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1. INTRODUCTION

Quantum mechanics is usually regarded as a general-
ization of classical mechanics. The physical content of
this generalization is basically expressed by the com-
plementarity principle of N. Bohr.

As will be explained below a different approach to the
fundamentals of quantum mechanics is possible and in
certain respects appears to be necessary. In this other
approach quantum mechanics is regarded as a general-
ization of classical statistical mechanics. In such an
interpretation of quantum mechanics the basic concept
is not the wave function φ, but the statistical operator
introduced already in 1932 by von Neumann. m It is now
usually referred to as the density operator p. It is
well known that this operator is the analogue of the den-
sity p(q,p) in phase space ^{q,p), which is utilized in
classical statistical mechanics for the description of
motion of systems. Here q are the coordinates of the
system being studied, p are the canonically conjugate
momenta. υ

The relationship between classical mechanics and
classical statistical mechanics differs in principle from
the relationship between quantum mechanics operating
with the wave function φ and quantum mechanics based
on the concept of the statistical operator p.

The point is that classical mechanics represents a
science which does not at all require statistical mechan-
ics. Within the limits of its applicability it gives maxi-
mally complete information concerning the motion of a
mechanical system and does not make use of the concept
of probability or the concept of some sort of a statistical
ensemble. In the domain of quantum phenomena the
analogue of classical mechanics is quantum mechanics
which makes use of the wave function φ which also gives
maximally complete information concerning the motion
of quantum systems compatible with the basis of this
theory—the complementarity principle of N. Bohr.
However it was established long ago that in the theory
of quantum measurement it is not possible to restrict
onself to the concept of a wave function—it is necessary
to introduce the concept of the density operator ρ which
has its analogue in statistical mechanics. Thus, in con-
trast to classical mechanics, quantum mechanics re-
quires quantum statistical mechanics. Speaking more
accurately, the two are in fact the same.

^One should intepret q as the coordinates qlt q2..., qf of the
system under consideration, and p—pi,p2> · · ·Ρ/ a-s the mo-
menta conjugate to them, / is the number of degrees of free-
dom. In future to avoid awkwardness all the formulas are
written out explicitly as i f/=1. For example, dqdp=dq1...
dqf-dpx...dpf.

After these remarks we turn to classical statistical
mechanics. In classical statistical mechanics informa-
tion is expressed in the language of probabilities.

Probability is a numerical measure of the potential
possibility of some particular outcome of events.

The outcome is determined within a certain statistical
ensemble of events which must be defined by clearly
formulated material conditions. Thus, in thermody-
namical statistics the Gibbs ensemble is defined by the
temperature of a large heat bath, with which the molecu-
lar system under investigation interacts weakly.2'

Knowledge of the probability of a particular event en-
ables one to predict the mathematical expectation of
some particular possible outcome, the average value of
observable quantities, the fluctuations in these quanti-
ties, etc.

Probability is not a characteristic of an individual
mechanical system taken by itself. It belongs to such
a system only to the extent that such a system is a mem-
ber of a definite statistical ensemble. In classical sta-
tistical mechanics the ensemble is determined by the
probability of finding a mechanical system dp(q,p,t) in
the neighborhood of a point (q, p) of phase space .%(q, p)
at the instant of time t.3)

Instead of the probability dp one usually considers the
probability density in phase space p(q,p, t):

e(q,p,
dp(q, P, t)

dq dp (1)

As long as one is dealing with microscopic atomic
systems, then in order for such an ensemble to be defi-
nite one must specify the external macroscopic condi-
tions within which the development of the ensemble un-
der investigation is realized, for example: the size of
the container, the temperature of the walls, external
fields, etc.

