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The results of theoretical and experimental studies of the Stark broadening of hydrogen lines in plasmas

made during the last 10-15 years are reviewed. Plasmas and the hydrogen atom are the objects in which

specific features of the Coulomb interaction manifest themselves most clearly. The statistics of the

Coulomb microfield produced by the ions and electrons in a plasma (with allowance for the effects of

screening and ion-ion correlations) and the temporal fluctuations of that microfield are discussed briefly.

The dynamics of the interaction of the plasma microfield with the radiating atom is analyzed in detail. In

addition to discussing the well known approximations in the theory of line broadening-the impact and

statistical approximations-considerable attention is given to the intermediate spectral region in which

both those approximations break down. The possibility of describing this region is due to a specific (four-

dimensional) symmetry of the hydrogen atom, which makes it possible to find accurate wave functions for

the atom in the field of the charged particle responsible for the broadening. The accurate solution is used

to analyze the transition from electron-impact broadening to statistical broadening in the wing of the line.

Considerable attention is given to the thermal motion of the ions and the related "reduced mass effect"

that manifests itself at the centers of the Balmer lines. The basic experimental results that make it

possible to test the conclusions of existing theory and to discern new problems are presented. The

quantum formulation of the line-broadening problem is discussed, as well as line broadening for

hydrogenlike ions.

PACS numbers: 52.25.Ps, 32.60. + i
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1. INTRODUCTION

For almost sixty years, since the appearance of the
fundamental paper by Holtsmark,C l ] the problem of the
Stark broadening of hydrogen lines in plasma has at-
tracted the attention of physicists. This interest has
continued not only because the question is of practical
importance for plasma diagnostics, but also because it
involves two objects (the hydrogen atom and the plasma)
for which the specific features of the long-range Cou-
lomb interaction are particularly well defined. Since
the hydrogen atom is the simplest quantum-mechanical
system, it is clear that broadening is among the few
practical problems for which relatively simple and, at
the same time, rigorous models can be constructed.
Moreover, these models admit of a direct experimental
verification. The accuracy of modern plasma experi-
ments is very high, namely, between 1% and 10%.

The theory of line broadening includes a range of prob-
lems from atomic spectroscopy, the theory of atomic
collisions, and the statistics of the fluctuating plasma
microfield. Its task is to investigate the dependence of
the line profile /(ω) radiated (or absorbed) by an atom in

plasma on the parameters of the ambient medium. These
parameters are the concentration Ν of particles, the ve-
locity ve of electrons, the velocity v{ of ions, the elec-
tric and magnetic fields in plasma, and so on. One of
the important parameters of the line profile itself is the
detuning Δω of the observed frequency ω from the un-
perturbed frequency ω0 of the atom (Δω = ω — ω0).

The information that can be extracted from observa-
tions on Stark line profiles is of twofold interest. First-
ly, measurements of /(ω) can be used to determine the
properties of the surrounding plasma without the use of
probes or other objects that distort its properties. Sec-
ondly, detailed studies of the line profiles enrich our
understanding of the statistics of the fluctuating Coulomb
microfield in plasma and the dynamics of its interaction
with the atom, and this is of general interest in physics.

The publication of the present review is connected with
the completion of a definite stage in the development of
the theory of broadening, i. e., direct verification of the
theory is now possible because of improvements in ex-
perimental procedures. Our aim in this review will be
to achieve clarity rather than rigor. The point is that
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recent years have seen a substantial increase in the
number of theoretical approaches to the problem of
broadening. For example, there is the kinetic equation
method,C2] the "relaxation" theory, i3>" the method of
Green's function,Cs: the projection operator technique,m

and so on. We shall not discuss all these possible
methods of the theory of broadening, and will confine
our attention to the main theoretical and experimental
results obtained in this field during the last few years.
Readers interested in the history of the problem are re-
ferred to the book by B r e e n e . m Experimental aspects
are discussed in the book by Griem" 3 and the review by
Wiese.C93 A clear exposition of the fundamentals of the
theory of broadening is given by Sobel'man.C1O] There
are also reviews by Baranger t n ] and Traving.C123

Consider a hydrogen line produced as a result of a
dipole transition from an upper (a) to a lower (b) level.
Each level of the hydrogen atom with principal quantum
number η has w2 degenerate s ta tes . υ These states will
be labeled a, a' and β, β1 for the upper and lower
levels, respectively. The fundamental formula of the
theory of broadening is the expression for the line pro-
file Iab(u>) radiated by an atom1 1 8·1":

) = —Re (1.1)

where the correlation function for the dipole moments
of the atom is given by

da is the component of the dipole moment of the atom,
ψα, φβ are the wave functions of the upper and lower
states, respectively, and {...} represents averaging
over the ensemble of perturbing plasma particles. The
wave functions φ α , ψβ of the atom in the medium depend
on the variables of the plasma.

It is assumed in (1.1) and (1.2) that the only reason
for broadening is the interaction between the atom and
the plasma particles. This interaction generates the
wave functions of the upper and lower states between
which the spontaneous transition due to the interaction
with the radiation field subsequently takes place. The
wave functions φ(ί) satisfy the SchriJdinger equation with
the following Hamiltonian:

- &>,,+ V (t) = <! [F, (t)+ Fe (01, (1.3)

where SB0 is the unperturbed Hamiltonian and V(t) is the
interaction between the atomic dipole moment d and the
electric fields Ft(t) and Fe(i) of the plasma ions and
electrons. The motion of these charged particles will
be assumed to be classical and rectilinear, so that the
field F(i) due to an individual particle will be

"The spin of the electron will be ignored throughout, because
Stark broadening is usually greater than the fine structure of
levels.

where r 0 is the position vector and ν the velocity of the
particle. It is convenient to express r 0 in terms of the
cylindrical coordinates with the ζ axis parallel to v:
r o = p -vt0, where ρ is the impact parameter (plv) and
t0 is the time of closest approach between the particle
and the atom.

The fields F{(f) and Fe(t) are vector sums of fields
due to individual particles, so that, for example,

F,· (t) = - e Υ *<» + *>' ( 1 . 5)
s • r _ . _L i.. i lit » *

where ' is the total number of ions in the plasma vol-
ume V. The particle density N=. f"/V will henceforth be
assumed to be a given constant.

It is important to note that broadening processes are
due to transitions between states belonging to a given
level with a fixed principal quantum number η (i. e., the
so-called "isoenergetic Surface"). This means that
transitions between levels a and b due to interactions
with the plasma particles can be neglected. It follows
that broadening processes correspond to a small energy
transfer between the excited atom and the broadening
particles. This energy is of the order of the observed
spectral interval /ζΔω and is usually much less than the
temperature kT of the plasma.

It-is clear from the foregoing discussion that the di-
pole moment d of the hydrogen atom appears in the the-
ory of broadening in two ways. Firstly, the matrix ele-
ments of d between the levels a and b determine the in-
teraction between the atom and the radiation field. Sec-
ondly, for states with given n, the operator d determines
the interaction between the atom and the plasma micro-
field.

The broadening problem can be divided into two parts
in a natural fashion. Thus, we have the dynamic part
connected with the solution of the SchrSdinger equation
(1.3) for the atom in the variable electric fields, and
the static part connected with averaging of the resulting
solution over the ensemble of perturbing plasma par-
ticles. These two problems cannot be solved in a gen-
eral form, and a number of approximations are used to
determine the spectrum. These are considered below.

2. THE 'OLD" ADIABATIC THEORY OF
BROADENING

Let us begin by considering the fundamentals of the
broadening process in terms of the simple adiabatic
model put forward by Weisskopfci3: and then improved
by Lindholm.C14] We shall assume that the hydrogen line
broadening is due to charged particles of a single type.
The atomic levels then undergo1153 the Stark frequency
splitting given by

ι-η2) — F,
i ! me

(2.1)

where C is the Stark constant for the component with
parabolic quantum numbers n l f nj corresponding to the
level n, and F is the electric field strength due to the
charged particles.
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The adiabatic model rests on the assumption that the
interaction between the atom and the field F(t) leads
only to a change in the phase of the wave function (phase
modulation)

ι|-α(0 <xexp[i (2.2)

It is clear that, according to (1.2), the correlation
function in this approximation takes the form

(2.3)

We now follow Anderson[le:l and assume that the shift
κ in (2.3) is the sum of the shifts xk due to the individ-
ual particles2 '

*<"-Λ>("· (2.9)

If the particles are independent, the resultant corre-
lation function splits into the product of functions cor-
responding to the individual particles:

We shall assume that the perturbation κ(ί) is due to a
single perturbing particle closest to the atom. The
phase shift produced during the complete transit of the
particle between t = - °° and t = +°° is then given by

Ctll (2.4)

The phase change Αφ characterizes the effectiveness of
the collision. In fact, coherence is totally "lost" when
Αφ ~ π, and the atom "forgets" the initial phase value
after this type of collision. The impact parameter pw

for which Αφ ~ π is called the Weisskopf radius and is
given by

Pft~T- (2·5)

This radius determines the effective cross section
σψ~ τρ%, which corresponds to the loss of coherence
and is called the optical cross section for collisions.
An important quantity in this context is the Weisskopf
collision frequency (or the reciprocal of the collision
time)

fl~-J-==.£. (2.6)

The Weisskopf radius defines a certain effective in-
teraction volume which is of the order of p%. When the
particle density is N, the number of particles found on
average within this volume is

A'p'w-ff · (2.7)

It follows that, wheng·» 1, a large number of particles
interact simultaneously with the atom. If, on the other
hand, g« 1, only one (nearest) particle is involved in
the interaction. Consequently, the parameter g provides
a measure of the extent to which the broadening colli-
sions may be regarded as binary.

The characteristic time between collisions is deter-
mined by the collision frequency (or the reciprocal of
the time for one mean free path)

.vc- (2.8)

— ( Π e x p ^ j \ xk(t)dtj\ __--s/exp |~i \ x ( / ) e f t ] V ,

where ( · · · ) ,- represents averaging over the phase vol-
ume of all the · particles and (' · · )i corresponds to av-
eraging over the phase volume of one particle. The
latter includes integration with respect to the coordi-
nates dro/V and over the velocity distribution f(v)dv of
the particles:

τ

Α" (τ) -_ { [ l _ - L j dro \ dv/(v)] [ l-exp (/ \ κ (/) d/)] }''' "*'" .

If we pass to the limit as
= const, we obtain

Α (τ) = e-•"·№.

— °°, V— °° with N = .' /V

(2.10)

where the "collision volume" is given by

V (τ) - j dr / (v) j Zip dp ]' A { 1 - exp (ί j -^-r ±-) } (2.11)

(we have transformed to the cylindrical coordinates:
dro=27rpdpdz). We shall now assume, for simplicity,
that the velocity ν is fixed and is equal to some charac-
teristic velocity corresponding to the Maxwellian ve-
locity distribution/(i>).

It is clear from (2.11) that the imaginary part,
ΙηιΤ^(τ), diverges linearly for large values of p, which
is connected with the specific character of the long-
range Coulomb interaction κ =C/rz. This divergence is
not physically meaningful and, as will be seen below, is
unimportant in the more rigorous approach. In fact, we
have ignored the symmetry of Stark splitting which is
reflected in the fact that the quantity C in (2.1) can as-
sume positive and negative values with equal probability.
The terms that are odd in C in the expression for ImV(T)
are, in fact, zero and it will be sufficient for us to con-
fine our attention to ReV(r).

It is readily seen that the only time scale for a change
in the collision volume V(T) is the reciprocal of the
Weisskopf frequency Ω " 1 . There are, therefore, two
characteristic frequency ranges, namely, Ω τ « ^ ^
Ω τ » 1. For small times, we have from (2.11)

We note that the ratio of the characteristic frequencies
Ω and γ is also equal to the parameter g, i. e., y/Ω =g.

2)This "scalar" model of the addition of perturbations is valid
only for a hydrogen atom in the binary region, in which
^«1-, see below.
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For large times, Ω τ » 1,

Re Γ (τ) « Γ (ΟΟ) τ = MJ^T,

(2.12)

(2.13)

where the derivative of the collision volume F'(«>) is
given by

(2.14)

We have introduced an upper cutoff limit pm for the
logarithmically divergent integral with respect to p.
We shall choose pm below.

It is important to note here that when Ω τ » 1 the evolu-
tion of the collision volume depends on the Weisskopf
cross section av, which is determined by the integral
over the entire time of flight between ί = -°° and t = +°°,
i. e., it is determined by completed transits. The re-
gion Ω τ » 1, which corresponds to fast collisions (large
Ω), is called the impact region. It is clear from (2.14)
that the main contribution to the latter is provided by
distant (weak) transits with p» pw~ C/v, and this is
logarithmically large in comparison with the contribu-
tion of "strong" collisions with p^pw.

The result given by (2.12) for Ω τ « 1 is independent
of velocity and is wholly connected with the form of the
static interaction potential C/r\. This region is, there-
fore, frequently referred to as the static region.3 '

We now consider the case of binary (two-body) colli-
sions g«\ and examine"71 the transition between the
impact and static regions within the line profile /(ω).
This can be done by substituting (2.10) in (1.1) and in-
tegrating by parts:

- - ^ - j Λί-.Λ-, γ· ( T ) i-.vrm]. (2.15)

As already noted, the characteristic scale for a change
in the functions V(r) and V'(r) is Ω " 1 . Let us transform
(2.15) by adding to V'(T) the value of y'(°°) and then sub-
tracting the same quantity from it. One of the resulting
integrals reduces to /(ω) and, in the other, we can set
exp[-iVy(T)]« 1. The integrand in this integral then con-
tains the difference V'(T) - V(°°), which vanishes for τ
^ Ω " 1 . However, the value of NV(T) is small in this re-
gion: N\V(T~il-1)\^N\V'('»)\Q-1=g«l, the last part of
which is, of course, the definition of a binary encounter.
Simple rearrangement then enables us to express the
line profile /(ω) in the following form:

(2.16)

\ dre'^V" (τ)
(I

i

= -=JI.VU \'.dp ρ I \ dtx(t)esp [ ίΛωί — Ι \ Λ κ (τ)

(2.17)

These expressions lead to the following very interest-
ing conclusion: the line profile in the case of the binary
approximation (g«l) has the structure of the Lorentz
formula with a "variable width" y(u>). This result was
obtained by YakimetsC5:i for a more general (nonadia-
batic) case by the method of Green functions. The char-
acteristic scale of a change in the function γ(ω) is,
clearly, the Weisskopf frequency Ω .

It follows that a smooth variation of the collision vol-
ume V(T) from small values to large values of τ corre-
sponds to a smooth variation in the "variable width"
γ(ω) from large values to small values of Δω. This, in
turn, corresponds to the "uncertainty relation" for a
Fourier inversion: Δωτ β ί ,~1.

