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The Minkowski tensor gives gM = nu/c (I) for the momentum density g of a plane-wave electromagnetic

field in a stationary medium, whereas the Abraham tensor gives gA = u/nc (II), where u is the energy

density and η the refractive index. Expression (I) cannot be reconciled with J = μν (III), where μ is the

mass of the wave packet and ν is its velocity if, according to Einstein, p = E/c2, where J is the

momentum and Ε the energy of the wave packet. On the other hand, the expression for the

"pseudomomentum" JM = nE/c (IV), which follows from (I), is identical with the expression for the

momentum of the quantum photon / = nhv/c (V), whereas the formula the follows from (II), i.e.,

JA = E/nc (VI) is in agreement with the Einstein equation (III) but is in conflict with (V). Simple

calculation for stationary medium and source shows that (IV) and (VI) can be reconciled if one takes into

account the fact that, under certain assumptions, JM = JA + Δ / (VII), where Δ J is the momentum

communicated to the medium in the photon emission process. It is shown in this paper that, within the

framework of the adopted assumptions and, probably, classical models generally, expression (VII) cannot

be generalized to the case of a source moving relative to the medium. This result is in conflict with the

conclusions reported by V. L. Ginzberg and V. A. Ugarov [Usp. Fiz. Nauk 118, 175 (1976)] [Sov. Phys.

Usp. 19, 94 (1976)]. Moreover, it is shown that, if (VII) is introduced as a postulate for a source moving

relative to the medium, one can satisfy at the same time both the quantum conditions and (V), on the one

hand, and the fundamental Einstein relation (III), on the other.

PACS numbers: 44.10.Hv
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1. INTRODUCTION momentum density # of afield, or the momentum J of a
., , . , . . . wave packet, is the Abraham expression g = u/nc, where

There has recently been considerable renewed discus- refractive index, and c
sion on the pages of scientific periodicals of the old (in . . . . ' . . . . . .. , T „ , ' ,
. . _„ ,.> . f. . is the velocity of light: correspondingly, J=g/we, where
fact, 50-year-old) problem of the momentum-energy . /?«. t ·
. ' .* . ' .. f . . . . . . . „ S is the energy of the wave train.
tensor of the electromagnetic field in electrically or " '
magnetically polarized media.1' The word "pseudomomentum"c3] is generally accepted

, . . . , . ,. . . for the quantity J=nS/c which follows from the Minkow-
This discussion started again after it was shown in a

very simple and graphic way that the Minkowski expres-
sion for the momentum density of a field in a medium There has been extensive discussion in the literature
leads to a contradiction with such general propositions about the physical significance of the concept of "pseudo-
of classical and relativistic mechanics as the law of con- momentum." Relatively little attention has, however,
stant velocity of the "center of gravity," i. e., the center been devoted to the question of how the idea of a quan-
of mass of a system of particles. This is, in fact, es- turn of light in a medium, which is based on this con-
sentially a contradiction of the basic Einstein formula cept, can be reconciled with the above-mentioned re-
E = mcz. quirements of classical and relativistic mechanics.

It is now clear that the "correct" expression for the It is, therefore, natural to enquire whether the quan-
tum theory of the Cerenkov and Doppler effects, which

"For more detailed references relating to this question, see was extensively treated in the late Forties and Fifties,
Skobel'teyn"3 and Ginzburg and Ugarov.c2] requires a revision in the light of these developments.

528 Sov. Phys. Usp. 20(6), June 1977 0038-5670/77/2006-0528$01.10 © 1978 American Institute of Physics 528



In the ensuing discussion, we shall consider some
aspects of the problem and will formulate some ques-
tions that will take us back to the fundamentals of the
quantum theory of light. Bearing all this in mind, we
recall, to begin with, the following well-known proposi-
tion: Ά free electron moving with constant speed in a
straight line in empty space cannot emit radiation at the
expense of its kinetic energy. This conclusion can be
drawn from the theory of relativity by introducing an in-
ertia! reference frame in which the electron under con-
sideration is at rest and in which, therefore, the energy
necessary for the emission of a photon under the given
conditions is zero. However, it is well known that an
electron in a state of uniform motion in a medium will
emit radiation, i. e., it will emit the Vavilov-Cerenkov
radiation.

If we use the above reference frame (in which the elec-
tron is at rest), we have to consider the question: where
is the source of the energy of the Cerenkov radiation ?
This question can be given a natural answer by suppos-
ing that the source of energy is, in fact, the kinetic en-
ergy of the medium which interacts with the electro-
magnetic field of the electric charge that is at rest in
the medium.

This answer is undoubtedly correct in the "global,"
i .e . , macroscopic, formulation of the problem. How-
ever, in the microscopic approach—in fact—in the quan-
tum treatment of the phenomenon, we arrive at a differ-
ent answer. The quantum description is based on rela-
tionships ensuing from the Minkowski tensor, and this
leads to some paradoxical consequences.

In the above reference frame (in which the electron
is at rest), the energy of a photon inside the "Cerenkov
radiation cone"21 is negative: the photon emitted under
these conditions does not receive but, on the contrary,
gives up energy (and momentum) to the electron that
emits it. As we have already noted, this gives rise to
a direct conflict with the fundamental Einstein formula
E = mcz.s> A detailed discussion of the controversy aris-
ing from this is given below.

If we adopt the Minkowski expression J = nS/c=nhv/c
for the momentum J of a photon in a medium, and write
down the equations representing the conservation of
momentum-energy by considering the emission of a pho-
ton when the electron momentum changes from J t to J 2 ,
we obtain directly (but approximately) the following con-
dition for the emission of the Cerenkov radiation:

ηβ cos θ = 1

and certain other relationships that are identical with
the predictions of the classical theory of the effect (see,
for sample, the discussion given by Ginzburg141).

The wave-mechanical picture demands identification

of the wave vector (multiplied by h/2ir) with the momen-
tum vector of the quantum. The basic de Broglie rela-
tion must be satisfied, i. e.,

2)The Cerenkov radiation cone is seen in this context from the
"proper reference frame" of the medium.

3>More precisely, this Is a conflict with the formula J= mv,
where J is the momentum, m is the mass, and υ is the ve-
locity of this mass.

h

(1.1)

where J is the momentum and λ is the de Broglie wave-
length.

When (1.1) is applied to a photon in a vacuum, it is
equivalent to

If, on the other hand, we consider a photon in a medium,
then

so that it follows then from (1.1) that

nk\

(1.3)

(1.4)

(8 is the photon energy, J is the momentum, ν is the
frequency, and η is the refractive index).

As noted above, the quantum theory of the phenomena
that we are considering was constructed on the basis of
relationships ensuing from the Minkowski tensor.

The four-dimensional divergences of this tensor are
zero. According to a general theorem, the components
of a tensor of this kind can be used to construct the mo-
mentum-energy four-vector for any three-dimensional
region of the field bounded by a closed surface (see
Pauli,C53 pp. 93 and 130, and Mil ler, [ " p. 126).

In particular, the components of the momentum-ener-
gy four-vector constructed in this way for a wave train
are identical with the above values of the energy (f) and
momentum (1. 4) of the quantum photon.

Is it possible, however, to regard a "wave train" as
a model of the photon and then treat the "quantum of
light" as the subject of direct physical observation?

If we adopt this interpretation, we are unavoidably led
to a contradiction with the principles of the theory of
relativity, as already noted and as will be discussed
again below.

The square of the momentum-energy four-vector cor-
responding to (1.4), i .e. , its norm, is

(1.5)

Since the norm of this vector is positive (we have a spa-
tial four-vector), the photon particle with which this
vector is associated must be given an imaginary rest
mass. (It is known that the norm of the momentum-en-
ergy; four-vector: of a particle is equal to - μΙ°ζ> where
μ0 is the rest mass of the particle.)

There is a similarity between the photon particles in
a medium and the so-called tachyons, i .e. , particles
created during the last few years in the imagination of
theoreticians occupied with the physics of high-energy
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particles. In this connection, we recall the early sug-
gestion put forward by de Broglie π 1 that a photon in a
medium should be assigned two "proper" masses, i. e.,
two rest masses. One of them appears in the formula
giving the energy and the other in the expression for the
momentum of the particle. The theory of pilot waves
developed by de Broglie leads to the same conclusion.41

The idea of a photon in a vacuum is free of the above
internal contradiction: the norm of the momentum-en-
ergy four-vector is equal to zero in this case.

Since the fifty-year-old Minkowski versus Abraham
controversy appears to be finally moving toward the ac-
ceptance of the Abraham tensor (or, at any rate, toward
the abandonment of the Minkowski tensor), we have to
consider the problem of the fundamentals of the quan-
tum theory of the Cerenkov and Doppler effects in a re-
fracting medium.

In 1955, Hungarian physicists'83 put forward an inter-
pretation that appeared to reconcile the Minkowski and
Abraham expressions. The same idea was put forward
again in 1972 by Costa de Beauregard.t9J Quite recently,
an attempt at a justification of this idea was published
by Ginzburg and Ugarov'23 in the present journal.

This idea can be summarized as follows.

If we consider the emission of a wave train by a
source of light in a medium, we can easily see that the
very act of emission can be accompanied by the transfer
to the medium of the momentum J carried off by the ra-
diation and a further recoil momentum Δ J. Since we
are considering the case of a medium at rest and a
source fixed in the medium, then, subject to certain as-
sumptions, the simple calculation given below shows
that

= JA -f Δ/ (1.6)

where J is the photon momentum. We shall use the su-
perscripts Μ and A to represent the Minkowski and
Abraham quantities.