The probability density p(q,p) obeys the equation of
motion which states:

(2)

where aM = Si(q,p) is the Hamiltonian function, while
[£/), p]q>p is the classical Poisson bracket which for any

2>We use the term "ensemble" coined by the founder of thermo-
dynamical statistics Gibbs. m Other terms for an ensemble
are: statistical collective (Mises), :31 statistical set (von
Neumann).111

3>In future we shall not explicitly write out the argument t.
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arbitrary dynamical quantities A and Β has the form: (q, ?') s Ά (?) X » (?'). (11)

dA oB dB dA
dp dq dp dq '

(3)

In particular, for a pair of canonically conjugate vari-
ables we have

(4)

Explicitly, for one degree of freedom the Hamiltonian
function is equal to

(5)

here m is the mass of the particle, V(q) is its potential
energy. From (2) and (3) we obtain the equation of mo-
tion for the probability density in explicit form

dp . ρ dp dV dp

d t ' m dq dq dp
(6)

This equation expresses the law of conservation of the
number of particles in each element of phase space.

The probability of finding the system in the neighbor-
hood of the point q in configuration space jl(q) is equal
to

> (?) dq = dq J ρ (q, p) dp, (7)

while the probability of the system to have a momentum
in the neighborhood of the point p is expressed by the
formula

ρ (ρ) dp = dp J ρ (?, ρ) dq. (8)

Finally, the average value L of any dynamical variable
L(q, p) is determined by the formula

L = ) Ρ (I·. P) L («i P) d9 dp

with the normalization condition

(9)

We shall define the transition from the description in
the space M(q,p) to the description in the space -fl(q,q')
with the aid of the Fourier transformation, applicable
to any dynamical variable L(q,p) defined in the phase
space Si{q,p). This transformation states:

L (?,?') = L (?, ξ) = \ L (q, p) '-5-j- dp, (12)

£(?,/>)= JL(j, S)e-W«, (12')

where £=q' -q, while K* is some constant having the
dimensions of action. This quantity is arbitrary within
the framework of classical mechanics. Choosing a cer-
tain characteristic scale for the coordinate a and a char-
acteristic scale for the momenta b it is natural to set
tt* =ab. In view of the fact that for a Fourier transfor-
mation it is not the absolute values of q and ρ that are
particularly important but the range of their variation,
it is useful to set

(13)

where Δ/? and Δ^ are the mean square deviations of ρ
and q, say, at t =0.

The transformation for the desnity p{q, p) can be more
conveniently defined by:

ρ (?, q') s ρ (g, ζ) = j ρ (?, ρ) „«*/»· dp. (14)

(14')

here L(q, q') and L{q, £), as can be seen from the for-
mulas, denote the same quantities. Generally speak-
ing, these quantities turn out to be generalized func-
tions. The rules for dealing with them are now well
known. The equation of motion (2) for the probability
density can also be rewritten in the space &{q,q'). With
the aid of formula (12) we find the representation of the
Hamiltonian &J(q,p) (5) in the space A(q,q'). It takes
the form:

j P (?> P) dq dp = 1. (10) (15)

In virtue of the equation of motion (6) this condition is
satisfied at any arbitrary instant of time t.

2. CLASSICAL STATISTICAL MECHANICS IN
CONFIGURATION SPACE

Classical statistical mechanics can be formulated not
only in phase space $(q,p), as is customary, but also
in configuration space ·#(<?).4) In order to go over to
such a representation of statistical mechanics we must
instead of the momenta ρ take a second arbitrary point
q' in configuration space 3?(q). In other words instead
of the phase space &(q, p) we go over to the doubled con-
figuration space

where δ(£) is the usual delta-function. Further, we
have the following expression for the Fourier compo-
nents of the derivatives of the Hamiltonian function Si
and the density p:

1δ3€\
\ «Ρ lq.q-~°

dq I,,,·'

4)This section ia based on Ref. 4; cf., also Ref. 5.

(16)

(17)

(18)

(19)

Substitution of these Fourier components into (2) leads
with the aid of (12') to the equation for the density p(q, ζ)
in the space Jl(q, q'):

(20)
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This equation replaces in the space 3i{q, q') equation (6)
in the space 3)(q,p). This equation can be concisely
written in the form

(21)

where [A£]4it is to be interpreted as the Poisson bracket
in the space Sl(q,q'). Naturally, the density ρ in (18) is
taken to be in the same space.

