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1. INTRODUCTION

Studying the processes that occur in the scattering of
electromagnetic radiation gives us highly extensive
information on the structure and properties of matter.
The scope and nature of this information depends sub-
stantially on the range of wavelengths of the radiation
used and the region of the frequency-angle spectrum in
which one makes the observation.

As we know, two types of scattering are distinguished
in accord with the frequency criterion: elastic, in which
the frequency of the scattered waves equals the frequen-
cy of the primary radiation, and inelastic scattering,
i. e., that which involves a frequency shift. These types
are also referred to as "coherent" and "incoherent"
scattering, though we shall use these terms henceforth
to denote spatial coherence in scattering.

X-ray scattering is a widespread and useful method
for studying many properties of matter. As is well
known, considerable advances have been made in deci-
phering the spatial structure of crystals and biological
molecules by using x-ray diffraction, which amounts to
elastic coherent, i. e., Bragg scattering.

This review is concerned with studying inelastic scat-
tering in the x-ray wavelength range (λ~ 0.1-10 A),
where interest has arisen in the past decade in connec-
tion with the creation of sufficiently powerful x-ray
sources. In contrast to elastic scattering, inelastic
scattering (IS) permits one to determine the momentum-
energy "structure" of matter. The frequency change in
inelastic scattering directly corresponds to the partici-
pation of some sort of elementary excitations in the
scattering process. Depending on the nature of these
excitations and the conditions of experiment, inelastic
x-ray scattering can be either incoherent or coherent.

υΑη abbreviated text of the review was given at the session of
the seminar on synchrotron radiation in the Institute of Physi-
cal Problems of the Academy of Sciences of the USSR on June
27, 1975.

Let &>!, k,, e u and Wg, kg, eg be respectively the fre-
quency, wave vector, and polarization of the incident
and the scattered radiation; then the quantities ω-ω1

- Ug and k = kt -kg determine the energy and momentum
imparted to the medium in the elementary scattering
event. One can smoothly vary the imparted momentum
over a broad range by a simple change in the observa-
tion angle θ, i. e., the angle between kj and kg, by study-
ing for each fixed θ the frequency and polarization dis-
tribution of the scattered radiation.

While the straight line Ug (θ) = const = ω, corresponds
to elastic scattering in the frequency-angle ωθ spec-
trum, the frequency-angle spectrum covers an entire
region in the case of inelastic scattering. The impor-
tance of studying inelastic scattering is explained by the
fact that one can get considerable information on the na-
ture of the equilibrium wk spectrum of the material
from the shape of the experimentally observed frequen-
cy-angle scattering spectrum.

In the optical range, which has been best studied up
to now, the wk region is limited to frequencies ω of the
order of 3x 1015 sec"1 (energies ~ 2 eV) and quasimo-
menta k of the order of 10s cm*1. Moreover, one usual-
ly has to restrict the treatment only to optically trans-
parent media. Yet many elementary excitations of in-
terest in solids have energies from units to several tens
and thousands of electron volts, while their quasimo-
menta extend to the boundaries of the Brillouin zone
(~ 108 cm"1). Evidently one can encompass this range of
energies and momenta only by using inelastic scattering
of relatively hard and penetrating χ rays.

Since no fewer than two quanta participate in an ele-
mentary inelastic-scattering event, two of which are the
incident and scattered photons, inelastic scattering is
by this criterion a nonlinear process. This review will
treat the following forms of linear spontaneous inelastic
x-ray scattering: Compton, plasmon, Raman, and para-
metric scattering. The term "linear" denotes that the
intensity of the scattered waves is proportional to the

406 Sov. Phys. Usp., Vol. 20, No. 5, May 1977 Copyright © 1977 American Institute of Physics 406



first power of the intensity of the radiation incident on
the medium, while "spontaneous" means that this inten-
sity is insufficient for the onset of superlinear (e. g.,
exponential) growth of the scattered intensity. This as-
sumption holds with much room to spare for all existing
x-ray sources.

Insofar as we know, this study is the first and rather
complete review on the four types of inelastic x-ray
scattering listed above. The review briefly throws light
on the methods of theoretical description of the stated
types of inelastic scattering, the methods of observa-
tion, and the fundamental experimental results, as well
as the nature of the information obtained and its inter-
pretation; a phenomenological approach is developed for
describing inelastic x-ray scattering, and attention is
paid to the possible manifestation of coherent effects in
inelastic scattering.

The successful development of optical studies has
been considerably stimulated by the invention of power-
ful light sources: lasers. Just as in optics, the further
progress of studies in inelastic x-ray scattering hinges
to a considerable extent on the existence of powerful x-
ray sources. Until recently, people exclusively used x-
ray tubes and radioactive preparations for this. Evi-
dently, synchrotron radiation in the x-ray range will
find widespread application in studies of these types,
owing to its high spectral intensity. Apparently this
field of science will reach its full development with the
appearance of short-wave analogs of the laser: x-ray
and gamma lasers, and the same intensive growth of
studies will happen in x-ray optics, which is going
through its seventh decade, as happened in the optics
of the visible with the discovery of lasers. As yet, in-
elastic scattering is applied mainly for spectroscopic
purposes, but apparently we can speak also of later use
of inelastic scattering for shifting the frequency of pow-
erful χ rays.

2. THE COMPTON EFFECT AND THE MOMENTUM
DISTRIBUTION OF ELECTRONS

Compton scattering, or the Compton effect (CE) is
one of the first and most widely studied forms of inelas-
tic scattering. There are currently more than three
hundred publications on this topic. Therefore we shall
take up only the fundamental principles of studying the
momentum distribution of electrons in matter by using
Compton scattering. One can find a more detailed pre-
sentation of these problems in the earlier review by Du
MondH1 (1933) and in the relatively recent review by
Cooper®1 (1971).

The Compton effect is taken to mean the scattering of
hard radiation by the electrons of matter that involves
an increase in wavelength, with a shift that depends on
the scattering angle but not on the material of the speci-
men. This form of inelastic scattering was first stud-
ied in 1920 by Gray. m Compton"3 found a shift in
wavelength upon scattering of MoKa radiation in graph-
ite, and Debye[5: and he independently explained this
phenomenon by starting with a treatment of the laws of
conservation of energy and momentum in the interaction

of a quantum with a free electron at rest. The change
in wavelength should amount to 2\c sin2(3/2), where Xc

= 2irK/mc = 0.02426 A is the Compton wavelength, and θ
is the scattering angle. This was soon confirmed ex-
perimentally rather accurately.C61

Evidently scattering of monochromatic radiation by
electrons at rest should lead to a δ-function Compton
spectrum. However, it was subsequently found"1 that
the Compton spectral line is broader than one would
have expected from taking account of nonmonochroma-
ticity and of the divergence of the input radiation.
Jauncey181 and more rigorously Du MondC91 explained
this discrepancy by the effect of the initial momentum
distribution of the electrons, which had not previously
been taken into account. Actually, if uiu kt, and u^, kg
are respectively the frequencies and wave vectors of the
incident and scattered radiations,2' the conservation
laws in the nonrelativistic approximation {Ηωί « m<?)
appear as follows:

0), — «j = -^jr (p\ - pf),
(2.1)

where Pi and pj are the momenta of the electron before
and after scattering. According to (2.1),

»&=£+**•• (2.2)

The energy shift of the Compton line is given by the first
term in (2.2) while the second term describes the Dopp-
ler broadening of the line as determined by the projec-
tion q of the momentum pj on the axis k. Since fej = wt/c
2w/\l and* = 2fct sin(3/2), Eq. (2.2) implies the well-
known Compton relationship for the position of the cen-
ter of the Compton line for free, noninteracting elec-
trons:

2 ) ' (2.3)

where θ is the scattering angle (the angle between the
directions kg and kt).

