered at incident-light frequencies close to
those for which Re6 a 0, and when the light absorption is
weak enough (e. g., for ω * ωρ). In this case, if we ne-
glect multiple reflections (assuming that ImV
>1) we can put Eqs. (1.28) and (1.29) in the form

(1,32)

1 33)

where y t l = \rtl\elv and Ύ.1=γϊι.

It is evident from Eqs. (1.32) and (1.33) that the in-
tensities of all the reflection orders for ΙΦΟ and those
of the transmission orders for all I have maxima at
Iy+Il~fe2cos20, while the intensity of the zeroth order
reflection is minimum at that point. Estimates of the
intensities of the transmitted and reflected light in the
various diffraction orders near the optimum yield the
following values"3·341: /5e f*O.24/o, /^«O.l/,,, ig
«0.05/0, And ΙΪ*(\1\>Ζ}~Ι0/αΙζ, where <z~10, and
Ι\τ=*1οβ'α°*/irkcosB tor kdcose»l, \l\; h e r e Io i s the

intensity of the incident light and a e = 2ImV60 + 2ly*1l d
is the light absorption coefficient.

The condition for an optimum Iy+Il~fea cos2θ means
that A«/no~(cos20)/eo and for ε0» 1, we have Δη/»ο

« 1 , i. e., the concentration nonlinearity attributable to
the propagation of the sound is still inconsiderable. It
should be pointed out that for the condition 1 δο1«I ytl I
to be satisfied near the optimum it is necessary that the
condition ωτρ >ε0 be satisfied when· the plasma minimum
in reflection is clearly manifest."51

The physical effect of the appearance of a diffraction
optimum can be explained as follows. The frequency
wmla of the plasma minimum in reflection and the maxi-
mal frequency ωχ of the light at which total reflection
from the specimen takes place are related as follows
to the local electron density: ω?,ω2

ΐΒ = 1 - (1/ε0) and ω2,/
α>ί = 1 - ((siiieVeo) where coj =4ime2/w*e0. Let us fix the
frequency ω =ω1(«0) of the light in the absence of sound
when η =η0. The sound wave modulates the electron
density and accordingly modulates the frequencies a>mlIl

and Wi· It is precisely in the region of enhanced elec-
tron density that we have ω < uyu i. e., in this region
virtually all the incident light will be reflected from the
specimen. In the region of reduced electron density,
however, wehavecu>a)1, i.e., here the specimen will
be partially transparent to the light. Then if the ampli-
tude of the sound is such that in the region of reduced
electron density we have a» - wmln, (i. e., (κ, - Δη)/κ0

«(1 - (1/εο))/(1 - ((sin2e)A0)) (for ε » 1 we have A«/w0

»(cos2e)/c0), then in this region there will be virtually
no reflection of the light. Thus, v/hen An/n0

ai(cosze)/c0
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there arises an amplitude-phase diffraction grating with
very high contrast. As the sound intensity increases
further the light again begins to be reflected more strong-
ly in the region of reduced electron density and the con-
trast of the diffraction grating begins to fall.

As is evident from the calculation results presented
above the intensity of the diffraction orders is deter-
mined both by the amplitude modulation of the dielectric
constant Δε of the lattice and by the amplitude modula-
tion of the conductivity Δ σ of the specimen resulting
from the action of the sound wave.

The ratio of the intensity of the electromagnetic wave
diffracted by the variations in the electron density (with
an amplitude Δ«) to the intensity in the electromagnetic
wave diffracted by the variations of the dielectric permit-
tivity of the lattice is given, for the case ωτρ» 1, by the
following expression1373:

(Dp 8Q An
ω* Δβ η» Φ*

ε86 / e \2 Q*

* \m*f ω* (1.34)

where ρ is the photoelasticity constant, η is the coupling
constant for the electromagnetic coupling via the piezo-
potential, and ε Μ is the dielectric permittivity at the
acoustic frequency.

For Δη in (1.34) we used an expression derived from
the linear theory of sound propagation1483 under the con-
ditions QTM «1 and qrD « 1 where TU and rD are the Max-
well relaxation time and the Debye screening radius for
the conduction electrons in the crystal.

It is evident from Eq. (1.34) that | > 1 provided ω<ω0,
where ω0 is given by

(1.35)

here Mz =ζ%ρ*/ρν\ is the acousto-optical quality param-
eter.

Estimates show that for q~k we have u>0~1014 sec'1

for an ra-InSb specimen and ωο~3χ1Ο13 sec"1 for a CdS
specimen. Thus, it is possible by using conductive
crystals to increase considerably the efficiency of
acousto-optical devices at frequencies ω<ω0.

3) Diffraction of electromagnetic reaves by sound in
anisotropic conducting crystals. In this subsection we
shall examine some of the characteristic features of the
diffraction of light by sound in anisotropic crystals. We
shall assume the same geometric situation as in subsec-
tion 2) and shall also assume that a transverse sound
wave propagates in the specimen with the vector u paral-
lel to the ζ axis, which is also the optical axis of the
crystal. Such geometry is frequently encountered in ex-
periments on the diffraction of light by sound in aniso-
tropic crystals and is suitable for bringing out sufficient-
ly clearly the principal features of the phenomena of in-
terest that are due to the anisotropy of the crystal. For
crystals of the hexagonal system of class Cet) (these in-
clude the CdS crystal) the dielectric permittivity tensor
of the lattice has the following form in this geometry"":

ε,ι,

, ε[ 0 Δει
= ( 0 e? 0 1

\Δε Ο ε«/
(1.36)

where Δε =-c№pXMtxuts.

We assume that the tensor aik is diagonal, i. e., that
()

ttj»,· moreover, axx = ayy.

Further, the solution to Eqs. (1.15) will be considered
under these geometric conditions, using the method of
successive approximations, imposing simplified boundary
conditions, and neglecting the nonlinearity in density due
to the propagation of the sound (i. e., assuming that
Ιε™»1 and Ισ™41 are close to zero for \m\&2).

In this case the equations for F ) i ± 1 take the form

d'Vz. ± ι , . ± ι

- i (k sin θ ±q) . ± 1 = 0,

(1.37)

(1.38)

(1.39)

where

δ*Λ = ·^· βΐ.ί(ω) —(fcs ine±s) s , ε1ι2 (ω) = ε?,2 + ί = 2 ΐ ! 1 >

ν ± ' -_= _ 4 π ί < ^ " ' t ν ± ι = _ ωΐ e ± ' .

here the tensors y*t\ have diagonal components due to
the modulation of the conductivity by the sound wave
and the two components y*J = y££ due to photoelasticity.

The solution of Eqs. (1.37)-(l. 39) yields the following
expressions for \ElT

til\ and \E%±1\:

d) ,

(ei

(1.40)

(1.41)

where bl = {<j?/cz)z2(<j>)-kzs\r?e and the y*J are assumed
to be independent of y.

It is evident from Eqs. (1.40) and (1.41) that the con-
ditions for Bragg reflection in, say, the -t-l-th order can
be satisfied for two angles of incidence of light in aniso-
tropic crystals, although not in isotropic ones.

a) i.e., when

anisotropic Bragg reflection of light from sound can take
place with change in the modulus of the propagation vec-
tor of light owing to a rotation of the polarization vector
of the electric field of the diffracted beam of order I = +1
through 90" with respect to E0.

cl5t4S~453 Then the angle
at which the diffracted beam propagates in the specimen
is given by

(here flj and 6l

D are the angles of incidence and diffrac-
tion, and k=u)/c). It is easy to see that collinear Bragg
reflection of light is possible in an anisotropic crystal
when (qmiB /kf = (νε2(ω)- V ε^ω)? (qmln is the minimum
propagation vector of sound at which Bragg reflection
with rotation of Eo through 90° is possible in the aniso-
tropic crystal"3).
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b) When δ ^ δ ί , i.e., when sine, = -q/2kVe2(ω),
ordinary isotropic Bragg reflection of light from sound
can take place without rotation of the polarization vec-
tor of the electric field,t2e·28·*71 anisotropic Bragg re-
flection taking place when light is diffracted as a result
of photoelasticity, and isotropic Bragg reflection, when
diffraction is due to electron waves. Hence by appro-
priately choosing the angles of incidence θ\ and Θ? we
can separately investigate the diffraction of light by
elastic lattice vibrations, and by electron waves.'*81

Besides the feature discussed above, an additional dif-
fraction mechanism, associated with a rotation of the
crystal as the sound wave is propagated, may be opera-
tive in anisotropic crystals."" In this case one cannot
expand the change in the dielectric permittivity of the
crystal associated with the propagation of the sound in
a series in the deformation tensor, since there is no
deformation in the case of pure rotation, but for a given
coordinate system the ctk may vary for an anisotropic
crystal. The expression for Afc,»)"1 for pure rotation
has the form"":

-?*[•»]«».-, (1.42)

where

Λ-»-2\:βΓ,, drj

is an antisymmetric tensor characterizing the rotation
of the crystal and PiAmtl = (l/2)((zinT

l

, - (ε«»)"1δ<η) is a tensor, antisymmetric in the
indices m and n. Thus, the general expression for

"1 has the following form: ^(e^)"1 =P|*imWim

*·e·» i n highly anisotropic crystals it is
reasonable to expand Δ(ε (k) not in terms of the uit, but
in terms of the Bu{ /&rk. For certain anisotropic crys-
tals, however, the PlltCmn] are small. For example, for
a crystal of the CdS type we have

since P e x , s 0.025.

Thus, expression (1.9) in the form in which it is writ-
ten (as also the expressions for &clk given in Refs. 14
and 27, and elsewhere) are valid only for crystals that
are not very highly anisotropic.

b) Quantum theory of the diffraction of electromagnetic
waves by ultrasound in solids

In the first part of this section we considered the
classical theory of the diffraction of electromagnetic
waves by sound in conducting crystals, which is valid
for comparatively low frequency acoustic and electro-
magnetic waves when λ, is small as compared with Ι, λ,
and Λ, and Κω is small as compared with Et and eaT. In
this part we shall consider the quantum theory of the dif-
fraction of electromagnetic waves by sound, which is
valid even for high frequency acoustic and electromag-
netic waves when λ, may not be small as compared with
λ and Λ, and Κω may not be small as compared with Et

(absorption of light will be neglected in the calculations).

Further, the calculations in this part will differ from
those in the previous part in that here we shall adopt a
definite model for the interaction of the electromagnetic
and sound waves: specifically, we shall assume that the
main contribution to the polarizability of the crystal
comes from electronic polarizability. On the basis of
this mechanism for the interaction of sound and electro-
magnetic waves we shall discuss a microscopic theory
of the diffraction of electromagnetic waves by sound.

It is clear that in this case one cannot use the classi-
cal kinetic equation to describe the interaction of the
electrons with the sound and electromagnetic waves;
on the contrary, a quantum approach—say on the basis
of the density matrix formalism—is necessary in princi-
ple. In our exposition we shall confine ourselves to a
method similar to the one used in Ref. 17.

For the collisionless case when ω η, and ql are both
large as compared with unity, which was treated in Ref.
50, the coupled set of equations of motion for the photon
and phonon creation and annihilation operators, under
the assumption that the perturbation of the electron sys-
tem by the electromagnetic and sound waves is weak,
have the following form:

(1.43)

(1.44)

(1.45)

here a\ and <zk are the creation and annihilation opera-
tors for photons with propagation vector k,· b\ and 6, are
the creation and annihilation operators for phonons with
propagation vector q, it being assumed that k = kl +q and
ω* = wjj +Ω α , i. e., we are considering one-phonon pro-
cesses associated with the absorption or emission of a
single phonon,

τ-τ Σ {[« (P. i; p+q. ί)+Σ(
ρ <»" Γ " " " " ' · h )

p. ι,. 1

+'•

-^q,tt; ρ, ; p-k,,

Γ

-k,, ίζ; p-q. i , v-nl2_ „_„,)

i-t, h; P,

Qi.l

(1.46)
(1.47)

Cj,, and n,t, are the single-particle energy and the occu-
pation number operator for an electron in the state with
propagation vector ρ in the Z-th energy band, <tth

=iJK/2pvnet,qk, 6(p,Z;p+q,Z!)and 0(p,*;p-ki,lt) are
respectively the matrix elements of the operators

2.1ft

between the corresponding Bloch electron states, β
= (£/t)8/ar, Λ,»(ρ, Ζχ; ρ —q, l^) is the matrix element for
the electron-phonon interaction via the deformation po-
tential, ek is the polarization vector of a photon with
propagation vector k, ξ is the polarization vector of a
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phonon, p and V are the density and volume of the crys-
tal, m0 is the free electron mass, e is the electron
charge, and ε0 is the dielectric constant of the specimen.
In deriving Eqs. (1.43)-(1.45) it was assumed that the
electron-phonon interaction takes place via the deforma-
tion potential.

