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The review is devoted to an analysis of definite overcomplete non-orthogonal state systems that are
connected with irreducible representations of Lie groups—the so called systems of generalized coherent
states. These systems, which the author is the first to propose, are generalizations of Glauber's coherent-
state system and arise in natural fashion in physical problems that have dynamic symmetry. They permit a
considerable simplification of the solution of the quantum problem by reducing it to a simpler "classical"
problem. The review deals with the properties of generalized-coherent-state systems connected with the
simplest Lie groups.
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INTRODUCTION

In theoretical physics one usually uses complete sets
of orthornormal states in the Hilbert space. For ex-
ample, in quantum electrodynamics the calculations are
based on the stationary states | η) of the field Hamilto-
nian 36. These states correspond to the presence of an
integral number η of field quanta, i .e. , they satisfy the
equation

These states form a complete orthonormal set, which
is usually used as a basis for expanding all the field
states. Since all electrodynamic calculations are actu-
ally based on expanding in powers of the field strengths,
the number of photons involved in the calculations is
usually very small.

On the other hand, in the classical limit of quantum
electrodynamics the quantum numbers are not only very
large, but also very indeterminate. For example, if a
harmonic oscillator vibrates in a state with a relatively
well determined phase one must attribute to it a large
quantum number n, which is not precisely determined
( ΑηΑφ^ 1). The coherent quantum states of the elec-
tromagnetic field, i .e . , states in which the phase of the
field is precisely determined, are states in which the
occupation number η is in principle undetermined. In
such cases it becomes very laborious to calculate expec-
tation values with the aid of «-quantum states.

States with an undetermined number of photons, which
arise naturally in treating the correlation and coherence
properties of the field, are called coherent states.1 '

"A set of coherent states was first used by Schrodinger'11

in 1926 to describe nonspreading wave packets of an oscil-
lator. The concept of coherent state was introduced by
Glauber, t21 who showed that the use of a set of coherent
states makes it possible to give an adequate quantum de-

Such a state is characterized by a complex number a
= | a\exp(icp) and its expansion in n-quantum states has
the form

. , e _ ( i , ς, j otJ2 V g " | n \ ( I . I )

A coherent state I a) describes a nonspreading wave
packet for an oscillator, the quantity I a | specifying the
amplitude of the oscillations, and φ, their phase.

An unusual property of this set is that the coherent
states are not orthogonal to one another; moreover, the
set of coherent states is overcomplete, i .e . , it contains
more states than are necessary for the expansion of an
arbitrary state. Hence the standard methods cannot be
used when working with such states; however, it is pos-
sible to develop a suitable apparatus that makes it pos-
sible to expand an arbitrary state in coherent states and
to use such states to describe operators—the density
matrix, for example.

The set of coherent states has a number of remark-
able properties. For example, by expanding the field in
such states we can easily pass to the classical limit
while always remaining within the quantum region.

This is due to the fact that the coherent states mini-
mize the Heisenberg uncertainty relation ApAq ^K/2
(for these states, ApAq = H/2) and are therefore the
quantum states whose properties are most like to those
of classical states. Coherent states are closely asso-
ciated with the boson field and therefore with the boson
creation and destruction operators a* and a. We recall
that these operators, together with the unit operator /,
satisfy the well known commutation relations

scription of a coherent beam of laser light. The properties
of this set of states is treated in detail in Refs. 3-5, where
there will also be found references to many original papers
touching on this problem.
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[α, α+] = /, [ο, 71 = [α\ 7] = Ο (1.2)

and therefore generate a three-parameter Lie algebra.
The group Wx corresponding to the Lie algebra is the
group of transformations of the form T{g) = exp(t<)
• exp(aa*- ata), g= (f, a) and is called the Heisenberg-
Weyl group. Then the coherent state | α ) is obtained
by the action of the operator T(g) on the vacuum state

)

| a) = «*--« 10). (1.3)

The method of coherent states accordingly works
especially well when the Heisenberg-Weyl group is a
dynamical symmetry group of the Hamiltonian con-
cerned. Such, for example, is the problem of a quan-
tum oscillator acted on by a variable external force.
In this case the Heisenberg equations of motion coincide
with the corresponding equations for the classical quan-
tities. Then the coherent state remains coherent as the
system evolves, while the motion on the a plane of the
point corresponding to the coherent state is described
by the classical equations. This makes it possible
greatly to simplify the quantum problem by reducing it
to the simpler classical problem.

Such states are well suited to describe a system of
interacting particles whose low-energy excitations are
boson modes and have large occupation numbers. Such
excitations behave, in a certain sense, classically.
Thus, the coherent states play the part of classical
fields, which describe a set of many bosons as a whole,
just as the classical electromagnetic field describes the
classical limit of quantum electrodynamics. Hence it is
not surprising that coherent states have been widely
used in the last decade, not only in quantum optics and
radiophysics, but also in a number of other branches of
physics—in the theory of superfluidity, for example.
Such states are also used in the Heisenberg model of
ferromagnetism to describe spin waves, in quantum
electrodynamics to describe the cloud of soft photons
around charged particles, and in nonlinear field theo-
ries to obtain an approximate quantum description of
localized states (solitons).

However, the Heisenberg-Weyl group is not universal,
and we frequently encounter other dynamical symmetry
groups. Hence the question arises whether there exist
sets of states having similar properties for other Lie
groups. A positive answer to this question was given in
Ref. 6, where a set of generalized coherent states was
constructed and investigated for an arbitrary Lie group.3*

2)That is what one calls the vector that satisfies the condition
αΙ0> = 0.

3'An earlier attempt was made to generalize the concept of
coherent state in a different manner,1 7 1 but the proposed
method is not applicable to all Lie groups and, in particular,
it is not suited for compact groups. Moreover, the set of
states constructed in Ref. 7, unlike that constructed in Ref.
6, is not invariant under the operators of a representation
of the group. The special case of the group of rotations of
three-dimensional space was treated in Ref. 8; the set of
states constructed there is the same as the corresponding
set of coherent states constructed in Ref. 6.

The construction of a set of generalized coherent
states is based on the relation

ΙΨ,> = *·(*) | ψο>, (1.4)

where T{g) is a representation of the group G, and |ψ0)
is a fixed vector in the vector space of the representa-
tion T{g). Then { Ι ψ,)} is the set of generalized coher-
ent states.

The theory turns out to be meaningful when T(g) is an
irreducible unitary representation and the correspond-
ing representation space is a Hilbert space. It is ob-
vious that the set of coherent states is invariant under
the operators T(g), or in other words, that an operator
T(g) takes one coherent state into another. This is a
characteristic property of a set of generalized coherent
states defined in accordance with Ref. 6.

Since the properties of the set of ordinary coherent
states have been thoroughly reviewed elsewhere, l3~s l

the present review will be devoted to the discussion of
sets of generalized coherent states associated with the
simplest groups other than the Heisenberg-Weyl group.

Generalized coherent states have all the properties of
ordinary coherent states. In some cases they are the
quantum states whose properties are the closest to those
of classical states, and which therefore facilitate the
passage from the classical case to the quantum case in
the most natural manner.

In the case of the representation T'{g) of the group of
rotations of three dimensional space (j is a nonnegative
integer or half-integer), for example, if we choose the
state \j,-j) (or I j,j)) with the minimal (maximal) pro-
jection of the angular momentum onto the ζ axis as the
state |ψ0), we obtain the set of coherent spin states first
discussed by Radcliffe."-1 Such a state | £ >, like an or-
dinary coherent state, is specified by a complex number
£, and its expansion in the set { \j, μ )} with a definite
projection of the angular momentum onto the ζ axis has
the form

Σ Ί/. μί- . 5)

We note that the £ plane is the stereographic projec-
tion of the two-dimensional sphere S2 = {n: n2= 1} and in
this case plays the same role as the α plane for the os-
cillator, i .e . , it is the spin phase space.

Using this set, Lieb t S 0 J estimated the partition func-
tion for a quantum spin system. Such states have also
been used t 2 7 t 5 1 ' 5 2 3 in the so-called Dicke modelc531 for
the interaction of radiation with matter consisting of
two-level molecules. It is just these states that can be
used to describe the phase transition from an ordinary
state to a superradiance state, c 5 4 ] in which the intensity
of the radiation is proportional to the square of the num-
ber of molecules in the system.

As was shown in Ref. 55, the generating function for
the Clebsch-Gordan coefficients for the three-dimen-
sional rotation group can be derived very simply with the
aid of the coherent spin states.

In this review the coherent-state method is illustrated
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by two examples: 1) the motion of spin in a varying
magnetic field, and 2) the relaxation to thermodynamic
equilibrium of a particle with spin in a magnetic field.
In the second example, the coherent spin states make it
possible to reduce the equation for the density matrix
to the Fokker-Planck equation on the two-dimensional
sphere S 2 = {n-n 2 =l}.