Evidently the spectral intensity of the line is deter-
mined by the probability of finding electrons in states
having the value of the projection q that corresponds to
the frequency ω given by (2.2). t e i Thus the Compton
frequency profile bears information on the one-dimen-
sional (projected on k) momentum-distribution function
of the electrons. Precisely this fact defines the impor-
tance of studying the Compton effect, since one can get
the electron-density distribution l$,(r)l2 from the mo-
mentum distribution by Fourier transformation. Even
the early studies of Du Mond and his associates1101 dem-
onstrated the promise of this method in studying the
electron momentum distribution, which has recently
been considerably refined and reduced to a working
method in many research centers.

Progress in studying the momentum distribution of the

2>Following the widely adopted terminology, we shall henceforth
term the incident and the scattered radiation the pump and the
signal.
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electrons in solids, liquids, and gases has arisen main-
ly from two factors. First of all it has arisen from im-
provement in experimental technique. Second, certain
simplifications in the theory of the Compton effect have
permitted people rather simply and reliably to correlate
the observed Compton spectra with the distribution func-
tion of the electrons of the material. The fundamental
approximation in the theory of the Compton effect is the
so-called momentum approximation. As will be shown
below, the latter has a rather simple and pictorial phys-
ical interpretation.

A. Theory of the Compton effect. The impulse
approximation

As is well known, if the electrons of a material inter-
act with radiation of high enough frequency, such as χ
rays or gamma rays, then these electrons can be
treated as though practically free. Such an approxima-
tion holds if the energy of the electromagnetic quantum
is much larger than the binding energy of an electron in
the atom. Evidently we must also require for Compton
scattering that the energy and momentum imparted to
the electron in the inelastic-scattering process consid-
erably exceed its initial energy and momentum. Then
we can write the conservation laws approximately in the
form (2.1). Yet the effect of binding is manifested only
in the fact that the atomic electrons before collision with
the quanta have an initial inhomogeneous distribution
having the unperturbed wave function Ψ,(Γ).

The probability- of transition of the "electron plus
field" system from the initial state It,^) to the final
state I/, kg) is determined by the "golden rule" of quan-
tum mechanics'113 by using the Hamiltonian SS =p*/2m
+V(r)+Se1 +3ez. Here d^-p · A and<$g~ A* are the
perturbations that are linear and quadratic with respect
to the vector potential A. Since the scattering is a sec-
ond-order process, i. e., it involves two photons, the
A2 perturbation must be taken into account in the first
order, and the p· A perturbation in the second order of
perturbation theory. The A8 interaction leads to "an-
nihilation" of the incident photon and creation of the
scattered photon. Simultaneously it leads to formation
of a hole in the corresponding electron shell and an ex-
cited electron in the conduction band. Strictly speaking,
this recoil electron is weakly bound in the sense that its
wave function is modulated by the periodic potential of
the ions in the crystal. The ρ · A perturbation is appre-
ciable only when the energy of the incident photon is
close to the binding energy of the electron. In this
case, the inelastic scattering is resonance Raman scat-
tering, and it will be treated in Sec. 4.

In the very simple case in which the energy Κω^ is
much larger than the binding energy, the differential
Compton-scattering cross-section for an N-electron
atom as determined by the A* interaction has the follow-
ing form:

- ^ - ^ - J ^ - 0 ' ) · (2.4)

Here σ Γ =ro(ej · eg)2 is the Thomson scattering cross-

section, ro = ez/mc? is the classical radius of the elec-
tron, e t and eg are the polarization unit vectors of the
pump and the signal, respectively; χ,(ρ) is a Fourier
component of the wave function of the ground state Ψ,(Γ),
and Et = -Ktl( is the binding energy of the one-electron
orbital. We assume that the electron in the scattering
process enters a state in the continuous spectrum having
a wave function in the form of a plane wave.

Now we assume that in (2.4) we can neglect the bind-
ing energy as compared with the energy transfer Ku>,
while the momentum transfer Kk is much greater than
p*>K/a. That is, ka»l, where a is the radius of the
orbital. This is the impulse approximation (ΙΑ), °*-ι*ι
which has been widely applied for calculating the pro-
files of Compton lines. For example, in scattering of
MoKa radiation (17.4 keV) in beryllium (bonding energy
of a K electron 112 eV, radius σ =0.14 A) at a 170° an-
gle, the energy transfer is to* 1160 eV. That is, Ω,/
ω~ 0.1, while the parameter ka is * 2.5. Evidently,
within the framework of the impulse approximation, the
δ-function in (2.4) implies the ordinary Compton formu-
la (2.2) for scattering by free electrons. If the energy
of the pump quantum is much greater than the binding
energy, then the A2 term makes the major contribu-
tion, c u : as is confirmed, e. g., by studying the polar-
ization of Compton quanta.US]

Usually the relationship (2.4) with allowance for the
impulse approximation is presented in another simpler
and generally accepted form. The projection of the mo-
mentum q = (m<i)/k) - (Kk/2) = (m/k) (a%0 - o>g) =mcl/2\1

x sin(V2) characterizes the deviation I = \t - λ|0 of the
signal wavelength Xg from the center of the Compton
line Xg0 = \ + 2\ c sin*(a/2). After integration in (2.4) in
the case of an isotropic distribution,

σ (ω, #) = σΓ (Ά) i/·(?), / (?) = 2 J' <«><

oo αο

h (?)-2n j lx,(p)|2pdp=-|- \ ρ-'/, (ρ) dp,
(2.5)

Here /, =4vΙ χ, Ι2/>2 is the radial density of the momentum
distribution. The function Jiq) is called the Compton
profile (CP)19·1*-1" and (2.5) is the fundamental relation-
ship of the impulse-approximation theory. Measure-
ment of the Compton profile with use of the following
normalization per electron"8·183:

J /,(?)<*?= j / , (ρ) dp = 1 (2.6)

permits us to determine the probability of finding an
electron with the momentum p:

(2.7)

Yet usually one uses the reverse procedure in practice.
That is, one first chooses a system of wave functions
ψ,, finds the theoretical value of J(q), and compares it
with the experimental profile. In case of considerable
divergence, one chooses a different system of functions,
and repeats the procedure.
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Strictly speaking, the relationships (2. l)-(2.3) are
not applicable to bound electrons, as was noted even by
Comptonu w and shown experimentally by Ross and Kirk-
patrick, B 0 3 who found that the center of the Compton
profile is slightly shifted with respect to (2.3) toward
shorter wavelengths. Bloch1213 and later Eisenberger
and Platzman"4 1 and Currat and his associates12*·833

showed that this is due to the effect of the "parent" atom
(or more exactly, ion) on the wave function of the recoil
electron, which can no longer be considered to be a
plane wave.3' However, in the impulse approximation,
i .e . , with large enough energy and momentum trans-
fers, one can consider the atomic electrons to be free
in the kinematic sense. Hence, one must measure the
Compton profile with harder radiation and at larger
scattering angles in order to improve the accuracy. Ac-
tually the potential V in the Hamiltonian Si is not negli-
gibly small—it leads to the inhomogeneous distribution
of $j(r)—but the time of interaction in the scattering
process is so short that the position of the electron here
hardly varies, and the potential energy after collision
with the quantum is the same as before collision.t 1 4 3