The foregoing discussion provides a clear description
of the nature of the spectrum for small (ΔΩ « Ω) and
large (Δω»Ω) frequency detuning. In fact, (2.17) yields
the following order-of-magnitude expression: γ(ω)
~NReV'{Teii). Since τ,,,-Δω"1, (2.12) and (2.13) yield
γ(Αω» Ω) α iVC372^?cc Ν^Δω'1'* and 7(Δω«Ω)<χ Ννσψ

= γ(0). Substituting these values of γ(ω) in (2.16), we
obtain

(2.18)

The two regions Δω«Ω and Δω»Ω are commonly re-
ferred to as the impact and static regions. This termi-
nology is adopted because the line profile given by (2.18)
for Δω « Ω has the structure of the (impact) Lorentz
formula with constant width y(w)«y(0), but, for Δω»Ω,
it does not depend on the particle velocity (static case).

For a more detailed analysis of the profile (in par-
ticular, the case where Δω~Ω), it is convenient to in-
troduce the dimensionless frequency χ = Δω/Ω and the
dimensionless line profile I(x) defined by Ι(χ)άχ=Ι(ω)άω.
It then follows from (2.16) that

(2.19)

The dimensionless width y(?c) can easily be found from
(2.17). If we take the specific interaction x(i) = C/Cpz

+ Λ 2 ) and substitute ψ =arc tan(vt/p), we obtain an
analytic expression for y(jc) in terms of the confluent
hypergeometric function WXtll{z) (the Whittaker func-
tion, C1BJ p. 419)

k, (z) = J ιίφ cos (z tg φ — νφ) = ~^-2· *'2

(2.20)

Γ(1+ν/2)

where Γ(ζ) is the gamma function. We note that the ex-
istence of the analytic expression (2.20) is also con-
nected with the specific properties of hydrogen.

The limiting values of γ(χ) are as follows:

S)This seems to us to be more appropriate than the frequently
used "quasistatic" or the earlier designation "statistical." f (2.21)
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FIG. 1. "Variable linewidth" γ(χ) and
its impact and static limits y^uc) and

Substitution of (2.21) into (2.19) yields, of course, the
expression given by (2.18).

Figure 1 shows a graph of γ{χ) calculatedC19] from
(2.20) together with its limiting values (2.21).

Let us now consider the properties of the profile for
both ranges of values of Δω. In the impact region (Δω
« Ω), the linewidth diverges logarithmically as Δω (or
x) — 0. This divergence corresponds to the divergence
of the collision volume (2.14) for pm — °o. In fact, there
is always an upper cutoff parameter in plasma. It is
equal to the Debye shielding length

\/ (2.22)

It follows that, at any rate, pm<pD. We note, how-
ever, that the width γ(ω) is finite for finite values of Δω
and, according to (2.21), the logarithm contains the
ratio of the two lengths ρω~ιι/Δω and ρψ~ C/v. It fol-
lows that, in addition to pD, there is a further cutoff pa-
rameter, namely, ρω~υ/Δω. This was introduced by
Lewis t 2 0 ] (see also KoganC21]). The existence of this pa-
rameter is connected wholly with the long-range char-
acter of the Coulomb interaction. The particular fea-
ture of this interaction is that, strictly speaking, the
impact parameter is not valid for it since it involves
completed transits between t = - °° and t = +°°. Thus,
more rigorous analysis of the collision volume V{r) for
τ— °° would show that, for large (but finite) values of τ,
we have V(T)<X \n{vr/pw), which corresponds to pm~vT
in (2.14). This means that the only transits that can be
regarded as completed for finite τ are those with ρ «; ντ.
This was first pointed out by Kogan.C22: In the theory of
broadening, finite Δω always correspond to finite τ: Teff

~ Δω"1. Hence, it is clear that the Lewis cutoff param-
eter ρω~ν/Δω~υτ(!ί{ is connected with the inclusion of
uncompleted distant transits.

We note, finally, that, at first sight, there is one
further characteristic plasma length, namely, the mean
distance between the particles ro~N'1/3. However, this
cannot be used as the upper cutoff parameter pm, again
because of the long-range character of the perturbation.
The point is that, for "weak" interactions with p>pw,
which provide the main contribution to impact broaden-
ing [see (2.14)], the situation can be described in terms
of perturbation theory in the interaction d · F(i) of the
dipole moment d of the atom and the electric field F of
the perturbing particle. The correlation function Κ{τ) in
second-order perturbation theory is, therefore, ex-
pressed in terms of the correlation function (F(O)F(T))
for the electric fields. Kogan has shown122-1 that the lat-
ter is completely binary, i. e., its dependence on Ν is

trivial: (F(0)F(T)>OCAT(F1(0)F1(T)>, where F t is the sin-
gle-particle electric field [see (1.4)]. Since the binary
correlation function (F^OjF^r)) does not contain the den-
sity, the quantity N'i/3 cannot be used as the upper cut-
off parameter.

We may now summarize by saying that, if we are to
take into account both the Debye shielding and the un-
completed transits, the upper cutoff parameter must be
taken to be

Pm ---: (2.23)

which reduces to the smaller of the two lengths ρω and
pD. We recall that we are concerned with the impact
region for which ρω » pw.

In the static region (Δω»Ω), Eq. (2.21) shows that
the line profile is independent of the velocity of the
broadening particles. Hence, it is clear that this pro-
file can also be obtained from considerations unrelated
to the idea of particle transit. This will be done below
(Chap. 3). It is important to note at this point that, in
the binary region (g« 1), the contribution of the individ-
ual particles to the line profile is additive, and this is
reflected in the fact that /(ω) is proportional to the par-
ticle concentration N.

It is also important to note that the power-law depen-
dence γ(χ) oc x'1/2 for χ» 1 is valid only in the "positive"
static line wing x>0. This wing corresponds to the
same signs of the frequency shift Δω and the Stark con-
stant C. In the negative wing, which is conveniently re-
ferred to as the antistatic wing, the intensity falls off in
accordance with the exponential law. C 1 7 '2 3>2 4 ] 4 )

γ (τ) oc exp (—4 \rx). (2.24)

The Stark profile (2.18) is, therefore, asymmetric.
Symmetry is conserved only in the impact region I x I
« 1. In the "positive" and "negative" wings, on the
other hand, we have power-law and exponential decay,
respectively.

The above description of broadening was concerned
largely with the binary case (^« 1). For g» 1, on the
other hand, we must take into account the simultaneous
effect of many particles on the chosen atom, and we
must consider the question as to how the perturbations
of the individual particles are to be added. In the above
discussion, we assumed that the energy (frequency)
shifts xk due to the individual particles can be simply
added. At first sight, this seems natural because it
corresponds to the addition of the Hamiltonians repre-
senting the interaction of the atom with each of the par-
ticles. It is clear, however, that, when the Stark shift
is evaluated (i.e., each Hamiltonian is diagonalized),
we must take a definite coordinate system with the ζ axis
lying along the electric field F,, producing the given shift
x-k. If the number of particles is large, it is not clear

4)When the averaging in (2.24) is carried out with the Max-
well distribution function, the exponential decay law is some-
what modified: ybc) <* exp(—x3 / 4 ) .
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in advance which of the fields F* is to be taken parallel
to the ζ axis. The limiting situation is that in which the
perturbation is produced by only two charges (say, ions)
located at equal distances on either side of the atom. a s l

In this case, the resultant shift is κ = κ, + κ2 = 2 κ1 al-
though it is clear that the resultant field F = F! +F 2 act-
ing on the atom is zero.

It follows from the foregoing that the "scalar" addi-
tion of the perturbations κ =1k x t, which corresponds to
a new choice of the coordinate system Oz II Fk in each
case, will not, in general, be valid. The only special
direction along which the ζ axis is to be taken is the re-
sultant electric field F=X ) !F f t. The resultant shift κ
= (C/e) IFI = (C/e) i lk F J is then determined by the modu-
lus of the vector sum of the fields, and this is not, in
general, equal to the sum of the moduli of the individual
fields.

It is important to note that this "vector" law of addi-
tion for the resultant shift κ = (C/e)IZftFs I is indepen-
dent of the choice of the coordinate system. The sys-
tem in which the ζ axis is parallel to F =YJh Fk is only
one of the possible systems, but it is convenient because
the evaluation of the shift is then particularly simple.
It is possible, however, to select another coordinate
system provided its position is fixed in space and is not
chosen anew each time, as in the "scalar" model.

The adiabatic theory of broadening based on the vec-
tor law of addition of the fields (for arbitrary g) was de-
veloped by Kogan. c a i : The general expression for the
line profile obtained by Kogan121: is very complicated
because of the complicated statistics of the multipar-
ticle plasma microfield (see Chaps. 3 and 4). Apart
from the case of the binary static wing, this expression
can be simplified only for g«l and g» 1. In the former
case, it yields (2.16), i. e., an expression identical to
that obtained for the scalar composition of perturba-
tions. This is readily understood because, when^« 1,
only one particle interacts with the atom and the law of
addition is unimportant. For g» 1, most of the profile
is described by the "multiple" static (i. e., Holtsmark;
see Chap. 3) profile with corrections for the thermal
motion of the perturbing particles corresponding to the
adiabatic mechanism of phase modulation (Chap. 4).

We note that the theory of broadening is directly re-
lated to the theory of scattering. Thus, in the impact
approximation, the line width and shift can be expressed
in terms of the cross sections for the scattering of a
charged particle by an atom.C26>27:1 it is easily verified,
using (2.17), that the main contribution to the integral
in the static result [see (2.18)] is provided by the point
tk defined by the following condition : i0]:

κ (h) = Δω. (2.25)

Condition (2.25) can be looked upon as the condition
for the crossing of terms, and the method used to obtain
the static result is completely analogous to the Landau-
Zener method1·15-1 in the theory of scattering. In the the-
ory of broadening, this result was first used by Jablon-
ski. Ε β 1 It was subsequently developed by Szudy, ^ 9 : who

used the unified quasiclassical approach to obtain the
results of both the impact and static theories (see also
Szudy and BailisC30]).

The adiabatic model of broadening has a certain
analogy with the model of inelastic transitions in a two-
level system during collisions with classical particles.
The formula given by (2.17) for the "variable" line-
width γ(ω) has the same structure as the formula for the
probability of an inelastic transition obtained by Vainsh-
stein et al.C31] In the present context, the level separa-
tion ω12 in the two-level system is replaced by the fre-
quency detuning Δω. The inelastic cross section [or the
"variable" linewidth y(w)] is determined by the Massey
parameter ρβίίΔω/ν, where p e f l is the effective impact
parameter in the collision (Weisskopf radius in the
broadening problem). When ρβίΙΑω/ν«1, Eq. (2.17)
yields, as already noted, the result of the impact theory
(2.18), which corresponds (within the framework of per-
turbation theory) to the Born approximation in the theory
of inelastic transitions. When ρβ{ίΔω/ν« 1, the transi-
tion probability [and linewidth γ(ω)] is determined by the
existence or otherwise of the term-crossing point (2.25).
In the former case, the main contribution to the inelas-
tic transition (and the line profile) is provided by the
crossing point, and the transition cross section is given
by the Landau-Zener formula [and, correspondingly,
the line profile is given by (2.18), i. e., the static the-
ory]. If the crossing point does not exist ("antistatic"
wing in broadening), the transition cross section and
the line profile exhibit the exponential decay given by
(2.24). This analogy enables us to establish similarity
relationships between the cross sections for inelastic
transitions and the spectral line profiles. a a

3. THE STATIC HOLTSMARK THEORY. PLASMA
MICROFIELD

We shall now consider one of the first treatments of
the broadening problem, namely, that formulated by
Holtsmark. t n The essence of this theory is that the
electric field produced by ions in the neighborhood of
the radiating atom is assumed to be completely static
(i. e., the velocity of all the ions is assumed to be zero,
and the interaction between the electrons is neglected).
Since the ions are distributed randomly in the plasma,
each atom "sees" its own ion field F. The emission
spectrum corresponding to each Stark component of the
atom is, therefore, given by the δ function

/αρ(ω) = /ίΙβθ(Δίύ — CafiF) (3, 1)

with the frequency shifted by the Stark splitting Ca6F.

The observed intensity is obtained by summing the
intensities due to the individual atoms or, which amounts
to the same thing, by averaging (3.1) over the distribu-
tion W(F) of the ion field. The function W(F) determines
the probability of each given value of the ion field F
which is the vector sum of the (static) fields Fk due to
the individual particles:

jr jr

· = 'Σ3·. (3.2)
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FIG. 2. The Holtsmark distri-
bution &φ).

Integration of (3.1) over all the F with the distribution
function W(F) yields the following expression for the
static intensity distribution in the a — β Stark component:

(&)· (3.3)

The evaluation of the line profile is thus reduced to
the determination of the distribution W(F). To evaluate
this function, Holtsmark neglected the mutual correla-
tion between the positions of the ions, so that the proba-
bility of the configuration ru rx +dr1; r2, r2 +<2r2; . . . ;
ry, r y + d i y was proportional to the volume element
dT^Tg ... drt-(V)~-f of configuration space.

The probability W(F) is obviously proportional to that
part of the configuration space in which (3.2) is satis-
fied. The required range of the ion coordinates can be
automatically isolated by averaging the δ function over
all space subject to (3.2):

— lep

where the δ function is expressed in terms of the addi-
tional integral with respect to p. As in the derivation
of (2.10), we assume that the particles are independent,
and this gives

W(F)= ) dpe«>Fesp[-N>\ rfr(l — e- i fo r>3)]

-̂- j (/pexp[ipF —Λ'(/.ί·ρ)3 "l,

where λ = 2ττ(4/15)2/3«2.603.

Hence, it is clear that the distribution function de-
pends only on the field strength F= IFI. In fact, inte-
grating with respect to the angles defining the direction
of the vector p, we obtainC32]

=W (F)dF -

where

cV (β) ^ -i- β j di sin β* exp ( - j * - ) ,
υ

Fo = λ«Λ2'3 (λ « 2.603).

1 ^ , (3.4)

(3.5)

(3.6)

The function $β(β) satisfies the normalization condi-
tion la άβΜ(β) =1. Figure 2 shows a graph of this func-
tion. The maximum value of Μ(β) corresponds to β
= 1.607. The limiting values are as follows:

- ( 1 - τ - ό . Ι Ο 7 β
(3.7)

The Holtsmark distribution is very different from the
Gaussian distribution. It approaches the latter only for
small values of β, whereas, for large values of β, it be-
comes identical with the field distribution due to a single
(closest) particle. This is easily understood: small
values of β correspond to weak fields due to a large num-
ber of ions, and the resultant field, like any sum of a
large number of random quantities, may reasonably be
expected to follow the Gaussian distribution.C333 As β
increases, the ion field begins to be due to a smaller
number of particles and, in the limit as β» 1, only one
(closest) particle determines the distribution of the
(strong) fields. Roughly speaking, therefore, the Holts-
mark distribution describes the transition from the
Gaussian distribution, corresponding to weak fields, to
the binary distribution of strong fields.