Let us take the χ axis as the ray direction. The ener-
gy density u of the electromagnetic field is, in this case,
a function of the argument v[t - (xn/c)], where η is the
refractive index, ν is the "carrier" frequency,

u α φ( vzn\
(1.7)

and t is the time measured from the beginning of emis-
sion of the wave train.

The density / of the Abraham force for a plane wave
is given by

(1.8)

(see, for example, our previous papert l a l and Chap. 3
of the present paper).

It may be assumed that (1.8) is also valid on the lead-

e n our previous paper,tlb] published in 1975, the reference to

the de Broglie paperCT] was unfortunately omitted.

ing front of the wave train, where the electromagnetic
field can be approximately represented by a sinusoidal
wave with a damped (in space) amplitude satisfying the
condition

q> = const at < » — and <P = 0 at t a — .

Under these assumptions,

(1-9)

(1.10)

where u= const for xn/c «t (where u is the energy densi-
ty at a point with given x, averaged over a large number
of periods). Ρ is the pressure exerted by the electro-
magnetic field on the medium on the leading front of the
wave train.

Let Τ be the time of emission (this is the time taken
by the wave train to leave the source), so that, accord-
ing to (1.10),

(l.U)

According to Abraham, we have

(1.12)

where % =ul is the energy of the wave train, JA is its
momentum, I is the length of the wave train, and the
transverse cross section of the train is assumed to be
equal to unity.

When the source is fixed, we have I- (c/n)T.

We thus see that S = (uc/n)T, uT=$n/c, and, ac-
cording to (1.11) and (1.12),s

M , A / _ » . " ' - 1 *·>_*»__ j*
nc n2 c c

If we could generalize (1.6) to the case of a moving
medium and a fixed source, or a source moving in a
fixed medium (the two formulations are equivalent in
the light of the principle of relativity*), then we would
show that the treatment given on the basis of the Minkow-
ski pseudomomentum is equivalent to the theory based
on the Abraham formulas with the inclusion of (1.6).

Ginzburg and Ugarov121 suggest that they have proved

s>If the source moves with velocity βο (for example, in the di-
rection of emission of the wave train), and the values of u
and Τ are specified to be as in the case of a fixed source,
then AJ is independent of the velocity of the source, but

and (1.6) is not satisfied. In the ensuing discussion, the
points raised here will be discussed in detail in the general
case, including that of a medium moving relative to the given
reference frame.

6>In the sense that the transition from one situation to the other
is governed by the Lore at ζ transformation.
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this proposition. We shall return to this question in
Chap. 4. When we do, we shall require various rela-
tionships that follow from the expressions for the mo-
mentum-energy tensors and from the relativistic kine-
matics of wave packets in moving media.

We shall consider these relationships in detail in the
following chapter. Our exposition will be somewhat
overloaded with elementary derivations of the various
auxiliary relationships, but we hope that this will con-
tribute to the elucidation of this somewhat tangled prob-
lem and will clear up some of the errors that have crept
into the literature.

2. MOMENTUM-ENERGY TENSORS OF THE
ELECTROMAGNETIC FIELD IN A MEDIUM AND
KINEMATICS OF WAVE PACKETS IN MOVING MEDIA

Henceforth, we shall be concerned with moving media
and sources of light contained by them (both stationary
and moving). To exclude side effects connected with the
interaction between the source and the medium in the
course of their relative motion, we shall follow Ginz-
burg and Frank1101 and suppose that the source of light
is located, for example, in a plane slit cut in the medi-
um by planes whose separation is small in comparison
with the wavelength.

The "virtual" source of radiation can be regarded as
a surface covered by a layer of oscillators. When these
oscillators are synchronous, the beam of rays is emitted
practically parallel to the direction of the normal to the
emitter surface. It is, however, possible to specify the
oscillator phase distribution (over the surface of the
emitter) so that the beam of rays is emitted obliquely at
some particular angle to the surface of the source.

The elastic stress tensor (Ptm) associated with the
electromagnetic field was considered in our previous
paper. t l a l Since we shall be concerned with limiting
conditions, we consider two models of an idealized me-
dium in which the permittivity is a constant independent
of the parameters characterizing the state of the medi-
um and of the electric field. We have thus excluded
forces that depend on the derivative of the permittivity
with respect to the density of the medium ("strictional
forces"). In addition, we assume that dispersion can
be neglected.

Omitting details for which we refer the reader to our
previous paper,11*3 we shall now generalize the two-di-
mensional "space-time" scheme considered previously
to the case of two spatial dimensions.

As in our previous paper,11*1 we shall consider the
field of a plane-polarized electromagnetic wave. The
field components corresponding to the situation shown
in Fig. 1 are as follows:

[EH]

FIG. 1.

Details of the various derivations will be omitted
from the analysis given below. The tensor Plm can be
written in the form (Skobel'tsyn0*1):

cos2 θ sin θ cos θ { 0

n2 θ j 0

0 ! 0

•u0X I «n » «»

0 0

(2.2)

where u0 is the electromagnetic energy density in the
wave and Plm is the mechanical stress tensor in the me-
dium due to the electromagnetic field. We have shown
(see, for example, Skobel'tsyn,11*1 Appendix 4) that the
components of the Abraham tensor Slm are given by the
following table:

(2.3)

Next, consider the sum TIm of tensors S and P;

Tlm=sf-m+pIm. (2.4)

Transforming to the primed coordinates, the origin of
which moves with velocity β relative to the frame x, t
(stationary medium), we can transform Stm and T,m in
accordance with the usual rules, i. e., assuming that

where X^, and X'tm are the corresponding components of
the tensors and a^ are defined by the following matrix:

ν ο ο ; ίβν
ο ι ο i ο

-7βγ '~ Ο 0 I v

1

The final result is

By = Ε cos θ cos ψ, Hy—— #sini)j,

Ez = Ε cos θ sin if, £f2 =

(2.1)

and so on. The azimuth φ will be set equal to zero only
for the sake of brevity.
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COS θ (l! COS θ — β) —

— P(cos6 —πβ)
sin θ (n cos θ—β)

V

I [cos θ (1 — ηβ cos θ) —
— β(η — β cos θ)]

sin θ (η cos
ϊ

ιι sin2 θ
Υ'

,.8ίηθ(1 —r
ϊ

3 - Ρ )

β cos θ>

D.

i [ c o s 6 ( l — «β cos θ) —
— β (ιι— gcof θ)]
. sin θ (1 — ηρ cos θ)

ϊ

ιι -J- 2P cos ϋ ηΡ= cos2 0

(2.
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sin 8 cos 8 j

n 2 — i I sin 8 cos 8 sm 2 8
^ - Y 2 " o x | y - ^ 2 —

ίβ"si'ii Scos θ '

(2.6)

The sum of the tensors (2. 5) and (2.6) will be denoted

sine (cos e—w ι ! ( Β _ β ( ; Μ θ ) ( 0 0 5 θ _ Β Ρ ) 1

sin 2 θ j (η—β cos 8) s ine

_ ( n _ p c o s 9 ) 2

(2.7)
If we now replace the components S1 4 and S2 4 in the

fourth column of (2.3) [(t/w)cos0 and (t/«)sin0] by
in cose and t« sine, and then use the general formulas
for the transformation of the components of a tensor,
we obtain the following table for the Minkowski tensor

(cos6— ιφ)(π««8—β) sine(r. cos6—β) i (n — β « « 8) (n cosO—β) '
η ny \ η

sine (cos 8—«β) sin28 i f sin 8 (n — β cos 8)
y γ2 • y

.(cos8—ηβ)(1 —npcosB) .sin6(1 — ηβακθ) i ( (βΜ«6—η)(1 — ηβαχιβ)
η ny \ η

(2.8)
(The factor designated u0 in front of each of the above
tables is the energy density in the unprimed coordinate
frame in which the medium is at rest.)

We now present the relationships that can be obtained
from the above tensors.

The tensors TM and TA are tensors of the closed (field
+ medium) system:

(2.9)

The energy flux density for this case is given by

Φ' = u'c (2.10)

where c** is the rate of energy transfer. Simple con-
siderations lead to the following requirement: c** must
transform like the velocity of a mass point.

Since, in accordance with (2.10),

c · * cos Θ' = (c/i)S4 1/u', c" sin Θ' = (c/i) Si2/u',

both tables, (2.7) and (2.8), yield the same result,
namely:

— βζ sin2 6 (2.11)

At the same time, purely kinematic considerations lead
to the expression for the phase velocity c*.

This expression follows from the requirement that the
phase of the wave must be invariant:

T - - v ' ( l ' ' ' c ° " ' ^ i > s i ° ° ' \ ^ r ( , i c o s 8 + y s i n 8 \ ( 2 . 1 2 )

where a' and θ are the angles between the wave normal
and the χ axis in the primed and unprimed coordinate

frames, respectively.

It follows from (2.12) and from the Lorentz transfor-
mations that

c ( l — ηβ
(2.13)

and that the relationships defining a' and ν are as fol-
lows:

nsinec*Vl—№

γΰψ •

(2.14)

(2.15)

(2.16)

(See Moller,tei p. 46 for detailed derivations). Κ we
now consider a "wave train," we may assume that

I—iL
%· u' '

(2.17)

where J' and %' are the momentum and energy of the
wave train, respectively, g = (&'2+£^2)1/2 is the mo-
mentum density, and u is the energy density.