The impulse approximation for electrons of the tth
type is not applicable in the frequency region w~ Ω , . The
inelastic-scattering intensity in the range ω = 0 to Ω , is
zero, and the Compton profile is not symmetrical. A
sharp jump at ω = Ω , in the Compton profile of graphite
and diamond has been observed, e. g., by Cooper and
Leak. E 7 3 The width of the forbidden band plays the role
of the binding energy in scattering by the valence elec-
trons of an insulator. a" It is more correct 1 2 8 · 8 3 ·" · 3 0 3 to
normalize the overall Compton profile not to Z, as in
(2.6), but to the Waller-Hartree expression (see, e. g.,
Ref. 31):

Ζ - J | /„ (k) |2, where /„ (k) = j if? (r) ψ, (r) exp (ikr) dr.

A detailed analysis of the theory of the impulse ap-
proximation is given in the ground-breaking studies of
Platzman, Tzoar, and Eisenberger"3·1 4 3 and of Currat
et aZ.1 8 8·8 3 3 In spite of these substantial simplifications,
the impulse approximation gives striking accuracy in
describing the profile of the Compton effect, and it
agrees well with the results of numerous exact calcula-
tions. β 3 An evident advantage of this approximation is
its simplicity together with its high accuracy.

Both outer and intra-atomic electrons contribute to
the Compton profile. The wave functions of the outer
electrons in a solid strongly differ from the ψ-functions
of the free atoms, while we can neglect overlap with
neighboring atoms for the strongly bound electrons.
Consequently one can calculate the contribution to the
Compton profile from the localized atomic electrons
with high accuracy. Hence, if we know the overall ex-

3)Solutioii of the Schrtfdinger equation without account for the
crystal potential leads to a hypergeometric function of the fi-
nal state. A calculation more exact than in the impulse ap-
proximation of the scattering by a bound electron is given in
Refs. 14, 21—25, and a comparison with experiment has been
given1263 for N2, Oj, and Ne that shows that the agreement im-
proves with shorter pump wavelength.

perimental profile, we can easily isolate by simple sub-
traction the contribution of the outer electrons, which
bears information on their Bloch wave functions.

To illustrate, we present the form of the Compton
profile for the example of an idealized model of the be-
havior of the electrons in a metal.

For a degenerate electron gas, Ι χ (/>« pF) 18 = 3/4irpF,
and Ι χ I8 =0 for p>pr, where pr=fikF is the Fermi mo-
mentum. Equation (2.5) implies that the Compton pro-
file Jf of the conduction electrons has the shape of an
inverted parabola1 9·1 3 3:

Jt (.<!)- (2.8)

In the free-atom model having the if-electron wave func-
tion ψκ = (πα3)"1'8 exp(- r/a), where a = ao/Z, and ao=H2/
mcz is the Bohr radius,

(2.9)

Here the quantity qK~h/a determines the width of the
Compton profile of the Κ electrons. This implies that
JK{0)/Jt(0) = {64/9n)kFa. For example, this amounts to
0.44 for lithium (the inverse relationship holds for the
line widths). The profile Jf shifts to shorter wave-
lengths with decreasing k, while the profile of the Is 8

electrons differs from (2.9), since here the validity of
the impulse approximation breaks down. £ 1 3 · Μ ί

Figure 1 shows the result of Phillips and WeissC893

from observing the scattering of ΜοΛΓαι1 radiation in
Li at a 117° angle (the upper curve with the dots). The
lower solid curve is drawn for the Καχ component cor-
rected for background and absorption. The dotted
curves 1 (inverted parabola) and 2 are calculated re-
spectively for the free conduction electrons and for the
Is 8 electrons in the Hartree-Fock approximation. The
position of the jumps in the derivative dj/dq determines
the diameter of the Fermi sphere in the direction of the
vector k.

Z0l0zr

g

L
Si" ss

FIG. 1. Compton profile of polycrystalline lithium (lower
solid curve). Curves 1 and 2 are calculated respectively for
conduction electrons and Is2 electrons. The angular position
of the LiF analyzer crystal ((600) reflection) is plotted as the
abscissa, and the number of counts per 30 min time interval
is the ordinate.
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FIG. 2. Fundamental experimental echeme for studying the
spectral intensity distribution of inelastic scattering of χ rays.
kj, ω,, and k2, ω2 are respectively the wave vectors and fre-
quencies of the pump and the signal, $ is the scattering angle,
S,, S2, and S3 are collimators, A is the specimen, Κ is the
analyzer crystal, and D is the detector having ·>: 2& geometry.

B. Fundamental principles and results of experimental
determination of Compton profiles

Figure 2 shows a typical experimental system applied
for studying the spectra of all types of inelastic scatter-
ing. Upon passing the collimator Sj, the χ rays strike
the studied specimen A. The scattered radiation is col-
limated in the chosen direction, and it falls on a crys-
tal analyzer Κ (generally LiF in the (400) reflection).
The signal is scanned into a frequency spectrum by
rocking the crystal analyzer, which plays the role of the
prism in optics, through small angles (~ 5°). This hap-
pens because each energy component <î  corresponds to
a certain Bragg angle θ Β , according to the Bragg law.
Instead of a single crystal K, one often uses a two-crys-
tal spectrometer to increase the resolution. Upon pass-
ing the collimator S3, the signal is measured with a
scintillation detector (usually Nal) followed by a photo-
multiplier and an energy discriminator. Then by sup-
plementary fluorescence measurements, which consist
in replacing the scatterer with a specimen made of the
material of the anode of the tube, one finds the profile
of the radiation at the undisplaced frequency (the instru-
mental function), and introduces the needed instrumental
and theoretical corrections. The experimental inelas-
tic-scattering profile is the convolution of the instru-
mental function with the true profile.

The current stage in the experimental determination
of Compton profiles began in 1965 with the study by
Cooper, Leak, and Weiss, B 3 3 who observed the Comp-
ton profile of lithium. A detailed presentation of differ-
ent experimental systems and correction methods can
be found in Refs. 2, 22, 26-30. A method developed by
Tsvetkov and Shevtsov13" permits one to perform satis-
factory studies on a commercial Soviet apparatus: the
URS-60 x-ray apparatus with the BSV-2 tube, the GUR-
3 goniometer, and the SSD counter unit.