We note a useful detail. Although the scale .Fo of the
Holtsmark distribution (3.6) should be of the order of
magnitude of the average field at the mean interparticle
distance, i .e . , F a v = e(477^/3)2/3 = 2.61eAT2/3, the differ-
ence between these two quantities is, in fact, less than
1%.

To obtain the static profile /^(ω) of the entire line,
we must substitute the Holtsmark distribution (3.4) in
(3.3), and then sum over the Stark components a and β
of the upper and lower levels and normalize by dividing
by the total line intensity /„ =Σ α , β / α β :

a.»
(3.8)

Line profile calculations based on this expression have
been carried out by Underhill and WaddellC34] for a num-
ber of hydrogen lines.

It is important to note that the Holtsmark profile is
basically nonbinary. According to (3.7), the binary re-
sult corresponds only to the line wings, i. e., large val-
ues of Δω:

2.T.VC' (3.9)

where C is the effective Stark constant for the line as a
whole. This constant can be estimated from the for-
mula"0· 3 5 ]

C---(τ) τ«- (3.10)

where na, nb are the principal quantum numbers of levels
a and b.

Both the expression given by (3.9) and the binary re-
sult given by (2.21) are linear in the density Ν of the
broadening particles. We note that transition to the
binary result occurs for

Δω > — Fo = ICN2 3 = Λω0.
(3.11)
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FIG. 3. Electric field distribution \νΒ(β) including ion correla-
tions and Debye screening.

The quantity Δω0 defines the characteristic scale of
the Holtsmark broadening of a hydrogen line. It can
easily be estimated from (3.10) and (3.11).

The line profile given by (3.8) satisfies the normaliza-
tion condition

\ </ω/01 (ω) = 1, (3.12)

which follows from the normalization of the Holtsmark
function.

The Holtsmark theory is thus a departure from the
framework of the binary broadening picture. It is based
on the "vector" law of addition of the perturbations, and
its main restriction is the assumption that the ions are
static (this will be discussed in Chap. 4).

The Holtsmark distribution is a simple model of the
distribution of the electric microfield produced by ions
and electrons in the interior of the plasma. Rigorous
evaluation of the distribution function, on the other hand,
must take into account the correlation between the ions
and the screening of their electric fields by interactions
with electrons. The broadening ions in plasma interact
with one another through the screened Coulomb poten-
tials

y

where pD is the Debye length.

If the plasma is in thermal equilibrium at tempera-
ture T, the probability of a given ion configuration is
given by the product of the volume elements drl, drz,...,
drjr/(Vr and the additional factor exp[- V(r1... r/·)/
kT] which represents the interaction between the ions.
It is clear that the inclusion of this factor will reduce
the probability of configurations with large values of V
(i. e., short distances between the ions), which corre-
spond to large values of the fields F. The true distribu-
tion function should, therefore, emphasize the proba-
bility of weak force fields and reduce the probability of
strong fields, as compared with the Holtsmark distribu-
tion. The deviation from this distribution depends on the
ratio of the mean distance r 0 between the ions [(4ττ/3)το
= 1] and the Debye length:

a,iaiv'.'r1;:. (3.13)

It is clear that a"3 is equal to the mean number ND of
particles in the sphere of radius equal to the Debye
length. It is also clear that, as a - 0, the distribution
function should tend to the Holtsmark distribution. De-
viations from the latter increase with increasing a.
Figure 3 shows the form of the distribution function for
different values of a, as calculated by Hooper.O e : The
deviations from the Holtsmark distribution are appre-
ciable only for α =4.0. The number of particles in the
Debye sphere is ND * 16 in this case.

The criterion for the validity of the Holtsmark theory

i s

a~3 = λ' = - r)3 • Λ " » ! • (3.14)

It restricts the applicability of the Holtsmark distribu-
tion on the low-temperature side.

We note that there are calculations in the litera-
ture" 8 " 3 9 3 that, strictly speaking, are valid only when
ND » 1 for which the deviation from the Holtsmark dis-
tribution is small. For ND - 1, the accuracy of these
calculations is difficult to estimate. A detailed account
of effects connected with ion correlations in plasma is
given in Kudrin's book.C40]

We must now consider one further generalization of
the Holtsmark distribution, which allows for the tem-
poral dynamics of the ion field due to the motion of the
particles. The effect of this motion on broadening pro-
cesses will be considered in Chap. 4. Here, we shall
briefly touch upon the behavior of the two-time distribu-
tion W(F1( F2) that determines the probability of observ-
ing fields Fj and F2 at times t=0 and t = r, respectively.
This problem has been considered by Kogan and Selidov-
kin. U i :

Calculations of W(Flf F2) are possible only in the lim-
iting cases of small and large values of τ. As τ— 0, the
result should be the field distribution at two infinitesi-
mally close instants of time for which correlation is
fully conserved:

(•£) δ (F,-F2). (3.15)

The characteristic time τρ for the violation of cor-
relation can be determined from the condition that the
average (for given Ft) change in the field AFi=(\F1

-Fz\
z) during the time TP should be of the same order

as Fx itself, i.e., (AFZ)"F\. This gives

, « ί
(3.16)

where ν0 =-J2kT/M is the ion velocity and β1 =F1/F0.

It is clear from (3.16) that correlation is most rapidly
lost by small (ft « 1) and large (ft »1) fields. These
estimates agree with estimates of the mean field life-
time (Chap. 4).

For large values of τ, the distribution function is
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3/AV' ·Λ-Οτ
(3.17)

The leading term in (3.17) is, as expected, the prod-
uct of the two independent Holtsmark solutions. The
second term describes the slowly (<χ 1/T) decaying field
correlation. By comparing the second term in (3.17)
with the first, we can estimate the characteristic time
necessary to "induce correlation":

0.8.
(3.18)

Hence, it is clear that correlation is more rapidly in-
duced for high fields (/31; 0 2 » 1) than for low fields.

4. EFFECT OF THE THERMAL MOTION OF IONS

The fact that the broadening problem can be treated
on the basis of the static plasma field distribution func-
tion is hardly obvious in advance.5) In fact, the very
existence of plasma is connected with sufficiently high
temperatures at which ions have considerable velocities.
This means that the ion field varies with time, and it is
important to establish the conditions under which this
variation may be neglected. The most direct method is
to calculate the corrections to the static line profile due
to the thermal motion of the ions. The criterion for the
ions to be static is then equivalent to the requirement
that these corrections must be small in comparison with
the zero-order (static) approximation. HolsteinC43] has
carried out this program in the binary case. For the
multiple (Holtsmark) broadening, the "thermal" correc-
tions were first calculated by Kogan1213 within the frame-
work of the phase modulation model. Wimmel"4-1 used
the same model to give a clear physical picture of the
effect of the thermal motion of the ions on the atom. A
complete calculation of thermal corrections, including
nonadiabatic effects, has been carried out by Sholin et
al.lt»

We shall consider, to begin with and following Wim-
mel,C 4 4 ] the general properties of the thermal motion ef-
fects within the framework of the phase modulation
model.

Suppose that the ion field F(t) varies sufficiently slow-
ly, so that the correlation function (2.3) can be expanded
into a series in powers of the field derivatives F. If we
then substitute (2.3) in (1.1), we obtain

Kb (ω) ί dFW (F) — Re (4.1)

where we have confined our attention to the first deriva-
tive of the field F and have divided the averaging pro-

5)Thus, in 1926, Pauli wrote: c42'"Holtsmark undertook to
interpret pressure broadening of a spectral line in terms of
the Stark effect produced by intermolecular fields. Holts-
mark's results are not altogether well founded because the
intermolecular fields that he introduced cannot be regarded
as uniform or, still less, time-independent." (The author
is indebted to G. V. Sholin and A. V. Demura for bringing
this quotation to his attention.)

cess into two stages: we first average over all the F
for a fixed field F (this is indicated by (... )F) and then
over all the fields F with the Holtsmark distribution
function W{F).

The inner integral with respect to τ in (4.1) is the
spectrum of the atom for a fixed field F and, in the ab-
sence of the thermal motion (F = 0), gives the δ function
of (3.1). The factor within (... }F obviously describes
the loss of phase coherence by the atom as a result of
the thermal motion of the ions. In fact, when I CFr2/Ze I
~ 1, the atom "forgets" its original phase, and this leads
to the spreading of the spectrum for given F by the
amount I CF/e\ ~1/2. The time TBh during which phase co-
herence is lost is given by the following order-of-mag-
nitude formula:

:>Γ~/ΙΤ· (4.2)

where TF~F(\F\*)F

1/Z is the mean lifetime of the field F.

The loss-of-coherence time Tph is thus related to the
finite magnitude of the ion field lifetime TF. To calcu-
late the latter, we must know the field derivatives ( F 2 ) f

for given F. Such calculations have been carried out by
Chandrasekhar and von Neumann. [ 3 2 ] We shall be in-
terested in the components (Fl)F and {Fl)F, respectively
parallel and perpendicular to the field vector F:

(Ff,)F-f (

8

1 3.

J ββ3.

2 3,
«№>•/-.

P< I-

P«i.
•4ό. p » l .

(4.3)

(4.4)

where wF = X1/2%/V1/3(X = 2.603) is the characteristic
scale of the field frequency and & = F/Fa. The deriva-
tives given by (4.3) and (4.4) for any β differ from one
another only by numerical factors of the order of unity.
It is, therefore, unimportant as to which of them is
used to determine TF. Using (4.3) and (4.4), we obtain

TF~F(\ (4.5)

i .e . , intermediate fields (/3~1) have the maximum life-
time, whereas weak (β« 1) and strong (β» 1) fields have
short lifetimes.

Equations (4.2) and (4. 5) can be used to formulate the
static criterion. Thus, the field F can be regarded as
static if the atom loses coherence before the ion field
succeeds in changing, i .e . ,

r p h <r F , or -f (4.6)

Let us consider what happens to the criterion given
by (4.6) for large and small values of Aa>(CF/e). From
(4.5) and (4.6) we have

Δ ω > Ω. Λω0,

YC.\i; Δω < Αω0.

(4.7a)

(4.7b)

When these conditions are analyzed, it is important
to bear in mind the value of the parameter g( =N(C/v()

3.
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When gt« 1 (binary region), the static approximation is
valid only in the distant wing for which Δα>»Ω» Δω0.
When^» 1 (multiple case), the static theory is valid
throughout, with the exception of the central part of the
profile, where Δω0 » Δω » ι/CNv,. The validity of the
Holtsmark approximation is thus found to improve as
the parameter g increases and as we move further out-
ward in the line wing.

Let us now proceed to a quantitative calculation of the
thermal corrections to the static line profile. So far,
our discussion has been based on the assumption that the
ion field F(i) varies only in magnitude (modulus). This
variation is clearly connected with the derivatives Fn

that are parallel to the field. In reality, the true ion
field F(i) will also vary in direction. This is due to the
derivative YL and leads to two important effects. If the
rotation of the vector F(i) occurs sufficiently slowly, the
dipole moment d of the atom can follow this variation
adiabatically, and its component along the direction of
F remains constant. With this type of reorientation of
the atom, the component of d along the direction of prop-
agation of the light wave, k, will vary, and since the
square of this component determines the intensity of the
radiation emitted by the atom, we should have a certain
amplitude modulation.

In addition to the amplitude modulation, rotation of the
quantization axis is accompanied by nonadiabatic effects
connected with the fact that the atom lags behind the field
F(i). Thus, if we direct one axis of a rotating system
of coordinates along the field F, we shall have in this
system an additional interaction between the orbital
angular momentum of the system L and the "magnetic"
field. This interaction leads to a change in the wave
function and in the energy of the radiating atom which
will, of course, affect the corresponding matrix ele-
ments of the dipole moment and the phase of the radi-
ated wave.

Let the χ axis of the rotating system of coordinates
lie along the vector F(i). We now transform the wave
function ψ to this rotating system:

of the modulus of the field F is related to F,,, whereas
the angular velocity φ(0) is given by

i = < (4.8)

where ip' is the wave function in the rotating system, L
is the orbital angular momentum of the atom, and φ (t)
is the angle through which the field F rotates in a time
t[cp(O) =0]. Substituting (4.18) in the Schrodinger equa-
tion, we obtain the equation for the function ψ':

ih ^- = [ d V 0 - (4.9)

where 3£0 is the unperturbed Hamiltonian for the atom.

It is clear that, in the rotating system, we have both
the electrostatic (dxF) and "magnetic" (Lj>) perturba-
tion. The latter is connected with the instantaneous
angular velocity φ of the field. The appearance of this
perturbation is, obviously, a consequence of the Larmor
theorem.C 4 e 3 Our aim is to develop a perturbation the-
ory in the rate of change of the field F. The derivative

I «p (0) | =
F (0) F (0)

F2 (4.10)

Solution of (4.9) by perturbation theory methods can
be used to express the corrections for the thermal mo-
tion of the ions in terms of the mean squares of the field
derivatives given by (4.2) and (4.4). For the center of
the line (small values of Δω and .F— 0), these correc-
tions are found to increase rapidly as a result of the
nonadiabatic effects. Thus, it is clear from (4.9) that
the nonadiabatic corrections to the wave function ip due
to rotation are determined by the ratio φ/d^F or, ac-
cording to (4.10), by the ratio IFJ/ .F 2 which increases
rapidly as .F— 0.

When the thermal motion of the ions is taken into ac-
count, the hydrogen line profile /(ω) can be written as
the sum of two terms, namely, the zeroth term 7<0)

(Holtsmark term) and the correction term i*1' describ-
ing the effects associated with thermal motion:

Π (χ) 'I a,x~\ ' z « l '

(4.11)

(4.12)

where au az are numerical constants that depend on the
particular line under investigation.

The thermal correction 7*1' is proportional to the ion
temperature Τ (it enters through the factor g "2 / 3 <x v\
oc T) and contains the function Π(*) which describes phase
and amplitude modulation and nonadiabatic effects.

In the line wing (x>> 1), the thermal correction is U(x)
cc x~llz, i. e., it decreases more rapidly than the Holts-
mark function in such a way that the contributions of all
three effects to the correction are of the same order.
At the line center (x« 1), there is a rapid increase in
the thermal correction [n(#)cc x" 2]. This effect is wholly
due to the fact that the rotation is nonadiabatic, whilst
the phase and amplitude modulation effects tend to a
constant and are, therefore, relatively small. These
results are valid for any hydrogen line.

The condition for the validity of the static Holtsmark
theory is, obviously, the requirement that the second
term in (4.11) be small in comparison with the first. It
can be shown that this is equivalent to the criteria given
by (4.6) and (4.7) above. It is now clear, however,
that, in contrast to the Holtsmark approximation itself,
deviations from this approximation are due to nonadia-
batic effects, i. e., the fact that the adiabatic oscillator
model is no longer valid. In terms of the criterion
given by (4.6), we may say that the main reason for the
loss of coherence by the atom is not phase modulation
but the presence of nonadiabatic transitions between
Stark components due to the rotation of the ion field.