In Sees. A and Β of Chap. 1 of the review we con-
sider the set of coherent states for the three-dimension-
al Lorentz group—the group SO(2,1), which as is known,
is isomorphic to the group SU(i, 1) of second-order ma-
trices that leave the form \z1l

2-\z2\
z invariant. This

group has several series of irreducible unitary repre-
sentations: the principal, discrete, and supplementary
series. It is accordingly possible to construct several
sets of coherent states associated with this group.

In the review we shall consider only sets of coherent
states associated with representations of the discrete
series and shall give especial attention to the sets of
coherent states associated with those discrete-series
representations that can be realized with the aid of bo-
son creation and destruction operators. Such repre-
sentations are specified by a number k, 0<k<<*>, and
the corresponding coherent states | ζ ) are specified by
a complex number ζ (Ι ζ |< 1). The expansion of a co-
herent state in the orthonormal basis {\k, μ ): μ =
m = 0, 1, 2, ...} has the form

-ι ζ ι2)" 2 y m! Γ (2k)
·μ·, k + m). (1.6)

In this case a coherent state is specified by a point on
the unit sphere, which is the phase space for the prob-
lem and can be treated as a Lobachevskii plane.

We note that in addition to the discrete-series repre-
sentations of the three-dimensional Lorentz group and
other noncompact groups (i. e., groups having an infinite
invariant volume), there exist continuous (principal)
series of representations. The corresponding sets of
coherent states have been thoroughly investigated in
Refs. 11 and 12. For the Lorentz group, these coherent
states accomplish the transformation from the hyper-
boloid to the cone that was first discussed by Shapiro.1311

We shall not discuss these coherent states in this re-
view.

The coherent states associated with representations
of the discrete series will be used in Sec. C of Chap.
2 to solve two problems. The first problem—the para-
metric excitation of a quantum oscillator—has been
thoroughly treated in Refs. 30 and 72-75. Its solution
can be simplified by using the set of coherent states for
the discrete series of SU(1, 1). As the second problem,
we use coherent states to treat Bogolyubov's model t 7 6 ]

of an almost ideal Bose gas.

We note that the coherent states discussed in this sec-
tion are convenient to use in solving problems in which
one must find the spectrum and wave functions of a
Hamiltonian that is quadratic in boson creation and de-
struction operators. Such coherent states arise, for
example, when treating the production of pairs of spin-
less particles in a uniform alternating electric field or

in the gravitational field of an expanding universe.1·631

It is shown in Refs. 63 and 69 that the problem of the
production of pairs of spin-S particles leads to coherent
states associated with the group St/(2S + 1, 2S+ 1) for in-
tegral S and with the group SU(2(2S+ 1)) for half-integral
S. In the exceptional case S = 1/2, there arise coherent
states associated with the group SO(5). c n l We note that
the problem of the production of pairs of spin-zero and
spin-1/2 particles has been thoroughly treated in Refs.
63-71.

Coherent states have also proved to be useful in treat-
ing a number of mathematical problems in the theory of
the representations of Lie groups. However, these
problems will not be discussed in this review. We note
only that a class of sets of generalized coherent states
associated with a large class of representations of Lie
groups has properties similar to those of the sets dis-
cussed in the first part of the review. In particular,
this is the case for all representations of compact semi-
simple groups and for the discrete-series representa-
tions of semisimple Lie groups. The general theory of
such sets of coherent states will be found in Ref, 10 for
the case of the discrete series, and in Refs. 11 and 12
for the case of the fundamental (continuous) series»

1. PROPERTIES OF A SET OF GENERALIZED
COHERENT STATES

A. The ordinary set of coherent states and its
relation to the Heisenberg-Weyl group

In this section we discuss the properties of a definite
overcomplete and nonorthogonal set of states—the set
of the so-called ordinary coherent states.4 ' After es-
tablishing the relation of this set of coherent states to
the Heisenberg-Weyl group1·13-1 we derive the most im-
portant properties of this set by group-theory methods.
For simplicity we shall consider only the case of one
degree of freedom, the case of a finite number of de-
grees of freedom bringing with it only unimportant tech-
nical complications. The reader interested in applica-
tions can go to Sec. A of Chap. 2 immediately after
reading this section.

4 )In the coordinate representation, the ordinary coherent
states describe nondispersing wave packets for an oscillator
and were discussed from this point of view in 1926 by
Schrodinger.[1' Somewhat later von Neumann in his well-
known book1141 considered an important subset of coherent
states associated with the division of phase space into regular
cells and used it to analyze the measurement process. After
a 30-year break, the properties of sets of coherent states
again began to be investigated (see Refs. 15-18). We note
the important paper of Glauber in which the concept of
coherent state was introduced and it was shown that coherent
states provide an adequate apparatus for a quantum descrip-
tion of a coherent beam of laser light. A detailed treatment
of the properties of the ordinary set of coherent states for
a finite number of degrees of freedom will be found, together
with references to many other papers on this subject, in
Refs. 2—5. The case of an infinite number of degrees of
freedom was treated in Refs. 17 and 18, and in many articles
published in Communications in Mathematical Physics.
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A coherent state I a ) is usually defined (see, e.g.,
Refs. 2-4) as an eigenstate of a boson destruction oper-
ator:

D (a) D (β) = el I m W>D (a + β). (1.8)

o|o> = a | a ) . ( i . i )

From this it follows that such a state exists for any
complex a and that its expansion in the κ-quantum states
|w>= (« !Γ 1 / 2 (α*) η | 0> (which form the usual orthonormal
basis; here |0) is the vacuum state: a |0)=0) has the
form

2 (1.2)

Thus, an ordinary coherent state is completely speci-

fied by a complex number a. Further properties of the

set of coherent states can be derived from this. How-

ever, one cannot construct a set of coherent states for

an arbitrary Lie group in this manner.5' In construct-

ing the set of coherent states we shall therefore follow

the general scheme of Ref. 6. Following this approach,

we can easily pass to the construction of a set of gener-

alized coherent states for an arbitrary Lie group, as

will be evident from what follows (see Sees. Β and C ).

Let us begin by establishing the relation of the ordi-

nary set of coherent states to the so-called Heisenberg-

Weyl group. We recall that the boson creation and de-

struction operators a* ={q - ip)/V2K {H is Planck's con-

stant and q and p are the coordinate and momentum

operators) together with the unit operator / satisfy the

Heisenberg commutation relations

la, a*] = Ι, [α, I) = [a*, I] = 0 (1.3)

and therefore generate a Lie algebra Wl. This is the
Heisenberg-Weyl algebra.

A general element of this algebra has the form

tl + i (act — act*), (1.4)

where t is a real number and α is a complex number.

From this it follows that the operators

D (a) = (1.5)

form a group. To find the multiplication law for the

operators D(&) we use the well-known identity (see,

e.g., Ref. 3)

which is valid when the conditions

[A U , B}] = IB \A, B]) = 0.

are satisfied. From this we obtain

(1.6)

(1.7)

5 'For some Lie groups one can define a set of states by formu-
las of the type of (1 .1) . m However, this procedure cannot
be used for all Lie groups and, in particular, it is unsuit-
able for compact groups. In addition, the set of states dis-
cussed in Ref. 7 is not invariant under the operators of a
representation of the group.

In this way we obtain the three-parameter group Wx that

was first treated by H. Weyl11"—the Heisenberg-Weyl

group. An element g of this group is specified by a real

number t and a complex number a;

g = (*. a), (1.9)

the multiplication law for Wx having the form

(s, a) (f, β) = (s + t + Im (αβ), a + β). (1. 10)

The operators T(g) = T(t, a) act in the Hilbert space S£

and form an irreducible unitary representation of the

group Wx. According to von Neumann's theorem119·1 any

two irreducible unitary representations Tx{g) and Tz(g)

of Wx that satisfy the condition Tx{t, O)=Tz(t, 0) are uni-

tarily equivalent. This means that there exists a uni-

tary operator U such that Tx(g) = UTz(g) U*. In other

words, the group Wx essentially admits just one irre-

ducible unitary representation.

Now let us turn to the construction of a set of coherent

states associated with the group Wx. We select any

fixed vector Ιψ0) in the Hilbert space 3S. Acting on this

vector with the operators T(g), we obtain a set {| a)} of

states

( l .H)

which constitutes a set of coherent states.

In the case of an ordinary set of coherent states (|ψο)

= | 0)) it is not difficult to obtain an expansion of a co-

herent state in an orthonormal basis. To do this we

make use of the identity (1.6) to write the operator D(a)

in the normal form:

1# 12)

From this we obtain the following expression for an or-

6)By choosing the vacuum state I 0), i .e. the state that satis-
fies the condition α I 0) =0, for Ι ψο> we obtain the ordinary
set of coherent states. As we shall see later on, many of
the properties of the set of ordinary coherent states remain
valid for a general set of coherent states.