As was noted above, a similar approach to the treat-
ment of this problem in dielectrics was employed in
Refs. 17 and 51, but in those studies phenomenological
photoelasticity constants were used. Microscopic calcu-
lations of the scattering of light from acoustic phonons
in dielectrics have been carried through under similar
approximations in Ref. 52, and analogous calculations
for the case of scattering in conducting crystals were
made in Ref. 53, where the probability for the absorp-
tion (or emission) of a phonon by a photon, which is de-
termined by the parameter \γ\, was calculated.

It is not difficult to obtain a solution to Eqs. (1.43)-
(1.45) under the assumption that one of the average oc-
cupation numbers n,, nit and w^ for phonons and photons
is considerably larger than the others.*' Thus, for ex-
ample, if we assume that w, is much greater than wk or
«k we obtain the following expressions for the intensi-
ties of the electromagnetic radiation in the zeroth and
first diffraction orders (assuming that n f̂t)) =0 when t
= 0):

A (0 = /. (0) sin' (ξί),
h (0 = Λ, (0) cos2 (It),

(1.48)
(1.49)

where 70(0) is the intensity of the zeroth order (with wave
vector lq) at time t =0 and ξ V ^

To find the intensity of the electromagnetic wave tra-
versing a specimen containing sound waves in the geome-
try of Fig. 1 for the case R «1 we must set t=dzQ/
cVeo-sin ze in Eqs. (1.48) and (1.49) and interpret 70(0)
as the intensity of the light incident on the specimen.

In the classical limit, the expression for γ has the
form

where Aih is the tensor whose components are the defor-
mation potentials, e ° and e £ are components of the po-
larization vectors e k and e^, Q =2PQC,C,, (c i s the index
for the conduction band), and R*Xy is a tensor that de-
scribes the diffraction of light by sound in dielectrics;
it unites all the terms in (1.46) except the first term
with l=lx=c and the terms of the second sum with I =Zj
= c, Z2 +c. The presence of conduction electrons in con-
ducting crystals somewhat alters the value of Λ " since
the summation in Λ " is actually taken over the free
states in the conduction band.C 5 2·5 3 3 It has been shown"03

that in this case one obtains full agreement between the
results of quantum and classical calculations based on
analogous approximations for the Bragg case (for an iso-
tropic crystal described by Eqs. (1. 25) and (1. 26) with

sin0= -q/2k). Here the first term in (1. 50) corre-
sponds to the contribution to the diffraction from the
electron density wave (in choosing the deformation po-
tential constant one must allow for screening by the free
charge carriers). Similarly, the second term in (1. 50)
corresponds to the contribution to the diffraction from
the lattice dielectric permittivity wave induced by photo-
elasticity (this result follows from the relation'5 2 3 R £

Whl2

In the essentially quantum region one must use the
more general expression (1.46) for y. The quantum cor-
rections to γ turn out to be the most important when
Ku)k-Et; then resonance enhancement of γ, to which both
valence electrons and conduction electrons can contribute,
becomes possible.

For the case in which the scattering of light is due
mainly to the valence electrons and under the assump-
tion that the matrix elements in the resonance terms in
(1.46) can be treated as independent of ρ and that the
valence and conduction bands are parabolic and that the
reduced effective mass of the electrons in them is μ,
the efficiency of the first order diffraction is propor-
tional to the following expression1 5 2·5 4-5":

(1.51)
-*»*,>.

where Β is determined by the matrix elements and is
relatively weakly dependent on the frequency of the light
and pm is the propagation vector at the band edge (it is
assumed that k and q are both small compared with pm).

When the frequency of the light is close enough to Et /
K, i. e., when ffla <Et- Huk « Hzp % /2 μ, the first term
in expression (1.51) increases rapidly with increasing
light frequency and the efficiency of the diffraction due
to this term takes the form It //„ ** IΒIV(£, - Kuk). It
should be noted that Eq. (1.46), and consequently also
Eq. (1. 51), is valid when the light is not too strongly
absorbed, i .e . , when E, - Kwt > a and Et - Κω,. > a,
where a is the width of the dispersion curve. Calcula-
tions for dielectrics made by the authors of Refs. 54—56
on the basis of Loudon's theory1583 show satisfactory
agreement between theory and experiment. The be-
havior of the diffraction efficiency with increasing light
frequency can be more complicated than a simple mono-
tonic growth, and indeed, as is evident from (1.51), for
a certain value of Β the diffraction efficiency can vanish
at a certain light frequency ω<Ε,/Κ (Refs. 54-61).
That can happen if the resonant terms have signs oppo-
site to that of the sum of the nonresonant terms and, as
they grow, cancel out the sum of the nonresonant
terms.1"

6'An analogous assumption was made in Refs. 17 and 51 direct-
ly in the derivation of the equations for the operators e£, aj,,
andftj.

7 'It should be noted that when comparing theoretical calculations
with experimental results on resonance diffraction of light by
sound one must, generally speaking, use a more detailed
model for the light-sound interaction mechanism that would
take into account, for example, the contribution to γ from ex-
citon states in the forbidden gap, which may be considerable
when Kw^Eg (Ret. 61).
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As is evident from (1.46), the conduction electrons
may also make a considerable contribution to the reso-
nant scattering of light at K<ak~Et. The presence of
conduction electrons in a degenerate semiconductor may
lead to considerable change in the resonant values of the
photoelasticity constants Pnii (Pyx{k = {Anez/m%j?KztX>R1^)
provided Et - Kwh is small enough, i. e., provided Et

-Hu>k< (m*/\i)zF (here m* is the effective mass of the
conduction electrons, zf=Kzpr/2m* is the Fermi energy
of the conduction electrons, and it is assumed that KUt

«tF and that k, q <<pF). This is due to the fact that
some states in the conduction band with energies below
cF are occupied. In addition, modulation of the conduc-
tion electron occupation numbers by the sound wave may
make a significant contribution to the resonance value of
γ. For the case of a degenerate semiconductor and un-
der the same assumptions as were used in deriving Eqs.
(1.51), this contribution, which is described by the sec-
ond term in (1.46), will be proportional to the following
expression:

(1.52)

where it is assumed that HSle«eF and that k,q«pF.

The ratio of the contribution γΛ to γ from the reso-
nance terms due to modulation of the conduction-elec-
tron occupation numbers by the sound wave to the con-
tribution yvb from terms due to photoelasticity pm{k

(with allowance for occupation of conduction-band states
by electrons) for a degenerate semiconductor when Mlq

<(m*/ii)tF and Et -Kuih< (»η*/μ)ε,· is γΛ /y,h-τη*/μ.
Thus, the two contributions may be of the same order if
the light frequency is close enough to Et /H. For the
case of a nondegenerate semiconductor with KSiQ<Et

— tUuk< {m*/p)T (Γ is the electron temperature in energy
units) we have

Tph ~ JVC Ι μ Τ

where Ne is the effective density of states in the conduc-
tion band. When n~Nc and Et-K<j}k~T the two contribu-
tions may be of the same order. The contribution to
resonance diffraction due to the presence of an electron-
density wave in the case in which the conduction elec-
trons interact with the sound wave through the piezopo-
tential has been discussed by Levin et al. ,C M ] who showed
that this contribution may be considerable.

We note that in the calculations in this part of the pa-
per it is assumed that the propagation vectors of the

** ϋ -<

photons and phonons are well determined. Owing to the
limited size of the crystal in the y direction in the ge-
ometry we are considering, however, the propagation
vector of the phonons is, strictly speaking, smeared out
to the extent &qy~l/d, and there is a corresponding
smearing of the angle defining the phonon propagation
direction: Δφ ~ l/qd. If this smearing is to be negli-
gible for one-phonon processes, it is necessary that Δφ
«θ β , where θ6 is the Bragg angle of incidence of the
light on the specimen, i.e., qzd/kJl~0»l (withee«l),
which coincides with the conditions for Bragg diffrac-
tion when the sound waves are not too intense—when ν
< 1 (see above).

Correspondingly, when Δφ»et, Θ, i.e., when qzd/
kfz~0«l and qd6/Jz~l«l, many comparable orders of
diffraction may appear at once (the Baman-Nath case for

to record-
ing device

FIG. 2. Optical scheme for observing the diffraction of light
by sound.

2. EXPERIMENTAL STUDY OF ACOUSTO-OPTICAL
PHENOMENA IN SOLIDS

a) Experimental techniques for investigating the
diffraction of light by sound

A typical setup for observing the diffraction of coher-
ent light by coherent sound is exhibited in Fig. 2. Plane
polarized radiation from the light source LS (a laser,
usually operated in the lowest TEM ,̂ mode to assure
minimum beam spread) is brought through a system for
defining the plane of polarization (a half-wave plate λ/2
and a polarizer Pt) and falls on the crystal Cr being in-
vestigated, which is mounted on the turntable T. The
turntable Τ carries a scale on which the angle of inci-
dence of the beam onto the specimen can be accurately
read. A traveling (or standing) acoustic wave is excited
in the crystal by an electromechanical transducer Tr
(consisting, for example, of a half-wave piezoelectric
plate) fed by an rf oscillator. The diffracted light leav-
ing the crystal is registered by an optical system con-
sisting of a polarization analyzer P2, a converging lens
L, a field of view stop S, and a photodetector PhD (when
working in the optical and the near infrared regions the
PhD is usually a photomultiplier). The signal from the
PhD is then displayed or recorded by a suitable device
(an oscillograph or an x-y plotter). The entire regis-
tering system is mounted on a rotatable bench whose
rotation axis coincides with that of the turntable T; pro-
vision was made for accurately measuring the angle 08C

through which the optical bench was turned with respect
to the direction of the undiffracted beam that passed
through the crystal.

This scheme is fairly simple and makes it possible to
investigate the most important characteristics of the
diffraction phenomena—the spatial (angular), polariza-
tion, and amplitude characteristics. But for a com-
plete description of the diffraction in the general case it
is necessary also to know the frequency spectrum of the
diffracted light. That information can be obtained with
the scheme described above by mixing the incident and
diffracted radiations in the photodetector (the optical
heterodyne method"3·843). In this method (Fig. 3) the
heterodyne (JH) and diffracted (Γχ) beams strike the sur-
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FIG. 3. Optical heterodyne scheme: /0, Iu andIH—incident,
diffracted, and heterodyne beams, respectively; 1,4—half-
silvered mirrors; 2,3—opaque mirrors; 5—"ultrasound-irra-
diated" specimen; 6—photodetector.

FIG. 4. Scheme for measuring the spatial and frequency spec-
tra of diffracted light using a Fabry—Perot interferometer.

face of the fast photodetector (6) collinearly and at the
output of the detector there is developed a signal at the
difference (or intermediate) frequency u>lt (in the case of
first order diffraction ω» is equal to the frequency Ω of
the sound) whose amplitude is proportional to the product
I^Ift of the intensities of the two beams. Then, as was
shown in Ref. 64, it not only becomes possible to inves-
tigate the frequency spectrum of the diffracted light, but
the sensitivity of the measurements of the intensities of
the diffracted beams increases considerably (by three
or four orders of magnitude as compared with the sensi-
tivity achieved without heterodyning). If this method is
to be used to study the diffraction of light by hypersound,
however, extremely high frequency photodetectors will
obviously have to be used.

A Fabry-Perot interferometer can also be used to
study the frequency spectrum of the diffracted
light/5·7·β5] Despite the relative complexity of the appa^
ratus, this is essentially the only method available at
present for investigating diffraction spectra at acoustic-
wave frequencies above a few gigahertz, where it is dif-
ficult to employ the optical heterodyne method because
of the lack of high-quality photodetectors having the
necessary speed. Especially good results are obtained
by using Fabry-Perot interferometers that can be tuned
electrically (or by adjusting the pressure) with simul-
taneous recording of the spectra on the tape of an auto-
matic recording instrument.cee] An optical scheme for
such measurements is exhibited in Fig. 4. The light
from the laser, after passing through the beam-shaping
stop Sx, is focused by lens Lt onto the specimen at a
specified angle Θ, to the axis of the "sound-irradiated"
crystal, and the light leaving the crystal at various an-
gles 6SC is analyzed by an optical system consisting of
the converging lens Lg, the stop S2, the collimating lens
Lj, the polarization analyzer P, the tunable Fabry-Perot
interferometer F-P, the converging lens L4, the stop
S3, and the photodetector PhD. The signal from the
photodetector is automatically plotted against the fre-
quency to which the interferometer is tuned. Available
tunable interferometers working in the optical range
have a resolution Δω of the order of 10 MHz and a scan-
ning range of several gigahertz.