To summarize, we note that the Holtsmark theory has
a definite range of validity. Effects associated with
ion-ion correlation restrict the validity of this theory
on the side of low temperatures [condition (3.14)],
whereas thermal-motion effects restrict it on the high-
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temperature side (the condition g =N(C/v)3» 1). If we

compare these conditions, we see that the width of the

region in which the Holtsmark theory is valid is defined

by

Λ'-'/S
• 1 , (4.13)

where n is the principal quantum number of the broad-
ened level, M, m are the ion and electron masses, and
a0 is the first Bohr radius. The condition nza0/N " 1 / 3

« 1 obviously defines the degree of inhomogeneity of the
ion field within the region occupied by the atom (see
Chap. 10 for further details). The inequality given by
(4.13) is equivalent to Ν» 1014 cm'3 for initial hydrogen
lines corresponding to n = 3, 4, 5.

5. IMPACT APPROXIMATION. HYDROGEN LINE
PROFILE FOR A FIXED ION FIELD

We shall now consider the impact approximation which
is valid for broadening by fast particles (usually elec-
trons). For such particles, ge =N(C/ve)

s« 1 and most
of the line profile lies in the impact region. It is only
in the distant wings, where Δω^Ωβ, that transition from
the impact to the static broadening mechanism is pos-
sible.

The theory of impact broadening for hydrogen levels
must, from the very outset, take into account nonadia-
batic transitions between degenerate states correspond-
ing to the same level with a given principal quantum
number n. It is important to note, however, that de-
generacy of the hydrogen levels in plasma is removed
by the presence of the statistical ion field Ft. All cal-
culations on impact broadening by electrons must,
therefore, be carried out in the parabolic coordinates
with the ζ axis parallel to F^ so that the interaction be-
tween the atom and the ion field is diagonal.

The modern theory of impact broadening was devel-
oped in the papers of Sobel'man,iz&l Griem et al.,C47:l

and Vainshtein and Sobel'man.t483 Our account will fol-
low the expositions given by Griem et al., u n Deutsch
et al.,C5o: and Sholin et al.C51]

The wave function ψ(ί) of both levels satisfies the
Schr'odinger equation

ih^ = [Seo(Fi)~Ve(t)]i; (5.1)

where the zero-order Hamiltonian 3Bo includes the in-
teraction with the ion field F{ and Ye(t) = -d · Fe(i) rep-
resents the interaction between the dipole moment d of
the atom and the electron field Fe(i) [see (1.4)].

It is convenient to introduce the evolution operator
U(t, 0) in the interaction representation:

(5.2)

(5.3)

The operator V satisfies the equation

ih — =- e^o'V, it) e- >'X"U « V. it) U,
at

whose formal solution is

) = 7>xp[ -j (5.4)

where f is the chronological order operator.

The line profile of (1.1) and (1. 2) can easily be writ-
ten down with the aid of the evolution operators Ua and
Ub for both levels:

, (ω) = Re \
OL, α ' , σ 0

Ρ, Ρ"

χ (α' I {(a ] Ua (t. 0) ] α') φ \ U'{ (/. 0) | β')},

(5.5)

where da is the dipole moment component and the symbol
{...} represents averaging over the coordinates and ve-
locities of the perturbing electrons. It will be conve-
nient to use the notation

(a | Ua β') = «αβ | UaUt \ α'β';>.

We shall now try to simplify the expressions for Ua

and Ub corresponding to (5.4) [and hence for the spec-
trum /α6(ω)] by using the impact approximation. This
can be done if we are interested in time intervals Δί that
are large in comparison with the collision time p/v. At
the same time, the interval Δί must be small in com-
parison with the time y-1 between collisions (y is the
impact width due to collisions), so that the increase in
the operator U in the interval Δί is still small. All this
is equivalent to

plv < Δί < γ-'.

Assuming γ~Νντιρζ, we see that the condition for the
existence of this kind of region is that the collisions
must be binary: Np3 « 1.

Consider the change in the operator product UaU*
during the time Δί:

AUa(t,0)ut(t, 0) = , 0)Ut(t-M. O)-Ua(t, O)Ut{t, 0)
ί, t)U%(t-M, * ) - i]Ua(t, O)Ut(t, 0).

(5.6)

We must now average (5.6) over the collision param-
eters. Since Δί» ρ/ν, the increase in the operators
UaU* o n t h e interval (i, t +Δί) is independent of the quan-
tity Ua(t,0)U*{t, 0), and averaging of the two cofactors
on the right-hand side of (5.6) can be carried out sepa-
rately. The average product {UaU*} is then the solution
of

-M-Xo*-'Xob>>{ua(t, 0)U*b(t, 0)},

(5.7)

where the time-independent operator $ab is called the

electron impact broadening operator and is given by

(5.8)

The solution of (5.7) can be written in the form
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(5.9)

Substituting (5.9) in the expression for the spectrum
given by (5. 5), we obtain the line profile in the impact
approximation:

/„., (ω) -:- - Re ^ (β | rf0 [ α) (ο' | <?„ | β')

•x. a ' : p. β ' , ΰ

Χ«αβ|[/ω-1(:--:^ •- ,-; oh) - Φ.,,,]" ' | α'β')>.

(5.10)

Thus, the precise determination of the evolution op-
erator U(t, 0) and the line profile /„„ (ω) reduces in the
impact approximation to the determination of the sim-
pler electron impact broadening operator Φα4.

Since At» p/v, the evolution operator in (5. 8) can be
replaced on the interval (t, t + At) by the scattering ma-
trixes Sa and Sb. We then have

Φο., - Λ' f dvvf (ν) [ 2.ΊΟ dp {SaSi - 1}. (5.11)

where the symbol {...} represents averaging over the
position angles of the vectors ρ and v, and f(v) is the
Maxwell electron velocity distribution.

The evaluation of the operator ΦαΙ> involves the deter-
mination of the scattering matrix S, and this is still a
very complex problem. It can, however, be simplified
by using the fact that, when the S matrix is evaluated,
it turns out that the perturbation theory in V(t) is valid
[see (5.3)]. This is connected with the long-range char-
acter of the Coulomb field. In fact, the structure of
(5.11) is completely analogous to that of (2.14) in the
adiabatic theory of broadening, and the analog of the S
matrix is the quantity cos!"^y-(t)dt = cos(rrC/pv). When
(2.14) was analyzed, we saw that the main contribution
to broadening was provided by distant (weak) transits
with p>ρψ for which perturbation theory can be used.

Precisely the same considerations enable us to re-
place the exact S matrix in (5.11) by its expansion into
a perturbation-theory series up to the second order.

We recall that evaluation of the S matrix by perturba-
tion theory is only logarithmically precise, and the ac-
curacy is usually no better than 20-30%. To improve
the accuracy, the logarithmic term is augmented by the
term representing the contribution of strong collisions
with p<pw. The latter collisions are taken into account
on the basis of approximate formulas (for example, those
of the adiabatic model) which, nevertheless, give results
that are close to one another.C523

Let us begin by considering the broadening of level a,
for which the S matrix in second-order perturbation
theory is of the form

(5.12)

The next step is to substitute the explicit expression
for the perturbation Va(i) =e" i v° 'er a · ~F(t)eiot and to per-
form the averaging over the position angles of the vec-
tors ρ and ν in F(i). The first term on the right-hand

side of (5.12) is then found to vanish and, after a num-
ber of transformations and substitution in (5.11), the
second term gives"7· 4 9~5 1 ]

where the numerical coefficient in front of the logarithm
represents the contribution of strong collisions and vQ

The formula given by (5.13) is a generalization of the
adiabatic result given by (2.13) and (2.14). In particu-
lar, the square of the Stark constant in (2.14) is re-
placed in (5.13) by the operator (e*/H*}rara. The upper
cutoff parameter pm must, according to Chap. 2, be set
equal to the smaller of the two values pD and ρω = ν/Αω
[see (2.23)]. We note that the splitting of the levels in
the ion field CF/e~CNzn does not appear in the final
result for the operator Φα. This is so because the mag-
nitude of this splitting CNzn is small in comparison with
the reciprocal collision time between the electron and
the atom τ'ι~ ve/peW~v\/C~Ue.

Generalization of (5.13) to the case of broadening of
both levels presents no difficulty. The operator Φο6

then contains both the second-order perturbation-theory
terms rara and rar* and the cross term involving the
products of first-order terms:

Φαΐ.'- • — -if -V-ρ- (ι·)"1 (r,,ro - rjr,· - 2r,,r,*) Λ. (5.14)

Hence, it is clear that the contributions of the upper
and lower levels to impact broadening are not additive.

As already noted, the evaluation of the matrix ele-
ments of the operators Φα11 must be carried out in the
parabolic system of coordinates with the ζ axis lying
along the ion field. For the matrix elements of the op-
erators r · r, this yields'·513

(nsn.,m\ r-r \ 2 — (ni — n.tf—m'i— 1], (5.15)

= «;-4-« 2 V " ι ( η — « ι ) ( » • ; - ' ) (n — iu— 1),

(it,-'- 1, n2— 1, mj r-r | i i | ; i : ni )

(5.16)
The operator ΦαΙ) must now be substituted into the

general formula (5.10) for the line profile /ο1>(ω). Cal-
culations of this profile involve laborious numerical
procedures for the diagonalization of the resolvent op-
erator [ίω - i(SSoa - <$>(»)/# +Φα»]~S and the complexity
of this increases with the number of components in the
line. For the approximate determination of the impact
linewidth γ, we can neglect nondiagonal matrix elements
of Φα6 and sum the diagonal elements with weights equal
to the component intensities8':

.. __ (5.17)

8)We note that the formula given by (5.17) is exact for the line
wing.
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For rough estimates, we can use the expression

V "3 J , 2 \f Q I * T \ Q '' b ) Ι " * Ϊ 7 ~T~ v . i - l u I , I 0 * Χ Ο /

We note that this formula is only valid for the lower
lines. For transitions with quantum numbers na» 1,
nb» 1, \na -nb\ «na, the cross term in (5.14) leads to
strong compensation of the width of the individual levels,
and this may give a weaker dependence on n, namely,

The resulting picture of electron impact broadening
in the ion field can be described schematically as fol-
lows. The ion field splits the hydrogen line into the in-
dividual Stark components which are broadened by elec-
tron impacts. The impact widths of these components
are determined by the diagonal matrix elements (5.14)
of the operator Φα6.

The line profile broadened by electrons in a fixed ion
field has a very complicated structure. As noted above,
its evaluation involves the diagonalization of the resol-
vent operator in (5.10). This can be done analytically
only for the simplest lines (Ly-a, Ly-β), and was first
carried out by Strekalov and Burshtein,C54] and by Pfen-
nig. C 5 5 ] We shall follow Sholin et al.C51]

Consider the eigenvalues Ea and eigenfunctions Ι ψα)
of the Hamiltonian 3E0(F)/K- ίΦα, which includes the in-
teraction with the ion field F and electron impact broad-
ening Φα. The eigenfunctions \φΒ) of the Hamiltonian
S£Q(F) are known. We can, therefore, find the matrix
CgQ! defining the transformation from the basis \φ^) to
the basis \φα). The operator Ho -ίΦ is not Hermitian
and, therefore, the system of ket vectors Ι φα) must be
augmented by the orthogonal system of bra vectors (Xa I.
This system is obtained from (ψβ\ with the aid of the ma-
trix C'^. Since the operator SS0 - ίΦ is not Hermitian,
the matrix C is not unitary: C"1 Φ C*. Having found the
functions Ι φα) and (χ α 1, we must obviously diagonalize
the resolvent operator and then obtain the line profile.
The problem is thus reduced to the determination of the
matrix C. Consider the simplest hydrogen line Ly-a.
The operator Φα for this line has only one nondiagonal
matrix element connecting the symmetric lateral compo-
nents. The energy eigenvalues are

f, ; ^ ( Ο ± Ο _ Ϊ , Γ , Q S ) ' (4)"-P 2 ; (5.19)

where w and β are, respectively, the diagonal and non-
diagonal matrix elements of Φα, and Δ is the level split-
ting in the ion field. It is clear from (5.19) that the
presence of the non-Hermitian nondiagonal element leads
to a peculiar effect, namely, the energy levels EY and
Ez do not repel because of the presence of β but, on the
contrary, are found effectively to attract. In particular,
when β = Δ/2, we have the point £ t =EZ at which the two
states degenerate (collapse). The character of the spec-
trum undergoes a substantial change at this point be-
cause the quantity Ω becomes purely imaginary for Δ/2
< β. The contribution of the lateral components to the
line intensity outside the collapse region has the formC541

The contribution of the nondiagonal matrix element β
is important near the line center at which Δω =0 but, in
the wings, it plays only a minor role. In the collapse
region Δ/2 < β and the character of the spectrum is found
to change. Here, the quantity Ω is additive to the di-
agonal matrix element w, and the collapse effect leads
to a certain narrowing of the line. At the same time,
it must be recalled that the collapse effect occurs only
for weak ion fields F for which the splitting Δ is com-
parable with the impact half-width of the line w~ β and
the statistical weight is small. Nevertheless, collapse
may be important for the line shape at the line center.

For lines containing a large number of components
(for example, for lines in the Balmer series), analytic
diagonalization of the resolvent is very difficult. Usual-
ly, the inversion of the matrices in the spectrum given
by (5.10) is carried out numerically on a computer (see
Chap. 10).

6. EXACT SOLUTION OF THE BROADENING
PROBLEM IN THE BINARY APPROXIMATION

The specific properties associated with the additional
degeneracy in a Coulomb field can be used to obtain an
exact solution for the hydrogen-line broadening in the
case of binary collisions with charged particles (usually
electrons). This is connected with the fact that it is
possible to find the exact wave functions of the excited
state of hydrogen in the field of the incident charged
particle. The history of this problem is of some inter-
est. This solution was first obtained by SpitzerC5e] as
far back as 1940 for the special case of the Ly-a line.
For over thirty years, this result did not produce its
due response in the theory of broadening. Exact wave
functions for the η = 2 level were then independently ob-
tained by Chibisov,C57:l who used them for scattering
problems.7 ' It is only recently that Spitzer's results
were resurrected by Pfennig,C59] who used them to in-
vestigate the transition between the static and impact
limits of the theory of broadening. At virtually the
same time, Lisitsa and SholinCeo:l put forward a method
for finding the exact wave functions corresponding to any
hydrogen level in the electric field of an incident charge.
In this method, the collision problem is reduced to the
problem of energy levels and wave functions of the hy-
drogen atom in crossed electric and magnetic fields.
The latter problem was formulated in the 1920's1·61·1 and
its solution (in the case of static fields) was given by
Demkov et al.,Ce2] who used the additional (four-dimen-
sional) symmetry of the hydrogen atom to avoid the
laborious solution of the secular equations in the tradi-
tional approach. These methods were subsequently used
to solve a number of problems in the theory of scatter-
ing. K 3 l 6 4 ]

To elucidate the essence of the method let us begin by

l° Ι2

L (Δω—
)1

J" (5. 20)

7)The interaction of charged particles with the hydrogen atom
in the n = 2 state was also considered by SeatonC58] in connec-
tion with scattering problems.
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a model example,8) namely, the emission spectrum of a
hydrogen atom in a rotating electric field. Ε β 5 'β β ]

Consider an excited hydrogen atom in an electric field
F which rotates about the ζ axis in the x, y plane with
angular velocity Ω . 9 ) We shall suppose that the modulus
of the electric field remains constant. We now intro-
duce a rotating coordinate system χ', y', z' (z' =z), the
x' axis of which is always parallel to the field F. The
wave functions tp(t) in the rotating system are related to
the wave functions in the fixed system as follows:

>(•'(«) =,e<W'.»,|.(') (6.1)

where L is the orbital angular momentum operator.