We see that a coherent state is specified by a complex num-
ber Q , i .e., it depends on two parameters, while an element
g = (t, a) of the group Wi is determined by three parameters.
This decrease in the number of parameters is associated
with the fact that there exist transformations T(h) that do
not alter the state Ι ψο>: Γ(Μ Ι ψο>. The set {ft} of the ele-
ments of Wj that have this property obviously forms a sub-
group Η of Wt. We call this subgroup the stationary sub-
group for the state Ι ψο>. It is not difficult to see that in the
present case the stationary subgroup for any state Ι ψ0) con-
sists of elements of the form h = (t, 0). From this it follows
that both the operators T(g) and T(gh) take Ι Ψο) to the same
state. But the elements of the form gh with g fixed and h
ranging over the entire subgroup Η form a rest class of the
group G by the subgroup Η (an element of the factor space
X=G/H of the group G by "the subgroup H). Hence a coherent
state is defined by a point of the factor space X=G/H, which
in the present case is the plane of the complex variable a.
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dinary coherent state:

(1.13)

from which expansion (1. 2) follows.

Now let us consider the transformation of the opera-
tors of the algebra Wt by the elements of the group W1.
It is not difficult to show that

Γ (ί, α) αΤ* (ί, α) = D (a) oD + (a) = a — α / ±

Τ (ί, α) α+Τ+ (ί, α) = D (a) a*D* (a) = a+ - a/.
(1.14)

On applying the first of relations (1.14) to the ordinary
coherent state I a) , we obtain (1.1). In the present
case, therefore, the definitions of coherent states via
formulas (1.11) and (1.1), respectively, are equivalent.

The set of coherent states thus obtained has a number
of remarkable properties. Let us look at some of them:

1) An operator T(g) = T(t, a) of the representation
takes one coherent state into another:

Τ (t, a) | β > = e*P | β + a), φ = t + Im (αβ). (1.15)

2) The set of coherent states is complete. This fol-
lows from the irreducibility of the representation T{g).
In fact, since the operator T(g) takes one coherent
state into another, the set of coherent states constitutes
an invariant subspace of the Hilbert space 36. In view
of the irreducibility of the representation, the linear
cover of the vectors of this subspace must coincide with
the entire Hilbert space 3£, and this means that the set
of coherent states is complete.

3) The coherent states of the set are not orthogonal:

(a | β > = | D (β - α) | φ = Im (αβ). (1.16)

We note that the phase φ is equal to twice the area of the
triangle whose vertices are the points 0, a, and β:

φ = ΊΑ (0, α, β). (1.17)

Formula (1.16) simplifies for a set of ordinary coherent
states:

= exp [ — P + | β |2 - 2.
(1.18)

4) We obtain an important identity—the so-called ex-
pansion of unity.7' Let us consider the operator

A = \<Pa | α ) (a | (1.19)

where dza = daldaz, α = α 1 + ί α 2 ) and \a)(a\ is the
projection operator onto the state I a ) .

It is not difficult to verify that this operator commutes
with all the operators T(g). By Schur's lemma, this
operator is therefore a multiple of the unit operator:

' Cl. (1.20)

7)This relation was first derived in another manner by
Klauder.1151

We obtain the following expression for the normalizing
constant by averaging both sides of this equation over
the state \β):

J (1.21)

Now the expansion unity for an ordinary set of coherent
states takes the form

f | a) (a | t/μ (α) = /, άμ (α) = -i- (Ρα. (1.22)

5) We note that the a plane is the phase space for the
problem under consideration; this follows from (1.1)
and the formulas a= (q + i£)-/2Ui and a = (q + ip)/yj 2H ,
Now the expansion of unity in the variables q and p takes
the "quasiclassical" form (\ a) = \p,q)):

ί TfflflP' ΐ)ί·Ρ<ΐ\ = ΐ· (1.22')

6) It is not difficult to show (see Ref. 5, for example)
that all the coherent states of a given set (unlike the
states of an orthonormal set) give the same value for the
quantity ApAq in Heisenberg's uncertainty relation

(1.23)

this value being the same as the value ( Ap)0(Aq)0 given
by the state |ψ 0):

(Δρ) α (Δ</)Μ = (Δρ 0) (Δ^) ο. \ΐ-α &**)

We note again that the ordinary coherent states mini-
mize the Heisenberg uncertainty8'

(Δρ)Β(Δ?)α = -| (1.25)

and are therefore quantum states that are as much like
classical states as possible.

7) The set {\P,q)\ of coherent states is overcomplete.
This means that it has complete proper subsets. Let us
consider the following important class of subsets. We
divide the phase space (p,q) into regular cells of area
S and select a coherent state at the center of each of
them. We thus obtain the subset {\{p,q}mn)\ previously
considered by von Neumann. t u :

The problem of the completeness of such subsets is
fully solved in Refs. 20 and 21.* It turns out that:

a) When S<2TTH this subset is overcomplete. and re-
mains so when a finite number of states are removed;

b) when S > 2ττΗ the subset is not complete;

c) when S= 2trK the subset is complete; it remains
complete when one state is removed but becomes in-
complete when any two states are removed.

These results confirm the fundamental importance of

8'But these are not the only states that minimize the Heisen-
berg uncertainty.

9'The problem of how overcomplete the set is when S = 2irK was
not discussed in Ref. 21.
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the division of the phase space into Planckian cells.

8) We can expand an arbitrary state Ι ψ > in coherent
states with the aid of the expansion of unity (1. 22), ob-
taining

| φ> = J άμ (α) ψ (α) Ι α), where φ (α) = <α |φ>. (1. 26)

Such a representation of an operator was discussed
earlier by GlauberC2] and SudarshanC24] and was later in-
vestigated in detail by Berezin.C23] Following Berezin
we shall call the functions QA(a) and PA(at) the covariant
and contravariant symbols, respectively, of the opera-
tor A. These two symbols are related by the formula

The function ψ (α) may be called the symbol of the state
vector |ψ>. Then, as is not difficult to see, we have

(Φι Ι Φί> = j Φ» (μ) φ 2 (α) άμ (α). (1. 27)

9) For the ordinary set of coherent states, we have

φ(α) = 6-<1'2'Ι°'Ι2φ(α), (1.28)

when ψ(α) is an entire function of the variable a. Equa-
tion (1. 27) now takes the form

This representation of the Hilbert space is called the
Fock-Bargmann r e p r e s e n t a t i o n . C 2 2 t l e ]

Now we present an expression for the symbols of the
usual orthonormal basis \n)= (w ! ) " 1 / E (a*)" |0) . It is not
difficult to see that

ΐΙ· lrr\ α " Π 9Q\

QA (°0 = j I a | β> Is PA (β) άμ (β), (1.35)

which takes the following simpler form for the ordinary

set of coherent states:

(1.36)

This integral equation has a smoothing kernel; hence
the function QA(ot) is determined if PA(a) is given, but
the converse is not always true: there may exist oper-
ators that have Q representations but not Ρ representa-
tions.

Now let us establish the relation between the Ρ and Q
symbols of an operator and its so-called normal and
antinormal forms. We recall that the normal or Wick
form of an operator is an expansion of the operator in
creation and destruction operators of the form

A = (1.37)

i. e., we obtain a much simpler expression for ψη(α)
than the expression ipn(q)= (nK)'Ui(^nn]-)'l/zHn(q//n) in
the coordinate representation.

10) The coherent states are also suitable for describ-
ing operators. With the aid of these states we can ob-
tain for each operator a certain function that completely
determines it. We shall call this function the symbol
of the operator.

Let A be an operator. With this operator we associate

the functions

in which the creation operators (a*)m are written to the
left of the destruction operators a". It is not difficult to
see that

QA (α, ο) = <ο μ Ι α) = 2 Amna
ma". (1.38)

Thus, the expansion of the function QA(a, a) in the pow-
ers of α and a yields the coefficients Amn in the normal
form of the operator A.

Similarly, the expansion of the function ΡΛ(a, a) in
powers of a and a,

Α (α, β) = (a 1 i | β >

and

QA ( a ) = A ( a , a ) = ( a \ A | o > .

(1.30)

(1.31)

PA (a, a) = Σ (1.39)

The function (1. 30) fully determines the operator A. In
fact, it follows from the expansion of unity that

A = [A (α, β ) |α> (β Ι άμ (α) άμ (β). (1.32)

yields the coefficients A^l in the antinormal (anti-Wick)

form of the operator A:

χ=Σο·(«τ. ί1·40)

It is not difficult also to obtain the following very use-
ful formulas for the trace (Spur) of the operator A from
relations (1.31) and (1.34):

The result φ of operating with A on the state vector Ι ψ )
(A I ψ > = Ι φ >) is given by the formula

Sp A = j PA (α) άμ (a) = j QA (α) άμ (α). (1.41)

φ (α) = j" Α (α, β) φ (β) άμ (β). (1.33)

In the case of the ordinary set of coherent states it can
be shown (see Ref. 5 for example) that even the function
QA(a) fully determines the operator A. We note that in
some cases the operator A can also be expressed in the
form

The t race of an operator is thus expressed as an inte-
gral of its symbols over the entire phase space.