Correspondingly, from (2.7) and (2.8), we have

and

V 1—2ηβοο8
c(«

V ' · 2 — 2 η β α

;8 + η2|
— β cos

β2 — β2 s j n 2 e

' θ)

2 — η 2 β 2 δ ί η 2 θ

(2.18)

(2.19)

It is the consequences of these two tensors that lead
to the controversy mentioned above, which, in the gen-
eralized form, follows from the ensuing comparison.

According to (2.18), (2.11), (2.13), and (2.16), it
follows from (2.7) that

/ = - Einstein relation ,

J'AΦ —^r- Φ j-,— violation of the de Broglie relation,

here,

λ' = — ν' = ν (' — "β"»9) (2. 20)

where v' is the Doppler frequency recorded by the ob-
server relative to which the source and medium move
with velocity - /3 c.

As a consequence of (2.19), (2. 8), (2.13), (2.11),
and (2.16), we obtain

j,a =V^_—h£_= _*_ _ d e BrogUe relation,

and

/ ' " φ -^j— c" — violation of Einstein relation .

Generalization of the results noted up to (1.6) will re-
quire the derivation of certain relationships that follow
from the geometry or, more precisely, the kinematics
of wave packets.
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(2.25)

FIG. 2.

To derive these relationships, let us consider a wave
packet (train) of given profile in the unprimed coordi-
nate frame, and a medium at rest in this frame.

For simplicity, we shall suppose that the wave sur-
faces (or, as we shall call them, the planes of equal
phase) are bounded by the surface of a cylinder of suf-
ficiently large radius which is nevertheless small in
comparison with the length of the wave train.

Moreover, we shall simplify the geometry by assum-
ing that the sections cut by the planes of equal phase
through the cylindrical volume Ω filled with the wave
train are circular, and that these planes are perpendic-
ular to the axis of the cylinder.7' The transverse cross
sections A and Β of the cylinder Ω are shown in Fig. 2,
and we regard them as the conditional boundaries of the
wave packet. The centers A and Β of these sections lie
on the axis of the cylinder, which is at an angle θ to the
χ axis. Suppose that, at time t = t' = 0, the origins of
both reference frames (x, t and x', t') coincide at the
point A. In the x, t frame, the points Β and A move with
velocity whose χ component is c cos9/n.

In view of Fig. 2, and applying the Lorentz transfor-
mation to the coordinates of B, we obtain the following
expressions:

(2.21)

Eliminating xB and tB from these equations, we have,
after some simple intermediate steps,

, _ cos6 —ηβ ni0 coseV^l—β2

XR — C Τ ο Λ * "1 ~ α Λη —βοοδθ
, _ cos8 — η Ρ ,

(2. 22)

(2. 23)

(The second equation is obtained from the first by putting

Zo=0.)

An analogous procedure easily yields the expression
iory'B=yB:

(2. 24)

and, correspondingly,

7)These simplifying assumptions can be removed. The direc-
tion of the axis of the wave-packet tube need not be parallel
to the direction of the normal to the planes of equal phases.
This is the situation when the medium is stationary in the
given reference frame and the source moves relative to the
medium.

From (2. 22) and (2.24), we obtain the expressions for
the velocity c** and its χ andy' components:

(2. 26)

(2. 27)

(2. 28)
η—β cos θ

We have thus verified the fact that kinematics8* leads
to the expression for c** given by (2.28), which is iden-
tical with (2.11) obtained from the tensors (2.7) and
(2.8).

We can now use (2. 26)-(2.28) to determine the angle
θ':

« Θ' .
ηβ<-(cos9— ηβ)

c· · (η—β cos θ) Ί/"ΐ_2ίΐβ0θ8θ4-ίΐ2β2—β2 sin2 θ '
c s i n 9 ^ ' - - ΐ 2 sin6\/l— β

(2. 29)

(2. 30)

The velocity c** is the velocity of the wave packet.

The planes of equal phase can be imagined as moving
together with the packet, and the phase velocity c* can
be looked upon as a component of c** along the normal
to these planes. The angle χ between the directions of
c** and c* is therefore given by

«»*=•£-; (2.31)

The quantity cosx can be determined with the aid of
(2.29), (2.30), (2.14), and (2.15). In accordance with
(2. 31), such calculations yield

cos χ = cos Θ' cos a' -\- sin Θ' sin a' = - ^ j - . (2. 32)

We now note the following consequence of the above re-
lationship.

According to (2.13), c* = 0 for cos60= l/n/3, i. e., for
directions lying on the surface of the Cerenkov radiation
cone (θ=θ0). On the other hand, (2. 32) shows that, in
this "singular" case, cosx = 0, i. e., the direction of
c** is parallel to the planes of equal phase. This means
that energy is transported parallel to the wave front.

It is important to note that, when we speak of the
Cerenkov radiation cone, we have in mind (here and
henceforth) a source of radiation moving in a stationary
medium with velocity β equal to the given velocity of the
origin of the primed coordinates (relative to the medi-
um). Figure 3 shows schematically the orientation of
the wave packet (A'B') in the χ',t' frame and the direc-
tions of the vectors c** and c* in the following three
cases: θ<θ0; θ=θ0; θ>θ0.

It will be useful in the ensuing analysis to note the

8)Another purely kinematic derivation can be based on the ap-
plication of the Lorentz transformations to the Huygens con-
struction for the wave surface. This is discussed by Mil-
ler, c " p. 47.
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βο=36° β=60°

, n = (f , πβ cos βο~1

FIG. 3.

following property of radiation in the x', t' frame.

When the velocity β is greater than the velocity of
light, i.e., β>1/η, and the source of light is stationary
in the x', t' frame, the only possible ray directions are
those lying within a particular cone that opens in the di-
rection of negative values of x. This can be verified,
for example, as follows. Using (2.29), which defines
cose', we obtain (by solving the corresponding quadratic
equation), the formula for the reverse transformation,
i.e., the dependence of cose on cose'. This formula is:

1 — cos2 9') ± cos 8* V ( l — β') ( « φ 2 cos2 6*—β» cos8 Β' — η'β'4-1)

When

(2. 33)

(2. 34)

the expression under the square,root is equal to zero.
When |cose'l< |cos0j|(|e'|<|00l), cosd becomes imag-
inary.

Next, it follows from (2.33) that, when cosflj is given
by (2.34), we have cos60= l/n/3, i.e., the directions on
the surface of the cone of angle 00 correspond to the con-
dition for Cerenkov radiation. The dependence of θ' on
θ is not monotonic. For each value of θ' within the al-
lowed cone, there are two values of Θ, i. e., two direc-
tions, namely, one within the "Cerenkov cone" and the
other outside this cone, in the x, t frame.

In the next section, we shall discuss in detail the re-
lation J'U=J'A + Δ/, given by (1.6). To calculate Δ / ,
we require an expression for the area S' cut through a
"wave train tube" by the planes of equal phase. This ex-
pression can again be obtained by applying simple kine-
matic relationships which we reproduce without proof for
brevity. To obtain the required result, we must intro-
duce a third reference frame, in addition to the above
two, in which the direction of c** coincides with that of
the y' axis.

The three reference frames which we shall use in the
following derivation will be indicated by the numbers I,
Π, ΙΠ and the corresponding velocities β will also be
labeled with subscripts Ι, Π, ΠΙ.

Frame m is the system just mentioned.

Frame Π is the "primed set of coordinates" introduced
above.

FIG. 4 .

Frame I is the "unprimed set" in which the medium
is stationary.

The formulas given below involve the velocities βτ

and 0ii. This notation is meant to indicate the velocity
of the third system relative to I and Π, respectively.

It is clear from (2.29) that

βί-
α» θ

The rule for the addition of velocities yields

(2. 35)

(2. 36)

and we recall that β is the velocity of the "primed set"
determined by an observer in frame I. Hence, finally,

(2. 37)

The remaining designations are illustrated in Fig. 4.
(The letter σ represents the corresponding areas of the
projections of the areas 5 onto the x,z plane.)

It is easily verified that the following results are val-
id:

(2. 38)

(2. 39)

Hence, using (2. 38), (2. 39), (2. 37), (2. 35), and (2.14),
we obtain, after some simple intermediate steps,

sin α' η — β cos 0 c* (η —β cos θ) (2.40)

This is valid when ηβ cos0 # 1 . "

A more direct and more detailed derivation is given
in Appendix 1.

Here, however, we can use (2.15) and write down a
further formula which we shall need later:

S Icosa |

We shall also need the expression for the volume Si':

a- = S'i·; (2.42)

9)The size of the source is taken into account implicitly in
(2.40) by specifying So. When nj3cosS = l (and 50=°°), the
size of the source has to be taken explicitly into account.
This exhibits the "inadequacy" of the macroscopic model when
it is applied to the problems treated in this paper.
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where I' is the distance in the primed coordinate frame

between the planes of the cross sections S'B and S'A . It

is required to determine the length V for a given l0 (be-

tween the same cross sections A and Β) in the unprimed

frame. The simplest way to obtain this is to use the

invariance of the phase, which yields

I'

V (2.43)

where λ is the wavelength. Next,

>•' _ nvoc» _ l / Ί — β* nc*
λο v'c 1 — ηβοοβθ c *

[Here, we have used the Doppler relation given by

(2.16).] Thus,

Equations (2.42), (2.40), and (2.44) yield

where

10»

(2.44)

(2.45)

3. MOMENTUM OF A WAVE TRAIN IN A MOVING
MEDIUM AND MOMENTUM TRANSFERRED TO THE
MEDIUM WHEN A WAVE TRAIN IS EMITTED BY
THE SOURCE

It was noted in the Introduction that attention had been
drawn in the literature to the fact that (1. 6) could, al-
legedly, be used to reconcile the Minkowski and Abra-
ham concepts.