One must make the following corrections for exact
determination of the inelastic-scattering profile: ac-
count for the doublet structure of the radiation of the
tube"5 3; account for the absorption in the specimen and
the analyzer, which depends on the wavelength and the
experimental geometry"83; the background correc-
tion1373; the apparatus (divergence, nonmonochromatic-
ity, etc.) corrections'2·3 8 3; and the relativistic correc-
tion, B 9 3 whose roles increase with increasing energy of
the pump quanta. Multiple (mainly double) Compton

scattering also distorts tbe intensity l~ 101b) and the
shape of the true Compton profile.U 0 3 Therefore exper-
iments should be performed with specimens of varying
thicknesses, with subsequent extrapolation of the results
to zero thickness.

Before 1970, people exclusively used MoKa (17.37
keV) and AgKa (22.16 keV) x-ray tubes of power 2-5
kW for pumping. This permitted one to work mainly
with light specimens having Z< 15. The counting rate
here is ~ 1-100 counts/sec. X-ray tubes have neverthe-
less made possible an advance into the region of such
elements as Sc, Ti, Mn, F e , " " and V and C r . M i It
has been possible to make greater advances by using
the radiation of y-radioactive preparations of M1Am
(59.54 keV)M3-4S3 and m"Te (159 keV)"" (with detection
by Ge(Li) or Si(Li) solid-state detectors), " 5 I since here
the photoabsorption decreases and the accuracy of the
impulse approximation increases.

The theory shows that the Fermi surface is "diffuse"
in metals, owing to electron-electron correlation (in Li
and Na about 14% of the conduction electrons lie above
the ideal sphere), and anisotropic because of the effect
of the crystal la t t ice . w e ] The electron correlation must
lead to appearance of long, gently sloping tails at high
\q I at the base of the parabola of (2.8)"9 3 (see Fig. 1 at
θ Β > 68° and θ Β < 67°). The Compton profile is also an-
isotropic in ionic crystals, t S 0 3 and account taken of the
overlap of the wave functions of neighboring ions'513

leads to a difference in the intensity at the center of the
line of about 10% as compared with the free-ion mod-
el. : M ]

The effects of electron correlation1 8 9·5 3 3 and anisotro-
pyC42,43.4e,s3,54) c a n ^ q u i t e r e l i a b l y determined from the

shape of the Compton profile as measured with different
directions of the imparted momentum k. The accuracy
of these experiments amounts to 1-3%, and it is contin-
ually being improved.C55] Figure 3 shows the Compton

0.5 1.0

FIG. 3. Experimental Compton profiles of magnesium and
beryllium normalized to the valence-electron density, as mea-
sured in the orientations k II a and k II 0. Pump: Mo/Γα radia-
tion (0.71 A), scattering angle: 155°. The dotted curve cor-
responds to the Compton scattering of magnesium in the de-
generate electron gas model. The thin vertical lines Indicate
the positions of the Fermi momenta, and the projection of the
momentum q is plotted as the abscissa in atomic units (1
atomic unit = 1.99χ 10"19 g · cm · sec'1).
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profile of the conduction electrons in magnesium and
beryllium with k II a and k II c as measured by Weiss.tS33

The profile for Mg in the free-electron model of (2.8) is
given for comparison. One can see the sharply marked
anisotropy and the presence of the tails in the momentum
distribution for p >pF.

One can also get information on the spatial distribu-
tion of the valence electrons from data on the elastic x-
ray scattering intensity1313 and from experiments on
electron-positron annihilation.I583 Yet the sensitivity of
the atomic scattering factors to the form of the wave
functions of the outer electrons is much smaller than
the sensitivity of the Compton profile, owing to their
considerable diffuseness. It suffices to note that the
width of the Compton profile of atoms in a solid varies
in some cases by more than 40% as compared with the
free atoms, whereas the diffraction intensity, which is
determined mainly by the inner electrons, varies only
by several percent,C553 while a precise determination of
the atomic factor requires laborious measurements of
the absolute scattering intensity. In the case of annihi-
lation, though the main contribution to the effect comes
from the outer electrons, interpretation of the angular
annihilation profile requires a knowledge of the wave
function of the thermalized positron in the solid, which
in itself is a complicated problem. Moreover, this
method is less sensitive to the shape of the high-energy
tails in the momentum distribution function of the elec-
trons. t 2 f l 3

3. SCATTERING OF X RAYS BY PLASMONS

As we noted in Sec. 2, valence and bound electrons
behave similarly in the kinematic sense when the mo-
mentum transfers fik are large enough. However, a
number of interesting and important features arise in
x-ray inelastic scattering with decreasing angle θ.

Small-angle scattering by strongly bound atomic elec-
trons, in which the position of the spectral line is deter-
mined by the binding energy ΚΏ, (ω~ Ω) and does not de-
pend on the scattering angle, is commonly called Raman
scattering of χ rays (see Sec. 4).

Yet in the case of inelastic scattering by free valence
electrons and conduction electrons, the shape of the
Compton line becomes considerably distorted with de-
creasing k and its intensity declines. According to
Nozieres and Pines,t S 7 ] the differential inelastic-scat-
tering cross section σ(ω, θ) is determined by the Fouri-
er image of the density-density correlation function for
the electrons, and it can be expressed in terms of the
longitudinal dielectric constant e(k, ω):

σ (ω, #)=aj.5(k, ω) = — ατ , ^ Ime"'(k, ω), (3.1)

>=/.«*F

where S(k, ω) is the structure factor.

A detailed analysis of the Compton profile for a de-
generate electron gas was first performed by the Japa-
nese physicists Ohmura and Matsudaira.C58] They
showed that the main contribution to the scattering cross
section comes from the A2 perturbation in the interac-
tion Hamiltonian. If we neglect the Coulomb interaction

A'

FIG. 4. Profile of the Compton line for free electrons having
the density ra = 2. The dotted and solid curves refer respec-
tively to the Hartree—Fook and random-phase approximations;
λ, = 1 A and Aj are the wavelengths of the pump and the signal,
λρ is the Compton wavelength, σ = ο
= (3. 64/r,) A"1 =1.82 A"1.

5, and kr

of the electrons (the Hartree-Fock approximation),
which is substantial at small k, then the decrease in the
Compton cross section and the distortion of its profile
are explained"8'593 by the effect of the Pauli exclusion
principle, since now only those electrons participate in
Compton scattering that receive a momentum k suffi-
cient to remove them from the limits of the Fermi
sphere.

As we know, the Hartree-Fock (HF) approximation
gives e'Hk, ω) = 1 - 4ira(k, ω), where a is the Lindhard
polarizability of the electron gas,£803 and the Compton
line for k> 2kF has the shape of the inverted parabola
of (2.8) that is dirplaced from the undisplaced line in
such a way that ωζ*ω1 always holds. When k<2kF, the
Pauli principle comes into action, and the Compton pro-
file consists of a parabolic region in the long-wavelength
part of the spectrum and an inclined straight line in the
short-wavelength part that extends as far as the pump
frequency (wfcme=Wi, σ(0,θ)=0) (Fig. 4).