As an example of the use of formula (1.41), let us
calculate the t race of the operator D(y). It is not diffi-
cult to see that D(y) has the symbols

(«. a) ! «> <« Ι <*μ (a). (1 .34) From this we obtain
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V = Vi +
(1.43)

„, J±] = ±J±, _, J±) = -2Ja. (1.49)

In particular, the following important relations follow
from (1.43):

• ) . (1-44)

(η)- (1.45)

It is also easy, using the symbols, to obtain an ex-

plicit expression for the matr ix elements of the oper-

ator D(y). Indeed, we obtain the following expression

for the function G from Eq. (1.42):

(1.46)

(1.47)

G ( ο , β; γ) = e'l«F2-4-l dt«)/3 ( α | Ο ( γ ) | β) = e-<i/2> | Y i ^

On the other hand, this expression is equal to

Thus, the function G(a, β; γ) is a generating function for

the matrix elements of D(y). It remains to expand ex-

pression (1. 46) in a power series in a and β. This

leads to Schwinger's formula125110*

n > m ,
Dmn(y)-\ ,-r

(v)" ' ( I v l 2 ) .
(1.48)

where the are Laguerre polynomials.

We note that formula (1.48) was obtained earlier, but

in a somewhat different form, by Feynman.[2el

B. Coherent states for the group of rotations of three-

dimensional space (coherent spin states)

The set of coherent states for the group of rotations
of three dimensional space l l>—the group SO (3)—was
first treated by Radcliffe.18·1 The properties of the set
of such states were investigated in Refs. 8, 6, and 27.
In this section we shall follow the general scheme of
Ref. 6 (cf. the preceding section). The applications of
coherent spin states will be discussed in Sec. Β of
Chap. 2.

First we recall a few well-known facts.

Let us consider a particle of spin j. Then the states

\j, μ ) with a definite projection μ (- j « μ «j) of the spin

onto the x3 axis form a basis in the space of the irre-

ducible unitary representation T1 (g) of the three-dimen-

sional rotation group SO(3). The infinitesimal operators

J± = Jx±iJz and J0 = J3 of the T'(g) representation satisfy

the standard commutation relations

""A derivation of this formula, as well as some properties of
the Laguerre polynomials, will be found in the appendix to
Ref. 5.

1 1 'The group of rotations of three-dimensional space is the
most thoroughly studied of all compact Lie groups. It is
locally isomorphic to SU (2)—the group of second order uni-
tary matrices of determinant unity.

In accordance with Ref. 6, we obtain the desired set of

coherent states by operating on a fixed vector Ι ψ0),

which we shall take as the vector \j, -j ), with the oper-

ators of T'{g).

As is well known, an operator of T*(g) can be ex-

pressed in the form T](g)= exp(- icpJ3)exp{- iejz)

xexp(- i$J3). Then it follows that a coherent spin state

is specified by a unit vector n= (sinflcosip, sin6sin<p,

cose)12':

I n ) =
(1. 50)

It is convenient to choose the phase factor exp[ia(n)]

so that we have

|n> = D(n)l^0>, (1.51)

where

D (a) = em ("">, (1.52)

m being a unit vector perpendicular to η and to n0

= (0,0,1), i .e., m = (sin<p, - coscp, 0).

The operator D(a) can also be written in another form,

analogous to (1. 5):

D (n) = D (a) = eaJ+-«J-, o = — i r * . (1.53)

Although the operators D(n) do not form a group, their

multiplication law can be expressed in the form

D (n,) D (n2) = D (n3) « (1. 54)

It can be shown by direct calculation that the quantity Φ

in (1. 54) is equal to the area^(n 0 , n 1 ( n2) of the geodesic

triangle with vertices at the points n0, iij, and n2 on the

sphere:

Φ (rij, n2) = A (n0, n l t n2). (1.55)

As in Sec. A of Chap. 1, this indicates that the set of

coherent states thus constructed is quasiclassical.

The operator D(a) can be written in the "normal"

form:

where

(1.56)

=_tgie-i<P, p=-21ncos|a| = l

(1. 57)
We also give the "antinormal" form of this operator:

(1. 58)

where the quantities ξ, β, and y are defined in Eqs.
(1.57).

1 2'This parametrization of the set of coherent states is in ac-
cordance with the general assertion that a coherent state is
determined by a point of the factor space G/H, where Η is
the stationary subgroup of the state Ι ψ0); in this case Η
= SO(2) and G/H is the two-dimensional sphere S2 = {n:n2 = l}.
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Since the quantities f, β, and y in formulas (1. 56) and

(1. 58) a r e independent of j , it is sufficient to verify

these formulas for the case j= 1/2, in which J= σ/2, σχ,

σ 2 , and σ3 being the Pauli m a t r i c e s .

By operating on |ψ 0 ) with D{a) written in the form
(1. 56), we obtain another representation (another param-
etrization) of the coherent spin states (cf. formula
(1.13)):

'β:·'*|ψ·ο>· (1.59)

We note that the transformation from the variables θ
and φ to the variable £ has a simple geometric meaning:
it is the stereographic projection from the south pole η
= (0, 0, - 1) of the sphere onto the plane £ = ξ +ϊη followed
by a reflection in the η axis.

On expanding the exponential and using the relation

-/>, (1.60)

we obtain an expansion of a coherent state in the ortho-
normal basis (cf. formula (1.2)):

(2.;)!

or

|ζ) = 2 «μΙ/, μ).

(1.61)

(1.62)

We also note that a coherent spin state is an eigen-
state of the operator (n· J):

( n J ) | η > = — j n > . (1.63)

Equation (1.63) determines a coherent spin state to
within a phase factor eia; it follows from the equation
Jo | n0 > = - j | no) with OQ = (0, 0,1) and the relation

D (n) /„£>-' (n) = (nJ). (1.64)

The set of coherent spin s ta tes has all the proper t ie s

of the ordinary set of coherent s ta tes (see Sec. A of

Chap. 1). We l is t them without proof.

1) The o p e r a t o r s TJ(g) take one coherent s tate into

another:

Γ1'(g) | n> =««•><». « I V , (1.65)

where

Φ (η, g) = JA (n0, n, ng). (1. 66)

2) The set of coherent spin s ta tes is complete.

3) The coherent s ta te s a r e not orthogonal to one an-

other:

< η ' | η α > ~[ 2 >' (1.67)

where13'

1 3 ) It is not accidental that Φ is given by formula (1.68). It is
associated with the fact that the sphere S2 = {n: n2 = 1} can
be regarded as the phase space for spin and that the coherent
spin states are quasiclassical states.

Φ (η,, n s) = JA (n0, n x, n 2 ). (1.68)

4) The coherent spin states minimize the Heisenberg
uncertainty: the equality sign holds in the relation

(1.69)

for the state I no >.

Correspondingly, the uncertainty relation is mini-

mized for the state In)

<J;> (/*> = ! </,)'-, (1.70)

where

Jh = D (η) ΛΒ-' (n). (1.71)

5) The following "expansion of unity" is valid:

-^J-ί- J dn|n><nj = / , dn = sineded<{. (1.72)

When the coherent states a re parametrized by a point

on the £ plane we have

where

Ίμ, (ζ) - 2/+1 fC

(1.73)

(1.74)

6) Using these formulas we can expand an arbitrary

state in coherent states:

where

(1.75)

(1.76)

here ψ(£) is a polynomial of degree m « 2j in ξ. On us-
ing formula (1.60) we see that Ι ψ) can also be written
in the form

It follows from these formulas, in particular, that the
following formula is valid for any function/(£) of the
form Pm(£)/(1 + I£ \2)', where Pm(£) is an arbitrary poly-
nomial of degree m « 2j ·.

J <*μ>(η)/(η)<η I (1.77)

We note that these functions /(ξ) constitute the Hilbert
space of states of a spin-j particle.

7) Now we give the expressions for the infinitesimal
operators in the coherent-state representation:

(1.78)

or

(n | I n > = — / η . (1.79)

710 Sov. Phys. Usp. 20(9), Sept. 1977 A. M. Perelomov 710



8) We note that in the limit of large j the coherent spin
states go over into ordinary coherent states. To see
this one need only make the subsitution

ζ

and let j tend to infinity. For example,

lim ψ- ) ~V- | ψο> = Ι α).

(1.80)

(1.81)

9) The coherent-state representation is suitable for
representing operators—the density matrix ρ for a spin-
j particle, for example. The density matrix is fully de-
termined by either P(n) or Q(n) in accordance with the
formulas

p = - rfn,

<?(«) = ( n | p | n > ,

(1.82)
(1.83)

and the expansions of these functions in series of spher-
ical functions Ylm contain only terms with I « 2j. For
example,

Ρ (η) = Σ clmYlm (n). (1. 84)

From this we obtain the expansion p= £ c, m P l m for the
density matrix, in which

(1.85)

On performing the integration in this formula we ob-
tain

(/V |£lm|;v} = ]/^T ( ' V ; l!»\M(i-i; » |;-/>, (1. 86)

in which {jv';lm \jv) is a Clebsch-Gordan coefficient.