Thus, if the emission of a wave train by a source

fixed in a stationary medium is considered classically,

and use is made of a simplified model, simple calcula-

tions show that the sum of the momentum J, carried off

by the emitted photon (according to Abraham's formula),

and the additional momentum AJ communicated by the

10)By calculating the products Q'g1 and Q'u', where g' and «'
are given by (2.7) and (2.8), we obtain J ' ands' , respective-
ly, where J' and "S' are the momentum and energy of the
given wave train, respectively. Substitution for ̂ r from (2.7)
yields, for example,

·> χ
c o s e — ηβ cos θ — ϋ

according to Abraham

«*'_« η —β cos

(2.46)

Table (2.8) gives

according to Minkowski

*„
1 —nflcosB

(2.47)

These relationships correspond to the transformation formu-
las for the momentum-energy four-vector and (if we use the
expressions for Jy not given here) the formulas (2.18) and
(2.19) above.

Abraham forces to the medium during the emission pro-

cess itself, is equal to the momentum of the "Minkowski

photon" (see the Introduction).

Henceforth, we shall discuss this situation (emitter

stationary relative to the medium) in a more general

form. In particular, we shall assume that the two ob-

jects (source and medium) move relative to the observer

with equal arbitrary velocities - βο.

The above result is obtained if we calculate the mo-
mentum AJ due to the Abraham forces acting on the me-
dium during the emission process within the volume of
the radiated wave train. (The effective volume, by the
way, is not the entire volume of the wave train but only
a certain boundary zone near its leading front.) The
"recoil" experienced by the source is the reaction of the
radiation, assumed equal to the sum J+AJ. A more
detailed discussion of the assumptions implicit in this
and of the momentum flux balance will be given in Ap-
pendix 2.

General considerations already lead to the invariance

or covariance of (1.6). This will be confirmed by di-

rect calculations. However, we are concerned with the

covariance under a transformation of the point of view

of the observer (in the one case, fixed and, in the other,

moving relative to the medium) subject to the condition

that the above physically defined situation is maintained,

i.e., the source is fixed relative to the medium.

Questions connected with the covariance of (1.6) are
discussed in Appendix 3.

In our system of primed coordinates, the source (and

medium) moves with velocity - β. When we calculate

the momentum Aj', the emission time determined by

an observer in the primed set of coordinates will be set

equal to τ'. Ε, as we shall suppose, the "clock hand" of

the source indicates zero at the beginning of the emis-

sion process, then, at the end of the process, it will

indicate the "proper time" τ = τ' (1 - β2)1 η . During this

time, the "head" of the wave train, which moves with

velocity c/n (in the x, t frame), will traverse a distance

(from the source that is at rest in this frame) given by

ι (3.1)

(The propertime τ of the source is equal to the time t in

the unprimed frame in which the source is at rest.) Let

us suppose that the cross section So, cut by the plane of

equal phases, is equal to unity, so that

«„ = h

and (2.45) and (3.1) give

(3.2)

(3.3)
— ρ cosu "

J' = g'Sl'. (3.4)

The expression given by (3. 3) was derived on the as-
sumption that the source was at rest relative to the me-
dium (both in the χ', t' and x, t frames).

We must now consider another expression for the vol-
ume of the wave train, which we shall denote by Ω ' * and
which we shall require below. The point is that we are
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concerned with a wave train emitted by a source that is
stationary in the χ', t' frame. The medium is in motion
relative to this source. The volume Ω ' * can then be de-
termined as follows.

Under the above conditions, the length of the wave
train along the normal to the planes of equal phases in
the x', t' frame is

FIG. 5.

In the unprimed (laboratory) system, the length V of the
wave train corresponds to the length l0 given by (2.44).
Consequently,

(3.5)

Since, by hypothesis, So= 1, it follows that Ω 0 = ί0.

According to (2.45) and (3. 5)

We note that

(3.6)

(3.7)

The x' component of the momentum ΔJ1 transferred in
a time dt' is given by the following integral:

dt' (3.8)

where/» denotes the component of the force density and
S" cosa'd*' is a volume element of the ray tube (see
Fig. 5). n ) We are dealing with the density of the Abra-
ham force, which can be obtained from the divergences
of the tensors (2. 5) and (2. 6). By considering the inte-
gral given by (3.8), we can verify that the average val-
ues of this integral are time-independent. (We are con-
cerned with averages over a small time interval dt
which is, nevertheless, large in comparison with the
period of the field oscillations.) tt therefore follows
from (3.8) that

' = τ' f /i.S' cos a'dx'; (3.9)

where r' is the time taken for the emission of the pulse
of light.

The formulas given below will show that the force
density averaged in this way is proportional to the par-
tial derivative of the average value of the energy density
u (or u) with respect to χ (or x'), written as a function
of the argument

φ=ν'(ί·_ί
- ) •

(3.10)

'"when β<1/η, we must distinguish between the two cases
corresponding to cose >ηβ and cose < ηβ. The situation il-
lustrated in Fig. 5 corresponds to the first of these two cases.
The required integral is the same in both cases.

When β>1/η and ηβοοβθ >1 for a source that is stationary
in (x?, f ) , the quantity AJ is given by (3.9) with a minus sign.

We are concerned with the mean value of u for points
("isochronous" points) on a given plane of equal phases.
The required integral is independent of the form of this
function provided, and we shall assume this, that the
following conditions are satisfied;

for· f > s'cosq' + ysinq' , „- i s ω β ρ ί η ( , β η 1 of *', j , ' , ( 3 . 1 Ϊ )

for i . <* '°°sq- + y ' s m a ' | i t , = ( ) Q ^

We are assuming that the emission of light begins at
time t' = 0. it follows from these conditions that the in-
tegral in (3.9) (at a given time t') includes contributions
due to the variables x' within a certain finite interval
Αφ (and, correspondingly, Δ*' and Ay'), i.e., provided

0<v' (('_( 'j < Δ φ (3.13)

at

V — x' cosoc'+y ainq' = 0.

Evaluation of the divergences of the tensor involves the
partial derivatives of the density with respect to three
variables (x,y, t and x',y', t'). As already noted, since
we are concerned with a function of the argument φ,
the derivatives with respect to y and t can be expressed
in terms of definite functions, the argument of which
involves only one derivative, d/dx or 8/a*'. This will
be clear if we consider the following differential rela-
tionships:

~dx

du dtp

Λρ ~~dx
du

dtp dy '

Next,

a a sine
dy dx cos θ 3. 14)

and, if we use the Lorentz transformation formulas,

= (χ'+β£')γ, I
-(t'-rP*')V, I

y' J
(3.15)

(we have substituted c= 1), we have

\dx' If dx \dx' ) r ^ at \ dx' ),·'

f I * · dx V dt' I x - Ot \ dt' I x · '

Hence:

dx' dx ' ' at M ' ax ' ncosB
η sin θ

By dx' γ("< : 0 3 β—β) '

(3.16)

(3.17)

(3.18)
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a c(nPcos8—1) δ
at' ~ π cose—β ax' '

In (3.9), we now substitute

(3.19)

(3.20)

where Ptm is the tensor defined by (2.6). [We recall
that Tlm=Slm + Plm and that divTI m= 0, and this leads
directly to (3. 20). ]

Using (3.17)-(3.19) and the table given in (2. 6), we
obtain the following expression:

j x — a i v
n 2 — 1 cos28 >isin26cos8 β ccs2 θ(ηβοοβθ— i)-\

+ « c o s B — β ( n c o s 8 — β ) ( 1 — β2) J ·

(3.21)
and then, after some simple rearrangement,

,, _ n2—1 / aug \ cos8
' * η \ ax' )f *!Cos8—β ' (3. 22)

Let us suppose that the emission time for the wave train
is τ = 1. Substituting (3.22) and (2.41) in (3. 8), and then
setting So= 1, we obtain

. j,A _. _ f " 2 ~ * cos8 riCosB
* ~ J n ucos8—-β η — βοο

β du0 , , _ n2 —1 cos Blip
θ to' * ~ n η — βο<κθ

According to (3.3) and (3.4) with τ' = 1,
(3.23)

The table in (2. 5) yields

J'*A^ ,.(,—"ρ°«»Β) (^9-«β Ε θ8 2 6-ηβ + β^ο56). (3.24)

Combining (3. 23) and (3. 24), and rearranging, we ob-
tain

•/^-rAJ^M,"0 0 8 6"? . (3.25)

Evaluating j ' x in accordance with the table in (2. 8) and
substituting g'x = S u / t c , we obtain

r'M r\i ·Μ (rtCOS8 — β) it OC\
Jx = Qgx = u0 ^-, \ό. ΔΌ)

Comparison of (3. 25) and (3. 26) will show that

(3. 27)

i .e . , (1. 6) is satisfied in the primed set of coordinates
as well. We recall that both the medium and the source
move with velocity - β relative to the observer in this
system. A similar argument will readily show that the
y' component will also satisfy (3. 27). Both sides of
(3. 27) contain the space components of a four-vector.
The time components of this vector satisfy the analo-
gous equation, which can be verified by similar calcula-
tions:

where S'A and g'M are the energies of the given wave
train (according to Abraham and Minkowski, respective-
ly). The term Δ8 ' is the energy communicated to the
moving medium during the "injection" of the momentum

AJ1 into it. It is given by the four-dimensional diver-
gence of the fourth row of the tensor S'lm multiplied by
i/c and taken with the opposite sign.