The problem of detecting very weak optical signals
frequently arises in studies of diffraction. For example,
the relative intensity of the first order diffracted beam
in the scattering of He-Ne laser light (λ =0.63 μΐη) by a
longitudinal ultrasonic wave of intensity 1 mW/cm2 prop-
agating in quartz is ~ 10"5, i. e., for the usual power /„

~ 1 mW of a continuously operating laser the power in the
diffracted beam will be ~10"8 W. If one also considers
that the signals will frequently be even weaker and/or
pulsed, it becomes obvious that one will have to resort
to various electronic techniques of matched filtration to
extract the signal from the noise. The methods of nar-
row band synchronous detection of continuous signals
and pulse accumulation using a "time slot" (see, e. g.,
Ref. 67) have come to be the most widely used methods
in the study of acousto-optical interaction. In addition,
as was already mentioned above, a marked increase in
sensitivity can also be achieved by using the optical
heterodyne method.

It should also be noted, however, that when the
acousto-optical phenomena involve the interaction of
light with coherent sound introduced from outside, the
scattering efficiency can be enhanced by exciting a more
powerful sound wave. The great successes that have
recently been achieved in the generation, conversion,
and amplification of sound over the very wide frequency
range from a few megahertz to some tens of gigahertz
(see, e.g., Ref. 68) make it now possible, on the one
hand, to obtain information on ever more subtle acousto-
optical effects, and on the other hand, to construct very
effective practical devices on the basis of acousto-opti-
cal principles.

b) Study of the diffraction of light by sound in dielectrics

1) Angular dependence (isotropic case). It follows
from the theory of the scattering of light by sound (Sec.
1) that for dielectrics in which the acoustic waves are
not too intense the diffraction pattern changes in an es-
sential manner as the diffraction parameter Q passes
from the region Q «1 to the region Q »1."

In the first case we have Raman-Nath diffraction,
which is characterized by the presence of a series of
diffracted beams of positive and negative orders, the
angular separation between them being A6 = 0SC

= 2 arc sin(X/2A). In accordance with Eq. (1.22) the in-
tensities /, ~ V\ of the diffracted beams of all orders are
maximal for normal incidence of the light on the sound
wave, i.e., for 6 = 0. As the angle of incidence increases
(on the positive or negative side) the intensities of the

8'As was noted in Sec. 1, for large sound-wave amplitudes
(more precisely, for large phase modulation of the trans-
mitted wave, i .e. when ν £1) the conditions on Q become Q
«1/v and Q »v.
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FIG. 5. Intensity of the scattered light vs angle of incidence
for Bragg diffraction. The full curve represents the experimen-
tal results and the dashed curve was calculated using Eq. (2.1)
for the conditions of the experiment.

FIG. 6. Multiple successive diffraction of light by sound in
the Raman-Nath regime: kj—propagation vector of the incident
light; kt (j = l, 2, 3)—propagation vector of the j-fold scattered
light.

diffracted beams gradually decrease, passing through a
series of successive maxima and minima. Experimental
studies of the angular dependences in Raman-Nath dif-
fraction of light have confirmed the validity of the the-
ory ,®4··»3 in particular, for example, it has been
shown"" that the dependence of the number of observed
diffraction peaks on the angle of incidence in the scatter-
ing of light by ultrasound in the 1-20 MHz range is in
satisfactory agreement with an expression of the form
ofEq. (1.22).

As has already been mentioned, diffraction for which
Q>1 is usually called Bragg diffraction. Under the usu-
al experimental conditions (λ =0.63 μπι, η = 2, d*lcm,
and Ι> 5

Κ 3Χ10 5 cm/sec) this condition is satisfied at fre-
quencies above ~ 100 MHz. According to Eq. (1.26),
characteristic features of this type of diffraction are the
strong dependence on the angle of incidence with the
maximum diffraction efficiency at the Bragg angle, i. e.,
when sine = sin9B=

:fq/Zk, and the presence under these
conditions of only one first-order diffracted beam (i. e.,
either the beam with I = +1, or the beam with I = - 1 , but
not both, is present). Then the angle 0SC between the
diffracted and transmitted beams is equal to twice the
Bragg angle. According to (1.26), the angular depen-
dence of the intensity of the diffracted light for scatter-
ing from a beam of sound waves of rectangular cross
section when ν « 1 has the form9>

(2.1)

where

The results of an experimental study of the angular
dependence of the intensity of the diffracted light (λ
=0.63 μΐη) by an ultrasonic wave having a frequency of
800 MHz and a 2-mm wide acoustic front in a strontium
titanate (SrTiOi) crystal are shown in Fig. 5."0 ] The
curve was obtained by rotating the crystal with a fixed

"Formula (2.1) serves as a particular illustration of the
general proposition that the angular dependence of the ampli-
tude of the diffracted waves of various orders when the crys-
tal is rotated and the angle of observation is held fixed is the
Fourier transform of the sound-amplitude distribution over
the cross section of the beam.IM1

angle of observation equal to twice the Bragg angle. It
will be seen that the intensity of the diffracted light at-
tains its maximum value when the angle of incidence Θ,
is equal to the Bragg angle ΘΒ, and its angular variation
in accordance with (2.1) is satisfactorily described by
the function sin2*/*2 (the dashed curve) with the argu-
ment χ =qd((q/2k) - sine), which agrees with the width
of the cross section of the sound wave.

2) Frequency shift of the diffracted light. It follows
from Eq. (1.14) that the frequency we of the light in the
diffracted beams of various orders should be shifted
from the frequency of the incident light by multiples of
the sound frequency β; ωβ = ω+ΖΩ, the frequency being
increased for the positive orders and decreased for the
the negative ones. Physically, this is easy to explain
by using Bragg diffraction as an example: negative-or-
der diffraction results from Bragg incidence of the light
onto a receding sound-wave front so, as a result of the
Doppler effect, the frequency of the diffracted light
should obviously be shifted toward the lower frequen-
cies—and just by the frequency of the sound wave. It is
also clear that in diffraction of positive order, which
occurs when the light falls onto an approaching sound
wave front, the corresponding frequency shift should
be toward the higher frequencies. The frequency shifts
in the higher orders for Raman-Nath diffraction can be
explained in a similar manner if one takes account of the
fact that they can be regarded as arising in a secondary
diffraction process. Indeed, in the Raman-Nath limit
we have θ « 1 , which means the the deviation angle for
single scattering (β,0«2θΒ=λ/Λ) is small compared with
the diffraction spread of the acoustic wave (Δθ8 ~ A/d)
is small compared with the diffraction spread of the
due to the finite width d of its front, i. e., θβ0« Δθβ.
Then successive scattering of the light in higher orders
(k4 .kj^kjj,... in Fig. 6) becomes possible, the fre-
quency shift increasing by the frequency Ω of the sound
at each step of this process.10)

Experimental studies using the heterodyne method, as
well as studies using the Fabry-Perot interferome-
ter, " · β 5 · 7 1 ] have confirmed the theoretical conclusions.

10*Generally speaking, multiple scattering is also possible in the
Bragg region (e.g. from converging sound waves), but, as
was noted in Ref. 9, the probabilities for such processes are
not high, so in this case the higher orders would have very
low intensities.
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FIG. 7. Interference pattern from a Fabry-Perot etalon for
diffracted (a and c) and undiffracted (b) light.

Figure 7 shows how the interference rings from a 5-cm
Fabry-Perot etalon change as a result of the diffraction
of light (λ =0.63 μπι) from a 790-MHz acoustic wave in-
troduced from outside.C72] Figure 7a shows the inter-
ference rings for the case when the light is incident on a
recording wave front, Fig. 7b for the case when there
is no sound, and Fig. 7c for the case when the light is
incident on an approaching wave front.

For the interferometer used in these experiments a
shift of one ring corresponds to a frequency shift of 3
GHz. It will be seen that the frequency shift was toward
the lower frequencies in case a) and toward the higher
frequencies in case c), as compared with case b) in
which there was no diffraction. The magnitudes of the
frequency shifts obtained by comparing the shifts of the
rings with the distances between them, turned out to be
τ790 MHz respectively for cases a) and c), i .e. , the
frequency shifts are very accurately equal to the fre-
quency of the sound wave, as is to be expected when the
Bragg conditions are satisfied.

It should be noted that the well verified shift observed
in diffraction from sound waves now provides one of the
most important bases for the design of acousto-optical
data-processing devices (see Sec. 3).

3) Amplitude characteristics. The dependences of
the intensity of the diffracted light on the amplitude Δη
of the modulation of the refractive index of the matter
traversed by a sound wave of rectangular cross section
are given for the Raman-Nath and Bragg cases by Eqs.
(1. 22) and (1.26), respectively. When the angle is ad-
justed for maximum scattering, i. e., for normal inci-
dence of the light beam in the first case and for inci-
dence at the Bragg angle in the second, the correspond-
ing dependences are as follows:

(n = 0, ± 1 , ± 2 ,

and

-Ia sin
:2.L.

2 '

(2.2)

(2.3)

In the Raman-Nath case ν is nothing other than the
amplitude of the phase changes in the transmitted light.
Sanders'73-1 measured the intensities of the light in dif-
fracted waves of various orders as functions of ν (Fig.
8). It is evident from the figure that Sanders' results

for five diffraction orders are satisfactorily described
by Bessel functions with the argument ν (dashed curves)
over a fairly wide range of ν values. The discrepancy
between theory and experiment at very large ν values is
probably due to the fact that then the conditions for pure
Raman-Nath diffraction, which in this case depend on
the value of ν (Q«l/v, see Subsec. b) of Sec. 1) are vio-
lated. A number of experimental studies of the ampli-
tude dependences in both Raman-Nath and Bragg diffrac-
tion verify the validity of the available theory of the
amplitude characteristics of the diffraction of light by
acoustic waves in dielectrics (see, e.g., Ref. 9 and 73-
75).

For the subsequent exposition we note two important
features of these characteristics: first, at a definite
modulation depth of the refractive index and length of the
sound-wave front the entire incident power may be con-
verted into diffracted waves of various orders (i. e.,
•Ofacr) ~ 0)> a°d in the Bragg region this process results
in the diversion of all the incident light into the direction
of a single (first-order) diffracted wave; and second, the
intensity of the diffracted light in the first orders for
low efficiencies is directly proportional to vz, or, what
is the same thing, to the power Ps~vz in the acoustic
wave.

It should also be noted that all that has been said above
relates to the case of the interaction of light with travel-
ing sound waves. It is only in this case that the intensity
of the light in the diffracted waves is independent of time
and the frequency shift is a single valued function of the
diffraction order. But, as has been shown in Refs. 6
and 76, and elsewhere, in the case of diffraction from
a standing sound wave the amplitudes of the light in the
diffracted waves of all orders in the general case be-
come functions of time, whose spectrum contains even
harmonics of double the sound frequency. This last is
not difficult to understand since the standing wave looks
to the light like a stationary diffraction grating which,
however, varies with time, appearing and disappearing
twice in each period of the sound wave.

4) Diffraction in anisotropic media. The theory of
the scattering of light by sound indicates that in the gen-
eral case the polarization of the diffracted light will not

FIG. 8. Relative intensity
of the light in different dif-
fraction orders (/„) vs the
advance of the optical phase
difference in the sound wave
(υ) for Raman-Nath diffrac-
tion in H2O at/ 2 = 10 MHz.
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"i-ty-ty ΙΊ·"β.