C. Coherent states for the three-dimensional Lorentz
group

The three-dimensional Lorentz group14' SO(2,1) has
several series of irreducible unitary representations:
the principal, discrete, and supplementary series.
One can accordingly construct several sets of coherent
states associated with this group.

Here we consider only sets of coherent states asso-
ciated with representations of the discrete series. Of
these, we shall consider in most detail the sets asso-
ciated with the representations of the discrete series
that can be realized with the aid of boson creation and
destruction operators.

Applications of coherent states to a number of prob-
lems, for example to the parametric excitation of a
quantum oscillator and to the superfluidity of an almost

14)SO(2,1) is the group of "rotations" of three-dimensional
pseudo-Euclidian space. It is locally isomorphio toSC/Xl, 1),
to the symplectic group Sp(2, R), and to the group SL(2,R) of
real second-order matrices with unit determinant. De-
tailed treatments of the representations of SU(1, 1) will be
found in Refs. 28 and 29.

ideal Bose gas, will be discussed in Sec. C of Chap. 2.

First we recall some properties of SO(2,1) and its
representations. It will be convenient to discuss
Sf/(1,1), which is locally isomorphic to it. An element
g of this group is a matrix of the form

£ = ( ! £ ) . |ο | 2 - |β | 2 = 1. (1.87)

Si/(1,1) has two so-called discrete series of repre-
sentations, T* and T". It is enough to consider only one
of them, T* for example, since all the results to be ob-
tained transfer automatically to the other. The repre-
sentations of the discrete series are infinite dimensional,
but they have much in common with the finite dimension-
al representations of the SU(2). For example, a basis
vector \m) in the space of such a representation can be
specified by an integer m that ranges from zero to in-
finity.

The Lie algebra of St/(1,1) is generated by three
operators Kif Kz, and Ko, which have the following
commutation relations:

Γ 17 17 1 • JTT [K» f l _ ι' V [ V If 1 >' ff*

l/Vj, /V2J — — ί Λ 0 » «·Λ2ΐ Λ ϋ · ~~ ι"-\ι Ι Λ 0 , /Ijj — Ι Λ 2 *

(1.88)
Here, as in the case of SU(2), it is convenient to in-

troduce the new generators

κ± = K, ± iKt, (1.89)

which satisfy the following commutation relations:

ΐκ0, κ±) = ±κ±, [κ_, κ,] = 2/r0. (i. 90)

It is not difficult to verify that the operator

c2 = κ\ - κ \ - κ\ = κι -1 ( (1.91)

is invariant (the Casimir operator), i.e., it commutes
with all the operators Kt. By Schur's lemma, such an
operator reduces for an irreducible representation to a
multiple of the unit operator:

Thus, a representation of SU(l, 1) is specified by a
single number k; for the discrete series this number
assumes the values k= 1, 3/2, 2, .

An important difference between SU(2) and SU(l, 1)
must be noted: SU(2) is simply connected, and SU(1,1)
is not. That SU(2) is simply connected means that any
closed path in it can be continuously deformed into a
point.

On the other hand, it can be shown that a path in
SU(1,1) corresponding to a rotation in the X\XZ plane
through an angle 2πη, where η is an integer, cannot
be continuously deformed into a point. This means that
SU(1,1) has infinite connectivity. It is known that for
a multiply connected group G one can obtain a corre-
sponding simply connected group G, the so-called uni-
versal covering group of G, by taking enough examples
of G (these examples are called sheets) and joining them
in the appropriate manner.
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In toe present case the universal covering group
SU(lJT) contains an infinite number of sheets. The rep-
resentations of this group are also specified by a num-
ber k, but now k varies continuously from zero to infini-
ty: 0<&<°°.

Returning to the representations of the discrete series,
we note that the basis vectors life, μ ) for the space of the
representation Tk{g) are specified by a number μ, which
is an eigenvalue of the operator Ko:

Ko I k, μ > = μ I k, μ), μ = k + m,

where m is a non-negative integer.

(1. 93)

Β will be convenient to choose the vector \k,k) as the
fixed vector |ψ 0). In accordance with Ref. 6, we ob-
tain the desired set of coherent states by operating on
the fixed vector with the operators of T*(g).

The further constructions are analogous to those in
Sec. Β of Chap. 1.

As is well known, an operator of Tk(g) can be repre-
sented in the form Tk(g) = exp(- ίφΚ0)βχρ(-ίτΚζ)
xexp(- ίφΚ0). From this it follows that a coherent state
is specified by a pseudo-Euclidian unit vector15':

(cht, shxcosqi, shxsiiKp), j — n; — nl — I,
(1.94)

It is convenient to choose the phase factor exp[ta(n)]
so that

where

(„) = ei'C (1.95)

in which m is a unit vector perpendicular to the vectors
η and n0 = (1,0,0), i .e . , m = (0, sine?, -coscp).

We give another form, analogous to (1. 53), for the
operator D(n):

β (η) = Ο (α) = («*•-«*-, α=--ί-ί-'». (1.96)

We note that the operators £>(n) do not form a group,
but their multiplication law can be written in the form

D ;n,) D (n2) = D (n3) efWni. (1.97)

It can be shown by direct calculation that φ is equal
to the area Λ (no, n x , n2) of a geodesic triangle on the
hyperboloid, whose vertices are at the points n0, n t ,

φ (nx, n2) = A (n0, n,, n,). (1. 98)

As in Sec. Β of Chap. 1, this indicates that the set of

15'This parametrization of the set of coherent states is in ac-
cordance with the general proposition that a coherent state
is determined by a point of the factor space G/H, which in
this case is the two-dimensional hyperboloid H2 = {n:n2

=n\-n\ -»? = !}.

coherent states so constructed is in a certain sense
quasiclassical.

One can also write D(n) in the "normal" form:

(1.99)

where

(1.100)
We also give the "antinormal" form of this operator:

D ( a ) _ evjf.e-pKoetK+i (1.101)

in which the quantities £, β, and y are defined by Eqs.
(1.100).

We note that the quantities ζ, β, and y occurring in
formulas (1. 99) and (1.101) are independent of k, so
that it is sufficient to verify these formulas for the case
in which Ko = σ3 /2, K^ = ia^ /2, and Kz = ίσΖ /2, where ̂ ,
σ2, and σ3 are the Pauli matrices.

By operating on |ψ0) with D(a) written in the form
(1.99) we reach a different representation (a different
parametrization) of the coherent states;

k, k). (1.102)

We note that the transformation from the variables τ
and φ to the variable ζ has a simple geometric meaning:
it is the stereographic projection from the south pole η
= (- 1, 0, 0) of the hyperboloid onto the unit sphere ζ = ξ
+ ίη, Ι ζ |< 1 followed by a reflection in the η axis.

On expanding the exponential and using the relation

(1.103)

we obtain the expansion of a coherent state in the ortho-
normal basis:

t i k+m)-
(1.104)

We also note that a coherent spin state is an eigenstate
of the operator

(nK) = n0K0 — rejuT, — ntK^ (nK) | η > = k | η ) . (1.105)

Equation (1.105) follows from the equation Ko I no)
= k I no> (tio= (1, 0, 0)) and the relation

D (n) (n) = (nK). (1.106)

Equation (1.105) determines the coherent states with-
in a phase factor eia.

The set of coherent states thus obtained has all the
properties of the set of coherent spin states (see Sec.
Β of Chap. 1).. We shall only list three of them.

1) The coherent states are not orthogonal to one an-
other:

Η (1.107)
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2) For k > 1/2 we have the expansion of unity:

where

( 1 - 1 ζ \Ψ •

(1.108)

(1.109)

3) The generating function for the matrix elements of
an operator of Tk(g) has the form

G (f, η; g) = Σ Tk

k+m. k+* (g) «m (!) "„ (η) = №η + Ps+Ν + «Γ2" •

(1.110)
where «Μ(ξ)= ? m [r(m + 2fe)/m ! r(2fe)]1 / 2.

Now let us consider the representations of SU(i, 1)
that can be realized by means of operators that are
quadratic in the boson creation and destruction opera-
tors a" and a.

Let us consider the following three operators:

A'+ = -i-(O2, ·Κ- = 4-«2< K0 = ±-(aa* + a*a). (1.111)

Calculation shows that these operators satisfy the
commutation relations (1.90). On calculating the Casi-
mir operator (1. 91) for the operators (1. I l l ) we ob-
tain

c,---nr-*<*-D· (1.H2)

The second of these equations, which determines k,
has two solutions: k = 1/4 and k = 3/4.

It is not difficult to see that the states |n>= ( n ! ) ' 1 / 2

χ {a*f\ 0) with even n constitute a basis in the space of
the irreducible unitary representation T" with k = 1/4
and that the corresponding states \n) with odd η consti-
tute a basis for the space of the representation Tk with
k = 3/4.

The matrix elements for representations of SU{1,1)
can be expressed in terms of the hypergeometric func-
tion. C 2 e 3 A simpler expression has been foundC30] for the
representations T* (k= 1/4 and 3/4) considered here:

(1.113)

where P™ is the associated Legendre function.