Under the above conditions, the energy Δt•' is nega-
tive: the energy of the electromagnetic field in-
creases1® upon injection of a positive momentum at the
expense of the kinetic energy of the medium (the work
done by the field forces is negative).

Our calculations have been based on the expressions
for the components of the momentum-energy tensor. A
much simpler way of obtaining the same result is to
start with the general relativistic relationships for the
components of the force and the force density.

A general proposition in relativistic mechanics is that
the longitudinal (in the direction of the velocity β) com-
ponent of a force acting on an element of volume άω of
a body is invariant under the Lorentz transformation.
The "transverse" component, on the other hand, is
transformed by multiplication by the factor (1 - j32)1/2

(see Mf&ler,cel p. 59).

Hence, it follows that the force densities f'x and /,
are given by

/i=/xV. f'y=fy

According to Abraham,

Using (3.17), we obtain immediately

(3. 29)

(3. 30)

(3. 31)

which is identical with (3.22).

We have thus verified that (1.6) remains valid under
a transformation to the moving coordinate frame (*', t')
provided the source of radiation is at rest relative to
the medium. A consequence of this result is that, if the
source is stationary in the primed set of coordinates
and, therefore, moves relative to the medium, Eq. (1.6)
is not satisfied.

In point of fact, it is clear from the derivation that,
for given values of the density (w0 or u) and given time
τ' (which we have set equal to unity),13* the quantity AJ'
is independent of whether the source emitting the radia-
tion is moving (in the given reference frame) or is at
rest because we are concerned with the force impulse
acting on the wave front. Moreover, the volume Ω ' of
the wave train depends, as we have shown, on the state
of motion of the source of these waves. If the source
moves in the x',t' frame (together with the medium)
with velocity - β, then, as we have shown

(3. 32)

(3. 28) Since, according to (3.7), Ω ' * #ί ϊ ' for a fixed source,

12)Δ« = 0 in the primed set of coordinates.
13)The values of these quantities are completely arbitrary. The

value of the angle β is assumed given.
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and Δ J' is the same as in (3.32) (fixed source), it fol-
lows that (1.6) is not satisfied if the source is fixed in
the (*',*') frame, i .e. , if the source moves relative to
the medium,

This also applies to the other components (along y and
t) if we consider the generalized, four-dimensional
form of (1.6). In particular, in the primed frame, Eq.
(3.28) for a fixed source and a moving medium is also
not satisfied.

Finally, we note that, bearing in mind the expression
for Δ J ' (which, as we have shown, can be derived with-
out writing out the tensor table), we can immediately de-
termine Δ % as well, since we must have Δ % = - fic&.j'c
(- /3c is the velocity of the medium).

4. ON THE PAPER BY V. L. GINZBURG AND V. A.
UGAROV'21

Ginzburg and Ugarov attempt to show that the Minkow-
ski and Abraham treatments as applied to the conserva-
tion of momentum and energy are equivalent. They
claim to have proved the validity of (3. 27) and (3.28)
even for a source moving relative to the medium. More-
over, they state that this generalization of (1.6) follows
from "general considerations."

The question is: How has the proof of the above prop-
osition been carried out ? In fact, certain particular
terms involving the spatial divergences of functions of
field variables are neglected in the formula for the den-
sity of the Abraham force / * . Declaring, in general,
that, when these relationships aVe written in integral
form, the terms containing the spatial divergences can-
cel out, the above authors maintain that the solution of
their (and our) problem can be obtained by starting from
the following expression for the density of the pondero-
motive force:

[this is Eq. (46) in the paper by Ginzburg and Ugar-
£2]i4>j_ jn o u r notation, we have for a plane-wave field

o v

(4.1)

where f'x
A is given by (3. 22).

If, instead of (3. 22), we substitute (4.1), "truncated"
as indicated above, into (3.9), and carry out all the cal-
culations as in Chap. 3, it does, in fact, turn out that,
when the source is fixed in a moving medium (in the
x1, t' frame), Eq. (1.6) is valid. This is what Ginzburg
and Ugarov wish to prove. However, when the source
is moving (in the χ', t' frame) but is stationary relative
to the medium, the result is different. The general con-
siderations of Chap. 3, on the other hand, lead to the
conclusion that calculations based on (3. 9) show, in this

case, that, when (4.1) is adopted as the expression for
the force density, the equation given by (1.6) is not sat-
isfied under the conditions under which relativistic co-
variance demands that it should be satisfied.ls>

This means that the results obtained by Ginzburg and
Ugarov,U] which appear to satisfy them, were, in fact,
obtained by violating the general principles of relativis-
tic mechanics that govern the choice of the expressions
for the force (or density of force) in a moving medi-
um.le>

5. QUANTUM THEORY OF THE DOPPLER EFFECT
AND CONCLUDING REMARKS

We shall now consider the derivation of the formulas
of the quantum theory of the Doppler and the Cerenkov
effects given by Ginzburg and Frank1 1 0 3 (see also the
paper by Frank t l l ] ) . It will be convenient to choose the
reference frame in which the radiating atom (source) is
at rest and the medium is moving. This simplifies the
final expressions. If the expression for the energy g ^
of a photon in this reference frame is already available
(and this problem has been solved), transformation to
the laboratory system is achieved simply by multiplica-
tion by a certain factor. Since we shall be concerned
with the application of conservation laws based on the
Minkowski theory, this factor is determined by the gen-
eral rules for the transformation of the components of
four-vectors, and is given by

(5.1)

We are assuming that, in its initial state, the radiating
atom is stationary in the given reference frame. Its
rest mass will be denoted by μχ. The emission of a pho-
ton of energy t,'sh results in a change in the rest mass
of the atom. The "proper mass" of the atom in the final
state will be denoted by μ2.

14)The quantity/' r represents the/ i A in Eq. (46) of the Ginz-
burg-Ugarov paper. t 2 :

1S)See Appendix 3 below for further details on the covariance
conditions.

16)Ginzburg and Ugarovc2] emphasize that integration with r e -
spect to time includes " . . .the period of time during which the
wave train is already sufficiently 'separated from the emit-
ter ' " (p. 186 of original, 100 of translation). This explana-
tion is surprising because once the wave train is "separated"
from the emitter, the transfer of additional momentum to the
medium ceases, i .e . , as the wave train moves through the
medium, it transports momentum equal to the product of the
(Abraham) momentum density and the volume of the wave
train. The momentum of the medium, on the other hand, r e -
mains constant.

Elastic forces must also be taken into account in the eval-
uation of &J. Neglect of these forces will lead to errors that
have probably influenced the results obtained by Ginzburg and
Ugarov12·1 (see the Appendix given below). Insofar as the cal-
culations given in Chap. 3 of the present paper are con-
cerned, the conditions formulated in Appendix 2 are particu-
larly important in this connection. Ginzburg and Ugarov1-2-1

cite the example of the "gas of heavy dust particles" dis-
cussed in our previous paper1-1*3 as confirmation of their re-
sults. In point of fact, Table (5.30) given in that paper is in
direct conflict with these results.
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We shall start by introducing the following simplified

assumption: the photon recoil energy can be neglected

in the given reference frame in comparison with the ex-

citation energy.

In the above approximation, which is practically al-

ways acceptable for an atom, the energy balance equa-

tion can be written in the form

(5.2)

or

( μ ΐ - μ , ) ν - ϊ ^ . (5.3)

We shall consider the case of motion with speed in ex-
cess of the velocity of light and will assume that, in the
laboratory system, the chosen direction of motion of
the photon lies within the Cerenkov radiation cone.
Since, according to Minkowski, the photon energy g'vb

is then negative, Eq. (5. 3) immediately predicts that
μζο

2>μ1ο
ζ. The energy μζε

2 of the atom after the
emission is, therefore, greater than before emission:
the result of emission is the excitation of the atom from
a given energy level to a higher level. An observer at
rest in the laboratory frame will conclude that the emis-
sion of light is accompanied by a partial conversion of
the kinetic energy of the radiating atom into its excita-
tion energy. Ginzburg has frequently emphasized (even
quite recently143) this peculiar property of emission at
velocities greater than that of the velocity of light.

This even leads to a possible application of this kind

of effect. In particular, if we pass unexcited atoms

traveling with velocities greater than the velocity of

light through a "sieve" consisting of fine channels in a

refracting medium, the emerging particles may, in

principle, be found to be excited.

However, the above theory rests on assumptions that

are in direct contradiction to the fundamentals of me-

chanics and electrodynamics.

This direct contradiction is apparent from the very

fact that an electromagnetic field of negative energy is

brought into play. Moreover, Eqs. (2. 26) and (2. 27)

show that, within the Cerenkov radiation cone, the di-

rection of the momentum of the Minkowski photon does

not coincide with the energy-transport velocity c**.