Equations (7) and (8) assume the form

p(?)d? = p(i, q)dq, (7')

ρ (ρ) dp^dp^p (q, ζ)£-2Ηί5Γ- dq άζ. (8')

The normalization condition (10) states:

j p ( ? , q)dq~\. (10')

(24)

Setting the right hand side of (23) equal to unity, we ob-
tain the Fourier transform of the Green's function

G (*$) (25)

for the equation (17) for the free motion of particles.

b) The harmonic oscillator

In this case V(q) = (m u%/2)qz, where ω0 is the fre-
quency of the oscillator, while m is its mass. In this
case the function p(q, ζ, i) can be sought in the form
p(q,£,t)=ei"tp(z), where z =qt/Kz, while Λ2=/Τ*/»-/ω0.
In terms of this variable the equation for p(q, ζ, t) can
be easily brought to the form

Equation (9) for the determination of the average value
of the dynamical quantity L(q,p) is brought by the same
methods to the form

L= \p (q, I) L* (j, ζ) dq άζ

or, what is the same thing, to the form

ΐ = j Ρ (?. q') L* (?· ?') di di'· 3')

In addition to these formulas we write out the formulas
for the Fourier components of the coordinate q and the
momentum ρ:

?„· = ?§ (ζ),

Pqi.= —ih'

(16')

(17')

These expressions coincide completely with the well-
known quantum mechanical expressions for the operators
q and p in the coordinate representation.

However, one should remember that the quantities
(16') and (17') undergo multiplication as Fourier com-
ponents (and not as matrices).

In concluding this section I introduce two simple ex-
amples of the solution of Eq. (20).

a) Free motion

In this case V(q) =0. We represent p(q, £, t) in the
form of the Fourier integral:

ρ(?, ζ, ί)= Ρ («, β ) ^ . , ! » ! - ^ , ^ ; ) dadpm
(22)

Substitution of p(q, £, t) in this form into (20) leads to the
relation

[ω(α, β) + -£αβ]£(α,β)=

from which it follows that

(23)

The general solution of this equation is expressed in
terms of the hypergeometric series i ^ 5 ' :

(27)

3. THE QUANTUM ENSEMBLE

As far back as in 1932 von Neumann introduced the
important distinction between pure quantum ensembles
(in von Neumann's terminology "einheitliche Gesam-
theiten") and mixed ensembles ("gemischte Gesamthei-
ten") . c n The former ensembles—ensembles described
by a wave function φ, correspond to the case of maxi-
mal information allowable by the laws of quantum me-
chanics. The latter type of ensembles contains states
with different wave functions φ1} ψ2, ,φ,,..., concern-
ing which only the probabilities of these states Wu

W2,..., Ws,... are known. Such an ensemble is analo-
gous to the ensembles of classical statistical mechanics,
but not to classical mechanics itself, in which there is
no place for such an ensemble. A mixed ensemble is
described by the density operator p.

The necessity noted in Sec. 1 of the introduction into
quantum mechanics of the density operator as of a con-
cept more general than the wave function, is based on
the fact that in the quantum domain measurements car-
ried out on systems described by the wave function φ
("pure" ensemble), bring these systems into states de-
scribed by a set of wave functions, i. e., into a "mixed"
ensemble.

Therefore, if we wish to regard the theory of quan-
tum measurements as a chapter of quantum mechanics
then it is not possible to exclude from consideration
mixed ensembles which have no analogues in classical
mechanics. They are analogues of statistical mechan-
ics. In this point is contained the whole essence of the
difference of my conception of quantum mechanics from

5)Cf., for example,: J. Watson, Theory of Bessel Functions,
(Russ. Transl. M., 1949, p. 118).

685 Sov. Phys. Usp. 20(8), Aug. 1977 D. I. Blokhintsev 685



the conception of the Copenhagen school.

N. Bohr clearly preferred to consider the situation
when an atomic system is described by a wave function
(i. e., a pure ensemble).