Now let us consider the representations of SU(l, 1) in
the discrete series that can be realized with the aid of
a pair of boson operators at and a_. Let us consider
the three quadratic operators

k = (1 + |wol )/2; hence the states { \n +no,n)} constitute
a basis for the discrete-series irreducible unitary rep-
resentation Tk of SU{1,1), where

(1.116)

The matrix elements for these representations are
known, and in the simplest case, when the initial state
is the vacuum state, we have

(n, n\Tu2(g)\0, (1.117)

Here we have considered sets of coherent states asso-
ciated with discrete-series representations of SU(1,1).
The general case has been treated in Ref. 10. Besides
these representations, SU(1,1) and other noncompact
groups (groups whose invariant volume is infinite) have
continuous (or principal) series of representations.
The corresponding sets of coherent states have been
studied in detail in Refs. 11 and 12. For the Lorentz
group these coherent states realize the transformation
from the hyperboloid to the cone that was first discussed
by Shapiro.1 3 1 1 We shall not discuss these sets of co-
herent states here, however, because of lack of space.

2. APPLICATIONS OF GENERALIZED COHERENT

STATES

As was mentioned in the Introduction, the apparatus
of generalized coherent states is especially effective
for problems in which the Hamiltonian has a dynamical
symmetry group G. More precisely, in the case that
we shall consider the Hamiltonian is linear in the gen-
erators Xh of an irreducible unitary representation
T(g) of the corresponding Lie algebra:

Si = 2,hkXk. (2.1)

The operators Xk satisfy the standard commutation re-
lations

[Xk, X (2.2)

in which the C™, are the so-called structure constants.
We note that the operators Xk transform under the
operators T(g) according to the associated representa-
tion of G:

(2.3)

Accordingly, the HamiltonianS6 transforms under T(g)
into SB, where SB is given by formula (2.1) with

(2.4)

α_α ' · ι We shal l consider t h r e e types of p r o b l e m s .

Calculation shows that these operators satisfy the
commutation relations (1.90). Calculating the Casimir
operator (1.91) for the generators (1. I l l ) we obtain

C,= - { 4 ( « X - ^ . (1.H5)

Thus, for the states \m,n)= (m ! n!)" 1 / 2(a;)m(a!)" |0,0)
with m -n =no = const, we have C2 = k(k - 1)= const and

a) Hamiltonian (2.1) is independent of time and it is
required to find its spectrum and eigenfunctions. To
simplify the problem we may use the unitary transfor-
mation

Τ (g) SST-^ (g) = <$, (2. 5)

in which S8 is given by (2.1) with the h" from (2.4).
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Having made this transformation, we can reduce $£ to
a simpler form and then find its spectrum and eigen-
functions |ψπ). The eigenfunctions \φη) are now given
by the formula

Ψ π ) ^ - ' ( ? ) ! $ „ > . (2.6)

Thus, if Ιψο) is selected as the fixed vector, the
state |ψ0) will be a generalized coherent state.

b) Hamiltonian (2.1) is time dependent but tends to
appropriate limits as i - ±» fast enough to assure the
existence of the corresponding asymptotic states | φ± }.

Here the time evolution operator U(t, t0) for the sys-
tem has the form T{g(t)):

u {t, te) = τ (g),

and there exists an S matrix:

S = U (+oo, -oo) = Τ (g0).

(2.7)

(2.8)

In this case the transition probability from the state
\m) at t — - oo to the state In) at t~ + °o is given by the
square of the matrix element Tmn:

Wnm = I Tnm (g0) |». (2.9)

c) Hamiltonian (2.1) is a periodic function of time:

m (t + τ) = m (t). (2. io)

In this case there exist states for which

β-'Ε7ν"|Ψ«(*)>. (2.11)

the so-called states of definite quasienergy.16> Then the
time evolution operator U(t, t0) has the property

(2.12)

in which α% has the form (2.1). Thus, the spectrum of
SB gives the quasienergy spectrum of the problem.

Now let us consider some specific examples.

A. The ordinary set of coherent states

Many studies have been devoted to the application of
the ordinary set of coherent states to the solution of
various physical problems (see the reviews in Refs.
3-5). In addition to these reviews we may also men-
tion the following studies.

In Refs. 36 and 37, coherent states were used to in-
vestigate the condensation phenomena in a system of
interacting bosons. It was shown in Ref. 38 with the aid
of coherent states that in a definite class of field theo-
ries there exists a classical limit for the quantum me-
chanical correlation functions. Coherent states were

16)Nikishov and Ritus1 3 2 1 introduced the concept of four-dimen-
sional quasimomentum, the quasienergy being its fourth com-
ponent. Zel'dovich1 3 3·3 4 1 and Ritus' 3 5 1 used states of definite
quasienergy to treat atomic systems in the field of an electro-
magnetic wave.

used in Ref. 39 to prove the virial theorem for liquid
helium, and in Ref. 40 to describe multiple production
of particles at high energies. Finally, in Refs. 41-43
(also see Ref. 44) coherent states were used to obtain
a quasiclassical description of localized states (soli-
tons) in nonlinear field theories. In Ref. 41 such states
were used to clarify certain properties of the recently
discovered ψ mesons.

In this section the ordinary set of coherent states will
be employed in the solution of two problems.

I) A quantum oscillator acted on by a variable exter-
nal force,17> The time development of the system con-
sidered is determined by the SchrOdinger equation

i/i-^-

i n which

) | ψ (<)>, (2.13)

(2.14)

By making the transformation |ψ(ί)>= exp[- (i/K)S£oi\
x |ψ(ί)) to the interaction representation we get rid of
the term S60 in the SchrCdinger equation. For the new
wave function Ιψ(ί)) we obtain the equation

(2.15)

in which

eie-iX><fl'i= -f(t) j/JL(ai.-'>*-|-aV><).

It is convenient to rewrite Eq. (2.15) in the form

where

(2.18)

Since the Hamiltonian SJil is linear in the operators
of the Lie algebra Wlt the time evolution operator S(t),
defined by |ψ(ί)> = §(ί)Ιψ(Ο)>, is an operator of the rep-
resentation of the group W^, i. e.,

~S (t) = Τ (g it)) (γ it)). (2.19)

It follows from this, in particular, that if the initial
state is coherent, it will remain coherent for all time.
Thus, there exists a solution |ψ(ί)) of the form

| ψ (ί) > = β-ΐΦ(Ο Ι α (ί) >. (2. 20)

In particular, the expectation value of the operator a
in this state is given by

= α (0- (2. 21)

On differentiating this relation by t and using Eq.
(2.17), we obtain

171We note that Feynman1281 and Schwinger1251 solved this
problem earlier by a different method.
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(2. 22)

Further, from Eq. (2.17) we find that in the limit Δί

— 0 we have

Ι ψ (£ _j- Δί)) = β (β (ί) Δί) | ψ (ί)). (2. 23)

Substituting Ιψ(£)> from (2. 20) into this equation and
using relation (1.15), we obtain the equation

<p = Im (βα) = Im (oa) . (2. 24)

We note that Eq. (2. 22) is the classical equation of mo-
tion for an oscillator acted on by an external force, and
that it follows from Eq. (2. 24) that <p(f) is equal to
twice the area swept out by the radius vector during the
motion of the phase point in the phase space, i. e.,

»t

Ό

and thus has a simple quasiclassical meaning.

The situation is especially simple if the force /(f)
tends to zero rapidly enough a s i - ± » . In this case the
limits a t and φί exist and it is meaningful to speak of
the transition probability from the state I m ) at t ~ - «
to the state In) at i —+ •». This transition probability
is given by the formula

(2. 25)Wmn = I (m | S | n) | J = | <m | D (γ) | η ) \\

and it follows from formula (1.48) that

= " ^ T 1 Υ |2 ' ( j y f") \\ (2. 26)

Now let us consider the second example.

2) Relaxation of a quantum oscillator to thermodynamic
equilibrium. A quantum oscillator in thermodynamic
equilibrium at temperature Τ is described by the follow-
ing density matrix:

z.-8\ *-&a+a Tim (2. 27)

From this it is not difficult to obtain the following ex-
pressions for the symbols of the density matrix:

(2.28)

/(v+D, (2.29)<?(«) =
v + l

in which v, which is equal to the average number η of
quanta, is given by Planck's formula

v = (e»»/w_i)-j. (2.30)

The time evolution of a quantum oscillator in thermal
contact with a thermostat at temperature Τ is described
by the following equation, which was derived by Shen t45]

and has been thoroughly investigated in Refs. 46 and
4 7 is).

"'Equation (2.31) for the case v=0 (T = 0) is essentially con-
tained in Landau's classical paper'481 in which the density
matrix was first introduced.