When we take account of the Coulomb interaction of
the electrons in the random-phase approximation
(RPA),£"3 we get ε (k, ω) = 1 + 4πα (k, ω). This leads to an
additional suppression of one-particle excitations and to
line distortion.t583 Actually in this case σ Β Ρ Α (ω, θ)
= aHF (ω, θ) le(k, ω) Γ 2 . Figure 4 shows the result of cal-
culatingtS83 the profile of the small-angle Compton scat-:,
tering in an electron gas having the relative density rs

=re/a0 = 2 for the angles θ = 15° and 30°, where e0 is the
Bohr radius, r, = {Z/Aim^13 is the radius of the sphere
occupied by the electron, and n0 is the density of the
valence electrons. The stated density value is close to
r, for aluminum and beryllium. Experiments in lithi-

umBe,ei,e2] aad beryllium"*33 have fully confirmed the re-
sults of the analysis.IS83

As (3.1) implies, when e(k, ω) =0, another form of in-
elastic scattering is possible in small-angle scattering
by free electrons in a solid. It involves excitation of
longitudinal plasma oscillations, or collective fluctua-
tions in the electron density. Plasma oscillations as an
independent form of electronic excitations arise from
Coulomb interaction among the electrons, and they have
been widely studed in an entire set of studies (see, e. g.,
the monographs by Pines1643 and by Platzman and
Wolffces3). The concept of plasmons (quanta of plasma
oscillations) permitted Pines and Bohm1-683 to point out
the connection between a fraction of the characteristic
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(discrete) energy losses observed in passage of fast
electrons through metallic foils and the excitation of
collective oscillations. Numerous experiments on the
characteristic losses of electrons have shown that, in
contrast to a gaseous plasma, long-wavelength plasmas
in the system of valence electrons in a broad set of met-
als, semiconductors, and even insulators constitute
well defined elementary excitations.

Highly intensive theoreticalce73 and experimentalt883

studies on light scattering by low-frequency plasmons
in semiconductors began with the invention of lasers.

The possible scattering of χ rays with excitation of
plasmons in a solid was first pointed out by Nozieres
and Pines"7 3 in 1958. The problem of small-angle in-
elastic scattering by the electrons of a solid-state plas-
ma was treated in greater detail in the early period of
studies4' in the papers by Agranovich and Ginzburg1703

and by Ohmura and Matsudaira.t583 From the classical
standpoint, one can interpret plasmon scattering as the
inelastic scattering of χ rays by the ensemble of elec-
trons bound by Coulomb interaction, whose density has
been modulated at the frequency of the plasma oscilla-
tions as a result of collective fluctuations. Just like the
characteristic-loss cross-section, plasmon scattering
(PS) is described by the function Imc'1, and the equation
c(k, ω) = 0 determines the spectrum w(k) of the longitudi-
nal plasma waves.

Thus plasmon scattering is a combination process in
which the frequency of the scattered quanta is smaller
than that of the incident quanta by the frequency of the
plasma oscillations. At small enough momenta k in a
degenerate electron gas, the dispersion law of the plas-
mons looks likeC843:

« « - • P + T T ^ . (3.2)

Here ω, = -iiim^PTtn, and vr = (4.22/r4)x 108 cm/sec is
the Fermi velocity. Since we have k = 2 ^ sin(5/2) to
high accuracy, the spatial dispersion of the dielectric
constant c(k, ω) is manifested experimentally in the de-
pendence of the signal frequency on the angle of obser-
vation.

In the random-phase approximation, the plasmons are
nondecaying excitations for k smaller than the critical
wave vector kc = o>p/vr = (1.71/Sr^) A"1 at which the col-
lective spectrum of (3.2) and single-particle spectrum
of (2.2) begin to overlap in the coordinates ω, k. t M I Ow-
ing to the Coulomb and Fermi screening of the single-
particle excitations that are manifested in the inelastic-
scattering spectrum as Compton scattering, the plas-
mons make the major contribution to the intensity of the
small-angle inelastic scattering. When k> kc=2k1

xsin(5c/2), the plasmons rapidly decay (Landau de-
cay"13). This must lead to a considerable broadening
and disappearance of the plasmon peak. In this angular
region the inelastic scattering is governed mainly by the

spectrum of the individual excitations.

In the very simple case in which ε = 1 - (<at/<af (long-
wavelength approximation), we have the following ex-
pression for the integral plasmon-scattering cross-sec-
tion, as is implied by (3.1):

o(e) = 2oT{—z)— sin*T, (3.3)

This agrees with the result of the semiclassical treat-
ment.t703 For beryllium, e.g., fee = 1.24 A"1. With
CrKB(\1=2.08 A) pumping, this corresponds to the crit-
ical scattering angle θβ =24°. Since Κωρ = 19 eV, then
for θ = 10°, we have σΡ8(θ) = 6x 10"* σΓ.

Priftis and his associates™3 first observed scattering
of χ rays by volume plasmons in 1968 in inelastic scat-
tering of CrKg radiation in lithium, beryllium, and graph-
ite at scattering angles of 5, 10, and 15°. This new
form of inelastic scattering is manifested in the spec-
trum in the form of an extra peak that is superposed on
the Rayleigh-scattering line and the Compton-scattering
line, which is weak in this angular range. Apparently
plasmon scattering had not been observed earlier™3 be-
cause most experiments had been performed at θ>θβ.

Subsequently scattering of CrKatS and CuKai$ χ rays
by plasmons in Li, Be, graphite, and Al has been stud-
ied experimentally by groups in Greece, t 7 S - " ] ja-
pan, " 8 · 7 9 3 the USA,C№"843 and the DDR.t853 At small θ
one must take account of possible excitation of plasmons
in the process of diffuse scattering, even in such crys-
tals as Si and Ge. t M ] On the whole, these studies
showed satisfactory agreement with the conclusions of
the theory,t 5 7 > s e i although they also showed some dis-
crepancies and ambiguity of the results of different ex-
perimental groups. The behavior of the electron gas in
actual crystals and its interaction with radiation in the
region of small and especially of intermediate (k~ 1
- 2ke) momentum transfers has proved to be far more
interesting and complicated than had been assumed. Re-
markably, the experiments on x-ray plasmon scattering
have served as the specific impetus toward this type of
studies.

Experimental study of the plasmon scattering cross-
section of (3.1) is extremely useful for determining the
form of the dielectric constant, and hence also for de-
termining the validity of any particular model of the be-
havior of the electrons in a solid from which ε is being
calculated theoretically. To quote Pines, t M ] "this func-
tion is a certain simple concept that links all the theo-
ries of the electron gas in a solid." Observation of x-
ray plasmon scattering permits one to determine the en-
ergy, the lifetime, and the critical wave vector of the
plasmons, and also to determine the nature of the ener-
gy spectrum of the electrons in the region below the va-
lence band and of chemical bonds.

In summarizing the results of the performed studies,
we can distinguish the following fundamental features of
x-ray scattering by plasmons5':

4)We are not treating here the small contribution at ω( » Ω to
the scattering cross-section by atoms with formation of plas-
mons in "indirect" transitions1 6 9 1 owing to p · A perturbations.

5 Ά brief review of the early experimental studies is found in
Ref. 87.
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FIG. 5. Inelastic-scattering spectrum of Crff/3, radiation
(2. 08 A) in beryllium. R, C, and Ρ indicate respectively the
positions of the Rayleigh, Compton, and plasma scattering
lines; ke = 1.24 A"1, andi»e=24°.