In such an approach the process of measurement itself
is completely excluded from a quantum mechanical in-
vestigation and a fortiori can not be the object of a theo-
retical calculation. The interpretation of measurement
in such an approach is restricted to the concept of mea-
surement as a phenomenon of the alteration in the in-
formation available. It should be emphasized that with-
in the framework of an analysis concentrated on a pure
ensemble such an interpretation of measurement is
logically consistent and is the only one possible. But it
excludes the possibility which in fact exists on the basis
of the same quantum mechanics to investigate and to
calculate the phenomenon of measurement. In this con-
nection von Neumann's concept based on the concept of
statistical sets appears to be a broader base for under-
standing quantum mechanics than the concept based on a
more restricted concept of wave function. The ideas of
von Neumann presented by him in a brilliant but difficult
to assimilate book: "Mathematical Principles of Quan-
tum Mechanics" (1932cn) have exerted in their time con-
siderable influence on L. I. Mandel'shtam,ίβ1 particu-
larly on K. V. Nikol'skii (cf., his monograph1") and on
myself. In contrast to us these ideas, apparently, did
not generate in their time much interest on the part of
N. Bohr.

On the basis of the foregoing material it is natural to
regard quantum mechanics as a generalization of clas-
sical statistical mechanics. The representation of clas-
sical statistical mechanics in the space S(q, q') turns
out to be a convenient starting point. This representa-
tion, as was shown in Sec. 2, deals with the Fourier
components of the dynamical variables L(q,q') and of
the density p(q,q').

We now follow the recipe for the transition from clas-
sical mechanics to quantum mechanics due to W. Hei-
senberg. The essence of its prescription reduces to
two points: a) replacement of the Fourier components
of dynamical variables by elements of Hermitian ma-
trices and b) replacement of the classical Poisson
bracket by the quantum Poisson bracket.

Turning to classical statistical mechanics represented
in the space M{q, q') we realize this program with the aid
of the following formulas which express the correspon-
dence between classical and quantum quantities accord-
ing to Heisenberge>:

I (g, ζ) = L (q, q') -» L (q, q') = V (?, q'), (28)

ρ (q, t ) B p (q, q') -+ ρ (q, q') - p' (q, ?')· (29)

This replacement means that the dynamical variables

6)W. Heisenberg had in mind Fourier components reflecting
the dependence of dynamical variables on the time. In my
case this correspondence principle is extended also to the
dependence of the dynamical variables on the coordinates.

and functions of them become Hermitian operators which
we shall denote by t, ρ etc. L* and p* denote Hermitian-
conjugate operators. Further, according to point b),

(30)

(31)

In particular,

I'P, i i - i .

Following (28), (29) and (30) we replace in (9') p(q,q')
and L(q, q') by the corresponding elements of the Hermi-
tian matrices ρ and L. We then obtain

L = Sp (pL), (32)

where Sp denotes the trace of a matrix. Formulas (7'),
(8') and (10') take on the form

and

Ρ (?) dq = ρ (q, q) dq,

ρ (ρ) dp = ρ {ρ, ρ) dp

Sp ρ = 1.

(33)

(34)

(35)

Concurrently in all the formulas the constant K* is
now fixed and is equal to the Planck constant H. This
removes the arbitrariness in the scale in the choice of
the constant K* which is characteristic for classical
statistical mechanics.

Equation (20) for the density p(q, q') in accordance
with (30) is replaced by an operator equation with the
quantum Poisson brackets:

! • + ! * . Pi*. = 0. (36)

The operator for the Hamiltonian function $g has the
form (in the simplest case)

(37)

We now write out Eq. (36) in the space .f!{q, q'). In this
space the matrices for the operators ρ and q satisfying
Eq. (31) have the form

f(?. 9')·= Φ (? — ?')•

(38)

(39)
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These expressions are identical with the expressions
for the Fourier components of the quantities p and q in
classical statistical mechanics represented in the space
M(q, q'). In order to verify this one should recall that
in formulas (16') and (17') the quantity t=q' -q.