This is easily verified by comparing these formulas
with Table (2. 8).

In particular, for ray directions lying on the surface
of the cone (for η β cose0 = 1), the direction of the vector
J'" and the direction of the wave vector are perpendicu-
lar to the direction of c**. This has already been noted
[see (2. 31) and (2. 32)] and is shown in Fig. 3, Inside
the cone, the component of the momentum along the χ'
axis is opposite in direction to the component of the
velocity c** along the same axis. Finally, if we consid-
er the limiting case θο= 0 and β= 1/n, the photon energy
is zero for nonzero momentum. These situations are in
conflict with the fundamental Einstein formula E = mcz.

Let us illustrate the foregoing by the following exam-
ple, confining our discussion to the absorption of light,

for simplicity, and assuming that β = 1/w.

We have the following situation in mind. A medium

contains an absorbing sheet. In the laboratory refer-

ence frame, the wave train is moving in the direction of

the absorber. In the reference frame introduced above,

the wave train is at rest. The black sheet moves to-

ward the wave train and absorbs it (Fig. 6). Absorption

is accompanied by the transfer of the photon momentum

to the medium whose motion is slowed down. The medi-

um may be imagined to be a solid whose center coincides

with the center of gravity (or center of mass) because

the energy and mass of the photon are both zero. The

slowing down of the medium due to the absorption of the

photon gives rise to a change in its velocity, i.e., a

slowing down of the center-of-mass system as a whole.

It is easily verified that this violation of the law of mo-

tion of the center of mass (self-retardation) is also re-

corded by an observer in the laboratory reference frame.

The same violation of the velocity balance conditions
(for the center of gravity) also occurs in the case of
emission (emission of Minkowski photons). We also
note that, if these violations are assumed for the ele-
mentary acts of emission, they must also be seen in
emission by an ensemble of atoms on a macroscopic
scale.

If in Eq. (5. 3) we multiply t'vtl by the factor (5.1), we

obtain the Doppler effect formula

(5.4)

for a moving source and an observer at rest relative to
the medium.

If we abandon the above approximation and do not ne-
glect the recoil energy, the energy balance equation in
its rigorous form is

Ph · (5 .5)

Here, we have taken into account the de Broglie relation
</',„= S^/c*, where g 'tb and J'tb are, respectively, the
energy and momentum of the photon in the chosen sys-
tem of primed coordinates.

This yields the following quadratic equation for g , h :

-μί)ε' = 0. (5.6)

If we now use (2.13), we can easily show that

c·2 (l-^cos6)2 ' 1°· I)

Having solved (5.6) and having then transformed to the
laboratory frame by multiplying i'vh by the factor given
by (5.1), we obtain the result given by Ginzburg and

FIG. 6.
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Frank1 1 0 3 (in our case, for the excitation of a single
atomic level).

Η we are concerned with an electron traveling with a
velocity greater than the velocity of light and, accord-
ingly, put

μ2 = μ! = m,

where m is the electron mass, (5.6) will directly lead
to

«»-*-'7-ΐ7πί)· (5.8)

This formula can be read in different ways.

Reading left to right, we come to the conclusion that,
since hv is of the order of an electron volt (or even
smaller) and mcz is of the order of 500 keV, then

«β cos θ = 1

which is the Cerenkov condition.

However, if we read this formula from right to left
and assume that the theory is correct, we conclude that,
when the condition «0cos6 = 1 is exactly satisfied, the
frequency ν is zero and there is, therefore, no emis-
sion.

JelleyI 1 2 ] refers to authors accepting the analogy with
the Compton effect, and gives (5. 8) in the following
form:

0039=4
2p (5.9)

where X1j = h/mc is the Compton wavelength.

For comparison, we can write down the Compton for-
mula for the shift of a spectral line due to the scattering
of light by a free electron. Of course, under real ex-
perimental conditions, this type of scattering cannot be
observed. The formula is

.£=1+-£.(!-cosS); (5.10)

where θ is the scattering angle, \ is the wavelength of
light scattered at this angle, and λ is the wavelength of
the primary radiation. The correction terms in (5.9)
and (5.10) are of the same order. These quantum cor-
rections are very small, but it is legitimate to ask
whether these formulas are exact and whether the an-
swer is different in these two cases.

The theory that leads to the quantum formula for the
Compton effect has a prestige based on experimental
confirmations whose number can hardly be imagined by
now. Insofar as the quantum theory of the Cerenkov ef-
fect is concerned, there are no direct experimental con-
firmations of this theory and, at the same time, the
theory is in conflict with the fundamental requirements
of relativistic mechanics.

The quantum theory of the Cerenkov effect is based on
the idea of a transition of an electron from one state of
rectilinear motion to another state, and this transition

is accompanied by the emission of radiation. It is dif-
ficult to imagine a specific experimental arrangement in
which this kind of transition could be detected, even in
principle. The picture used in the quantum model of the
Cerenkov effect cannot be given a direct physical mean-
ing. On the other hand, numerous experiments per-
formed over many years enable us to claim that the
corpuscular picture provides an adequate interpretation
of the Compton effect. If this is so, we are justified in
concluding that any consequences of the corpuscular
model can, in principle, be directly confirmed by ex-
periment.

Our final conclusion is that attempts at a quantum
treatment of the above effects on the basis of simple
quasiclassical models do not lead to satisfactory results.

This could have been foreseen.

Firstly, the model that we discussed in Chaps. 3 and
4 is highly simplified and, secondly, one could hardly
expect to be able to describe a quantum mechanism of
emission while remaining within the framework of clas-
sical ideas.

However, the interpretation of the "pseudomomentum"
of a photon (or a quantum photon) as the resultant of two
momenta, namely, the momentum of the photon and the
"recoil momentum" received by the medium in the
course of the emission of the photon, can be introduced
as a postulate. The result is a set of relationships that
is in agreement with the quantum equations obtained on
the basis of the Minkowski "pseudomomentum." If we
are considering covarient expressions, an important
link in this scheme is the mechanism for the conversion
of the kinetic energy Δ8 of the medium into the energy
of the electromagnetic field on the wave front in the
moving medium. To avoid model representations, and
in the light of the ensuing analysis, it is better to speak
of the conversion of the kinetic energy Δ g into the en-
ergy of the electromagnetic field during the injection of
mechanical momentum into the medium.

We shall assume, without proof, that

(5.U)

From the tables given by (2.7) and (2. 8), we have

f ' u _ i t ' M _ ( 1 — np cos 6) n
£'A U 'A li — β C<JS θ '

η — β COS θ '

Equation (5.11) then gives

(5.12)

(5.13)

Since the velocity of the medium is - 0c, we can now
determine the component &J'X of the injected momentum
by analogy with the classical models, as follows:

2 — I)cos8
ic c(n—βοοβθ) en ( i—ηβ

We now use the (Einstein) relation

(5.14)

(5.15)
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Next, we make use of (2.26), (5.12), and (5.15) and

write

τ- r 'A»n.Ω' « ΆJX=J cos9 = g
c(n — βοοβθ) E c ( l — π β Μ 8 θ ) η ·

Hence, combining (5.14) and (5.16), we obtain

J'AcosΘ' + AJ'X =^g'M "c°8f l~P (5.17)

The sum j ' A + Aj' will be called the "effective momen-

tum." Finally, we introduce the de Broglie relation

and obtain

(5.18)

(5.19)

[This last equation was obtained with the aid of (2.15).]

The "effective momentum" is, therefore, the same as

the Minkowski pseudomomentum.17)

The first part of (5.11) contains t'H which turns out

to be negative for a ray inside the Cerenkov radiation

cone. According to Minkowski, t ' M is the energy of

the field (wave packet). According to (5.11), the energy

of the photon (wave packet) is £ '* and is positive. The

quantity Δ g' on the left-hand side of (5.11) is negative,

and this is in agreement with the classical picture of

the phenomenon.

The mechanism of the momentum transfer between the
radiating source and the medium cannot, however, be
described in terms of the above primitive model, or
probably any other model based on purely classical
ideas. 18)

It is clear from (5.13) that At', and consequently (for
a given β) Aj' as well, are uniquely determined when
the photon energy (%'K or £«) is given, and are inde-
pendent of whether or not the source is moving (in the
given reference frame). This is the essential difference
between the relationships obtained here and those ensu-
ing from the above model in which the emission of a
photon is looked upon as the emission of a wave train.
This model shows that AJ' and Δ fi' are determined
when the radiation density (u or uQ) and the time of
emission are given. However, even when the radiation
density and time of emission are given, the energy of

1 7 )It is readily verified that (5.19) is valid for other spatial
components of J' and AJ' .

18Gyorgi[13] obtains (5.13) as the expression for the work A
done by the field forces during the emission of energy % by
a source stationary in x', V, allegedly a consequence of the
classical model:

β <n; — l

η \rT=p.
β ( ι ι '

η — β cos θ

However, rigorous evaluation of the work A done by the
Abraham forces on the wave front, based on (3.22), leads
to a different result (it has the opposite sign for ηβοοΒθ>1):

(5.20)

the photon depends also on the "volume of the wave

train" and, consequently, on whether the source is mov-

ing [see Eqs. (3. 3) and (3.6)]. The dependence of Aj'

and Δ g' on g' is not single-valued.