A. Dispersion law

Figure 5 shows a typical inelastic scattering spectrum
of CrAgi in beryllium for different scattering angles, " 8 3

including those for which k> kc. They found that the dis-
persion law of the plasmons is close to linear (3.2) with
respect to Jfe2 (Fig. 6). Extrapolation to k = Q of the posi-
tion of the plasmon line gives the energy Ηωρ = 19.1 eV.
This agrees well with the theoretical value and the re-
sults on the characteristic energy losses of electrons.
A dispersion law linear in kz has also been observed in
a number of other studies. " 3 · 7 β - β "

We must note that a plasmon line is also observed at
momentum transfers k>kc, with some exceptions,tf f i l

though forbidden by the elementary theory. Moreover,
Miliotis and Marinos"4 ' 7 8 3 observed no appreciable plas-
mon dispersion dispersion in Be in the region k £ 0.8 kc,
while Eisenberger et al. observed in lithium1833 and
graphite1843 a further shift in the inelastic-scattering
peak that was linear in k* following the horizontal region
at k<Z 1.5/fee and &<S \,Zkc, respectively. The scattering
intensity at the center of the line increases with increas-
ing θ, it reaches a maximum at θ ~ dc, and then it de-
clines." 4 3

The problem of why one observes a plasmon line at θ
>3C hasn't yet been solved finally at present. Yet evi-
dently, since the conclusion of strong decay of plasmons
at k> ke was made within the framework of the random-
phase approximation, this theory needs further refine-
ment and modernization. We should note that the con-
cept itself of the critical vector, which is defined as kc

= ούρ/vjr, is rather provisional. [ β 4 · 8 β : ΐ Just as provision-
al is the classification at intermediate k into scattering
by one-particle and collective excitations. The influ-
ence of collective effects on the inelastic-scattering
spectrum holds even when 2kF> k> kc. This is explained
by the long-range action of the Coulomb potential 4ττβ2/
kz, and it is manifested in the sharp asymmetry of the
spectrum of the one-particle excitations. When k~ 1
- 2ke, the latter shows peaks at the frequency ω~ 1 - 2ωρ

that resemble the plasmon scattering line.CSB1

Analysis of the first-order correction to the RPA-di-

FIG. 6. Dispersion of plas-
mons in beryllium (pump:
Crif/3, radiation1781).

electric function shows'903 the possibility of a new scat-
tering process in which a plasmon and an electron-hole
pair are created simultaneously and satisfy the conser-
vation law Ho>i + (p\/2m) =Ho)i + {p\/2m) + Ηωρ. The in-
tensity of the new peak is about 10% of the intensity of
the "pure" plasmon scattering (in Be at θ = 10° and λχ

= 2 A).

As Kliewer and Raether1883 and Zacharias1 9 1 3 have
shown, one can explain the results of Miliotis"43 within
the framework of the RPA. Following Ref. 92, one in-
troduces into the dielectric constant of Lindhard1803 the
decay of the single-electron states, and takes account
of the exchange and correlation corrections on the static
local field in calculating e(k, ω), as in Ref. 93.

A number of studies have established"8·8 1"8 4 3 that the
observed plasmon dispersion is smaller than the theo-
retical value, and it can even be negative.t823 This can-
not arise from small effects of the band structure. Platz-
man and Eisenbergert82>943 (see also Ref. 95) have pro-
posed the following explanation: the sum rule1 8 4 3 JJ wS
x (k, (j})do) = Rkz/2m implies that if we assume that S(k, ω)
=S(k)6[w - w(k)], then to(k) =Sfe2/2mS(k). As the proper-
ties of the pair-correlation function of the degenerate
electron fluid imply, the structure factor S(k) rises from
zero as k*, reaches unity at k~ 1.35fep, and then per-
forms several damped oscillations. This is necessari-
ly reflected in the behavior of the dispersion law w(k)
of the plasmons.

Further refinement of the theory of the dielectric con-
stant'9 3 3 by introducing a finite lifetime of electrons and
holes has permitted1983 explanation of the existence of
the gap in the inelastic-scattering spectra in beryllium,
aluminum, and graphite6' that was observed in Ref. 95
for kF<k<2kF. It has also permitted obtaining satis-
factory agreement in Ref. 95 with the experimental
datat 8 1 3 on the position and shape of the plasmon line in
beryllium at k = 1.24 kc.

B. Decay of plasmons

Since the conservation laws forbid conversion of a
collective wave into an electron-hole pair, decay of
plasmons does not exist within the framework of the
random-phase approximation. This should lead to a 5-
function plasmon-scattering spectral line at k<kc. Pre-
cisely this conclusion was drawn in the first experi-
ments, C 7 9 ' 8 0 J owing to insufficient resolution. Yet the

6)The identity of the spectra in the three different substances
indicates that this phenomenon arises exclusively from the
properties of the electron gas, rather than from band effects.
The inelastic-scattering spectrum is a superposition of a
broad RPA component and a narrower plasmon peak.
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FIG. 7. Relationship of
the line width (at half-
height) of plasmon x-ray
scattering in beryllium to
the wave vector.

2*4-'

plasmon line has subsequently been found to have a con-
siderable width that depends on the scattering an-
gle. £«. w.'β, ai: Figure 7 shows the results of measur-
ing"" the width rt(k) of the line in beryllium (Γ#(0)/ω,
= 0.2).

One can explain the decay of long-wavelength plas-
mons by taking account also of such multiparticle-inter-
action effects as the electron-electron interactions that
are forbidden in the RPA (decay of a plasmon into two
electron-hole pairs, an electron-hole pair and another
plasmon, etc.t97J) and, as the fundamental broadening
mechanism, electron—ion interactions arising from in-
teraction with phonons and crystal inhomogeneities.t983

At small k, we have I^ik) =A +Bkz, where A and Β are
coefficients that depend on the model. As yet their the-
oretical values are still very far from the experimental
values.C993 Perhaps the discrepancy involves band-
structural effects. Measurement of the shape and width
of the plasmon-scattering line is of importance for un-
derstanding the mechanisms of decay of plasmons.

C. Anisotropy

We have used thus far a homogeneous gas of free
electrons as the model of the solid-state plasma. Ac-
tually the electrons move in the periodic potential of the
crystal structure, and their wave functions are not plane
waves, but Bloch waves.

The experiments in single crystals of beryllium1*13

and graphite,I843 which were first performed by Eisen-
berger et al., showed a considerable anisotropy of the
plasmon-scattering cross-section. Figures 8 and 9
show the results of measuring the energy, the width,
and the shape of the plasmon line in beryllium for the

Plajmon energy

line width

FIG. 8. Energy of plas-
mons in beryllium and total
width of the line at half-
height for the cases It II ο
and k II a as a function of
the square of the scatter-
ing angle (pump:
radiation, 1.54 A).

0 D 9.9 13.1 ZS3 37.;7.S 4&7fla>,eV .

FIG. 9. Plasmon scattering spectrum of CuKctj radiation in
beryllium at 22° scattering angle. RPA: the result is given
after correction for the instrument resolution function.

cases in which the vector k is parallel to the crystallo-
graphic axes c and a, respectively. The corresponding
calculated curves in the random-phase approximation
are also given for comparison.