Substituting (6.1) in the Schr'odinger equation, we ob-
tain

ih M- = ( # 0 Η- dxF - fiLfi) ψ' = ( (6.2)

so that both the electrostatic (dxF) and the "magnetic"
(Ζ,,Ω) interactions are present in the rotating system,
and the latter are wholly due to rotation.

The problem is thus reduced to the determination of
the energy levels and wave functions of the atom in mu-
tually perpendicular electric and magnetic fields. The
solution of this problem is based on the utilization of the
additional constant of motion in a Coulomb field, name-
ly, the Runge-Lenz vector1153

A -.J-([pXL]-[LXp])-^ (6.3)

where p is the momentum of the electron. The matrix
elements of A for states with fixed principal quantum
number are equal to the matrix elements of the position
vector: r = (

We now introduce the new angular momentum and fre-
quency operators Ju J 2 and u>u ω2, defined by

L - A :±V. (6.4)

where Β = 3neza0/2M. The operators J 1 } J 8 satisfy the
usual commutation rules for angular momentum.

Substitution of (6.4) in (6.2) yields

Γ --; h (J ,(!>!-- J-ω,). (6.5)

The wave functions «„„<„<<, which diagonalize the per-
turbation (6.5), must obviously correspond to a definite
component of J x along o^ (represented by the quantum
number n') and a component of J2 along ω2 (represented
by «")· These functions can be obtained from the usual

8)This example is not purely a model. It can be realized in
practice, for example, in the case of the excitation of a hy-
drogen atom in the field of circularly polarized laser radia-
tion.

8>It is assumed that the frequency Ω is very different from the
transition eigenfrequencies in the atom.

X-ff x-0.2 x-B.5

ul
0 ias-Acjs ΰ

x-1.0

0 Aus

-J«s 0 ius -Δα, Ο ias

FIG. 4. The Ly-α spectrum in a rotating electric field.

parabolic wave functions uniyii (ilf i2 are the quantum
numbers of the projections of Jx and J2 along the vector
F, which itself is parallel to the χ axis) through simple
rotations through the angles β1 and βζ between the vec-
tors ωχ and ω2, on the one hand, and the vector F, on
the other. c e 2 3

The angles /3t, βζ are determined by the ratio of the
angular velocity Ω to the-Stark splitting:

(6.6)

The wave functions «„„»„»· diagonalize the Hamiltonian
(6.5) and determine the change AE in the energy eigen-
values

^rx
2n - ^ F. (6.7)

Thus, in the rotating system, the wave function ψ'
has the form

tf' (() = ΐί,,,,.,,-exp Γ — i (/i' —re")}' 1 — x2 — Ft (6.8)

Equations (6.1) and (6. 8) can readily be used to deter-
mine the emission spectrum /ο6(ω) due to hydrogen in
the rotating field due to the spontaneous transition from
level a to level b.

This spectrum consists of a number of components
(δ functions) and its amplitudes and phases depend on x,
as indicated by (6.8) [see also (6.6)]. We note that the
number of components exceeds the number of states (w2)
belonging to the given level. This is due to the appear-
ance of additional "combination" shifts ± Ω due to the ro-
tation of the atomic dipole. Figure 4, which is taken
from the paper by Ishimura,C e 5 ] shows the Ly-a spec-
trum for different angular velocities (different x). It is
clear that each of the lateral components of the Ly-a
line splits into two, and the central component splits
into three, one of which is the unperturbed component.
The intensity of the extreme components decreases with
increasing distance from the center.

We have given a detailed analysis of the above model
example because the real broadening problem is funda-
mentally similar to this example.
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Consider the collision of a charged (classical) particle
with an excited hydrogen atom. The collision occurs on
the plane defined by two vectors, namely, the velocity
ν and impact parameter p. In the course of time, the
perturbing electric field F due to the incident particle
will change in magnitude and will rotate through 180° in
the collision plane. If, as above, we use the rotating
system of coordinates with the χ axis parallel to F(f), we
again have the "magnetic" interaction Lz<p(t)= ^Helt(t)
(jjo is the Bohr magneton), which is connected with rota-
tion [see (4.9)].

It follows that, in the rotating system, the atom is in
mutually perpendicular (and variable) electric and mag-
netic fields F and H e f f = Κφ/ μ^.

We now use the symmetry properties of the hydrogen
atom. To do this, we introduce the operators J1 and J2,
defined by (6.4), and the frequencies

ω, ,(i) = i ( i ) T i -F( l ) . (6.9)

The perturbation Hamiltonian (4.9) can now be rewritten
in the form given by (6.5):

V (i) = d,F (t) + L,<f (t) = Η (ί) - J2 <o2 (()]. (6.10)

The problem will be solved if we succeed in finding
the wave functions um.n·. that diagonalize this perturba-
tion. As in the case of the rotating field, these func-
tions correspond to definite components of J^ and J 2

along ω1 and ω2, respectively. The difficulty is that the
vectors ω^ί) and ω2(ί) are functions of time. However,
it is easily shown that the directions of the vectors ωχ

and ω2 do not change in the collision process. Thus,
direct analysis of the geometry of the collision in the
collision plane shows that, for the field F(t) = ez/(pz

+ v2tz), the angle between the vector ω2 and the χ axis
(which is parallel to F) is given by

ι«** = -ΤΓ = Τϊ· (6-11)

It follows that the special quantization directions in
the hydrogen atom undergo a change during the collision
process. The formula given by (6.11) shows that, tran-
sits within the Weisskopf radius pw correspond to quan-
tization along the electric field F whereas transits out-
side pw correspond to quantization in the direction of the
effective magnetic field H e ( f II φ .

The "correct" wave functions «„„.„<« can thus be ob-
tained from the parabolic functions uniUi corresponding
to the quantization axis Ox II F by simple rotation through
constant angles βι and β2 (the angles between the vec-
tors o>i and ω2 and the χ axis, respectively).

Since «„„>„.< corresponds to definite components of
J 1 ; J 2 along <i)u ω2, (6.9) and (6.10) yield the following
expression for the change in the energy eigenvalue in
the rotating system:

The wave function ip'(t) in the rotating system of co-
ordinates is, therefore, found to have the form [com-
pare this with (6.8)]

ι

(6.13)

Hence, it follows that the evolution of the wave function
is connected (as in the adiabatic model!) only with the
modulus of the electric field F(t). This problem is thus
analogous to the adiabatic theory with suitably defined
"components." Nonadiabatic effects, on the other hand,
reduce to the dependence of the amplitudes of these com-
ponents on the transit parameters, and to some compli-
cation in the phase factor. We note that the above di-
agonalization procedure can be used for all hydrogen
lines.

The above analogy with the adiabatic model will,
clearly, enable us to use the above results on the unifi-
cation of the impact and static approaches (Chap. 2) in
the general case that we are considering here. Calcu-
lation of the Ly-a line profile, based on (6.13), yields

/ M = i L L J i ^ i [ T ( i ^ ) + 7 ( _ i ^ L ) ] ( A o ) 2 ) - 1 ; (6.14)

where γ(χ) is a universal function defining the "variable"
linewidth. As in (2.20), it can be expressed in terms of
the Whittaker function"03:

The limiting values of y(x) are as follows:

ν Μ

(6.15)

(6.16)

By substituting (6.16) in (6.14), we obtain the results
of the impact and static theories for Δω«Ω and Δω» Ω ,
respectively. In the intermediate region, where Δω ~ Ω
(x~l), the function γ(χ) can be calculated numerically
(Table I).

The function γ(χ) undergoes a smooth transition be-
tween impact and static limits, and the effects of phase
and amplitude modulations and the nonadiabatic effect
can be taken exactly into account. It is interesting to
compare the results of the exact theory with the adia-
batic model for the Ly-a line. This shows that the dif-
ference between the two functions γ(χ) does not exceed
20%. Hence, it is clear that the adiabatic model can be
used for the approximate description of hydrogen line
profiles, not only in the wings but also in the intermedi-
ate frequency region.

TABLE I.

Δ £ = k (η' -τ- n") a- (6.12)

i.i.Ul 0.113 0.11.3 ll. I 0.2 11.3 0.5 1.0 1.5

5.71 4.98 4.72 3.83 3.03 2.56 1.97 1.33 1.08 0.92 0.72 0.53
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7. COMBINED BROADENING BY IONS AND
ELECTRONS

In real plasma, the hydrogen atom experiences simul-
taneous broadening by both ions and electrons. The sim-
plest picture of broadening in this case reduces to the
following: hydrogen levels in the electric field F, due to
"slow" ions split into the individual Stark components
which undergo impact broadening by "fast" electrons.
The resulting line profile is obtained by averaging this
picture over the static distribution of the ion field,
W(Ft), and by summing over all the Stark components.

The simplest profile of a Stark component can be ob-
tained from the adiabatic model (§ 2) by taking the
product of the static (Holtsmark) profile due to ions and
the impact (Lorentz) profile due to electrons:

/(Λω) = — dFW(F)
[Λω—If e) F]-- -;-' (7.1)

For the central components of the lines Ly-a, Ha,
Hr,..., which do not undergo Stark splitting, the Stark
constant C is zero and, as can be seen from (7.1), the
broadening of these lines is entirely due to the impact
interactions with electrons.

For the lateral line component (C Φ 0), we transform
in (7.1) to the dimensionless variables x = Aue/CF0 and
y = ye/CF0, and obtainC35]

The profile given by (7.4) provides a good description
of the intensity distribution over most of the line. At
the same time, the simple convolution of the ion static
and electron impact profiles does not take into account
the following points: 1) in the distant part of the line
wing, the electron broadening does not occur via the im-
pact mechanism and 2) at the center of the line, the ion
broadening is not by the static mechanism. The first of
these means that the integrals in (7. l)-(7.3) are incor-
rect for Δω —oo [nor is the more accurate integral (7.4)].
In fact, for large Δω, the main contribution to (7. 3) is
due to the regions β~1 [maximum of 3£(β)] and β~χ, and
this gives

T:M:

Ι (Δω) = - •ΤΛ-(χ. y), (7.2)

It is clear that the asymptotic behavior is determined
by the second term, but it is readily shown that this
term is comparable with the first term for x-y4 or Δω
~ Ω β ~v\/C, i. e., for values of Δω for which broadening
by electrons can no longer be regarded as impact broad-
ening. The transition from electron impact broadening
to the static broadening in the line wing must, there-
fore, be taken into account in (7.3). This can easily be
done by replacing the (constant) impact width γ with the
"variable" width γ(χ), defined in (2.20). This yields the
correct asymptotic behavior for the line wing, which
takes into account the transition from impact broadening
to static broadening for electrons:

where (7.5)

(7.3)

The last two formulas can also be used for the ap-
proximate description of the resultant line profile if we
interpret C and γ as the effective values of the Stark
constant and the width for the line as a whole, respec-
tively. The choice of C and γ was indicated above [see
(3.10) and (5.18)]. The function given by (7.3) is tabu-
lated in the literature. C l o ' 3 5 ]

The adiabatic model is convenient because its results
are universal, i. e., the same for all hydrogen lines.
More rigorous calculations would require, firstly, the
use of a more accurate distribution function WD(F{) (see
Chap. 3) and, secondly, the general expression given by
(5.10) for electron impact broadening in the ion field.
The combined effects of electron and ion broadening then
assume the following form:

α. α': σ

Β. Ρ'

(7.4)

In contrast to (7.2), this profile is not expressed in
terms of universal functions but depends on a small num-
ber of parameters. It must be evaluated numerically on
a computer for each particular line. The results of such
calculations will be given in Chap. 10.

It follows from the last expression that, as χ in-
creases (i. e., as Δω increases), an increasing number
of particles produce static broadening. This can be con-
veniently described by introducing the effective number
R (Δω) of statically broadening particles:

R (Δω) - 1 - (7.6)

In the impact region, where Δω«Ω β , we have Λ (Δω)
«1, i .e . , the static particles are exclusively ions. In
the static region, on the other hand, where Δω»Ω β, we
have R(Δω) «2, i. e., both ions and electrons can be re-
garded as static particles. The function Ε (Δω) has a
universal structure for all hydrogen lines in the adia-
batic model. It is easily determined with the aid of the
tabulations of γ(χ) (see Chap. 2).

In the nonadiabatic theory, the determination of Λ (Δω)
requires separate calculations for each line. The result
of this kind of calculation for the Ly-a line is given in
Chap. 6. For other lines, there are calculations that
take into account the static character of electron broad-
ening in the line wing (see Chap. 10).

We must now consider the line shape in the central
region. : 6 7 ] Here, we must take into account the fact that
the ion field is not static. This is a very complicated
problem mainly because the interactions between the
ions and the atom are not binary. However, the overall
picture of effects associated with the thermal motion of
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the ions can easily be understood on the basis of the re-
sults obtained in Chap. 4. As we have seen, the main
effects associated with thermal motion are the nonadia-
batic effects due to the rotation of the ion field. It is
previsely these effects that violate the static approxima-
tion near the line center, where, according to (4.12),
the corresponding thermal corrections are proportional
to Δω"2 as Δω— Ο. The calculations given in Chap. 4 do
not, however, take into account the electron impact
broadening, the role of which for Δω — 0 can, roughly
speaking, be reduced to the replacement of the divergent
quantity Δω"1 by the finite quantity (Δω +ίγ)'1. Physical-
ly, this means that the inclusion of γ leads to a finite
lifetime γ " l of the atomic electron on the Stark sublevel
and, if the ion field remains constant during this time,
it can be regarded as static. This condition was first
derived for ions by Griem et al.C471 and by Kudrin and
SholinCe8: on the basis of intuitive considerations. How-
ever, the place of this criterion among the other static
criteria (4.7) remained unclear. Their interrelation is
discussed by Sholin et al.,t451 Kogan et al.,is91 and
Kogan and Lisitsa.C 7 0 ] We shall follow the discussion
given by Demura et al.C67] and examine the role of the
damping γ on the basis of a simple model calculation.