FIG. 9. Momentum conservation in acoustic scattering of light
with rotation of the plane of polarization in isotropic (a) and
anisotropic (b) crystals.

be the same as the polarization of the incident light (see
Subsec. c) in Sec. 1). In particular, for example, ow-
ing to the presence of nonzero diagonal elements in the
lower part of the matrix of elasto-optical coefficients of
crystals, t l 4 ] transverse waves always lead to variations
of the optical indicatrix in the plane of the shearing
strains, and this, in turn, may lead to a change in the
plane of polarization of the diffracted light.C44] In case
the incident light is polarized along the principal direc-
tions of the crystal, such a rotation of the plane of polar-
ization takes place at an angle of JT/2.C 1 5 · 4 4 3

DixonC45] showed that the conditions of synchronism
for interacting waves are significantly altered in aniso-
tropic crystals as a result of the rotation of the plane
of polarization of the diffracted light. This is due to the
fact that, even though the change in the energy of the
light quantum on diffraction is small, the lengths of the
corresponding propagation vectors differ appreciably be-
cause of the difference between the refractive indices for
the incident and diffracted waves. Whereas in the case
of an isotropic medium, as well as in the case of an
anisotropic medium without rotation of the plane of polar-
ization on diffraction, the strongest interaction takes
place when the angles of incidence and diffraction θ{ and
ΘΛ in the medium are equal to one another and to the
Bragg angle ΘΒ (Fig. 9a), in the case of diffraction with
rotation of the plane of polarization in an anisotropic
medium (anisotropic diffraction) the angles of incidence
and diffraction, in general, differ considerably from one
another (Fig. 9b).

One of the important consequences of the new wave
synchronism conditions is the presence of a lower bound
to the frequency spectrum of the scattered phonons. As
is evident from Fig. 9b, this is due to the fact that
there is a minimum length k s m l n for the propagation vec-
tor of sound that will allow the conservation laws to be
satisfied when the incident and diffracted rays have the

so -

FIG. 11. Scheme for observing
diffraction in transmission and
in reflection with oblique inci-
dence of light onto an elastic
surface wave: 1—transducer
for excitation of ASW, 2—crystal
(piezoelectric, for example).

same direction.

The modified Bragg wave synchronism law for diffrac-
tion in an anisotropic medium can be written in the form

(2.4)

FIG. 10. Optimal angle of incidence vs sound frequency in
anisotropic diffraction of light by a longitudinal ultrasonic
wave propagating along the χ axis In xy-cut quartz.

where nl and n4 are the refractive indices of the medium
for the incident and diffracted waves, respectively, and
θ{ and ΘΛ are the corresponding angles of incidence and
diffraction of the light in the medium. It follows from
Eqs. (2.4) that the minimum frequency of the sound, as
determined from the conditions for collinear interaction

/.mm-•£<»(-»„). (2.5)

Thus, when the extraordinary light wave in quartz
(n{ =ne =1. 555) collides head on with the wave front of a
longitudinal sound wave propagating in the χ direction
the diffracted light will be a wave with ordinary polariza-
tion (nd=n0 = 1.546). Then with vs= 5.75xlO5 cm/sec,
the minimum sound frequency as given by (2.5) will be
~82 MHz. Figure 10 shows experimental data for this
case on the optimal angle of incidence for most efficient
light scattering as a function of the sound frequency.1453

The figure also gives the corresponding theoretical
curves calculated for the usual (dashed line) and the
modified (full curve) Bragg law. It will be seen that
the anisotropic diffraction differs unusually strongly
from the diffraction for the isotropic case and is quite
well described by the modified law (2.4). Subsequent
studies of acousto-optical interaction is uniaxial and
biaxial crystals have confirmed the validity of Dixon's
approach to the description of anisotropic diffraction
and have revealed a number of other features character-
istic of it.C 7 7- 7 9 1

5) Diffraction of light by acoustic surface waves. A
number of papers have been devoted to the experimental
study of the features of the diffraction of light by acoustic
surface waves (ASW).U<>"87] It was found that when light
is incident obliquely onto the surface of a solid on which
ASW are propagating one observes diffraction in both
transmitted and reflected light (Fig. 11). This is due to
the fact that in addition to the photoelastic variations of
the dielectric constant within the medium there are, in
the general case, "ripples" (distortion of the surface
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corresponding to the normal component of the ASW dis-
placements) on the surface, and these give rise to a
variable path difference for both the transmitted light
waves and for the reflected ones.

Since the difference 6nr between the refractive indi-
ces in the crystal and in the air (6wr = (κ0 -1) ~ 1) is con-
siderably larger than the variations 6«,h of the refrac-
tive index due to photoelastic effects within the wave
(6«,h = {l/2hlpBu/Bx), even when the height kr of the
"ripples" is small (hr

av±) the phase differences between
various parts of the reflected-wave front due to the "r ip-
ples" (6<pr=K06nrhr) may become comparable with the
phase difference 6(pvb=K06nvbhAav due to the photoelastic
variations within the crystal over a considerably longer
path equal to the penetration depth of the ASW into the
crystal (*ASW~A, and, consequently, 5<p,h«A'05KphA).
Taking account of the fact that du/bx^qu, we find that

nn% ρixpph nn% ρ (2.6)

i. e., the ratio of the two contributions to the diffraction
of light by ASW (at oblique incidence)—the "ripple" and
photoelasticity contributions—is independent of both the
power and the wavelength of the sound wave and is de-
termined entirely by the optical and photoelastic proper-
ties of the medium. In Refs. 80 and 86 it has been shown,
for example, that the surface distortions play a predomi-
nant role in the case of a Rayleigh wave propagating in
crystalline quartz in the Υ plane along the χ axis.

Because the interaction length for the interaction of
light with ASW is as small as it is, the Raman-Nath
character of the diffraction in this case is marked and
the diffraction efficiency is low (because ν « 1 ) . It
should be noted, however, that this remark pertains only
to the case of oblique incidence of the light onto the sur-
face on which the ASW are propagating. It was shown
in Refs. 84 and 85 that when the light propagates parallel
to the surface its interaction with the surface wave takes
place over a considerably longer path (of the order of
the width of the wave front) and is just as effective as in
the case of a bulk wave. This case of diffraction can be
used for investigating the distribution of the ASW defor-
mations in the interior of the crystal187-1 and in integrated
optical devices for effective acousto-optical control of
light (see Sec. 3).

6) Resonant acousto-optical interaction near the self-
absorption edge. The acousto-optical interaction in di-
electrics is due to the photoelastic ity of the medium,
which in the general case is described by a fourth-rank
tensor whose components are the elasto-optical coeffi-
cients.1·143 These coefficients characterize the tendency
of the material to become polarized by the action of ra-
diation, and they may depend on the wavelength of the in-
cident light. In particular, such behavior may be ex-
pected for wavelengths of the incident light that corre-
spond to the width of the forbidden gap in the crystal,
when the polarizability changes substantially because of
interband electron transitions.1 5 2 3

The dispersion of the elasto-optical coefficients has
been detected experimentally in certain cubic crystals'8 8 1

and in compounds of the A2Be group/553 In all cases the
elasto-optical coefficients were found to increase with
increasing frequency ω when Κω «.Ε,, where Ef is the
width of the forbidden gap in the material.

A number of recent papers'5 8"*1·8 9 3 have reported an
extremely strong effect of resonant acousto-optical in-
teraction at frequencies close to the self-absorption edge
in piezoactive semiconducting crystals (GaAs, CdS,
ZnO) in which spontaneous amplification of acoustic
waves in a supersonic stream of charge carriers has
been observed. t 9 0 · 9 1 1 The effect manifests itself in the
following behavior of the intensity of the diffracted light
as a function of the frequency ω of the light; the inten-
sity of the diffracted light has a deep narrow minimum
(diffraction ceases) at a frequency somewhat lower than
Et/K, and then the diffraction efficiency increases with
increasing frequency, increasing very rapidly as the ab-
sorption edge is approached and reaching a maximum
at Κω ~ Eg.

Figure 12 shows the characteristic form of the reso-
nance behavior of the diffraction for the case of the
scattering of light from piezoactive transverse acoustic
waves in CdS which are being amplified in a direction
perpendicular to the hexagonal axis of the crystal.1583

For the ordinary (and extraordinary) waves the diffrac-
tion took place with rotation of the plane of polarization
by 90° and conformed to the modified Bragg law (2.4).
The fact that the form of the resonance remains constant
for different (including low) intensities of the acoustic
flux as specified by the drift potential (curves 1 and 2 of
Fig. 12) shows that the effect does not depend on any
possible bending of the energy bands as a result of strong
deformations produced by the sound wave. It will be
seen that the effect depends neither on the frequency of
the acoustic waves (curves 5 and 4) nor on the polariza-
tion of the light (curves 2 and 4). In addition, it was
established that the electro-optical effect has no influ-
ence on the piezoelectric field of the wave.

The explanation of this effect given by Gelbart and
Many'583 was based on Loudon's theory (see Ref. 52
and Subsec. b) of Sec. 1), in which the mechanisms
of photoelastic ity and their dispersion near the self-

18 IS iff 2.1 2.2 2J/)a,eV

FIG. 12. Frequency dependence of the intensity of light scat-
tered from transverse ultrasonic waves in CdS near the self
absorption edge. The curve was calculated using formula (2.7).
Points: l - 4 - / s = 0.8GHz, 5—/ s=2.5GHz; 1—high sound in-
tensity, 2—low sound intensity; 1—3—ordinary wave, 4—5—
extraordinary wave; 3—thin (0.2 mm) specimen.
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absorption edge were considered. The following approx-
imate expression for the scattering efficiency was ob-
tained for the experimental situation on the basis of
Loudon's model:

/,

(2.7)
where I'o is the intensity of the transmitted light, Ε=Κω
is the photon energy, £„, and EfL are the optical widths
of the forbidden gap for light polarized parallel and per-
pendicular to the optical axis, respectively, and Β is a
constant that takes account of the contributions of all
the matrix elements (assumed to be independent of the
photon energy E). Using data tM] on the optical absorp-
tion of waves of different polarizations in CdS to evaluate
E^ and Egi, treating Β and Δ£ as adjustable parameters
and using Eq. (2.7), one can achieve good agreement be-
tween the theoretical curve (the full curve on Fig. 12)
and the experimental data over a wide range of frequen-
cies near resonance. Although the parameter values
selected by the authors and the approximations used
seem plausible and, qualitatively, the resonance scat-
tering effect appears to have been correctly identified,
we feel that a quantitative comparison will require fur-
ther serious study of this effect.

c) Peculiarities of acousto-optical phenomena in
conductive media

The presence of free electrons can substantially affect
the interaction of light and sound in conducting media
(see Sec. 1 above). Actually, elastic waves in any con-
ducting media, acting through the deformation potential,
will lead in principle to induced electron-density
waves1981 (these are frequently called electron waves for
brevity).119 In piezoactive semiconductors, alternating
piezoelectric fields accompanying acoustic waves can
also take part in the production of electron waves, and
at ultrasonic frequencies this effect may become domi-
nant and very strong.U9>eSf9e: In addition, as was shown
in Refs. 95 and 96, the electron-phonon interaction via
electrostriction may become effective in crystals having
a large dielectric permittivity, and this interaction also
gives rise to electron waves.

It is physically understandable that the appearance of
an electron wave gives rise to an additional variation of
the dielectric permittivity of the medium (of its elec-
tronic part), which is periodic in space and time and of
the same spatial period (Λ) as the change in the lattice
dielectric permittivity that is produced directly by the
deformation in the acoustic-wave field and is responsible
for the ordinary photoelasticity. It is also clear that in
the general case the amplitude and phase of the electron
waves will depend on the external fields and on the ratios
of the sound frequency Ω to the conductivity relaxation
frequency u>c=4ira/e and to the diffusion frequency ωΒ

=vl/D,i (where Dtl is the electron diffusion coefficient).

Thus, an acoustic wave in a conductive medium gives
rise to two gratings capable of diffracting light, which
have the same spatial period but different "amplitudes"
and, generally speaking, are shifted in phase with re-
spect to one another.

Such electronic diffraction gratings were first dis-
coveredEsn in η-type piezoelectric photoconductive CdS
crystals, using light of 10.6 μ,τα wavelength. The fol-
lowing experimental procedures have been used to dis-
tinguish between diffraction by electron waves and dif-
fraction resulting from the elasto-optical interaction:

1) Highly photosensitive specimens were chosen so
that one could obtain a low dark conductivity (σ, = 10'1

(«cm)"1) as well as a fairly high conductivity (σ2 =3xl0"3

(Ω cm)"1) after strong preliminary irradiation; the speci-
mens also had equally low electronic absorption for a 65
MHz transverse piezoactive ultrasonic wave. Hence the
intensity of the sound (and consequently the lattice dif-
fraction) was about the same in the two cases (with Is

~1 W/cm2), while the "electronic" diffraction was pres-
ent in one case and absent in the other (see the peak at
βι~10° in Fig. 13a).