ρ = — r r ((ν + 1 ) (a*ap — 2«ρα* + ρα*α) -f- ν (αα*ρ — 2α*ρα -4- ραα*) ]

(2.31)

in which the constant γ determines the rate at which the
oscillator approaches thermodynamic equilibrium (γ>0).
On substituting the expressions for ρ in terms of the
symbols P(a) and Q(a) into Eq. (2. 31) we obtain the
following equations"6 '4":

(2. 32)

(2. 33)

da} "

We note that the equation for Ρ is the same as the equa-
tion for the Brownian motion (in phase space) of a clas-
sical oscillator (see Ref. 49). Thus, we have again
reduced a quantum problem to a classical one with the
aid of coherent states.

B. The set of coherent spin states

We recall that the set of coherent spin states was in-
troduced by Radcliffet8] and was thoroughly investigated
in Refs. 6, 8, and 27. These states have been employed
to estimate the partition function for a system of quan-
tum spins.C5o: Such states have also been usedc27f51>52:

in the so-called Dicke modelc53] for the interaction of
radiation with matter to describe the superradiant state.
Such a state was found experimentally by Gross et al.l5i>

We note, further, that with the aid of coherent spin
states one can very simply obtain an expression for the
generating function for the Clebsch-Gordan coefficients
of the rotation group (see Ref. 55).

Here we shall consider two problems.

1) Motion of spin in a variable magnetic field. Let us
consider a neutral spin-j particle with magnetic moment
μ in a varying magnetic field H(i). The time variation
of the state of such a system is determined by the
Schro'dinger equation

. d

where

» = f H, = — = - ( α , — ί α 2 ) , Β= — a3.

(2.34)

(2. 35)

Concerning the vector H( t) we assume only that it tends
rapidly enough to definite limits as t— ±°° to assume the
existence of the corresponding asymptotic states |ψ*)

It has long been known (see, e.g., Refs. 56-58) that
the problem of a particle of arbitrary spin j can be re-
duced to the simpler problem of the motion of a spin-
1/2 particle. This reduction can be achieved in an es-
pecially simple manner with the use of coherent spin
states.

We shall seek a solution to Eq. (2. 34) in the form

(2.36)
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Then Eq. (2.34) takes the form

. d (2.37)

On the other hand, from the explicit formula for the co-
herent states we have

(2. 38)

(2. 39)

(2.40)

a magnetic field H= (0, Q,H) is described by the density

matrix

sh ((1/2) «·»., P - (2.48)

From this we obtain the following expressions for the
symbols of the density matrix;

<?(n)=(ch-|-+sh4-cose)2i.

for ί = -

(2.49)

(2. 50)

From this we obtain equations for the quantities £(i)

and<p(i) l e ):

(2.41)

( 2 · 4 2 >
We note that from (2.41) we can obtain the equation

with the aid of which we can obtain

φ = ; (U + E3 - B).

(2.43)

(2.44)

Thus, the problem of finding the wave function reduces

to the simpler problem of solving Eqs. (2.41) and (2.44).

We note that if vectors of the unit sphere are used as

parameters, Eq. (2.41) takes the form

η = - [ a (t), n]. (2.45)

Thus, the ζ plane (or the unit sphere S2) plays the
part of the phase space of the classical dynamical sys-
tem.

In the simplest case, whenA(<)—0 and £(i)—const
as f— + °°, we have lf(OI2~*P= const, as is evident
from (2.41). From this we immediately obtain the fol-
lowing expression for the transition probability from
the initial state |O) = |j,-j> to the final state \m)

— m)\
P" (2.46)

The general formula for the transition probability has
the form

Wmn = \di

llv(d)f, (2.47)

in which μ =m -j, v = n-j, p = tan(0/2), and the d^Jfi)

are the known matrix elements of the representation

Now let us consider the second example.

2) Relaxation to thermodynamic equilibrium of a

particle with spin in a magnetic field. A particle with

spin in thermodynamic equilibrium at temperature Τ in

19)Majorana'561 obtained an equation equivalent to Eq. (2.41)
by a different method.

The time evolution of such a system in thermal contact

with a thermostat of temperature Τ is described by the

following equation, which was derived in Ref. 59;

Ρ = — y <( J.)+ν (/-/+P - 2J+pJ.+pJ.J+)},

(2.51)

in which ν is given by Planck's formula (2. 30). For a
thermostat at zero temperature, ν = 0 and the equation
takes the form

(2. 52)

We shall assume for simplicity that Ρ(η) = Ρ(θ, φ) de-

pends only on Θ. Then substituting expression (1.82)

for ρ into Eq. (2. 52) we reach the equation for Ρ(θ, t)

that was derived and studied by Narducci et a

o.0)=-ar[(/»tn8+ ;,( 1^e ) 8,0]

- sin θ ·Ρ {β, θ ] · (2. 53)

But Eq. (2. 53) is just the Fokker-Planck equation for
the function/(β, t)= sine ·Ρ(Θ, t) on the sphere S2 = {n: n2

= l}. This equation contains a "displacement" factor
that leads to the motion of the distribution/ as a whole
on the surface of the sphere. In addition, the distribu-
tion expands (or contracts) owing to the diffusion coeffi-
cient Z)(0)= (1 - cos0)/2, which is maximum at θ= it and
vanishes at θ = 0. As a result of the combined effect of
the "displacement" factor and the diffusion term, the
distribution on the sphere expands and its maximum
shifts toward the point θ = 0. As t - + <*> the density ma-
trix tends to ρ = \j, -j ) (j, - j I. We note that the follow-
ing equation can be obtained for the position θ = ΘΠΛΧ of
the maximum of the distribution:

- j r e m a l = — ; s i n 9 m a s .

C. The set of coherent states for the group

(2. 54)

As was noted in Sec. C of Chap. 1, the group SU{1,1)
has several series of irreducible unitary representations.
Accordingly, there are several series of sets of coher-
ent states associated with it. The coherent states asso-
ciated with the principal-series representations of
SU(l, 1 ) t u l represent the transformation from a hyper-
boloid to a cone in three-dimensional pseudo-Euclidian
space and will not be discussed here for lack of space.
Here we shall consider only certain sets of coherent
states associated with the so-called discrete-series
representations of Si/(1,1).
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These states are convenient for use in solving certain
problems in which one must find the spectrum and wave
functions of a Hamiltonian that is quadratic in the boson
creation and destruction operators. As was shown in
Ref. 63, for example, such coherent states arise in
treating the production of pairs of zero-spin particles in
a uniform varying electric field or in the gravitational
field of the expanding universe.20*

In this section we shall discuss two problems.

1) Parametric excitation of a quantum oscillator.
This problem has been thoroughly discussed else-
where.c30>72~753 In solving this problem here we shall
use a set of coherent states for a discrete-series rep-
resentation of SU(1,1) (see Chap. 1, Sec. C). The sys-
tem of interest, a quantum oscillator with a variable
frequency, is described by the Schro'dinger equation

<&(*) | Ψ (<)>•

in which

(2.55)

(2. 56)

Expressing the coordinate and momentum operators in
terms of the boson creation and destruction operators,
we obtain

JL (ω2 (() J- 1) (aa* -f a*a) = Η (ΑΚ+ + AK.+BKa).
(2. 57)

Now using Eqs. (1. I l l), we rewrite$6(t) in the form

St, (t) = hO-o (t) Ko - ΗΩ,. (t) Klt (2. 58)

where

Ωο = 1 + ω2 (ί), Ωχ = 1 - ω2 (ί), (2. 59)

and Ko and K^ are the generators of the discrete-series
representation of SU(1,1) with k = 1/4 and k = 3/4.

Thus, our Hamiltonian is linear in the generators of
the Lie algebra of the group SU(1,1). Hence there
exists a solution of the Schro'dinger equation of the form

|ψ(ί)> = β<-'*«»|ζ(ί)), | ζ | < 1 . (2.60)

where Ι ζ > is a coherent state with k = 1/4 or 3/4. Then,
in analogy with what was done in the preceding section,
we substitute (2. 60) into the Schro'dinger equation (2.55)
and obtain the following equations for ζ and φ:

2 0'The problem of the production of pairs of spin-zero par-
ticles has been thoroughly treated in Refs. 63-68, as well
as in a number of other papers. The pair-production prob-
lem for spin-1/2 particles has been treated in Refs. 69—71.
It has been shown163·681 that the dynamical symmetry group
for the pair-production problem for spin-S particles is
SU(2S+1, 2S + 1) for integers and SU(2(2S + D) for half-in-
teger S. The case S=i is exceptional; for this case the sym-
metry group is SO(5).IM1

ζ =
φ = k (Α ζ + Αζ + Β).

(2.61)
(2.62)

We note that in this case the £ plane is a Lobachevskii
plane and is the phase space for the problem. Equa-
tion (2.61) describes the motion of a classical system
(oscillator) on the phase plane, and the quantum state
If (f)> follows the classical motion precisely. The phase
factor <p{t) is precisely equal to the area in the Loba-
chevskii metric swept out by the radius vector in its
motion. Both of these circumstances are associated
with the fact that in this case the "quasiclassical approx-
imation" leads to the exact solution.