The foregoing discussion can readily be used to esti-
mate the dependence of the effects associated with ther-
mal motion on the plasma parameters at the line center
(Δω =0). All that needs to be done is to replace Δω with
y~N(C?/ve) ln(pm/pw) is the expressions given by (4.11)
and (4.12), which define the thermal corrections at the
line center for χ = Δω/Δω ο«1 [see (5.18)]. The correc-
tion 7(l)(0) for the thermal motion is then given by

Λ υ),,
Λ"2. (7.7)

where ge =N(C/ve)
3 is the electron broadening parameter

and we take into account the fact that y/Δωοα:gl

e

13ln(pm/
=g\'3 K. The dependence of /(1>(0) on the reduced

mass μ of the ion-atom pair is determined by the factor
gt =N(C/vi)

s, where v{ =ν2Τ ί/μ is the relative velocity
of the ion and atom. We note that a more rigorous cal-
culation"13 will also give the spectral behavior of the
thermal correction /•'(Δω) for Δω<Δω0.

The relative thermal correction δ is useful for com-
parison with experiment. For lines without the central
components (HB, 7ί6), which have a minimum at the cen-
ter, the relative correction δ is defined as the ratio of
the difference between the intensities at the maximum
(/mar) and the central minimum (7mln) to Imm:

c

Since 7 = /<0) +/ ( U , it is convenient to use the difference
δκ = δ1- δ2 for two values of the velocity v( (i. e., two
values of g{) which contains the thermal corrections I*1'
in a "pure form":

In deriving (7.9), we took into account the fact that
l£h» l}an, i. e., the thermal corrections provide the
main contribution at the line center. Moreover, we have
also taken into account the fact that, according to (3. 8),
Imia~e/CF0 and ν\=2Τι/μ.

The expressions given by (7.7) and (7.9) define the
dependence of the thermal corrections on the plasma
concentration Ν and the reduced mass μ. We also note
that 6R is directly related to the ion temperature Tt.

Analysis of (4.11) will show that, when electron im-
pact broadening is taken into account, the static (Holts -
mark) theory for ions can also be applied to the central
part of the line. For this, we require that the second
term in (4.11), which is equivalent to (7.7) at the line
center, should be small in comparison with the first,
and this is so when

"effT (7.10)

The static condition given by (7.10) clearly shows that
the "lifetime" y"1 of the atom on a Stark sublevel must
be small in comparison with the characteristic time for
a change in the ion field ipett/v). The quantity p e f ( is
practically equal to the mean distance between the par-
ticles N~l/3. The static condition (7.10) is thus found to
augment the criterion given by (4.7) at the line center
(Δω« Δω0).

8. BROADENING OF LINES DUE TO HYDROGEN-
LIKE IONS

The particular properties of the broadening of the
lines of hydrogen-like ions are connected with the at-
traction or repulsion between the radiating ion and the
perturbing charged particle in the plasma (ion or elec-
tron).

It follows from (3.3) that, to determine the static line
profile due to the plasma ions, we must know the dis-
tribution function Wt(F) for the static ion field in the
plasma near the radiating charge. Calculations of this
distribution function must, of course, take into account
the repulsion of ions by the radiating center.

Let us consider the repulsion effect in the case of a
radiating ion interacting with one (nearest) perturbing
ion. If there were no Coulomb repulsion between the
ions, the distribution function would be identical with the
binary limit of the Holtsmark function (3.7), i .e . , 3£{β)
~ 1.496"5/z. The main contribution to the distribution
function would then be due to distances »-Δω for which

(7.8) condition (3.1) is satisfied:

(8.1)

(7.9)

When repulsion is taken into account, the distribution
function Sf(0) is found to be multiplied by the Boltzmann
factor exp[- V(r)/kT]=exp(-ez/rkT), which represents
the repulsion potential. If we substitute r =?-Δω = VC/Δω,
we see that the distortion of the distribution function is
governed by the parameter ez/r^JzT~ (τ0/ρο)Ρβυζ, where
we have introduced the following characteristic param-
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FIG. 5. The electric field distribution Ρ(ε) due to the plasma
ions near a radiating charged center.

eters: the mean interparticle distance ra~N'U3 and the

dimensionless frequency shift β = Αω/ΟΝ*/3. Calcula-

tions by Margenau and Lewis,in:> based on this scheme,

lead to the following expression for the binary distribu-

tion function:

&i <W = -£5T-«p[ _ 0.334 (JL)- β1 - ] , (8. 2 )

where r0 is given by the condition (4/15)(27r)3/2iVro = l.

More detailed calculations of W{(F) were performed

by Mozer and BarangerC38: and, more recently, by

Hooper.C36: Figure 5, which is taken from the paper by

Hooper,C3e] shows a graph of W{(F) for different values

of the parameter a, defined by (3.13). It is clear that,

when repulsion is taken into account, the result is a re-

duction in the probability of strong fields, i. e., in the

intensity emitted in the line wing. The particular fea-

ture of Wt(F) is the more complicated dependence on the

plasma concentration Ν as compared with the Holtsmark

case. The static ion spectra are less convenient for the

determination of the plasma concentration than the spec-

tra of neutral hydrogen. We also note that the ion spec-

tra are much narrower than the hydrogen spectra be-

cause of the reduction in the dipole moment of the ion

by the factor z.

Static broadening of the lines due to hydrogen-like ions

is not confined to low-temperature plasma. An interest-

ing example is provided by laser plasma in which, de-

spite the high temperature (T~ 1-10 keV), the ion con-

' centration is so high (N~ l tP-lO 2 4 cm"3) that 5·, =N(C3v,)3

» 1 even for hydrogen-like ions with high z » l . The

character of line broadening in such plasma has been

considered by Vinogradov et al.t73: The width of the

static (Holtsmark) spectrum under these conditions is

given by [compare this with (3.11)]

A,., _ 9 I e "2Ry Ιλ?π3\2>'3 ( 8 . 1 )

where ζ is the charge of the radiating ion, a0 is the first

Bohr radius, and η is the principal quantum number of

the level under consideration. Vinogradov et al.C73]

have found the range of values of Ν and ζ for which (8.1')

can be used in plasma diagnostics.

To calculate the broadening of the ion lines by elec-
trons, we must take into account their attraction to the
radiating center. This attraction ensures that the elec-

tron moves not along a straight line (as in the field of

the neutral atom) but over a hyperbola. This produces

a definite complication, but it is not difficult to see that,

even in this case, one can use the four-dimensional

symmetry of the hydrogen-like ion. In fact, since the

electron moves in the central Coulomb field of the ion,

its angular momentum I is conserved (Hl=mrzq>), so

that

Φ« = ̂ · (8.3)

This clearly shows that the instantaneous angular ve-

locity <p(t) depends on r(t) in the same way as the elec-

tric field F(t) due to the electron, i. e.,

F (I) = er'z (t) —-^-<f (t). (8.4)

This means that, as in the case of the neutral hydro-
gen, transformation to the rotating system of coordi-
nates with the χ axis parallel to F(i) (see Chap. 6) re-
sults in the appearance of mutually perpendicular elec-
tric [F(i)] and magnetic [Hett(i)«: <p{t)] fields, which are
in phase [Hett(t)/F(t) = const]. This means that the hy-
drogen-like ion also has a special quantization direc-
tion, i .e., that of ω1ΐ2(ί), which is defined as above [see
(6.4) and (6.11)] by the vector sum (difference) between
the electric and magnetic fields.

The above fact enabled Green et al.t74>75: to develop a

theory of broadening of the lines of hydrogen-like ions

without using the impact or static approximations. As

in the case of the hydrogen atom, the temporal evolution

of the wave function of the ion is determined by the phase

factor exp[i(C/e)!oF(T)dr] or, according to (8.4), by the

factor eivU), where

«ρ(0 = Φ» + ρΐ'-ϊ-^τ- (8·5)

is the rotation of F in the time t (<p0 is the initial angle,

v«, is the velocity of the electron at infinity, and ρ is the

impact parameter).

In contrast to the rectilinear case, the angle φ at in-

finity in the case of motion on a hyperbola is bounded

by <p(«) =arccos(l/c), where ε =[1 +mzpzvi/(z - 1)V]1 / 2

is the eccentricity of the hyperbola. Hence, it is clear

that the motion becomes close to rectilinear as the ve-

locity increases, i. e., as the plasma temperature in-

creases.

It is clear from physical considerations that the at-
traction of the electron to the radiating ion should lead
to an increase in the intensity in the static wing of the
line, which corresponds to close encounters. Moreover,
it is clear which parameter determines this effect. In
fact, the new characteristic length of the problem, which
is connected with the interaction between the electron
and the ion is obviously the Coulomb length pk~ez/mvi

~ ez/kT. On the other hand, the characteristic distance
rAu, which determines the contribution to static broad-
ening, is shown by (8.1) to be rAaJ=VCj/Aw, where C{

= eZi/n is the Stark constant of the hydrogen-like level
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of the ion (ez{ is the dipole moment of the ion along the
direction of the electric field of the electron). It fol-
lows that the parameter that governs the change in the
intensity in the static wing of the line is the ratio of the
above two lengths, i .e . , p f t/rA w. When p*/r A ( J « l , the
curvature of the trajectory can be neglected, whereas,
for fa/r^u » 1» it has an important effect on the nature
of the spectrum. Hence, it is clear that the distribu-
tion of intensity in the line wing in the case of the ion
differs from the well-known distribution (2.18) for the
atom by the presence of the correcting factor XifiJr^J
which is a function of the parameter pk/rliu. The func-
tion χ has been calculated174'75] by a method analogous to
that described in Chap. 2 [see (2.10)-(2.12)]. The re-
sulting line profile is

/(ω) = 2π2.Υ

Ί (χ) = exl erfc (χ) - ϊ=τ- χ

Ι/π

(8.6)

(8.7)

When x« 1, (8.6) and (8.7) yield the well-known distri-
bution in the line wing: 7(ω)<χ ΔαΓ5/2 [see (2.18)]. When
x» 1, (8.6) and (8.7) lead to /(ω) ex Δω"9". It follows
that, as expected, attraction between the perturbing,
electron and radiating ion leads to a slower reduction
in the line-wing intensity as compared with the case of
neutral hydrogen. It is important to note, however,
that, in practice, the region of electron static broaden-
ing in the case of hydrogen-like ions is reached for fre-
quency detuning ΚΑω comparable with kT. Green and
Cooper1751 have performed a calculation of the Ly-a pro-
file for He II.

As regards the electron-impact broadening of ion
lines, Griem and Shen t 8 l 7 e ] have shown that this is large-
ly the same as for the neutral atom. In particular, the
electron-impact broadening operator Φο6 is still given
by (5.14) except that the logarithmic symbol Λ is now
followed by the ratio of p,,,^ to the Coulomb length pk

= pmiri=zei/mv2' [it is also necessary to take into account
the reduction by the factor Ζ in the matrix elements
given by (5.15)-(5.16)].

In conclusion, let us briefly consider the broadening
of neutral hydrogen lines in high-temperature hydrogen
plasma containing multiply-charged impurity ions. This
situation is characteristic for the Tokamak thermonu-
clear installations in which the plasma parameters are
Te~\ keV, Ne~101 3-101 4 cm"3. Under these conditions,
we have impact-type broadening by both electrons and
ions, including multiply-charged impurity ions, i. e.,
g{ =Ni(C/viH)3« 1 (viH is the relative velocity of the hy-
drogen atom and a multiply-charged ion of charge Z{).
Hydrogen-line broadening in this type of plasma has been
considered by Abramov and Lisitsa. t 7 7 : Since the im-
pact linewidth is ycc \/v [see (5.14)], the main contribu-
tion to broadening is provided by the slower plasma ions.
Even a small percentage of multiply-charged impurity
ions may then play an important role, comparable with
or even greater than the role of the protons. This is
quite clear if we recall that an ion of charge z{ produces
Stark broadening that is greater by the factor z{ than

broadening by a proton, i. e., the Stark constant C is
effectively increased by a factor of zt. Since y°c C 2

cc ζ 2, even 1% impurity with ζ {~ 10 will produce broaden-
ing of the same order as that due to protons. The re-
sultant impact width of a level obtained by adding to-
gether the widths due to each type of ion is given by

, _ ' ϋ ΛΤ ( " \ " V V (8.8)

where vp

aviH is the proton velocity, Nt is the concen-
tration of ions of type i, and Λ =\n(pD/pw).

The sum over the ions in (8.8) gives the effective ion
charge of the plasma: zeit =N;l1iNiz

z

i. The effective
charge zeii is usually determined by measuring the
plasma conductivity. This means that (8.8) opens up a
new and interesting possibility of determining zeii from
data on the Stark broadening of neutral hydrogen lines.
The principal difficulty is the large Doppler broadening,
and special measures must be taken to exclude it. [77]

9. QUANTUM-MECHANICAL APPROACH TO THE
BROADENING PROBLEM

The essence of the classical formulation used above is
that the motion of the broadening particle (say, ion) is
assumed given and one considers the change in the wave
function of the radiating atom. The quantum-mechanical
formulation is, in a sense, the converse of this. In par-
ticular, one considers the motion of the broadening ion
in the field of the radiating atom. The frequency shift
Δω in the emitted radiation is then related to the change
in the energy of the ion, Kzqz/2M;

(9.1)

where qa and qb are the momenta of ions of mass Μ in-
teracting with the atom in the upper (a) and lower (6)
states between which the radiative transition takes place
(ωα6 = ω0). For simplicity, we shall neglect the interac-
tion between the ion and the atom in the lower state (6).
The change in the frequency of the radiation emitted by
the atom is thus related, in the quantum-mechanical
formulation, to energy transfer to external degrees of
freedom.

As already noted, the quantum-mechanical formula-
tion was first discussed by Jablonski, Ε 8 : who used the
quasiclassical wave functions of the broadening particle
to calculate the static spectrum. The method was sub-
sequently used by SzudyC29] and Szudy and Bailis.C 3 0 ] The
quantum-mechanical approach has also been used to de-
scribe impact broadening by electrons, and this has led
to a relationship between the impact width and shift, on
the one hand, and the electron-atom scattering cross
section, on the other. This was done by Sobel'manC2e:l

and by Baranger. β 7 ]

Nevertheless, until quite recently, there were no pub-
lished detailed calculations of line profiles based on the
quantum-mechanical approach and, in particular, no
calculations of this kind relating to the transition region
between the impact and static limits. This was due to
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the fact that the quantum-mechanical solution required
knowledge of the exact wave functions of the perturbing
particle and, as a rule, these could only be found through
a numerical solution of the Schr'odinger equation. We
emphasize that, in contrast to scattering problems, the
broadening problem requires knowledge of the wave
function for any distance r, and not simply for the as-
ymptotic region r — 1».

Very recently, quantum-mechanical calculations of
the hydrogen Ly-a line were reported in a series of pa-
pers by Tran Minn et al. C78-80]

We shall adopt a differ-
ent approach,C 8 l : based on the symmetry properties of
the hydrogen atom, and will also discuss in detail the
connection between the quantum-mechanical solution and
the exact classical solution given in Chap. 6.