2) With the chosen propagation and polarization direc-
tions for the sound and light with respect to the crystal-
lographic axes of the specimen (see the inset near the
top of Fig. 13) the diffraction resulting from the photo-
elasticity effect was anisotropic, while the diffraction
from the electron waves was isotropic. Then the "lat-
tice" diffraction had a maximum at the incidence angle
β,=16°, while the "electronic" diffraction had a maxi-
mum at a different angle of incidence, Θ, =10.5° (in both
cases the total scattering angle was 21°, which corre-
sponded to a grating period ~ Λ=vs // s ) . Accordingly,
in the first case the plane of polarization of the diffracted
light was rotated through 90°, while in the second case
it was not (see Fig. 13b). A comparison of the mea-
sured efficiencies of "photoelastic" and "electronic"
diffraction at the same sound-wave intensity gives ξ = τ̂  /

U )Here, for simplicity, we discuss neither electron-tempera-
ture waves nor holes in semiconductors, which can also take
part in these processes (see Sec. 1).

10 15 20 St

b'
FIG. 13. Intensity of light diffracted by 65-MHz transverse
piezoactive ultrasonic waves in CdS vs angle of incidence β4:
a) for crystals of conductivity l x ΙΟ"3 Ω" 1 cm'1 (curve 1) and 3
χ ΙΟ"6 Π"1 cm"1 (curve 2), the polarization plane of the scattered
light being parallel to that of the incident light in both cases;
(b) for the polarization plane of the scattered light perpendicu-
lar (curve 1) or parallel (curve 2) to that o£ the incident light,
the crystal conductivity being 3χ ΙΟ"3 Ω ' 1 cm'1 in both cases.
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ifch* (1/50)—(1/100), and this is in satisfactory agree-
ment with the theoretical estimate ξ —1/100 based on
formula (1.34). It follows from formula (1.34) that in
the present case the diffraction by the electron waves
accompanying a piezoactive transverse wave in CdS
should become predominant at wavelengths above ~30
μπι for the light. The absolute efficiency of the diffrac-
tion by the "electron grating" was δχΙΟ"7. That this
figure is so small is due to the fact that the experimental
conditions were such that the frequency of the light was
much higher than the plasma frequency of the electrons
(ω =1.77x10" sec"1, while ωρ -V4jm0eVw*e0 ~10 u

sec"1), so that even if the amplitude of the density wave
was relatively high (Δ«/«ο~1) the modulation Δε β 1 of
the dielectric permittivity was very small (Δε^^ίω2,/
a>2)Aw/w0Kl0-e), resulting in a low efficiency: i]e = (iti/
ΙβΚΔε,,,ΐίν/λ^δΧίΟ·7. According to Eq. (1.34), as
the frequency of the light approaches the plasma fre-
quency under these conditions (but not conversely, since
Δεβ 1 = const · (w0) when Ω7> « 1 ) the electron-diffraction
efficiency will increase with increasing wavelength of
the radiation as λ2. Thus, it may be supposed that dif-
fraction due to electron waves will be as efficient in the
far infrared and at submiUimeter wavelengths as diffrac-
tion due to photoelasticity will be in the visible and near
infrared.

d) Induced acousto-optical phenomena

In Sec. 1 we considered the induced scattering of light
by sound that occurs when the sound intensity is high.
Processes of this type in which thermal and acoustic
vibrations take part and which are called induced Man-
delstam-Brillouin scattering processes have now been
studied in some detail and provide the basis for a number
of interesting effects observed in the propagation of giant
laser pulses through matter (see the detailed review of
this topic by Starunov and FabelinskiiC5]). Here we want
to discuss a related process that has some special fea-
tures: the induced scattering of light by coherent sound
introduced from outside.

Actually, when a light beam of power Po is incident at
the Bragg angle onto a receding (or approaching) acoustic
wave (Fig. 14) the power Px in the diffracted beam will
be given, according to Eq. (2.3) when ν « 1 , in terms of
the sound power Ps, the parameters characterizing the
material, and the geometry of the specimen by the for-
mula

where λ is the wavelength of the light, d and Η are the
width and height, respectively, of the acoustic wave
front, and Mz =η*ρζ·/ρν\ is the acousto-optical quality
factor, which contains all the relevant parameters char-
acterizing the material.

Since Bragg diffraction is a parametric process in
which a single diffracted photon arises in the course of
emission or absorption of a single phonon, the power
gained or lost by the acoustic wave in such a process
will be

ΔΡ.--£tl, (2.9)

where ω and Ω are the angular frequencies of the light
and sound, respectively. It follows from Eqs. (2.8) and
(2.9) that

„ π d , , Ω (2.10)

a'
FIG. 14. Schemes for induced acousto-optical interaction with
a decrease (a) or an increase (b) of the frequency of the light
on scattering.

i. e., if the power P o of the incident light beam is high
enough we may expect amplification or attenuation of the
sound. But then if the sound power is highly amplified
the diffraction of the light will also be enhanced, and
this in turn will lead to a still greater amplification of
the sound power and the acousto-optical interaction will
become highly nonlinear.

It is evident from (2.10) that ΔΡ,~ΡίΡ0; hence, un-
like the case of induced scattering by very weak thermal
fluctuations of power Pm, in the interaction of light with
a high-power external sound wave for which P, » Pm one
can obtain amplification of the sound by light even with
light fluxes of moderate power, so it will not be neces-
sary to use giant laser pulses, which frequently lead to
irreversible damage of the crystals.153

The amplification of coherent sound by means of in-
duced acousto-optical interaction was first observed ex-
perimentally by Korpel et al.lm In this experiment light
from a pulsed ruby laser (power 1.5 kW, pulse length
0.1 μββο) was diffracted by a 45-MHz ultrasonic wave in
water (diffraction efficiency 7j~10"*, i.e., Ιχ'Ό. 15 W),
and as a result the intensity of the sound was 0.06% high-
er at the output of the delay line than at the input. The
quantity AP,/PS was estimated in accordance with (2.10)
for the experimental conditions as ~ 10"8. Subsequent ex-
periments by a number of investigators198"100·1 showed
that such amplification of sound by light can be achieved
in quartz, in which stable and fairly high amplification
has been obtained by making use of the anisotropy of the
crystal.

e) Application of acousto-optical methods to physical
research

It is evident from what has been said above that the
study of acousto-optical phenomena can provide valuable
information both on the behavior of acoustic waves in
solids under various conditions of propagation, and on
the acoustic, acoustico-optical, electronic, and other
properties of the solids themselves. Moreover, the
acousto-optical methods of probing and diagnostics are
valuable because they do not appreciably perturb the
propagation of the sound.
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Acousto-optical methods have long been used effective-
ly to make acoustic waves visible, to determine the ve-
locities, spatial periods, and shapes of the waves, their
propagation direction, the intensity distributions along
the propagation direction and in the cross sections, fo-
cusing characteristics, deviations of the energy flux
from the direction of the wave vector, and so on (see,
e.g., Refs. 29 and 101-117, as well as Bergmann's
book17").

The use of acousto-optical methods to investigate the
velocity, dispersion, and absorption of coherent sound
introduced from outside as well as the corresponding
properties of thermal phonons makes it possible to eval-
uate the elastic constants of the material with high ac-
curacy and to investigate the mechanisms responsible
for the absorption and dispersion of sound over a wide
frequency range (see, e.g., Refs. 5, 7, and 118-120).

It should be especially noted that acousto-optical meth-
ods allow the characteristic mentioned above to be mea-
sured locally at a given place in the crystal rather than
integrally as, for example, in the case of the well-known
echo method.1 1 2"

Acousto-optical methods are used to investigate the
nonlinear effects associated with deviations from Hooke's
law in the propagation of fairly intense acoustic waves in
a solid (see, e.g., Refs. 122-133) and to evaluate the
corresponding higher-order elastic moduli. Finally,
acousto-optical measurements enable one to evaluate the
photoelasticity coefficients themselves and to investigate
their anisotropy (see, e. g., Refs. 134-137).

We shall not pause to discuss the papers cited above
in more detail since they have already been fairly well
discussed in available review articles." 1 8 · 1 2 2 · 1 2 5 3 The
original method developed by Korpel"0·3 for the spatial
amplitude-phase visualization of an acoustic image,
which is based on peculiarities of the Bragg diffraction
of converging light rays by sound, is an exception and
we shall discuss it; it is very promising for use in non-
destructive testing, medical diagnostics, acoustic holog-
raphy, etc.

As an example to illustrate the possibilities of acousto-
optical methods for examining the properties of solids,
we present in this subsection the results of studies of
certain acousto-electronic phenomena in semiconductors
in which use was made of the diffraction of light by
sound.

This method was first used by Zucker and Zemon"3 8 3

to investigate acoustic-noise spectra under conditions of
acousto-electric (AE) current instability incident to the
supersonic drift of electrons in piezoactive semiconduc-
tors. 1 2 ' By investigating the Bragg diffraction of coher-
ent laser light by acoustic fluctuations that were being
amplified along the crystal, Zucker and Zemon"3 8 1 were
able comparatively simply to evaluate the acoustic-noise
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FIG. 15. Intensity of light (λ0

= 0.63:μιη) diffracted by electron-
drift amplified acoustic noise in
«-type CdS vs frequency for
several distances L from the
cathode (mm): 1—0.95, 2—1.21,
3—1.47.

12 ̂ Whenever quantitative results are not required it is usually
assumed that in this case the interaction of light and sound is
analogous to the interaction of coherent fluxes. As was men-
tioned in Ref. 139, it may, generally speaking, be important
to allow for the finite coherence length of the amplified noise.

3 ^, GHz

spectrum throughout a large solid angle and at various
places in the crystal along the amplification path.

It was directly shown in a number of subsequent pa-
pers" 3 9 " 1 4 2 3 on optical studies of AE current instability
that the amplification of thermal lattice vibrations in
crystals leads to moving or stationary regions of en-
hanced flux density—"acoustoelectric (AE) domains."

The absolute values of the integral intensity of the
acoustic noise flux in AE domains as measured by dif-
fraction"4 2 3 and acoustoelectric detection"4 3·1 4 4 3 methods
agree with one another and lie in the range 10-104 W/
cm2, depending on the electrical conductivity. They are
in satisfactory agreement with estimates based on the
nonlinear theory of the amplification of acoustic waves
in semiconductors.148·*9·145·1463

Optical probing of acoustic noise has led to the clari-
fication of a number of interesting features of the ampli-
fication of such noise associated with crystal anisot-
ropy,"41""1473 with interactions of various components of
the broad spectrum of fluctuations being amplified,"39"1433

etc. Figure 15 shows a typical spectrum of acoustic
waves in w-type CdS that are being spontaneously ampli-
fied under conditions of supersonic electron drift. It
will be seen that as the distance from the front of the
crystal (from the cathode) increases the frequency at
the peak intensity gradually falls from its initial value of
2—3 GHz, corresponding to the frequency of maximum
gain according to the linear theory, to half that value
(1-1.5 GHz) in the region of fairly high sound-flux in-
tensities.

It has been shown"48""1513 that changes of that sort in
the spectrum may indicate that parametric interaction
of the waves being amplified play an important part in
the amplification of acoustic noise. Zucker and Ze-
mon" 4 9 3 investigated the spatail variation of the ampli-
tude of diffracted light (λ =0.63 μΐη) scattered in CdS by
a pumping wave of frequency Qp

a 800 MHz and by acoustic
noise with frequencies close to half the pumping frequen-
cy Ωρ/2 - 400 MHz in the presence of interaction between
the powerful pumping wave and the noise (see Fig. 16).
The figure shows that in the presence of strong pumping
there is considerable increase in the noise at the fre-
quency Ω Ρ / 2 , the maximum noise increment (~22 dB/
mm) considerably exceeding the drift increment of the
pumping wave (~6 dB/mm). When the noise level is high
enough, the power extracted by the noise from the pump-
ing wave becomes quite considerable, and this leads to
attenuation of the pumping wave.
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FIG. 16. Spatial variation of the power P\ of the light scattered
from a transverse piezoactive ultrasonic pumping wave of fre-
quency ΐίρ «800 MHz [PiiOp)] and from the parametrically
amplified wave ίΡ^Ωρ/2)] in the electron-drift sound amplifica-
tion regime in CdS.