Apart from the factor - β, (5.13) is identical with

(A. 3. 9) in Appendix 3, i. e., it agrees with the conclu-

sions of Chap. 3 for a source that is stationary relative

to the medium. However, according to (5.13)-(5.17),

the dependence of Δ.7' on (.' is now assumed to remain

in force even for a source moving relative to the medi-

um and stationary in the reference frame χ , t'. This

ensures that the above "discrepancy" in relation to co-

variance becomes irrelevant. Since now the equations

of momentum-energy balance have been reconciled with

the Minkowski scheme, the hypothetical mechanism for

the interaction between the source of radiation and the

medium will satisfy the covariance conditions. This

removes the conflict with relativity that was emphasized

above.19* For example, the paradox of a negative-energy

electromagnetic field no longer arises. If we adopt

(5.11), we should also have, in the corresponding refer-

ence frame, the equation given by (5. 3)2 0 ) which leads

to the following consequence: the "de-excitation" of the

atom within the Cerenkov radiation cone is regarded not

as the release of energy but, rather, its absorption.

However, this paradoxical effect in the new interpreta-

tion is described as the conversion of the kinetic energy

of the medium into the energy of the electromagnetic

field (emission of a photon) plus the excitation energy of

the atom. (In the "system in which the medium is at

rest," the deactivation of the atom within the Cerenkov

cone also turns out to be associated with the excitation

of the atom, and both are due to the proper kinetic en-

ergy of the atom.)

Thus, by introducing an arbitrary hypothesis, it is

possible to establish a similarity between the descrip-

tion of the above effects and the picture that is a conse-

quence of the quantum theory of these phenomena. The

quantum language, using the idea of the "pseudomomen-

tum" of the photon, can be used for an approximate de-

scription of the established features of the Cerenkov ef-

fect. The corpuscular representations lead to an (ap-

proximate) formula for the Doppler effect, which is con-

sistent with kinematic requirements.

Moreover, the reconciliation between the idea of a
quantum photon and the theory of relativity is achieved
at the expense of abandoning certain fundamental quan-

(η — β COS θ) (1 — ηβθΟ5θ)

19)We may also cite the paper by Watson and Jauch,1141 which
is usually referred to in connection with questions involving
the covariance of the quantum relationships that we are dis-
cussing: " . . .This generalization was obtained by subjecting
the classical phenomenological field equations of Maxwell to
the process of quantization. In doing this it is no longer pos-
sible to maintain the principle of relativity. This is only
natural since a ponderable medium introduces automatically
a preferred coordinate system, namely, the rest system of
the medium..." (p. 126). We cannot agree with the conclu-
sion that we have shown in italics nor with the subsequent ar-
gumentation.

2 0 )In this case, * '#=% $.
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turn relationships. The Planck-Einstein equations g '
= hv' is not satisfied in moving media [see (2. 20)] (here,
S ' is the energy of the wave train specified by the equa-
tion %o = hvo, where S 0 and v0 represent the energy and
frequency of the given wave plane in a stationary medi-
um).

In relation to the justification of the predictions of
specifically quantum effects, such as the self-excitation
of an atom undergoing de-excitation through the emis-
sion of light within the Cerenkov cone, it must not be
forgotten that this new variant of the theory is based on
arbitrary assumptions. There may even be a definite
contradiction between these assumptions and the original
propositions on which the theory is based.

Quantum theory takes the ready-made formalism for
the quantization of a field in vacuum and applies it to a
medium, neglecting the Abraham forces and assuming
that "the interaction with the medium is taken into ac-
count by the fact that ε*1" (Ginzburg, i m p. 591).

This treatment was valid within the framework of the
Minkowski ideas. However, the necessity has now
arisen for reformulation of the theory, in which momen-
tum transfer from the radiation to the medium (for a
stationary medium) and the energy transfer to a moving
medium must be admitted to play an important role.

The postulates leading to (5.11)-(5.19) are essentially
consequences of the imposition of quantum conditions.

The very formulation of the quantization problem
would, therefore, appear to require re-examination.
The medium must evidently be regarded as a component
part of a quantized system. At present, the quantum
theory of the Vavilov-Cerenkov and Doppler effects must
must be regarded as having only a heuristic significance.

ADDENDUM

In Footnote (16) it was suggested in connection with the
discussion of the discussion of the paper by Ginzburg and
Ugarov121 that the neglect of elastic forces might have
led to substantial errors in the conclusions reported by
them. After the present manuscript was completed, it
became apparent that this remark must be augmented
and explained in greater detail.

Ginzburg and Ugarovm pointed out that, when they
evaluated the integral,

\ I it iv , (Ad.l)

the integration with respect to time was carried out up
to the point at which the wave train had "separated"
from the emitter to a sufficient extent (Ginzburg and
Ugarov,t 2 Jp. 186 of original, 100 of translation).2"

Let us consider the consequences to which this method
leads in the case of a stationary medium (in the above
set of unprimed coordinates).

We note that, in this case,

where / is the force density; the notation is defined in
Chap. 4.

According to Ginzburg and Ugarovt2] (p. 186 of orig-
inal, 100 of translation)

/r=-|-(«M^A). (Ad.2)

If the integration with respect to time is carried out
as indicated above, then at the time tx corresponding to
the upper limit of the integral, the wave train occupies
some definite volume in the field (Ω) so that the momen-
tum density outside this volume (gK and GA) is zero.
This means that, outside this volume (Ω), integration
with respect to time, according to (Ad. 1) and (Ad. 2),
yields zero. Inside the volume, on the other hand, the
integral with respect to time, given by (Ad. 1), is equal
to (gu-gA)tl = Gw- Here, g is the mean value of
the momentum density inside the volume Ω .

Consequently,

/ -τ Δ/ = GA - K G M _ c A ) = c M .

If, on the other hand, the wave train has already broken
off from the source, integration up to tz > tx yields the
same result. This means that the wave train moving in
the medium with velocity c/n transports momentum
equal to GM. Consequently, the magnitude of the Min-
kowski momentum, which is equal to GM =gA£l,za is, in
fact, the magnitude of the true momentum of the wave
train. There is then no necessity for introducing the
concept of "pseudomomentum" (Ginzburg and Ugarovc2J

prefer the term "quasimomentum," p. 187 of original,
100 of translation) but the contradictions noted here and
elsewhere in the literature remain unresolved.

The whole point is that the derivation given by Ginz-
burg and Ugarovt2] ignores the effect of forces other
than Abraham forces, e. g., elastic forces, on the given
element of volume dV. Ε does not seem possible to take
into account in a general form the effect of the forces
due to the ambient medium on the given volume element
dV. On the other hand, unless these forces are taken
into account, the conclusion as given by Ginzburg and
Ugarovc2:l is devoid of the physical meaning ascribed to
it by them (especially in the general form and in a mov-
ing medium).

By considering certain limiting conditions in an
"ideal" dielectric medium (in which η is independent of
the field), it is possible to obtain a result that is free of
the above defect.

In our previous paper,111 we discussed in detail the
two opposite limiting cases of the ideally solid body and
"dustlike" medium in which there were no elastic forces.

21)See Ginzburg and Ugarov,z21 Eq. (44).

22)The momentum Δ>/ is, in this case, localized within the
volume of the wave train. In general, however, it is not
only not localized, as just indicated, but cannot be localized
at all: if the medium is a rigidly fixed solid, the momentum
AJ is transferred to the earth.
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Ginzburg and Ugarov refer to the latter model on their
page 187 (of original, 100 of translation).

In the first of the two cases just mentioned, the Abra-
ham forces at any given time are compensated (balanced)
by elastic forces and the result of integration in (Ad.l)
when these forces are taken into account is zero not only
outside the volume of the wave train but also within this
volume. As a result, the momentum transported by the
wave train in the medium is given by the Abraham for-
mula.

In the other limiting case, we have, as explained in
detail in our previous paper, t u the following property:
the rest mass density of the medium depends on the field
strength or (in the case of a plane wave) on the density
M0 of the electromagnetic energy [Skobel'tsyn,cu Eq.
(5.20)].

Because of this, the tensor for the system "field plus
medium" is not the same as the Minkowski tensor.

In the case of a medium at rest, the total momentum
density (in the "field plus medium" system) inside the
volume Ω is gM (this is referred to by Ginzburg and
Ugarovc21 on their page 187, 100 of translation) but,
after the transformation to the primed set of coordinates
(moving medium), the momentum density gT of the sys-
tem (field plus medium) is no longer the same as the
Minkowski momentum density, which should not happen
if the conclusion of Ginzburg and Ugarov123 were correct.

Under the conditions discussed in our previous pa-
per c l J (direction of the χ axis is parallel to the ray di-
rection), the above momentum density is given by

ί 1 =7ΰ=ΡΓ ι '- 1 ! ) ( | - " ί ' " (Ad.3)

[Skobel'tsyn,[n, Table (5. 30)].

Moreover, the Minkowski momentum density is given
by

(Ad.4)

[Skobel'tsyn,cu Table (4.23), and Table (2.8) of the
present paper with θ = 0].

It is only for β = 0 that (Ad.3) and (Ad.4) become iden-
tical.

APPENDIX 1

We shall now give a more detailed derivation of (2.40)
for the cross-sectional area S' of a wave-train tube cut
by the plane of equal phases.