Let us begin by deriving the quantum-mechanical ex-
pression for the line profile /αί)(ω) due to a transition be-
tween level a and level b of the atom. The levels are
assumed nondegenerate in I, and the interaction between
the atom and ion in states a and b is represented by
spherically symmetric potentials Ua{r) and Ub(r).

We shall suppose that the quantum Κω is emitted by a
single system consisting of the atom and the broadening
ion. The wave function of this system in the initial and
final states is given by the product of the wave functions
of the atom, <pa, <pb, and the wave function ip*a>b of the
ion, describing the scattering of the particle of momen-
tum q by the potentials Ua and Ub (the two signs ± corre-
spond, respectively, to asymptotically converging and
diverging spherical waves at infinity).

The probability of a transition of the system from
state a to state b with the emission of a photon of fre-
quency ω and momentum k is given by the following well-
known expression:

dk

(2.1)3
(9.2)

where V is the operator representing the interaction be-
tween the atom and the radiation field, and the wave
functions (a I, I b) and the energy difference εα -ε,, of
the atom + ion system are given by

It is clear from the foregoing that, to evaluate the
cross section άσ/άω for the emission of a photon of fre-
quency ω by the atom, we can use the expressions for
the bremsstrahlung emission cross section (see, for
example, Sobel'man, l l o : §34, Part 3) with the dipole mo-
ment er of the electron replaced by the dipole moment
of the atom, and the wave function of the atom + ion sys-
tem given by (9.3). The final result is

(9.4)

where Ea=HZ(fa/ZM and va are, respectively, the energy
and velocity of the electron in state a. The matrix ele-
ment of the dipole moment d of the atom over the wave
functions of the atom + ion system is thus split into the
product of the matrix element of d between states a and
b of the atom and the overlap integral A, for the wave
functions of the ion with angular momentum I:

A,= (9.5)

where R ','/ι are the solutions of the radial SchrSdinger
equation with angular momentum I in the potentials Ua(r)
and Ub(r).

The expression for the radiated power per unit volume
per unit frequency can be expressed in terms of the
cross section da/du, as in the case of the bremsstrah-
lung radiation, and is given by

Q (ω) = Λ'ΛΛτ,«(ο (9.6)

where NA, Nf are the concentrations of atoms and ions,
zndf(va) is the distribution over the initial relative ve-
locities. As before, we shall not average over va, i. e.,
we shall suppose that/(na)«: 6(va -v0) (whenever neces-
sary, this averaging can be carried out in the last
stage). Dividing (9.6) by the total intensity of radiation
emitted by the atoms, ΝΑ4ω*\άαΙ)\

ζ/Ζο3, we obtain the
following expression for the profile emitted by an in-
dividual atom:

(9.7)

(9.3)

The wave function I a) is assumed to be normalized to
a unit flux of the broadening particles (ions). After av-
eraging over the initial states and summing over the
final states, the expression given by (9.2) will therefore
give the differential cross section da/du for the emis-
sion of a photon of frequency ω in the range dw. The
cross section άσ/άω is completely analogous to the
bremsstrahlung emission cross section. There is, how-
ever, one important difference: in the bremsstrahlung
case, the interaction V with the electromagnetic field
includes the dipole moment of the scattering particle,
whereas, in the case of broadening, it includes the di-
pole moment of the atom. The total radiation intensity
in the case of broadening will not, therefore, depend on
whether the atom scatters an ion or an electron.

Thus, in the quantum-mechanical formulation, the
determination of the line profile reduces to the evalua-
tion of the overlap integral A,, whose dependence on the
frequency shift Δω is given by (9.1).

As frequently mentioned above, the particular prop-
erties of hydrogen line broadening are connected with
the degeneracy of levels a and b in the angular momen-
tum I. The main difficulty in the solution of the prob-
lem is, therefore, in taking into account the interaction
of all the degenerate states of the atom during scatter-
ing of the broadening ion. We must now find the wave
function ip(r{) of the ion interacting with the excited hy-
drogen atom. The Hamiltonian for the system is

(9.8)

622 Sov. Phys. Usp. 20(7), July 1977 V. S. Lisitsa 622



where ά# 0 Α, 3C0( are the Hamiltonians for the free atom

and free ion, respectively, and VAi is the operator for
their dipole interaction.

We note that the potential VAi is noncentral and, in
contrast to the above case, the orbital angular momen-
tum lj of the ion is not, therefore, conserved. The con-
served quantity is only the resultant angular momentum
L =lj +1A, where 1A is the orbital angular momentum of
the atom.

If we now write the wave function Ψ ( Γ Α , r f ) of the ion
+ atom system in the form of an expansion over products
of the unperturbed wave functions corresponding to the
level η of the atom, i .e . , Ψ(Π>(ΓΑ)> and the wave func-
tions of the ion, ψ(Γ;), then, after substitution into the
Schrodinger equation with the Hamiltonian given by (9.8),
we obtain a system of coupled equations for the functions
Ψ ( Γ ( ) . This system is analogous to the system of equa-
tions with strong coupling in the theory of scattering^ 1

(Chap. 13), the solution of which is a relatively difficult
problem. In the present case, however, we can avoid
having to perform a direct solution of this problem by
using the fact that, for the dipole potential defined by
(9. 8), there is an additional constant of motion1 8 3 '6 4 ]:

(in Σ

·Λ··Ι
(9.12)

Λ--=1!-2.ν/·Λ(η,ηΛ), (9.9)

where n = r/r is a unit vector in the direction of r (hence-
forth, we shall use the atomic system of units in which
e = K = m = 1).

The use of wave functions with a definite eigenvalue λ
is convenient because we know the solutions RXL(r) of
the equation describing the radial motion of the ion. In
fact, the dipole potential VA{ falls off as r~f, i .e . , in
the same way as the centrifugal potential Vct = -l*rf.
The sum of the two potentials then contains the constant
of motion Λ given by (9.9) as a coefficient of r f. In
view of this, the radial equation for the ion has the form
(the subscript i will be omitted henceforth)

(9.10)

The solution of this equation can be expressed1151 in
terms of the Bessel functions:

(9.11)

The solution thus has the same form as for the free
motion of an ion except that, instead of the orbital angu-
lar momentum li + (\), the subscript on the Bessel func-
tion now contains the quantity λ which contains informa-
tion on the dipole interaction between the ion and the
atom.

Despite the apparently simple form of the solution
given by (9.11), we must recall that, before we can use
it, we must find the value of λ and the wave functions
i/)xiJf, i. e., we must solve the secular equation given by
(9.9). The functions ψλΣΙΙ corresponding to definite val-
ues of the total angular momentum L, its projection M,
and the constant of motion λ, can be conveniently sought
in the form of the expansion

where the functions I LMlAl{) can be expressed in terms
of the spherical harmonics Ylm in the usual way (with the
aid of the Clebsch-Gordan coefficients^51).

Substitution of (9.12) in (9.9) leads to a system of
algebraic equations for the coefficients a)L

t., the deter-
minant of which can be used to find the value of λ. The
problem of determining λ and the coefficients <2*Alj for
the κ =2 level (Ly-a line) has been considered by Sea-
ton1 5 8 1 in connection with scattering problems. We shall
not reproduce the relevant and rather unwieldy formulas,
and will suppose henceforth that the coefficients a)Aii

and the values of λ are known.

Before we can use the bremsstrahlung cross section
άσ/άω in the evaluation of the line profile, as described
above, we must relate the function φ Χ Σ Ι Ι to the functions
il%tQmo which contain the incident plane wave and diverg-
ing (and converging) spherical waves:

1W>,o ~ <flme^- - -s-e^i\ (9.13)

where ψ lQmQ is the wave function of the atom in the state

lomo.

This relationship can be established with the aid of
the expansion

(9.14)

where the coefficients d^j,0"0 can be obtained by de-
manding that the functions given by (9.13) and (9.14)
must be equal as r ~ °°.

Proceeding as in the derivation of (9.4)-(9. 7), we
substitute the functions i/£,omo into the general formulas
for the cross section da/dto for the emission of a photon
of frequency ω, and obtain the following expression for
the line profile connected with the transition from level
η to a nondegenerate lower level:

/«o)= g g - £ (2L+i){(a\L

L.iA^tr--(a'iU1Al;t'n. (9.15)

Comparison of (9.15) with the expression for the two-
level approximation given by (9.7) shows that transi-
tions with a change in the angular momentum l{ of the
ion by ± 1 contribute to the profile with weights given by
the coefficients a)^,t [see (9.12)]. Moreover, the pro-
file includes contributions of all scattering channels
corresponding to different values of the constant of mo-
tion λ.

Further investigation of (9.15) involves an analysis of
the radial overlap integrals Am· which, according to
(9.11), have the form

„,. r). (9. 16)

where va, vb are related to λ in a simple fashion (9.11).
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FIG. 6. Relative contribution of angular momenta L,f to the
electron profile /(Δλ) of the Ly-α line for different distances
Δλ from its center.

The overlap integral given by (9.16) can be expressed
in terms of the complete hypergeometric function

where, according to (9.1), the dependence on the fre-
quency detuning Δω is given by

(£)= = (1-^)-. (9.17)

The profile given by (9.15) is thus seen to admit of a
direct analytic evaluation. The question arises as to
what is the relationship between the quantum-mechanical
solution and the exact classical solution given in Chap.
6. It turns out that this can be established by direct
limiting transition in (9.15) and (9.16) to high angular
momenta L:

jn(n-\)M. (9.18)

If we recall that L =Mvp, we find that the quantum-
mechanical expression (9.15) and the classical expres-
sion given by (6.15) become identical for the Ly-a line.
Analysis of this limiting transition enables us to estab-
lish the criteria for the validity of the classical approxi-
mation. In the impact region (AuC/vz« 1), the effective
impact parameter p e f { (and, consequently, L e f l =MvpeiS)
is determined by the Weisskopf radius βψ~ C/v (see
Chap. 2), so that condition (9.18) yields

(9.19)

(9.20)

In the static region (Δωϋ/υ 2» 1), we have #„„ ~
= VC/Aw [see (8.1)], so that (9.18) reduces to

This condition has an obvious interpretation: the change
/ζΔω in the particle energy during the interaction with the
atom is small in comparison with its initial energy.

It follows from (9.19) and (9.20) that the classical ap-
proach is valid for sufficiently high lines (high values of
the Stark constant C), heavy particles (Λ/>> 1), and not
too distant line wings (Δω«Μ^ 2). We note that the
quantum-mechanical effects can be important in the line

wing for both electrons and ions, since the usual situa-
tion in plasma corresponds to Mv\~mv%~kT.

The dipole approximation is not valid for the distant
line wings. Moreover, the inclusion of quadrupole cor-
rections is usually insufficient and the exact potential
must be employed.

Feautrier et al.lm have carried out detailed calcula-
tions of the Ly-a line profile for the case of electron
broadening. Figure 6 shows the relative contribution of
the angular momenta L to the electron profile of the
Ly-a line for different distances Δλ from its center.
It is clear that the dipole approximation for 1,-5-6 dif-
fers from the exact result by 10-15%. The contribution
of low angular momenta L < 3, which are not taken into
account in the dipole approximation, is particularly ap-
preciable in the line wing (for Δλ = 20 A, this contribu-
tion amounts to 30%, and for Δλ =60 A, it is roughly
50%). For ΔλέβΟ A, we must even takeinto account
electron exchange effects.

10. NUMERICAL CALCULATIONS AND COMPARISON
WITH EXPERIMENT

Calculations of line profiles based on the general for-
mulas given by (7.4) involve laborious numerical calcu-
lations. Such calculations have been carried out in re-
cent years by Keple and GriemC84] and by Vidal et al.C85]

for the initial lines of the Lyman and Balmer series.
They used microfield distributions WD(F) including ion
correlation (Chap. 3), and the electron velocity distribu-
tion was assumed to be Maxwellian. The calculation by
Vidal et al.C85] were based on the so-called generalized
theory of broadening which took into account the transi-
tion from the electron impact broadening to the static
broadening in the line wing.

It is important to note that the above two calculations
suffer from a discrepancy which is particularly large
(-30-40%) in the central parts of lines with unshifted
components (Ha,HB). These discrepancies are largely
due to the particular choice of the logarithmic cutoff
parameters in the impact width (5.13), and the way in
which the nondiagonal matrix elements of the operator
Φα4 were taken into account [see (5.16)]. In the region
of the order of the half-width and in the line wings, this
discrepancy is much smaller. For lines without central
components (Hs,Ht), the discrepancy is also small (~5-
10%).

Figures 7-10 show the results of experiments per-
formed by Wiese et al.C8el and the numerical calcula-
tions for four hydrogen lines belonging to the Balmer
series. It is clear that the observed and calculated pro-
files are quite close to each other, except for the line
center where the discrepancy is particularly appreciable
for lines with central components (Ha,Hr). The agree-
ment between theory and experiment is somewhat better
for lines without central components (Ηβ, Η6). However,
in the central parts of the lines, the observed intensity
is always higher than the calculated intensity. This is
probably connected with the thermal motion of the ions,
which is not taken into account in the calculations (see
below).
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FIG. 7. The Ha profile: 1-
experiment,t861 2—calcula-
tion,"41 3—calculation."51

FIG. 9. The Hr profile: the notation is the same as in Figs.
7 and 8.

The role of electrons in broadening is particularly ap-
preciable for lines with an unshifted Stark component
(Ha,Hr). The structure of such lines consists of a
strong central component, whose broadening is wholly
due to the electron impact interaction, and weaker lat-
eral components broadened by the static ion interaction.

For lines without central components (Ly-β,Η^,Η^),
the influence of electrons on the central part of the pro-
file is somewhat smaller (see Figs. 8 and 10). How-
ever, even here the contribution of electron broadening
is appreciable. Thus, in the absence of impact broaden-
ing by electrons, the static line profile due to ion broad-
ening should have zero intensity at the line center, where
Δω =0 [see, for example, (7.1)]. When electron broad-
ening is taken into account, on the other hand, the cen-
tral valley turns out to be much smaller for such lines
(see Figs. 8 and 10).

It is important to note that electrons affect not only
the central part of a line, but also the distant wings that
are not shown in Figs. 7-10. These wings correspond
to static broadening by both ions and electrons. Accord-
ing to the general results of the theory of broadening
(Chaps. 2 and 7), static broadening by electrons should
be seen for Δω<χ v\/c = Ω β . This region can be observed
either in the distant wings of lines (for initial lines be-
longing to the Lyman and Balmer series) or for highly
excited levels for which the Stark constant C^nz is suf-
ficiently large (Ωβ is small). Both these possibilities
have been realized experimentally. The distant wings
of the Ly-a. line have been observed by Boldt and
Gooper1871 and by Elton and Griem.C 8 e : Highly excited
lines of the Balmer series (i/8-if15) have been observed
by Schluetter and Avila.C89·901 The results of both types
of experiment can be conveniently expressed in terms
of the relative number R of statically broadening par-

ticles [see (7.6)]. Figure 11 shows the results obtained
by Boldt and GooperC87] for the wing of the Ly-a line,
together with the results of theoretical calcula-
tions. C 1 7 ' 9 1 ' 9 2 : It is clear that, as one moves further into
the wing, the fraction of electrons producing static
broadening increases. ForAX~50A, the effect of prac-
tically all the particles can be described by the static
theory (R~Z).