Utilizing the rules for multiplication of matrices,
Eqs. (36), (37), (38) and (39) yield Eq. (36) in the space

?,O-o. (40)

), t=q'-q. Comparison with (20)
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shows that the equation of classical statistical mechan-
ics with K* =K can be regarded as an approximation to
the exact quantum equation (36) under the condition of
sufficiently smooth potentials V(q) and smooth distribu-
tions p(q, ζ). In this case in (36) one can set V(Q +ζ/2)
- V(Q - ζ/2) ~ (dV/dq)£ + ... . Then (40) coincides with
(20).

4. EIGENVECTORS

We turn first of all to the special case when the den-
sity operator ρ obeys the special condition

(41)

We inquire what other conditions must be satisfied by
this operator in order that the statistical ensemble de-
scribed by it should have the characteristic that a cer-
tain specified dynamical variable L in it should have
one and only one definite value.

Let the average value of this quantity be L, then the
mean squared deviation is equal to

(42)

Let X be the Hermitian operator representing the quan-
tity L. Then, in accordance with the basic formula
(32), ΔΖ? is defined by the formula

AL»=Sp{p(X-£,)>} (43)

and the requirement that the quantity L should have only
the single value L = λ, reduces to the condition

Sp {p (X - λ)2} = 0. (44)

We denote p(X - λ) = C, then (X -\)p = C *. Using (43)
and the possibility of permuting the operators preceded
by the symbol Sp, we obtain from (44)

(45)

This condition can be satisfied only in the case when
the operator C=0, and consequently also C*=0. Thus,
we arrive at the equations for the operator p:

(X - λ) ρ = 0, ρ {Χ - λ) = 0. (46)

We investigate these equations in the coordinate repre-
sentation, i. e., for the matrix elements p(q, q') of the
operator p. In the first of these equations the operator
X acts on the argument q of the element p(q, q'), and in
the second the operator £ * acts on the argument q' of
the same matrix element. Therefore from the first
equation of (46) it follows that the element p(q, q') is
proportional to the eigenfunction ipx{q) of the operator
X, which belongs to the eigenvalue λ; this function obeys
the equation

Χ ψ λ (q) = λψχ (g). (47)

In a similar manner from the second equation it follows

that p(q,q') is proportional to 4>t{q'):

(47')

It is well known that the functions 4>x(q) form an orthog-
onal system. We can take it to be orthonormalized.
Then

p(?.?') = <t >.(?)**(?')• (48)

It is not difficult to verify that condition (47) holds and
equations (46) are satisfied.

The eigenfunctions of Hermitian operators form a
system of basis vectors in Hilbert space. Any other
arbitrary vector in this space <p{q) can be represented
in the form

(49)

where cx are its components.

Applying the operator p\ to φ, we obtain from (48) and
(49)

(50)

From this it follows that the operator p\ is the projec-
tion operator on the λ axis: p\=Px. In the more gen-
eral case

P (?. ϊ ' ) = <Ρ (?) φ * (?') (48')

is the projection operator on the vector φ (regarding it
to be normalized to unity).

It is not difficult to show that the vectors <p{q) in Hil-
bert space satisfy the SchrSdinger equation

(51)

To prove this it is sufficient to substitute p(q, q') in the
form (48') into equation (36) and to divide the result by
<P(q)<P *(<?'). This substitution leads to the relation

From this it follows that [b(p(q)/dt + · · · ] =ic<p(q), where
c is a real constant which can be incorporated into Ss
and compensated for by a shift of the reference point
for energy.

Thus, starting with (28) and (36) we obtain all the
equations of linear wave mechanics.

The statistical ensemble described by the density ma-
trix which is a projection operator is referred to as a
pure ensemble. A pure ensemble corresponds to the
description of quantum phenomena with the aid of a
single wave function.