Although this result is valid for arbitrary time varia-
tions of the frequency u{t), two special cases are of
physical interest.

a) The case in which ω(ί) tends rapidly enough to defi-
nite limits as f — ±». In this case the asymptotic states
\n)± at f — ±=o exist and it is meaningful to speak of the
transition probability Wmn from state I m )_ to state
!«)• . We shall assume for simplicity that the two lim-
iting Hamiltonians at ί— ±<*>($£* and<$0_) are the same.
Then

= ( g ^ j , , 'αΡ-|β| 2=1. (2.63)

Then using Eq. (1.113) for (m I Tin), we obtain the final
result from Ref. 30:

(2.64)

b) The case in which w(t) is a periodic function of
time: ω(ί + Τ)= <jo(t). In this case there exist solutions
of the SchrSdinger equation having definite quasienergy,
i. e., states for which

T)) = «<-< (2. 65)

We shall be interested in the quasienergy spectrum.
To find it we consider the time evolution operator U(t,
t0) of the system, defined by U(t,to)\iji(to)) = \il>(.t)), and
use it to form the unitary operator

(to) - U(tt + T, t0). (2.66)

Since this operator is unitary it can be expressed in the
form

where Si is a Hermitian operator. The spectrum of

this operator is just the quasienergy spectrum.

In our case S is an operator for a finite transforma-
tion of the group SU{\, 1), while the operator 3C belongs
to a representation of the Lie algebra of this group and
therefore has the form

(2.68)

There are three different cases depending on the form
of the vector Ω = ( Ω ο , Ωι, Ω 2 ) .
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, Ω Ο > Ο . (2. 69)

Here we can use the unitary transformation S6 - $B'
U* to transform the operator §6 to the form

(2. 70)

In this case the quasienergy spectrum is discrete, is
bounded below, and has the form

εη = ΚΩ (k + η). (2.71)

The ground state of such a Hamiltonian is a coherent
state associated with the discrete-series representation
T" of SU(1,1).

1') Suppose that

Ω 2 > 0 , Ω ο < 0 . (2. 72)

In this case we have 3fi ' = - KQK0· Here the quasiener-
gy spectrum is discrete and bounded above:

εη = —ΗΩ (k + η).

2) Suppose that Ω 2, - Ω? - Ω 2. = - λ2< Ο. Then $6 can be
reduced to the form

W'^-hXK,. (2.73)

In this case the quasienergy spectrum is continuous and
fills the entire line -οο<ε<+°ο. In the classical case
this corresponds to unstable motion.

3) But if Ω 2 = 0 and Ω 0 >0, we have 3ϋ=ΗΩ0{Κ0-Kx) and
the spectrum is continuous and fills the half-line 0<ε
<OO.

3') Finally, if Ω 2 = 0 and Ω ο < 0 we have

St'=-nQt(Kt-K1). (2.74)

Here the spectrum is also continuous, and it fills the
half-line - * < ε < 0. For the classical oscillator, cases
3) and 3') represent the boundaries of the instability re-
gion. Now let us consider the next example.

2) The superfluidity of an almost-ideal Bose gas. As
Bogolyubov showed,C7e3 this problem reduces to that of
finding the spectrum and wave functions of a Hamilto-
nian that is quadratic in the boson creation and destruc-
tion operators. In the same paper c 7 6 ] Bogolyubov indi-
cated how the problem could be solved by diagonalizing
the Hamiltonian with the aid of the linear canonical
transformation that has come to be called Bogolyubov's
canonical transformation.

The set of linear canonical transformations for this
problem forms a certain group, and indeed a direct
product of S£/•(!•, 1) groups. Then the ground state of the
Hamiltonian turns out to be a coherent state associated
with a certain representation of this group.

Let us first consider a simplified superfluidity mod-
el ." 7 5 Let the system consist of Ν weakly interacting
bosons, and let it be described by the following Hamil-
tonian:

= 2 < = ^ - . (2.75)

We shall consider only the first three states, so that
p, q, and k assume only the values (- 1, 0, +1), and
shall assume that ε±1 = ε, νΛ=ν, and εο= V 0 =0. t 7 7 t 7 8 ]

Then Hamiltonian (2.75) takes the form

δ« = ε « α + + ala.) + V [α*οαο «α++α*_α.) + afca* + ej'e+α-], (2.76)

in which we have used the notation αά = αΛ . For V= 0
the ground state would consist of Ν particles with zero
energy. We shall assume that for a weakly interacting
system the zero-energy state will be macroscopically
filled (so that we can assume the operators a0 and aj to
be c-numbers equal to /wjj, where JV0= (a*oao)). This is
the physical assumption that leads to the superfluid
character of the model. Thus, the reduced Hamiltonian
has the form

= (ε + N0V) (ala* + ala.) + N0V (α\α*_ + a+β.). (2. 77)

We see that the reduced Hamiltonian is linear in the
operators of the representation T1 /z of the Lie algebra
of the group SU(1,1):

* = l+-i*r. (2·78)

Thus, our problem reduces to the previously solved
problem of the spectrum and eigenfunctions of the oper-
ator

where

Ω ο = 2Ν0νμ,

ΩΚ,

— 2N0V, Ω , = 0.

(2. 79)

(2. 80)

In our case®# is given by formulas (2.79) and (2.80),
and to simplify it it is sufficient to consider the "rota-
tion" R(9)= exp(- ΪΚΖΘ) about the xz axis:

Κ', = Λ (θ) ΑΤ,Λ"1 (θ) = ch θ. Κ, + sh θ · Κο,

Κ1, = R (θ) K0R-' (θ) = ch θ • Κο + sh θ Κ,,
(2.81)

so that

R (θ) SBBr1 (θ) = 2N0V [tf0 (μ ch θ - sh θ) + Κ, (ch θ - μ sh θ) - 1 · ] .

(2. 82)

Since |tanh0|< 1, we can use the rotation of Ki or Ko,
depending on the sign of the potential V. Thus,

1) if γ< 0 (an attractive potential), then μ < 1 and we
take tanhe = μ:

RfflR-* = - 2N0V (if, sech;e+ £) , 2 ΛΌI y I > ε; (2. 83)

2) if V>0 (a repulsive potential), then μ > 1, and we
take cothe = μ:

2JV0V (Ko cosech θ - £ ) . (2. 84)

From this it follows that the energy spectrum is con-
tinuous in case 1). Case 2) is of greater physical in-
terest; in this case the energy spectrum is discrete. It
follows from (2. 84) that

* . P. ί
En = (2» + 1 + | Δ | ) Ε - JV0V - ε, (2. 85)
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where E = [ΖεΝ0 V+ ε2]1/2 and Δ is an eigenvalue of the
operator ala. - ala.. Then the eigenvectors have the
form

Λ"'

where

| ψ0) = Λ-' (θ) Ι 0), . 6; = Λ"1 (θ) alR (θ).

(2. 86)

(2.87)

Thus, the eigenvectors are coherent states associated
with the discrete-series representations T* of SU(1, 1).
In the simplest case, in which Δ= Ο and k= 1/2, we have

|ψ0) = V (_l)msech-s- (th-5-)m| m), (2. 88)

or

where

(2. 89)

As before, we have a continuous spectrum in the case
in which V(,><0 and Ι μβ |< 1, while in the case Vq>0 or
μ,>1 the Hamiltonian can be simplified with the aid of
the unitary transformation

(2.95)

so that

c s e c h θ,ΛΤί?'—τ) ΛΎ« + Τ

The Casimir operators have the form

(2.97)

where the integrals of motion Aq = alaQ-a*_lla^ are the
differences between the numbers of particles in states
with opposite momenta. Since the energy spectrum
must be bounded below the only allowed representation
is this one:

We note that transformation (2. 87) is a linear canonical
transformation of the operators at and <z_:

(2. 90)

This transformation was first used to solve the problem
of the superfluidity of an almost ideal Bose gas by Bogo-
lyubov in his well-known paper, Ref. 76.

Now let us consider the almost ideal Bose gas de-
scribed by Hamiltonian (2.75). Using the Bogolyubov
approximation ao = a*o* ViV0 as before, we can write SB
in the form

H®TK·,, i?,=-i- + 4-A,. (2.98)

Now we see that the energy spectrum has the form

Ε (nu ..., ni, .. .) = 2 (η ' + 4~ + τ Ι Δ Ό E' + Const' (2. 99)

where £ 1 = [2c1JVV1+ε|]1/2. The ground-state wave func-
tion for the case At = 0 has the form

~le^p\y,(-tma*malm)]}\0), (2.100)

where t1 = tanh(el/2).

h k

(2.91)
where the summation is taken over all values of k ex-
cept the value k = 0, and there remain only second order
terms in the ak and a*k. In this approximation we have
N = N0+^alak and our Hamiltonian can be written in the
form

SB = 4" # % + 2 (ε» + NVk) οίο» + |

Let us introduce the operators

*0.*). (2.92)

(2.93)

We see that these operators generate the Lie algebra of
the group SU(1,1)<,>, and the Hamiltonian is a linear
combination of generators of this algebra:

θ NVq (**«» + μ,*?»—£•) + - i (2.94)
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