In Schlutter's experiments, t 9 0 1 the boundary Δλ£ of
the transition to the static broadening for electrons is
satisfactorily described by the formula

A / , L •
0.1)2-

(10.1)

According to the static theory, the intensity distribu-
tion in the wing should be

/ (Λλ) cc R (Λ/.)-'". (10.2)

where R ~ 2 is the relative number of statically broaden-
ing particles and the exponent is m =·§.

Figures 12 and 13 show the observed values of Λ and
m as functions of the principal quantum number η of the
upper level. These values are close to the theoretical
predictions. Figure 14 shows the observed line profile
for ff15 together with the value of Δλ£. It is clear from
(10.1) that, in the case of highly excited lines, the elec-
trons begin to broaden statically even at the line half-
width. Figure 15 shows a plot of .Κ(Δλ/Δλ£) for the i/15

line. As can be seen, the agreement between measure-
ment and theory is satisfactory.

Let us now consider the behavior of the hydrogen line
profile near the line centers. Experiments with the Ηβ

)0~!

ro~3

aoooi
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1

T-moo'H) -

Ι(ΔΚ), rel. units
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FIG. 8. The Ηβ profile: the
notation is the same as in
Fig. 7. 1—"Red" wing,
2—"blue" wing.
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FIG. 10. The H6 profile, the
notation is the same as in Figs.
7-9.
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FIG. 11. Profile of the Ly-α line in the distant wing: 1—ex-
periment," 7 1 2—calculation,"11 3—calculation,1921 4—adiabatic
model.1 1 7 1

FIG. 14. Observed"01 Hn profile. ΔλΓ

indicates the boundary of the static region
for electrons.

0.5 1.0 1.5 2.0
Λλ,Α

line, which does not have a central component, have
shown, as already noted, that the central intensity is
systematically higher than the calculated value. In re-
cent experiments, Wiese et al.C93-943 have shown that
this difference depended on the reduced mass μ of the
radiating atom and the perturbing ion. The observed
reduced-mass effect is shown in Fig. 16 for the broad-
ening of hydrogen atoms (H) and deuterium atoms (D) by
H+, D+, and Ar+ ions (reduced masses μ Η Η =0.5, μΗΑΓ

= 1, and μΌΑΓ = 1.9). It is clear that, as μ increases,
the valley at the center of the Hs is also increased. This
effect is obviously due to the reduction in the thermal
motion of the ions as the reduced mass μ increases.
Calculations relating to these observations have been
undertaken, C95-9e : l but an exhaustive explanation of the
effect is still lacking. We shall try to give below a
qualitative description of the thermal motion effect, us-
ing the results given in Chap. 7 [see Eq. (7.7)]. Fig-
ure 17 shows the depth of the valley at the center of the
Ηβ as a function of the perturbing ions.C e 7 > 7 1 ] Although
the agreement between experiment and theory is quite
good, the experimental data are not good enough to dis-
tinguish between the l/μ and 1//μ dependence.

The Ha and Hr lines, which have central components,
are also found to exhibit the "reduced-mass effect. " c e 4 :

Figure 18 shows the Ha profile for two values of μ. It
is clear that an increase in the velocity of thermal mo-
tion (reduction in μ) leads to a reduction in the intensity

2.2

2.0

FIG. 12. Exponent m defining the reduc-
tion intensity in the line wing for the higher
Balmer line (Schlutter's dataC901).

S «7

ρ

2.50

too

1.50

FIG. 13. Relative number R of statically
broadening particles for the wings of the
highly excited Balmer lines (Schlutter's
data" 0 1).

FIG. 15. Plot of Λ(Δλ) for the
Hlf, line: 1—Schlutter's data," 0 1

2—calculations based on the
adiabatic model.1171

Μ/Δλ,

of the line at the maximum and to a certain increase in
its half-width. This can be understood in a general way
because any additional perturbation of the atom (includ-
ing the motion of the ion) should lead to an additional
broadening of the line and, consequently, to a reduction
in the central intensity because of normalization. How-
ever, additional calculations will be required before this
effect can be explained quantitatively.

FIG. 16. The "reduced mass
effect" for the HB (Wiese
et al. experiment193·941):
1—H-H* (μ =0.5), 2—H-Ar*
(μ = 1), 3—D-Ar* (μ = 2),
4—theory Ne = 8 x 1016 cm"3.

η η

FIG. 17. Depth 6R of valley at line center as a function of the
reduced mass μ of the atom-ion pair: 1—experiment by Weise
et al., : 9 3 ' M 1 2— calculation."7 1
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FIG. 18. The "reduced mass
effect" for the Ha (experiments by
Wiese et al.im): 1— D-Ar* (μ
= 1.9), 2—H-Ar* (μ = 1.0), 3—
calculation, t841 4—calculation.11851

AH, A

It is clear from (10.4) that the correction for the non-
uniformity of the ion field is determined by the param-
eter nza0/R0. The influence of nonuniformity increases
with increasing ion field β = Ρ/Ρ0, i .e . , with decreas-
ing distance between the perturbing ion and the radiating
atom. This follows from an analysis of the behavior of
the functions Α(β) and χ(/3) given by (10.5) and (10.6).
In particular, when β«1, the corrections decrease
more rapidly (<χ β3) than the zeroth (Holtsmark) profile
(<* 02). On the other hand, when β » 1, these correc-
tions decrease more slowly [<χ β •* as compared with
#£(/3)cc |3- s/2]. The result given by (10.4) is, therefore,
restricted by the range of validity of perturbation theory
and is itself valid only for values of β that are not too
high or, more precisely, for

It is important to note that, from the standpoint of
general principles, the "reduced-mass effect" forces
us to generalize the theory of broadening to the case
where the interaction between the ions and the atom can
no longer be looked upon as static or binary. This cor-
responds to gi ~ 1 and presents great computational prob-
lems.

The last effect that we must touch upon is connected
with the asymmetry of the hydrogen lines observed in
dense plasma (see Figs. 8 and 10; the "blue" and "red"
line wings). Calculations of this asymmetry performed
by Kudrin and Sholin,C68] Sholin,C99] Muller,C l o o : and re-
cently by Demura and Sholinc i o l ] have shown that effects
connected with the inhomogeneity of the ion field play
the dominant role here. In fact, all the above calcula-
tions were based on the inclusion of only the dipole in-
teraction between the atom and the ion field F{. Higher-
order terms correspond to the interaction between the
quadrupole moment Qm, and the field gradient V.F,·:

(10.7)

γ — —7T (10.3)

When the interaction given by (10.3) is taken into ac-
count, the result is a modification of the wave functions
and energy eigenvalues of the atom obtained for a fixed
ion field. The profile of the Stark line component cor-
rected for ion field inhomogeneity has the formC l 0 1 ]

(10.4)

where C is the Stark constant, y is the impact width of
the component, Λ0 = (3/4π)1 / 3Ν"1 / 3 is the mean interpar-
ticle distance, and nza0 is the size of the atom. The
functions A(0) and χ(β) describe the influence of inhomo-
geneity on the amplitude and energy of the Stark states,
respectively:

ί β'2, β
Λ « Η β 3 β

Ι β"2,

(10.5)

(10.6)

where αγ and α2 are numerical constants that depend on
the chosen line.

We note that, when N~ 1017 cm"3 and η =4, the Holtsmark
profile is valid right up to β~ 30. For the lateral com-
ponent of the Ly-a line, the criterion given by (10. 7) is
satisfied up to distances Δλ~50 A from the line center.

Condition (10.7) is a further restriction on the validity
of the Holtsmark theory and thus joins (4. 7) and (3.14)
[see above for a discussion of this question before Eq.
(4.13)].

We note in conclusion that there is one further reason
for the asymmetry of lines, namely, ionization (burnup)
of Stark components in the strong electric field due to
the ions in dense plasma. It was shown inC l 0 2 ] that this
effect could be taken into account by multiplying the in-
tensity of the line component by the factor A/[A +j(F)],
where A is the probability of spontaneous decay and j(F)
is the probability of ionization of the component. It is
well knownci03] that components shifted toward longer
wavelenghts ("red" component) tend to burn up more
rapidly than the "blue" components. The static line pro-
file will therefore have a stronger "blue" wing. The
burnup effect becomes appreciable for highly excited
lines {Hr, #„) at plasma densities iV^lO18 cm"3.

11. CONCLUSIONS

In conclusion, we must try to formulate some simple
practical recipes for estimating the broadening of hy-
drogen lines in plasma. The first step is to estimate
the density N, the characteristic velocities v{ and ve of
the plasma ions and electrons, and the magnitude of the
Stark constant C for the given line [see (3.10)]. To es-
tablish the character of the broadening by ions and elec-
trons, we must next estimate the parameters ^j and ge

[see (2.7)]. If g« 1, the broadening is largely due to
the impact mechanism and, if g» 1, we are dealing
mainly with static broadening. If g{« 1 and ge«1, the
linewidth can be calculated from the impact theory,
i .e . , from (5.18), and is obviously mainly determined
by the heavier particles, i. e., ions. For gt» 1 and ge

» 1, both particles produce static broadening and the
linewidth can be estimated from (3.11) by substituting
JVef£ =Nt +Ne =2N into it. Usually, broadening by ions is
static (£•,·» 1), whereas broadening by electrons is of
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the impact type (ge« 1). If this is so, then for the lat-
eral components (C*0), the ion width Δω0, ~ ACW2/3 is
greater than the electron width ye~NC* ki(pD/(>w)/ve be-
cause ye/Au>0j~^y3« 1. For the central component
(Ly-a, Ha, Hr), the linewidth is determined by only the
electron impact broadening mechanism. This completes
the list of integrated (over the spectrum) line-broaden-
ing and linewidth estimates.

When line shapes are estimated in different regions
of Δω, one must remember the following two points: 1)
even for g« 1, impact broadening in the line wing is re-
placed by static broadening for Δω>Ω~ι>2/£, and 2) even
for£·» 1, the static approximation is violated in the cen-
tral part of the line, where Δω<ι/ΟΝν [see (4.7)]. We
recall that the static criterion (4.7) itself has a differ-
ent form for g« 1 and g» 1. In the case of combined
electron and ion broadening, the static approximation
may turn out to be valid for ions even at the line center
provided (7.10) is satisfied. The most difficult case is
that corresponding t o ^ ~ l , where the impact and static
mechanisms predict linewidths of the same order.
Here, the behavior of the line profile is clear only in the
region corresponding to its static wing. Finally, we
note that all the above estimates correspond to the ideal
plasma approximation (3.14) and the uniform microfield
approximation (10.7).

The accuracy of existing results on the line profiles
is very dependent on the particular plasma parameters
and the particular spectral lines. In practice, the most
interesting case is that of static ions (gi» 1) and impact
electrons (ge«1). This is considered below.

The simplest line profile (7. l)-(7.3) with the average
Stark constant C given by (3.10) and impact width γ
given by (5.15) —(5.16) gives reasonable precision (~30%)
in the neighborhood of the line half-width, i. e., for Δω
~ Δω0 [see (3.11)]. However, the profile may differ
quite substantially from the true situation in the central
part, where Δω « Δω0, and in the wings, where Δω
» Δω0.

A correct description of the line wing can only be
achieved by introducing the "variable" electron width
γ(ω) into (7.1). This can be the universal (for all lines)
function γ(χ) given by (2.20) and calculated from the
adiabatic model. This gives reasonable agreement for
the Ly-a line and the highly excited Balmer lines Ht,
Ha-H15 (see Figs. 11 and 15). More accurate results
are also available for the Ly-a line, i .e . , (6.15)
(the nonadiabatic effects have also been taken into ac-
countC 9 2 l 8 1 ]). We note that, in the wing, the line profile
is satisfactorily described by (7.5) and (7.6).

The greatest computational difficulties are connected
with the central part of the lines, where Δω « Δω0,
especially in the Balmer series. Detailed numerical
calculations have recently been performed"4 '8 5 3 both for
this region and for the line as a whole. Vidal et al.C853

have reported numerical calculations for the first four
Lyman lines {Ly-a, Ly-β, Ly-y, and Ly-δ) and the
four Balmer lines (Ha, HB, Hr, and H6) in a broad range
of plasma densities and temperatures, i. e., Ne between
10u-101 2 and 1016-1018 cm"3; Te=T{ =2500 °K, 5000 °K,

10 000 °K, and 20 000 °K, and a broad range of wave-
lengths right up to line overlap.

The precision of these calculations is estimated1853 to
be 10-15%. Precision of this order can probably be ex-
pected for the Lyman lines. However, in the case of the
Balmer lines, the precision of the calculations is much
lower. We have already noted the relatively consider-
able discrepancy between the data reported by Keple
and GriemC843 and by Vidal et al.C853 near the centers of
the Ha and Hr lines. For the HB and H6 lines, the ac-
curacy of the calculations at the center is also no better
than 20%. However, it is important to note that the pre-
cision increases to 5-10% near the maximum and at
moderate distances in the line wings (Figs. 7-10). The
physical reasons restricting the accuracy of these cal-
culations are, firstly, the thermal motion of the ions
(Chap. 4) and, secondly, the nonuniformity of the plas-
ma field (Chap. 10). The former group of effects leads
to discrepancies between the true profile and the calcula-
tions near the line center, and these discrepancies in-
crease with decreasing gt. The second group affects the
distant wings as well and, according to (10.7), is par-
ticularly important for highly excited lines in sufficiently
dense plasma. We note that, in the distant line wings
(especially for Ly-a), the quantum-mechanical effects
may become important for electrons. C78~8i:i

Summarizing, we may conclude that modern experi-
ments have, on the whole, confirmed the basic predic-
tions of the theory of Stark broadening of hydrogen lines.
At the same time, the experimental results have pre-
sented new tasks for the theory, especially in relation
to the accuracy of the calculated profiles within the
framework of existing descriptions, and in the develop-
ment of new approaches which may allow us to progress
into a new range of plasma parameters. In the latter
case, the most important problem is the development of
a theory that would be valid for g ~ 1 throughout the line
profile.

Finally, we note the existence of a detailed bibliog-
raphy on line broadening. no"

The author is greatly indebted to I. I. Sobel'man for
encouragement in the writing of this review, to V. I.
Kogan who read the manuscript and made several valu-
able suggestions, and to A. V. Demura and G. V.
Sholin for discussions of many of the problems consid-
ered above.
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