The initial equations (32) and (36) enable us to con-
sider an ensemble with a density matrix ρ of a more
general form, in particular
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where

and

(52)

(53)

Such an ensemble in the terminology of von Neumann is
said to be mixed. The quantities Wx indicate the proba-
bility of finding the system being studied in the state λ,
belonging to a pure ensemble described by the density
operator p\. From (52) and (53) we obtain

p. (54)

In concluding this section we indicate the formula for
the matrix elements of p\ in its own λ-representation:

(55)

In the same representation for the mixed ensemble we
have

Pu- =

5. MEASUREMENTS AND IRREVERSIBILITY

(56)

We preface our discussion of measurements by some
comments concerning the relationship of the density
operator ρ to thermodynamical statistics. This connec-
tion was pointed out in the same monograph by von Neu-

mann. c J. von Neumann proposed a formula for the
entropy S of a system generalizing the well-known for-
mula due to L. Boltzmann, i. e.,

S = — k Sp {plnp>; (57)

here k is the Boltzmann constant. From this formula
it follows at once that for a pure ensemble S =0. In or-
der to verify this it is sufficient to bring the operator ρ
to diagonal form. According to (55) the eigenvalue of
such an operator is equal to 1, and In 1 = 0.

This feature of a pure ensemble is an expression of
the fact that a pure ensemble is a statistical set of sys-
tems which are all in the same state.

For a mixed ensemble in the same representation on
the basis of (56) we obtain

5= - (58)

Therefore the entropy of a mixed ensemble is always
greater than the entropy of a pure ensemble. This re-
sult was also proved by von Neumann.m

If the system under consideration is in thermal equi-
librium with a large heat bath of temperature Θ, then,
according to the theory of a Gibbs thermodynamic en-
semble

(59)

where θ =kT, k is the Boltzmann constant, Ex are the
eigenvalues of the energy operator H, F is the free en-
ergy. Substitution of (59) into (58) leads to the relation
well known from thermodynamics

F = Ε — TS, (60)

where Ε is the average value of the energy of the system

(61)

with the usual normalization condition: 2x WX(Q) = 1.

After these remarks we turn to the process of mea-
surement. The process of measurement is based on
the physical process of the interaction of a microsys-
tem with a macroscopic system MA-measuring appara-
tus. This apparatus must necessarily be a macroscopi-
cally unstable system. If this were not so a microsys-
tem could not activate it. It does not have sufficient en-
ergy and momentum to accomplish this. Theoreticians
have not paid sufficient attention to this important cir-
cumstance which is trivial for experimenters. At an
early stage of development of quantum mechanics the
attention of theoreticians was more concentrated on a
new circumstance—on the effect of the measurement on
the state of the quantum system.

The significance of this circumstance for the under-
standing of the process of measurement was shown in
papers by the author of the present article.C8]

In these papers it was shown that the process of mea-
surement begins at a microscopic quantum mechanical
level and in virtue of the macroscopic instability of the
measuring apparatus (MA) is converted into a macro-
scopic process. Therefore the process of measurement
has the nature of an explosion initiated by the micro-
system being measured.

For the mathematical description of this process the
use of the apparatus of the density operator ρ is com-
pletely necessary. This necessity arises from the cir-
cumstance that the macroscopic apparatus being from
the microscopic point of view, a complex system can-
not be described by a wave function. In order to include
the apparatus into the quantum mechanical description it
is necessary to employ the concept of a mixed ensemble
and, consequently, the apparatus of the density opera-
tor p. We denote the dynamical variables describing
the state of the system undergoing measurement by the
letter x, and the dynamical variables describing the
macroscopic apparatus by the letter q. These variables
can be very numerous. Generally speaking, the appara-
tus can also be ascribed a certain temperature Θ. The
density operator ρ of the compound system will depend
on the variables x, q, the time, and, possibly, on the
temperature Θ in such a manner that the matrix element
of the operator ρ in the representation of the variables
χ and q will be p(x, q; χ', q', t). We expand this operator
in terms of the eigenfunctions ψη(*) of the operator X,
which represents the quantity being measured, which
for simplicity we shall assume to be discrete (n is the
number of the eigenvalue λ =!,„):
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ρ (χ, q; χ', ?', 0 = 2 (q; q\ t) ψη (χ) ψ· (χ')· (62)

Among the variables ? only a few will be observable.
For the sake of definiteness we assume that there is
only one such variable: q=Q.1)