The use of the diffraction of light by sound in the study
of the acoustoelectronic interaction of two acoustic waves
introduced from outside has led to very interesting re-
sults.C 1 5 a ] It was found, in particular, that the action of
a sufficiently powerful acoustic wave could, depending
on conditions, result in either a considerable increase
or a considerable decrease in the electronic attenuation
(or enhancement) of a second, weaker, wave.

The existence of the so-called distributed heterodyne
amplification of acoustic waves in a nonlinear active
medium has been established1153-1; in this effect a large
increment is transferred from the intermediate frequen-
cy Ω , = Ω Α ± n s to the frequency Ω^ of a weakly amplified
signal (ΩΑ is the frequency of the heterodyne wave).

These results are in good agreement with correspond-
ing results obtained by ordinary microwave tech-
niques/15*"1553 and also with the theory of parametric
interaction of monochromatic acoustic waves in semi-
conductors under conditions in which sound amplification
takes place. α 5 3 · 1 5 β · : 5 7 ] The advantage of the optical meth-
od reported in Ref. 152 is that it makes it possible to
trace the origin of the intermediate-frequency waves (at
both the sum and the difference frequencies) as well as
the spatial changes in the amplitudes of all the interact-
ing waves, including the angular orientations of the
waves with respect to one another and their distribution
along the crystal.

We note, finally, that in acousto-electronic studies
the acousto-optical probing method is sometimes not
only convenient, but is the only method available. This
is the case, for example, in the study of noise spectra
(both spatial and frequency) mentioned above, the study
of spatial development of nonlinear processes, the in-
vestigation of amplification in nonuniform structures/
and the study of acousto-electronic phenomena at very
high hypersonic frequencies in the 12-100 GHz range. c i s 9 ]

C158]

In concluding this subsection we list the principal char-
acteristics of some materials that seem promising for
use in acousto-optical devices (see Table I).

3. PROBLEMS OF APPLIED ACOUSTOOPTICS

Study of acousto-optical phenomena in solids has shown
that the amplitude, phase, frequency, and spatial dis-
tribution of coherently scattered light are determined by

corresponding characteristics of acoustic waves. This
means that it is possible in principle to control radiation
by the action of sound and to use sound as an information
carrying signal in optical data-processing devices. The
great successes in recent years of applied research in
acousto-optics have clearly shown that it is practically
possible to produce a number of new acousto-optical
(AO) devices for communication systems, optical mem-
ory units, projections television, signal processing,
and other systems. Below we shall briefly examine
some of the AO devices that have already been developed:
modulators, light deviating devices (deflectors), and de-
vices for processing signals.

a) Acousto-optical light modulators

For holographic memory units and optical communica-
tions systems, as well as in a number of other applica-
tions, it is necessary to modulate the intensity of the
transmitted light in accordance with a given signal.
There are two types of AO modulators that are suitable
for this purpose: photoelastic modulators that make use
of birefringence, and diffraction modulators.

The operating principle of the AO modulators of the
first type c l e O t l e l ] is similar to that of the well-known
electro-optical modulators: the birefringence induced
by the deformations due to a standing acoustic wave gives
rise to a phase difference Δφ between two differently
polarized components of a light beam incident on the
crystal and passing through the sound beam; this phase
difference Δ<ρ is proportional to the amplitude of the
deformations, and when the light is subsequently passed
through a polarization analyzer, the transmitted intensity
will be a function of the power in the sound wave. In the
general case, the frequency spectrum of the modulation
contains a constant component and even harmonics of
the sound frequency, while the amplitude characteristic
is nonlinear, having the form ηα8ίηζ(Δ.φ/2). The modu-
lation frequency is bounded below by the reciprocal of
the time required to establish the standing wave: fmln

> l/rs = vs /2L, where L is the length of the crystal.
When the dimensions of the optical beam are small com-
pared with the length of the acoustic wave, the modula-
tion characteristic becomes linear and the spectrum
narrows considerably. i l e z l Photoelastic modulators have
very narrow pass bands, since they work at the eigen-
frequencies of the acoustic resonators.

Diffraction-type AO modulators are based on the spa-
tial separation of the diffracted light and on the depen-
dence of the light-scattering efficiency on the power of
the scattering sound wave. In fact, the intensity of the
light scattered in the direction of one of the diffracted
beams is given in terms of the characteristics of the
material, the geometry of the situation, and the power
of the sound beam in the Raman-Nath and Bragg limits
by Eqs. (2.2) and (2.3), respectively. The argument
in these formulas, which represents the amplitude of
the optical phase difference on the interaction length d,
has the following form for the case of the photoelastic
mechanism:

-£ 4 A/ (3.1)
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TABLE I. Acoustic

Material

Fused
quartz
<z-H103

GaP

GaAs

TcO2

H 2 0
a-HgS

PbMoO4

1'b.MoOs

LiNbO3

YFesO.s
α-Α12Ο3
Bi 1 2Ge0 2 0

Bi,2SiOM

Sro.sBao.sNbjOe

As,S3

Ag,AsS,

Go As Se •
HgAss"
ADP

KRS-5

a-S

Tc

Go

PbSTeO

Sym-
metry
type

mm

43m

43m

42

32

4/m

2/m

3mm

m3m
3m
23

23
4 mm

4 mm

Amor-
phous

32

Amor-
>hous

42 m

43 m

mmm

6 Him

43 m

Amor-
phous

and acousto-optical properties of some materials.

p.
g/cm'

2.20

4.63

4.13

5.34

5.99

1
8.1

6.95

7.1

4.7

5.17
4.0
9.2

3.20

5.49

4.0

1.0

7.37

2.07

6.24

5.33

μια

0.63

0.63

0.63

1,15

0.63

0.63
0.63

1.06
0.63

0.49
0.63

0.63

1.15
0.63
0.63

0.63
0.63

0.63

0.63
1.15
0.63

1.06
0.63
0.63

0.63

0.63

10.0

4.0

10.6
0.63

1.46

«„ = 1.985
II i Ofti"Rb=ι.you
η, = 1.840
b > a > e

3.31

3.37

«, = 2.43
«, = 2.27

1,33
«0 = 2,88*
n,, —3.235

«0 = 2.7
«0 = 2.36

«,— .

II V \ ft*
11 u --- Z. 1OZ

«"=2.301
no = 2.29
πβ = 2.20

2.22
1.76
2.55

0.51 μια

«ο ~= 2 31
« , = 2.93
«0 = 2.312
„ o 273
°~ 2Ϊ61

2.46
«0=2.98

9 7Η, = ί • /

2.552.7
1.58

2.6

«, = 1.95
,. η fio/12 = = £"\JL·

n 3 = 2.22

«2 = 6^2
4.03

4.00
2.28

Type and
propaga-
tion direc-
tion of the
ultrasonic
waves

L
S
L.[010]

L.
L.
L.
L.
S.
L.
L.
L.
S.
S.

ion)
110
100
110
100
100
001
101
110
101

L
L. [001]

L.
L.

001
001

L, [001]
L

L. [1120]

L,[100]
£.[0011
L.
S.
L.
L.
L.

no100
110
001
100

L. [001]

L
L
L. [001]

L
L
L.
S.

loo
100

L.[100]
L. [100]
£,.[111L.
L.

110
100

L.
L,

1120
0001

i. [nil
L.[100]
L.[Ill]
L

The signs || and 1 indicate polarization of the light

of the sound, while L

»,, 10'

cm/sec

5,96
3,76
2.89

3.56
6.32
4.13
5,15
3.32
2.98
4.20
3.64
0.617
2.08
1.5
2.45

2.45
3.75

3.75
2.95

6.57

7,21
11,15
3.42
1.77
3.83

2.6
2.6
2.65

2.501
2.43
6.15
1.83
2.15

1.96
2.00
2.7

2.2
2.2
5.6
3.57
5.5
3.45

a500 MHz
dB/cm

~ 3
- 2 . 2

2.5

1.0

7.3
13

~ 4

~ 7 7

500
7.1

7.1
2.5

2.5
5

«0.045

<0.06
<0.08

0.62

^ 1.0

~ 4 2
~ 4 2
~ 2 5

~ 7
<5.0

~ 8

~ 5 0

3 — 5

7.6
2.24
7.6

~ 8

Polarization and
propagation di-

rection of the
light

X
II or 1

1
II

ii

li or: l . [ 0 1 0 ]
II

|| or j_.[010]
[001|. [010]
[100J. [010]
[0101. [101]

Circular [001]
[1001. 1010]

Arbitrary
Ordinary
Extraordi-

nary
Ordinary.

[100). [010)

[100). [010)
(00ij. [010]

II

1
II · [1120]

Arbitrary

Arbitrary
Polar., [001]
Polar., [100]
Polar., [001]

11

i
Arbitrary

»
li. [οίοι

11 or l .[001)
1

II
!|
11

i: · [ooi]
x

! ! •

0:«H]
0001)
II

11 o r 1
II

X

* "

8.05
0.963

107
93

125
500
137
925
155
22.9

142
101

73
75
4.36

1670
250

120

177
238

60.5

3.94
7,32

29.5

33.8
26.8
26.9
59.3

762
619
790

390
1900

16.0
3.34

250
1(17
11)1

KKXI
64D
4611
3711

10 200

8 700

6 am
960

10 200
157

,•-0

sf!
1.56
0.46

83
fi/ΛOU

50
44.6
24.1

104
46.3
10.6
34.5
33.4

793
77

160
953
127

246
35.6

56.1
123

7.0

0.33
0.34
9.91

9.02
38.9

2.66
8.62

433
236
380

246
1200

2.78
6.43

210

1050
630
320
260

4400
2920

54(1

190
840
506

"" ?
si I

1.35
0.256

41
38

35
935
33.1

179
49.3

6.8
32
27.5

117
36
29.1

660
99

32

47.5
90

10.1

0.S3
0.66
8.64

8.83
48.8
4.08

10.8

293

300

157
780

2.62
1.83

117
7R/O

530315
169
137

4640
401»
1230

270
1850

Transparency
range, μαί

0.2—4.5

0.3-1.8

0.6-10

1—11

0.35—5

0.2-0.9
0.62-16

0.42-5.5

0.4-5

0.4—4.5

1-6
0.15—6.5
0.45-5.5

0.45-7.5
0.4-6

0.4-6

0.6—11.5

0.65—13.5

1-12
0.64-13
0.13—1.7

0.4—30

η.5—6.6

5—20

2—20

0.52-5.5

parallel and perpendicular, respectively, to the propagation vector

and 5 indicate longitudinal and transverse acoustic waves, respectively

where Η and Ps are the height of and the power in the
sound beam, and Mz =m6p*/pvl is the previously intro-
duced AO quality index of the material. It is evident
from Fig. 17 that in both limiting cases the intensity
I'o of the transmitted light (the zeroth order diffracted
beam) vanishes at certain values of the phase shift (at
ν =2.4 rad in the Raman-Nath case and at ν"π in the
Bragg case). This means that if the amplitude of a
sound wave of sufficient power P s m a i is modulated, the
depth of modulation of the transmitted light wave may
reach 100%. According to Eq. (3^ 1) the sound power
necessary for achieving 100% modulation of the light
depends on the quality index Mz and on the ratio d/H.
From this it follows that if we wish to reduce the elec-
trical power consumed by the device we must use a ma-
terial having a higher quality factor Mt and an acoustic
beam of rectangular cross section that is greatly extend-
ed in the propagation direction of the light. It is also

evident from Fig. 17 that in the Bragg regime all the
light is deviated under these conditions into a single
(first order) diffracted beam, so that the modulation
depth is 100% for both the transmitted and the diffracted
light. In the case of Raman-Nath diffraction, however,
the modulation depth does not exceed 35% for any of the
diffracted beams (see Fig. 17).

The magnitude of the factor Mz determines the effi-
ciency of modulators at a single frequency. Gordonc l e s :

showed that the requirement that AO modulators have
both a broad frequency band A/s and a high efficiency r\
leads to the new quality parameter Μλ =n1p*/pvs, which
represents the main requirements on the properties of
the materials used for such devices. Actually, the re-
quirement that the device have a broad frequency band
imposes a limitation on the time required for the sound-
wave front to cross the light beam, and hence on the
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FIG. 17. Intensity of the
diffracted beams of vari-
ous orders in Bragg (a)
and Raman-Nath (b) scat-
tering vs the optical
phase difference in the
sound wave.
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aperture of the beam:

"max ~ i'sTmax· (3.2)

If the device is to have maximum efficiency^ is neces-
sary that the optical and acoustic beams have the same
angular spread, i. e., that

* ^ _ η t>\

and this, together with Eq. (3.2) yields

/CA/
(3.4)

so that we obtain the following new quality parameter for
broad band AO devices:

Mi = .l/jni>; =
n'p» (3.5)

Unfortunately, many of the material parameters can
be accounted for at present only in a semiempirical
manner"8 4 3 so in developing AO devices one must base
the tentative designs mainly on the available experimen-
tal data (see Table I).