In a crystalline medium, the function c~1(k, ω) in the
expression (3.1) for the cross-section has the more
general form"1·8 5·1 0":

- (k, ω) = [6 Q Q . -jT ω ) j (3.4)

Here Q and Q' are reciprocal-lattice vectors, the vec-
tor q is defined to be in the first Brillouin zone, and k
=q+Q. The explicit form of the function OIQQ. is given,
e. g., in the monographs184'653. Its tensor character
with respect to Q and Q' reflects simply the fact that in
the crystal a perturbation having the wave vector k elic-
its responses having the wave vectors k+Q. The ener-
gy bands of the plasmos are determined by the equation
deteQQ. (k, ω) = 0, which is a generalization of the equa-
tion e(k, ω) = 0 for a homogeneous medium. ce5«lon The
procedure for inverting the matrix of (3.4) has been
treated, e. g., in Ref · 102.

The analysis of the behavior of plasmons in crystals
is based on the ground-breaking studies of Ehrenreich
and Cohen11033 and of Adler and of Wiser.t1023 Band cal-
culations have been made for the real and imaginary
components of ε, and also for Ιηιε"1, in the crystals
S i , a m Ge, GaAs and ZnSe,£1053 and Κ and Nat l 0 8 ] for
different crystallographic directions. They have per-
mitted people to reveal clearly the contrast with the
free-electron case and to trace pictorially the transfor-
mation of the structure factor S(k, ω) with varying wave
vector k.

The behavior of the tensor aQQ- depends on the details
of the band structure, and it can be rather complicated.
In the random-phase approximation, one must replace
the function a in (3.4) by the function a0 for a gas of
noninteracting Bloch electrons. In order to understand
qualitatively the results of the experiments,t813 it suf-
fices to estimate the function CCQQ· at the frequency ω
~ ωρ. Actually, for simple metals (Na, K, Be, Mg, Al,
etc.) and certain semiconductors (Si, Ge, etc.), ω, is
large in comparison with the characteristic energies of
the band structure, and the form of OQQ. is considerably
simplified, since one can expand this tensor in powers
of \/a>p. As has been shown,t81·1001 account taken of the
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crystalline nature of the medium, i. e., of the interband ε (ω) = 1 - (ω ,̂/ω)2 for the material of the particle.

transitions in the diagonal polarizability leads to a
certain shift in the plasmon frequency as k— 0. This
shift depends on the direction of the wave vector of the
plasmons with respect to the crystallographic axes, and
also with respect to the anisotropic character of the k2-
dispersion of the plasmons. For a more detailed ac-
quaintance with the influence of band-structure effects
on the behavior of plasma oscillations in a solid, we can
recommend referring to the monographs C M ' e 5 1 and the
references cited there.

A nondiagonal term characterizes coupling of the den-
sity fluctuations with the wave vectors q and q+Q, and
it leads to existence of higher, weakly decaying plasmon
bands, even with k>ke, as perhaps were observed in
Ref. 85.

As has been predicted in a model of one-dimensional
periodicity,c l 0 7 1 the effects of the band structure can
also lead to an energy gap in the spectrum of single-
particle excitations, in which an additional low-energy
collective mode exists at intermediate k. The existence
of this mode has not yet been fully confirmed experi-
mentally. C 8 5 ]

O. Temperature dependence

Upon observing the inelastic scattering of Cr/fe radia-
tion in lithium at Τ = 300° and 77 °K, Priftis t 7 S ] found
that the cross section for x-ray plasmon scattering at
liquid-nitrogen temperature is about 25% smaller than
at room temperature, in contrast to the case of elec-
tron excitation of plasmons, where the intensity of the
energy-loss line does not depend on T. The existing
theories do not explain the temperature-dependence of
the plasmon-scattering cross section. One must appar-
ently take account of photon-phonon-plasmon interac-
tion.

E. Local plasmons

In addition to the bulk plasma oscillations in homoge-
neous media that we have discussed above, collective
excitations can occur (local plasma oscillations"08*1) in
bounded and inhomogeneous systems. An example of
such systems is the electron-hole droplets in semicon-
ductors, small metal and. semiconductor particles im-
planted into a different medium; gas cavities produced
in metals by radiation, etc. The inhomogeneous sys-
tems whose spectrum of excitations possesses collec-
tive levels as well as single-particle levels include also
the electron shells of heavy atoms.

Raman scattering of light or χ rays by local plas-
mons t l 0 e a l permits one to study the spectrum of normal
vibrations of these systems. The frequencies and damp-
ing of the collective modes in an inhomogeneous elec-
tron plasma are determined by a condition more gener-
al than ε (k, ω) = 0, namely J£(r, r', ω)ηβ(r')dr' = 0, where
we(r) is the effective charge density. For example, for
a spherical metallic particle placed in a medium having
the dielectric constant ε1( the frequencies of the local
plasmons are determined by the relationship ω,

where the / are positive integers, and

X-ray scattering with excitation of the lowest mode
(1 = 1) of the surface plasmons in small (~ 100 A) parti-
cles of graphite and silver has been observed in Ref. 77
and has been studied theoretically in Ref. 108. Such ex-
periments permit one to determine the limits of validity
of introducing the concept of local plasmons as well de-
fined elementary excitations, i. e., excitations having a
small ratio of damping to frequency. Actually, the mo-
mentum ceases to be a well defined quantum number in
inhomogeneous systems owing to scattering by the inho-
mogeneities. Therefore, in contrast to the RPA, a
plasmon can disintegrate into an electron-hole pair even
when k<kc (for more details see Ref. 108a and the ref-
erences cited therein).

4. RAMAN SCATTERING OF X RAYS

Smekal"0 9 1 first pointed out in 1923 the possibility of
Raman scattering (RS) of χ rays by bound atomic elec-
trons. Independently, in a study devoted to Raman scat-
tering in the optical region, Raman11101 noted that this
effect might also be manifested in the x-ray range. Sub-
sequently electronic Raman scattering of χ rays" was
observed in the scattering of Mo/fa radiation in graph-
ite, "»- "« aluminum, t m l and beryllium 1 9 · m · 1 1 4 1 in the
form of narrow lines shifted downward in frequency
from the position of the Rayleigh peak by about the ion-
ization energy of the Κ and L electrons. The spectral
width of the observed lines is close to the width of the
MoKa radiation, and the position of the lines practically
did not depend on the scattering angle for θ~ 90-160°.
The conclusion has been drawn from these results that
the electron is "ejected" from the atom with zero ve-
locity in Raman scattering. In later years, x-ray Ra-
man scattering has been observed by Das Gupta, t U 5-1 1 7J
Suzuki,C118] and by Faessler and Muhle"1 9 1 in the form
of weak peaks on the background of the broad and intense
Compton profile that arises from scattering by the outer
weakly-bound electrons.

Yet we must note that these early studies were per-
formed at the limit of the experimental potentialities of
that time. This did not allow them to interpret the ob-
tained results unambiguously. Thus, the stated effect
was not detected in special experiments'1801 set up to
test the reports"1 8-1 1 7 3 ; Mitchell, m " Davis and
P u r k s , t l l 4 ] and Das Gupta11171 have also reported observ-
ing Raman scattering in the anti-Stokes region (u^ > a)t),
which was clearly impossible under the conditions of
their experiments.