In Fig. 7, the straight line AB is the intersection of
the plane of equal phases with the plane containing the χ
axis and the ray direction (wave normal) for a stationary
medium (unprimed coordinates). AC is the intersection
of the plane of equal phases and the x,y plane. The
spherical triangles in the figure, used to define the
angles, lie on the surface of a unit sphere (R = 1). In
the formulas given below to define the coordinates xB ,yB,
we consider a sphere of arbitrary radius (R*l) equal to
the circular cross section cut by the plane of equal

FIG. 7.

phases through a tube of rays.

In the formulas written out below, η is the angle be-
tween the direction of the radius vector AB and the χ
axis. From the spherical triangle OBX (Fig. 7), we
have

cos η — —sin θ cos cc; (A. 1.1)

where a is the angle between the planes containing the
major circles OB and OC.

Again, from Fig. 7, we have

cos χ = cos θ cos a. (A. 1. 2)

The first of the equations in (2. 21) can now be written in
the form

xB — la cos θ -(- R cosn =i0cose—Rs№&cosa-{-tB-

The formula defining yB is

sine (A. 1.3)

If we now apply the Lorentz transformation and repeat
the procedure leading to (2. 22)-(2. 25), we obtain the
following result:

n—flcose

R cosct (n cos θ—β)
= ft — β COS θ

(A. 1.4)

(A. 1.5)

where the origin of the χ', y' set of coordinates moves
with velocity β relative to the laboratory system x, t.
Let us now introduce the coordinates x*,y* of points on
the plane of equal phases, taking the χ axis as the line
of intersection between this plane and the x',y' plane,
and the y* axis parallel to the ζ axis:

* * = V ( Ζ . Β - < Ι ) - - ( ! / Β — y ' A ) 2 ·
(A. 1.6)

We are considering values of x',y' at a given time t'.
Using (A. 1.4), (A.I. 5), and (A. 1.6), we obtain

ι* = R cos α ^ — τ : £•

η—β cosB

or, according to (2.13),

x^jicosa^-^9';,

y* =z' — z = R sin a.

Hence,

(A. 1.7)

(A. 1.8)
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(η—β cos θ) c*

(Α. 1.9)

(Α. 1.10)

We now put R = 1. Equations (A. 1.9) and (A. 1.10) give

(A. 1.11)

This is the equation of an ellipse (semiaxes a, b) whose
area is

(A. 1.12)(n—6cos6

or

(n—Pcos8)<:»' (A. 1.13)

where S0=ir is the cross-sectional area in the laboratory
frame. Equation (A. 1.13) is identical with (2.40).

APPENDIX 2

We shall now specify more concretely the assump-
tions implied in the derivation of (1.6) (for the case of
a stationary medium and a source stationary in the me-
dium) and consider the virtual source of Chap. 2.

The time of emission τ of a wave train by this source
will be taken to be long enough and the wave train itself
will be assumed to be long enough to ensure that the
emission process can be looked upon as "quasistation-
ary" so that transient effects during the formation of the
train and its breaking off from the source can be ne-
glected.

On the leading wave front, in the transition zone,
the time average of the force density / is not zero and
produces a resultant force F= [ (« 2 - 1)/W2]M on the me-
dium (per unit cross-sectional area of the wave train),
where u is the energy density. In the sinusoidal zone of
the wave field, the time average of the force density is
zero.

Near the surface of the source, the average force
density (acting on the medium) is assumed to be zero.
Under these assumptions, the reaction of the radiation,
i. e., the force acting per unit area of the source per
unit time must be equal to the resultant momentum loss
which, according to Abraham, is

rfl — l (A. 2.1)

The second term in this equation, i .e . , u/nz= (u/cn)c/n,
is the product of the density of the electromagnetic mo-
mentum by the velocity c/n at which this momentum is
transported. The first term in (A. 2.1) can be inter-
preted as the pressure of the radiation on the medium.
It is assumed that the medium can be looked upon as an
ideally solid body. The sum in (A. 2.1) gives the total
momentum flux transferred by the source to the medium
and the field (per unit cross-sectional area per unit
time) during the emission of the wave train.

According to Minkowski, when the total momentum

"removed" from the source per unit area per unit time
is calculated, one need only take into account the flux
of the electromagnetic momentum, calculated as the
product of the momentum density and the velocity of
momentum transport. (The pressure of light on the
medium is zero.) According to Minkowski, the density
of this flux is (nu/c)c/n = u, and this leads to (A. 2.1).
Comparison of the components S,m and Tlm (for /, m
= 1.2) of the momentum flux tensor defined by (2. 5) and
(2.8) with β = 0, i. e., in the case of a medium at rest,
will again lead to the conclusion that the momenta in the
above two cases are the same. In the case of a station-
ary medium, these components are equal.

In the case of a moving medium, such simple consid-
erations relating to the balance of momentum fluxes are
no longer sufficient.

APPENDIX 3

We now consider a further (third) variant of the deri-
vation of the relation

/ ' A + A / W M (A. 3.1)

for a source moving together with the medium.

We look upon the medium as a very massive, free
(i. e., not fixed) body. The mass Μ of this body can be
taken to be as large as convenient. When we consider
the χ components, the subscripts on Jx and Δ Jx will be
omitted.

It follows from the calculations given in Chap. 3 [Eq.
(3. 23)] that, when β =0.

Δ/= T COS Θ. (A. 3. 2)

Let Jx be the momentum of the medium prior to the in-
jection of the momentum Δ<7, J 2

 = <A+ &J, uo the energy
density, and τ the wave-train emission time.

We shall assume that the conditions of the problem
are the same as in Chap. 3. The emission time τ' seen
by an observer in the χ', t' set of coordinates will, as
before, be set equal to unity. Κ τ '= 1 (the source moves
together with the medium), then τ= (1 - β2)1'2 (in the
laboratory frame) and

(A. 3. 3)

Jtlois the length of the wave train along the normal to
the planes of equal phases and (by assumption) So= 1,
and if the source is stationary relative to the medium,
then la = c/n=(l-^)inc/n,

(A. 3.4)

(A. 3. 5)
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transform J (the momentum of the medium) in accord-
ance with the general formulas of relativistic mechan-
ics, ignoring the electromagnetic field of the photon and
the associated mechanical momentum components:

-Mfic
(A. 3.6)

where M is the mass of the body (medium).

To calculate J '2, we use the general formula for the
transformation of the momentum component px:

(A. 3.7)

where Ε is the energy of the body (medium) which can be
set equal to Mcz (neglecting the kinetic energy communi-
cated to the stationary medium during the injection of
the momentum AJ).

According to (A. 3.7) and (A. 3. 5),

=fi*£, (A. 3. 8)

= ·2^-<;03θ"»· (A. 3. 9)
. „ ., .. η 2 —1

1 η

The momentum j ' t b of the photon (its χ component) is
given by the formula for the transformation of the com-
ponents of a four-vector:

(A. 3.10)

The same result is obtained by substituting px= g0cos6/
en in (A. 3.7) and replacing Ε with t. 0 . Next, we obtain

(A. 3.11)
en tfi—p

ii2zi

Thus, the above simple derivation leads to the expres-
sion for AJ' given by (A. 3. 9), and this is different
from (3. 23). However, the sum j ' + AJ' given by
(A. 3.11) is, as before, equal to J ^ .

To derive (3. 27), we combine the J' of (3. 23) with the
expression for J' that follows from the table for the
Abraham tensor given by (2. 5). Here, on the other hand,
(A. 3.9) is combined with the magnitude of the momen-
tum defined by (2. 7) for the Abraham tensor, supple-
mented by the mechanical components.

In fact, the value of j ' calculated from (A. 3.10) was
the same as that obtained from (2.46), in accordance
with (2. 7).

Both methods lead to the same result, where the sum
j ' + AJ' in (A. 3.11) is expressed as the sum of the com-
ponents of four-vectors, whereas, in (3. 27), the sum
(equal to J^f and, consequently, a component of a four-
vector) is written as the sum of two terms, neither of
which is a component of a four-vector.

The two methods of calculation correspond to two dif-
ferent varjints of the treatment of mixed "electrome-
chanical" components of the tensor for the system un-
der consideration. The mechanical components of the
tensor for the closed system (field plus medium) depend
on the parameters of the electromagnetic field and may
be more or less arbitrarily ascribed either to the field

[the momentum energy tensor defined by the table in
(2.7)] or to the medium.

In the derivation given in the present Appendix, we
have chosen the first and, it would appear, the more
natural variant.

If we were to choose the second variant of the "de-
marcation" between the mixed components, then, by
applying the transformation formulas to the mechanical
momentum, we could not ignore (as was done above) the
electromagnetic field of the photon.

The mixed components that we are discussing are giv-
en by the table in (2.6). The component P u of this ten-
sor (with the factor 1/tc) can be treated as the compo-
nent of the mechanical momentum density.

In that case, the χ component of the resultant mechan-
ical momentum communicated to the medium during the
emission of the photon can be written as the sum

Δ/.=Α/· + £ Ι Ι Ω (A. 3.12)
ic

where AJ' is the additional momentum calculated in the
present Appendix, Ω is the volume of the wave train,
and (by assumption) So= 1.

To calculate AJ* and AJ', let us express them in
terms of u0 and τ. According to (A. 3. 9),

u0cos0.

Substituting for P u from (2. 6) in (A. 3.12) and for Ω '
from (3. 3), we obtain

n 2 — 1

(A. 3.13)

which is identical with (3. 23).
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