Taking a diagonal element with respect to all the q,
with the exception of q = Q, we integrate (62) over these
variables; as a result we obtain a matrix with respect
to the observable variables Q:

ρ (χ, χ', Q; Q\ 0 - 2 W,m (<?, <?', t) Φ- (*) *m (*')• (63)

In virtue of the macroscopic nature of the apparatus
the nondiagonal elements with respect to Q are vanish-
ingly small. Thus, in (63) Q'=Q. The device will be
a measuring one if as £-°° 8 ) the quantities Wnm =0 for
n + m, while Wm differs from zero only in the case if the
observable variable Q lies in the region Q e Ω π (Ωπ does
not intersect with ilm, ηΦηι). Taking into account all
possible results of measurement: Q e Ω χ , Q e Ω 2 , . . . ,
Q e Ω π , . . . , we integrate (63) over all the possible Q.
We then obtain

(64)

(65)

ρ (Χ, Χ', 0 = 2 W-U, (0 ΐ,, (*) ψ» (*') ,
η

where

Wnn(t)=j Wnn(Q, t)dQ

and

From these formulas it can be seen that the coherence
of the different particular states of the microsystem
ipn(x), ipm(x),... is destroyed as a result of the interac-
tion with the macroscopic measuring apparatus. This
destruction of coherence is due to the indefiniteness of
the microscopic variables of the apparatus q and to the
macroscopic nature of the observed variables Q.

We consider now the nature of the ensemble arising
after measurement. We assume that the initial en-
semble was pure:

ρ (χ, χ') = φ {χ) φ * (χ1)

and

φ (ΐ) = 2 «ηΤτ. Μι

(66)

(67)

where ψη(χ) are the eigenfunctions of the operator X
which represents the dynamical variable L. If this
quantity is not altered in the process of measurement

VQ is the position of the conventional "indicator" of the mea-
suring apparatus.

8)We interpret t — °° as the duration of the process of measure-
ment.

(for this it is necessary that the operator for the inter-
action energy of the system with the apparatus W should
commute with the operator £), then it can be shown that
as f - « the probability is proportional to I c J 2 :

(68)

Therefore with suitable normalization in the L - r e p r e -
sentation the elements of the matr ix p(x,x', i) a re
equal to

I cn Ρ 6ηπ (69)

If after the measurements one collects the represen-
tatives of the system with L = Ln into the w-th box, those
with L=Lm into the m -th box, etc., then the set of par-
ticles in each box is a pure ensemble described by the
density matrix ρ(χ,χ') =ψπ(χ)ψ*(χ'). We shall be deal-
ing with several independent pure ensembles. The en-
tropy of each of them is equal to zero. From informa-
tion theory it is known that the volume of information
can be measured by entropy.C 9·1 0 ] In the method of
carrying out measurements described above the volume
of information is not changed. Only the form of infor-
mation is altered. It was maximal in the initial en-
semble and remains maximal in the set of ensembles
after measurement.9)

But if all the systems after measurement are collected
into a single box, then we shall have a mixed ensemble
described by the matrix

Σ Κ Ι!Φ» (

the entropy of which is equal to

(70)

(70')

(71)

This increase in entropy corresponds to the loss of
information which was available previously with respect
to the initial ensemble and was maximal—it was equal
to zero.

Thus, the question of the nature of the ensemble aris-
ing after measurement is resolved differently depending
on the manner in which the systems subjected to mea-
surement are assembled. It can be a mixed ensemble,
but it can also be a pure ensemble or several pure en-
sembles. The latter case arises when the observer
studying the new ensemble has information concerning
which of the "boxes" is occupied by the system with a
given value of L = Ln.

' j . von Neumann, Mathematischen Grundlagen der Quanten-
mechanik, Berlin, J. Springer, 1932 (Russ. Transl. Fizmat-
giz, Μ., 1963).

2 J. Gibbs, Fundamental Principles of Statistical Mechanics

9)We do not consider the possible and usually occurring in-
crease in the entropy of the measuring apparatus.
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