Analysis of the possible characteristics of AO modu-
lators shows that when the most advantageous materials
(TeOg, As2S3, FbMo, Te, and others) are used these de-
vices require less control power (under otherwise equal
conditions) than the best electro-optical modulators.C l e s ]

It should be pointed out that specific materials are
chosen for AO modulators not only on the basis of the
quality factor Mx (or M2), but also on the basis of a num-
ber of additional requirements that we have not yet dis-
cussed. Thus, for example, it must be borne in mind
that in high-frequency devices the maximum aperture
of the light beam is limited by the attenuation of the
sound, which increases with increasing frequency;
further, as the frequency increases (especially in the
gigahertz range13') and the relative pass band is broad-

13>The limiting modulation frequency for such devices is
always lower than the maximum frequency AB determined by
the conditionf s m a=2v^iA for collinear Bragg diffraction and
usually does not exceed a few gigahertz in the visible region.

ened, the efficiency of the electromechanical conver-
sion of the electrical oscillations into sound waves usu-
ally falls off considerably. In addition, requirements of
optical transparency, material processing technology,
etc. may be decisive in some cases.

The type M40R modulator made by Zenith Radio Cor-
poration may serve as an example of AO modulators that
have already been developed. This device makes use of
longitudinal acoustic waves in chalcogenide glasses having
large M2 values and has the following characteristics"6 6 3:
λ=0.63 μία, 17 = 85%, Z> = 0.65 mm, P e i=1.6 W (9 V into
50 Ω ) , fs =40 MHz, modulation depth 100% at low fre-
quencies and 50% at 4.5 MHz, and an extinction coeffi-
cient in a diffraction order of greater than 1000. The
M40R modulator can operate in the wavelength range
0.4—0.7 μΐη, and at λ =4.88 μηι the maximum efficiency
is reached at an electrical power P e l of 1 W (7 V into
50 Ω ) .

Another way of producing effective AO light modulators
is to make use of the interaction of acoustic surface
waves (ASW) with light in light guides."5·8 4·8 5·1 6 7 3 Under
these conditions the intensity of the sound, even at rela-
tively low ASW powers, turns out to be high enough to
produce very efficient diffraction even in materials of
relatively poor acousto-optical quality. In this case,
however, there are additional requirements on the ma-
terial: it must have good piezoelectric properties and
it must be suitable for making a thin-film light guide.
Good results have now been obtained by using thin ZnO
films on fused quartz backings"673 and with integrated
structures of specially annealed LiNbOs crystals.1753

An integrated ASW light modulator of LiNbO3 is de-
picted schematically in Fig. 18a. The incident radia-
tion /0 from a He-Ne laser is polarized along the ζ (χ3)
axis of the crystal and is injected into the optical wave-
guide 2 (the hatched region) through the rutile prism 1.
In the optical waveguide, which was formed on the sur-
face of the crystal by preliminary prolonged vacuum
annealing, the light beam crosses an ASW beam excited
by means of the counter-stub input transducer 3. The
fundamental frequency of the transducer is 78 MHz, and
its pass band is ~ 10 MHz wide. Being diffracted by the
sound, the transmitted light is broken up into a series of
diffracted beams which, after leaving the device through
the second rutile prism 4, can be registered in the or-
dinary way. Under the experimental conditions, with a
beam width L of 1.2 mm, the diffraction was of inter-
mediate type with Q »1.

ZOO WO 400

FIG. 18. Integrated acousto-optical light modulator using ASW
on LiNbO3. (a) Schematic drawing: 1,4—input and output
rutile prisms, 2—surface-layer light guide, 3,5 input and out-
put ASW transducers; b) Intensities of the diffracted beams of
various orders vs the ASW power.
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The dependences on the electrical input power of the
diffraction efficiencies intcTthe several diffracted beams
(Fig. 18b) show that 100% modulation of the transmitted
light is achieved at the comparatively low input power of
~ 250 mW. Extrapolation of these results to higher fre-
quencies indicates, for example, that use of such struc-
tures at 180 MHz may provide an efficiency of ~70% over
a pass band 43 MHz wide with an electrical power con-
sumption of ~ 1.5 mW/MHz.

AO modulators can not only serve as external devices
for controlling radiation from lasers, but can also take
part in the process of establishing the conditions for
losing action and in the extraction of the radiation from
the optical-resonator cavity. Thus, using an AO modu-
lator employing standing acoustic waves to modulate the
losses of a laser cavity at the beat frequency of the lon-
gitudinal modes leads to mode locking in pulsed lasers
and to stabilization of the radiation,"6 8 1 while extraction
of the diffracted radiation from resonators with opaque
mirrors and continuous pumping leads to the emission
of short pulses of enhanced power, the pulse separation
being equal to the modulation period." 8 9" 1 7 1 3 It has been
reported,11701 for example, that when an He-Ne laser
that could generate ~ 3 mW when operated continuously
was equipped with an AO modulator employing 25-MHz
standing acoustic waves, it generated 150-mW pulses
~0.8 nsec long at a repetition rate of 5xlO7 sec"1; more-
over, the electrical power required for control was only
5mW.

As has been recently shown theoretically/1721 an
acoustic wave in a laser crystal can itself assure a suf-
ficiently strong distributed feedback and can make it pos-
sible for lasing action to take place even when there is
no reflection of light from the ends. It turns out that in
this case one can obtain generated light with a narrower
spectrum (at least for injection lasers) and that the gen-
erated lines can be modulated in amplitude and frequency
by altering the amplitude and frequency of the acoustic
wave. Moreover, the lower optical loading at the ends
of the crystal should reduce the rate of degradation of
the end faces.

b) Light deviating devices (deflectors)

Back in 1932, Lucas and Biquard"1 showed that light
waves may be highly curved in the field of a sound wave.
Figure 19 shows their results on the course of the rays
for a half period of the sound wave with normal incidence
of the light onto the sound wave. The reduced path length
of the light along the y axis, i. e., the quantity Y = (2ττ/
As)yVAM/n0, where Aw is the amplitude of the variations
of the refractive index of the medium, is plotted along
the horizontal axis, and the phase φ of the sinusoidal
sound wave is plotted along the vertical axis. It will be
seen that the inclination of the rays in all sections Υ
< π/2 is a periodic function for which the rays enter the
wave field at Υ=0.14) This means that with limited width
of the traveling sound-wave front the light rays with

14)More detailed information on the nature oi passage of light
through the field of traveling and standing waves will be
found in Refs. 174 and 175.

FIG. 19. Behavior of light rays in the field of an ultrasonic
wave.

aperture ΙΧΛ/4 at the entrance will be deflected period-
ically in time with the angular amplitude em a x correspond-
ing to the deflection of rays entering the wave at φ = π/4
(in the first approximation the deflection follows a sine
law with the frequency fs

 c r r a ] ) . The number Ν of re-
solved positions at the output of such a deflector, defined
as the ratio of the total deflection angle 20mMt to the an-
gular (diffraction) spread ΑΘ of the beam, is limited on
account of the decrease of the deflection angle at very
large Υ (see Fig. 19), so that

8 U (3.6)

It follows from Eq. (3.6) that usable resolution can
be obtained with such devices only in the low-frequency
region under conditions of Raman-Nath diffraction, i. e.,
when Q«l. In addition, it is evident from the previous
discussion that the deflection angle, and therefore the
resolution, of such deflectors is proportional to the
acoustic power, and as a result the maximum deflection
angle may be limited by the mechanical strength of the
crystal (in quartz, for example, flmai<l° at 145 kHz for
this reason" 4 8 1).

Using two orthogonal cells of this type, Aas and
ErfC17el constructed a two-coordinate deflector having a
total of ~ 200 resolved positions.

Diffraction-type AO modulators are based on the de-
pendence of the light scattering angle 08C on the sound
frequency. Theory (see Subsec. a) of Sec. 1) shows that

e,c =2arcsin44-.

and

ΔΘ,. ' vs cos (Θ s c /
-Δ/.

(3.7)

(3.8)

Taking account of the fact that we have Δ θ, «λ/D for the
angular spread of the light beam and making use of the
Rayleigh criterion, we obtain the following expression
for the number of allowed positions of the beam in a dif-
fraction type AO deflector from Eq. (3.8):

Δ θ κ

i cos (Θ «c 12)
(3.9)
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where τ is the time lage of the device which, in the iso-
tropic case, is the time required for the sound wave to
cross the light beam.

Thus, the resolution of diffraction type deflectors in-
creases with increasing width of the sound frequency
band, and it is consequently advantageous to use high-
frequency Bragg diffraction in them. In this case the
change in the sound frequency should not violate the
Bragg condition for interaction at all frequencies. For
a fixed position of the light beam with respect to the
crystal, this can be achieved, for example, provided the
spread Δ es = A/d of the acoustic wave exceeds the optical
beam spread Δ θ, and the necessary changes in the Bragg
angle Δ θΒ, so that different parts of the acoustic beam
take part in the diffraction at different frequencies, i. e.,

ΔΘΒ(Δ/) (3.10)

from which it follows that for the isotropic case we have

(3.11)

It follows from (3.9) and (3.11) that in the case under
consideration the requirement for high resolution limits
the maximum size d of the sound wave front, i. e., it
comes into conflict with the requirement that the AO de-
vice have high efficiency (see the preceding subsection).
By using materials of high AO quality one can construct
fairly effective deflectors of this type for sound frequen-
cies up to ~50 MHz. Thus, for a deflector utilizing glass
with the central frequency / 0 = 40 MHz and the frequency
band Δ/ = 20 MHz with a beam aperture of D = 2.5 cm
(τ = 6.5 sec) and an efficiency of 60%, the maximum
number of resolved beam positions turned out to be
~130.c l 6 e ]

To further increase the resolution while keeping the
efficiency high (or to increase the efficiency at the same
resolution) Korpel et aZ.c l 7 7 ] proposed a method of con-
trolling the direction of the acoustic wave while varying
its frequency in such a manner that the Bragg incidence
angle would be automatically preserved for all the acous-
tic and optical rays in a given band (Fig. 20). In this
case the efficiency will be in principle independent of the
frequency band since the entire acoustic beam (and not
just a part of it as usual—see Fig. 20, b) will take part
in scattering the light at all frequencies.

At low
frequency

At medium
frequency

/

At high
frequency

FIG. 21. A very simple
acoustic diffraction grating for
controlling the direction of an
acoustic beam as its frequency
is changed.

The simplest way to match the sound deviation angle
with the change in the Bragg ray is to use an acoustic
diffraction grating generated by a series of acoustic
transfucers each of which is 180° out of phase with its
neighbors, as shown in Fig. 21. On calculating the de-
flection of the sound propagation vector from the normal
to the surface of the transducers as a function of fre-
quency we obtain

Λ
: 2s

(3.12)

for the case under consideration. Hence for small de-
flection angles (in a narrow frequency band) the condi-
tion that the deflection angle be equal to the Bragg angle

«At 1 λΔ/ (3.13)

FIG. 20. Interaction of light with a controlled (a) and a fixed
(b) acoustic beam in a broad-band acousto-optical device.

where s is the width of one transducer. A rigorous cal-
culation of the dependence Δθ ί/(Δ/) for finite Δ/ shows
that the changes Δθ3 and ΔΘΒ will match provided1178·1

(3.14)

where d = nS (n is the number of transducers generating
the grating). Thus, in the final analysis, here, too, al-
though to a lesser degree than in the preceding case,
there is a conflict between resolution and efficiency.
In principle, this conflict can be avoided by phasing the
elements of the acoustic diffraction grating in an appro-
priate frequency-dependent manner11793 or by varying the
refractive index electrically via the electro-optical ef-
fect. i l m It should nevertheless be noted that even in the
simple case of phasing considered above the limitation
on the frequency band of the deflector is substantially
weakened and this makes it practical in some cases to
increase the number of resolved states without lowering
the efficiency."7" Such a procedure enabled Korpel et
al.um to develop a laser-beam deflector that was com-
patible with a projection television system; it had iV = 200
resolved states wi,th the acoustic frequency varying with-
in a band of width Δ/= 16 MHz. Zenith Radio Corpora-
tion developed a special glass AO deflector on this same
principle which, operating at a wavelength of 0.63 μία,
had Ν = 400 states per scan and a response time τ of 10

- μββο at 60% efficiency/1883 The frequency dependence
of the efficiency of such a deflector is shown in Fig. 22.
The central frequency / , = 70 MHz and the frequency band
width Δ/ = 40 MHz correspond to scanning an optical
beam with a 2x38 mm2 rectangular aperture through an
angle of 6.5x 10"3 rad (0.375°). This is done with an
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FIG. 22. Frequency characteristic of the ZenitB type D70R
acousto-optical deflector.

elecuical power consumption of ~3.5 W (~ 1.3 V into 50
O).

Heyman and BarnardC1883 have reported the construc-
tion on the basis of PbMoO4, which has comparatively
low acoustic losses at high frequencies, of deflectors
employing phased acoustic gratings and having even
higher resolution: N = 520, τ =6.5 μββο, / 0 = 150 MHz,
/ = 80MHz, d = 2. 5 cm, D = l cm, and TJ = 50% with Pel

= 4W.

Dixon proposed a very simple way to improve the
resolution of deflectors by making use of diffraction in
anisotropic materials ."" The basis for this proposal
is the fact, which follows from the modified Bragg law
(2. 5), that, as a function of the sound frequency, the
angle of incidence has a broad minimum near the acous-
tic frequency fi = (vs/\)^n\ — n\ whereas the angle of
diffraction 6d varies rapidly with the frequency (Fig. 23).
This means that if the sound frequency changes within a
broad band Δ/ near / t the interaction of very small
changes Δ θ, in the angle of incidence of the light will be
required to preserve synchronism, and these changes
will be simply accommodated by the angular spread of
the sound beam without significant reduction in the ef-
ficiency of the device. Moreover, as is evident from
Fig. 23, the scanning angle of the diffracted beam cor-
responding to the same frequency band Δ/ exceeds the
corresponding angle for the case of an isotropic crystal.
It can be shown that the anisotropy of uniaxial crystals
makes it possible to obtain an advantage in resolution
given byC93

I Α.. J

(3.15)

where Δ«ο is the difference between the refractive in-
dices for the ordinary and extraordinary rays. For
some materials this advantage in resolution (or in speed)
can be very great, but it is achieved only at sound fre-
quencies fx in the gigahertz range. For LiNbO3, for
example, the increase in the frequency band width due
to the anisotropy amounts to a factor of 30 at sound fre-
quencies close to 3.6 GHz."8*3

It has been shown"853 that by putting an (isotropic)
acousto-optical deflector within an optical resonator
having angular degeneracy one may also obtain an in-
crease in the number of resolved beam positions at the
output of AO deflectors.

To deflect an optical beam in two coordinates one usu-
ally uses two orthogonally mounted single-coordinate de-
flectors such as are discussed above.1 1 8 8·1 8 7 1 In this case

one must obviously have an optical beam of circular
(square) cross section, and as a result of this the height
Η of the acoustic beam and aperture D of the light beam
in Eq. (3.1) are connected: H = D = rvs. Then the effi-
ciency of such devices will be characterized by a new AO
quality parameter M3=v's

1 Mt =nipz/pv^ (see Table I).

c) Signal processing devices

Acousto-optical interactions in solids can serve as a
basis for the construction of a device for the coherent
processing of signals where optical spatial modulation
of the signals is required. Such devices include optical
devices for spatial filtration of signals in real time for
computing technology/1883 devices for delaying, com-
pressing, folding, and correlating pulsed radar sig-
nals,1 1 8 9·1 9 0 3 optical memory systems/1 9 1 3 etc. This is
due in principle to the possibility of converting any sig-
nal information into a comparatively slow acoustic wave
which could confine the information from a very long
electromagnetic signal within a fairly short transparent
crystal. The subsequent "instantaneous" reading of all
the information stored in the pulse via coherent scatter-
ing of light by the pulse over its entire length thus allows
one to realize parallel processing of the data, i. e., it
considerably increases the transfer rate, which is an
important factor in modern information systems.

The simplest acousto-optical data-processing devices
(processors) that are already finding application in radar
technology are dispersion type elasto-optical delay lines
for linearly frequency-modulated (LFM) signals and de-
lay lines with smoothly variable delay times/ 1 9 8 3 These
and other devices are based on optical heterodyning of
diffracted light,"73 which makes it possible to extract a
signal at the output of the photodetector which has the
frequency, amplitude, and phase of the acoustic wave
that carries information on the pulsed signal. By using
a narrow optical beam to read this information in differ-
ent sections along the path of the sound in the crystal one
can obtain signals having different time delays, and by
using a broad optical beam with an LFM pulsed signal
one can secure effective time compression of the pulse.
The signal becomes compressed because the scattering
angles for different frequencies are directly proportion-
al to the sound frequency so that when the frequency
varies linearly along the sound pulse (Fig. 24) the dif-
fracted rays from the entire illuminated part will enter
the photodetector window together/1 8 9 3 Pulse compres-
sion factors exceeding 100 have been obtained in differ-
ent variants of this device (using parallel or diverging

FIG. 23. Incidence and dif-
fraction angles vs sound fre-
quency for anisotropic diffrac-
tion.
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form) will contain the components

\ LFM signal

FIG. 24. Schematic diagram of an acousto-optical filter for

compressing linearly frequency-modulated signals: 1—electro-

mechanical transducer, 2—acoustic absorber.

light beams in isotropic or anisotropic me-
dia)/9 '1 9 0·1 9 3"1 9 5·1

A broader class of acousto-optical processors (spec-
trum analyzers, correlators, matched optical filters,
etc.) is based on arbitrary spatial modulation of sound
at the wave fronts of coherent light rays with subsequent
optical processing.[91]

Figure 25a is a diagram of an acousto-optical pro-
cessor based on the well known principle of spatial fil-
tration in the Fourier plane. : i 9 e ] It is clear that since
θ3<.=2βΛ the position of the diffraction spot on the rear
focal plane of lens L will be X1 =F(X/vs)fs, where F is
the focal length of lens L; hence one can obtain a spec-
tral analysis of the signal by measuring the intensity of
the diffracted light as a function of the coordinate X1,
The spectral resolution, determined by the diffraction
spread of the optical beam, will be A/s =(Ax'/F\) vs

= vs/D^ 1/TS . This result is a consequence of the gen-
eral theorem that the diffraction grating produced by the
sound will effect an optical Fourier transformation of the
signal. In fact, as we have already seen in Sec. 1, for
the case of Bragg diffraction we can express the light
field diffracted from the traveling sound wave s(t)
=s(x-vst) exp[i(iii - kx)] in the form

£•,-£,„ (x, /) eΛ (ω+Ω) t (3.16)

where

Eu{x, S (x -

This gives the following result for the amplitude of the
field in the diffraction spot in the focal plane of lens
L C197J.

Ε (x1) (Q)e f (3.17)

where S(Q) = &%S(t) emtot dt is the Fourier transform of
the acoustic signal S(t), and Q = (2ir/F)(vs/\)x'. Thus,
the response of a square-law photodetector with the
small aperture Δ # ' will be proportional to the spectral
density \dS(Q)/dU\z of the acoustic signal. Further, if
the field E(x>) is mixed in the photodetector with the
reference (heterodyne) field EH~EHfJ(x')eiat the output
photocurrent will vary with time as

/phc (t) ~ I E^(Q)S(Q) e>»> dQ, (3.18)

from which it follows that its spectrum (Fourier trans-

(3.19)

Expression (3.19) means that in this case we have a
frequency filtration of the signal S(fl) with the trans-
mission function determined by the form of the reference
wave EHo(x').

It can be shown that the diffraction of light by sound
can also be used to effect filtration of signals in the
image plane (Fig. 25b).c l 9 8 : In this case the diffracted
light beam is separated from the undiffracted light by a
pair of confocal lenses 1^ and 1^ with a screen, so that
either after L, (in the image plane) there is only the
wave of form (3.16). After passing through the trans-
parent filter this gives rise to the following field in the
rear focal plane of lens Lj:

«2

£'(ί)~«'«°+ο>< f S (x—v,t)g(x)dx.
-ij/2

(3.20)

It is evident from this that the photodetector current
will be proportional to the correlation function for the
two signals s(x) and£•(#).

The problem of using AO devices for filtration can be
solved both by introducing the appropriate transparent
amplitude-phase plates in the path of the diffracted light,
and by forming the corresponding amplitude-phase dis-
tribution at a reference wave front. In particular, by
replacing the transparent filter Τ in Fig. 25b by a sup-
plementary acousto-optical modulator controlled by a
second signal one can obtain the cross correlation or
convolution of two signals in real t ime. [ 1 9 5 t l 9 8 t l 9 9 ]

CONCLUSION

It is difficult, in the limited space available, to give
a sufficiently detailed discussion of all aspects of the
present state of acousto-optics, which has seen great
theoretical and experimental development in recent years.
Hence our exposition of a number of questions has re-
duced essentially to stating known positions without giv-
ing detailed derivations or presenting finished theories.
In particular, we feel that a more detailed treatment of

s,

FIG. 25. Schematic diagrams of devices for the spatial pro-

cessing of signals in the Fourier plane (a) and in the image

plane of the acousto-optical device (b): 1—ultrasonic light

modulator; L-lens, Sc—screen, s—stop, Τ—transparent

plate, PhD—photodetector.
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the mechanisms of acousto-optical interactions would be
desirable when discussing the resonance phenomena near
the self absorption edge where the effect of exciton states
in the forbidden gap may become important, or when dis-
cussing acousto-optical phenomena in integrated optical
devices where the interaction of acoustic surface waves
with electromagnetic modes in thin films is very effec-
tive, etc.

The material presented in the review basically shows
the results that have now been achieved in both funda-
mental and applied research in the field of acousto-op-
tics. But here one can also discern a number of prob-
lems that require further theoretical and experimental
study.

Despite the fact that many papers have been devoted
to the development of the theory of acousto-optical phe-
nomena we still lack a unified theory of the diffraction
of electromagnetic waves by sound that would take ade-
quate account of the properties of the material in which
the diffraction takes place and would relate the magni-
tudes of the elasto-optical coefficients to other proper-
ties of the material (for example, to the sound velocity
and absorption coefficient, etc.). Further development
of the microscopic theory of photoelasticity will evi-
dently be required before such a unified theory can be
achieved, and in this connection experiments on the reso-
nance diffraction of electromagnetic waves by sound,
which will make possible a better understanding of the
nature of photoelasticity, are especially interesting.
The construction of such a theory would make it possible
to conduct a more efficient search for new materials
having low acoustic damping and large elasto-optical co-
efficients, which would considerably extend the range
of practical applications of acousto-optics.

The experimental study of the diffraction of electro-
magnetic waves by sound in conducting crystals where
the sound wave is accompanied by an electron-density
wave is of great interest in connection with the extension
of the frequency range of acousto-optical devices toward
the longer wavelengths for the electromagnetic radiation
(even into the submillimeter region).

Both the experimental and the theoretical study of the
diffraction of electromagnetic waves by sound in thin
waveguides is also of considerable interest, since in
connection with the development of thin film technology
it would make possible the further development of inte-
grated acousto-optical devices.

The study of the diffraction of light by sound in active
(lasing) media and, in particular, the development of the
theory and the experimental study of the effect of the
acoustic distributed feedback in optical masers that
arises because of the modulation by the sound of both the
refractive index of the medium and the absorption (or
amplification) coefficient of the light may be regarded as
a very interesting and promising trend in acousto-optics.
It would open up the possibility of producing tunable la-
sers that could be tuned by means of sound, frequency
modulated lasers, etc.

Of great importance for the construction of acousto-

optical devices making use of powerful light beams is
the study, both theoretical and experimental, of the
stimulated diffraction of electromagnetic waves by co-
herent sound when, because of the high intensity of the
light, the energy exchanged between the light and sound
waves as a result of diffraction becomes so large as to
alter significantly the intensity of the sound wave that
does the scattering.

Finally, the search for new effective acousto-optical
materials that will determine the parameters and cost
of acousto-optical devices being developed remains, as
before, an urgent task.
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