Inelastic scattering by bound electrons has been
treated theoretically by Wentzel, K 4 : Bloch, Q 1 1 Sommer-
f e l d , c m i Platzman and Tzoar, " " and more fully in 1967
by the Japanese physicists Mizuno and O h m u r a . c m l The

7>Inelastic scattering by the thermal vibrations of atoms with-
out change in the electronic state in optics leads to Raman
scattering by optical phonons and to Mandel'shtan—Brillouin
scattering by acoustic phonons. In the x-ray range, the fun-
damental contribution to the scattering intensity comes from
the acoustic vibrations, and this form of inelastic scattering
is commonly called thermal diffuse scattering.t311

415 Sov. Phys. Usp., Vol. 20, No. 5, May 1977 V. A. Sushuev and R. N. Kuz'min 415



law of conservation of energy for the Raman scattering
process has the form

(4.1)

Here 8 =HU is the binding energy of the electron, mt?/2
is the kinetic energy of the "ejected" atomic electron,
and we assume that we can neglect the recoil energy of
the atom and the excitation of lattice vibrations. The
maximum energy Κωί=Κωι -S of the scattered quanta
(the edge of the Raman line, or threshold) corresponds
to the velocity v = 0. Sommerfeld did not account for the
spreading of the atomic levels in a solid into broad,
overlapping bands. Hence he found that the Raman
spectrum should consist of narrow lines that correspond
to transitions of the inner electrons to the unfilled outer
levels of the atom. Yet Wentzel and Bloch treated scat-
tering having large momentum transfers with transition
of an atomic electron into the continuous spectrum,
which corresponds more to a Compton effect involving
the bound electrons, while the calculations of Platzman
and Tzoar corresponded to the Compton effect in the
momentum approximation and to the intermediate region
between the case of large-angle scattering and that of
small-angle Raman scattering.

Following Ref. 122, let us examine a Raman-scatter-
ing process in which the energy imparted to an atomic
electron does not greatly exceed its ionization energy.
The transition probability of the system is also deter-
mined by the "golden r u l e . " a n Evidently the effect of
the binding of the localized electrons should be consid-
erably manifested only at small momentum transfers k,
i.e., at relatively small scattering angles. Hence the
Raman-scattering effect will be observed most clearly
when the following conditions are satisfied:

Λ Απα ft ΙΛ O\
oir = -5—sin-^-<£:l, V*·")

ha,. > g, (4.3)

Here λχ is the pump wavelength, and a is the radius of
the orbit of the electron.8)

When the condition (4.3), which corresponds to the
case of nonresonance scattering, is satisfied, the funda-
mental contribution to the Raman intensity comes from
the A* perturbations in the interaction Hamiltonian.U4>182]

When we account for (4.2) in the single-electron approx-
imation while neglecting the effects of electron correla-
tion, the expression for the differential Raman scatter-
ing cross-section for unpolarized radiation, e. g., by a
Κ electron, has the following form in the non-relativis-
tic approximation:

0(Mji=r.!±^l«Skr((,,)k, (4.4)

<ff(r)rit,(r)t/r, (4.5)

The summation in the matrix Τ is performed over the
unoccupied states having wave functions φ, and energies
#,. The expansion of exp(ik • r) in the matrix elements
of Γ is restricted to two terms in deriving (4.4). Just
as in the case of the photoelectric effect, the fundamen-
tal contribution to the Raman cross section comes from
transitions to states of the continuous spectrum (in sim-
ple metals, e. g., these states lie above the Fermi lev-
el). We must average (4.5) over all orientations in
scattering in polycrystals or powders. We arrive there-
upon in (4.4) at the scalar product lsT\t=t{u>)kz, where
ί(ω) = (1/3)βρί(ω).

The relationships (4.2) and (4.3) explain the meaning
of the term "small-angle Raman scattering." They im-
ply that Raman scattering occurs mainly by exciting Κ
electrons, and one must use a relatively long-wave-
length pump for more reliable observation of Raman
scattering. We should note that the formulated classifi-
cation into Compton and Raman scattering is rather ar-
bitrary. These are simply the limiting cases of the uni-
tary process of inelastic scattering, in which some giv-
en part of the energy of the pump quantum is "spent" in
ejecting an atomic electron." Evidently, in the case of
the converse inequality to (4.2), or ak»l, inelastic x-
ray scattering goes over into the Compton effect. This
is because the momentum transfer Kk is much greater
here than the momentum px~h/a of the electron, and the
effect of binding is small.

A qualitatively new stage in experimental study of Ra-
man scattering of χ rays started in 1967 with the studies
of Suzuki and his associates1128"1253 and of Alexandrop-
oulos, Cohen, and Kuriyama, c m - l M ] in which they ob-
served Raman scattering of MoKa and CrKa radiation in
certain light substances (Li, Be, graphite, LiF, and
NaCl) at different scattering angles (θ~ 30-160°). It has
arisen from the invention of powerful (up to 4 kW) rotat-
ing-anode x-ray tubes and from refinement of the two-
crystal spectrometer and the recording apparatus.

In summarizing the results of the studies, we can
note the following fundamental characteristics of the x-
ray Raman-scattering spectrum:

A. Spectral intensity distribution

The scattering spectrum is a continuous intensity dis-
tribution rather than a discrete set of lines. Here the
short-wavelength edge where the intensity is a maximum
lies at the threshold value of the signal frequency ω8

= ωι - Ω, and it does not depend on the scattering an-
gle. [ 1 2 3 · 1 Ζ 4 ] Figure 10 shows a typical inelastic-scatter-
ing spectrum of CrKa radiation in boron at various an-
gles θ . α Μ 1 For the Κ electrons of boron, α = 0.113 A,
and the parameter ak for scattering angles θ- 30-160°
lies in the range 0.16-0.61, which agrees well with the
requirement of (4.2).

8)The erroneous relationship 2πα/λ,<1 is found in Ref. 122 in
place of (4.2), and it has been corrected later in Refs. 123
and 124.

9>The Raman-scattering phenomenon by localized electrons is
also referred to as: "Raman effect for χ r a y s , " t m l "fine
structure in the Compton effect,""141 "modified Smekal-Ra-
man x-ray scattering," "Raman lines in Compton scatter-
ing, " I 1 1 9 1 etc.
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FIG. 10. Spectrum of scattering of CrKoi radiation (2.29 A)
in boron, λ,, Xc, and λΒ are the wavelengths of the peaks for
Rayleigh, Compton, and Raman scattering, respectively.

The intensity of the Raman line declines smoothly to-
ward longer wavelengths. This corresponds to a de-
cline in the probability of transition of the electron to
states of the continuous spectrum having velocities ν * 0.
Since the if-photoabsorption cross-section σ"* in the di-
pole approximation (ka« 1) is proportional to the ex-
pression ωβΓ(ω)β, where e is the polarization unit vec-
tor of the wave, o£b~ ωί(ω) in polycrystals or powders,
and the shape of the Raman line for the Κ electrons
should resemble the Κ absorption spectrum of soft χ
rays, ω*."»·"» i. e., σ Μ (ω, θ)~ urlu*. On the whole,
this has been confirmed experimentally.C12i·124·12" Fig-
ure 11 shows the inelastic-scattering spectrum of CrKa

radiation in lithium and beryllium, with the Κ absorp-
tion spectrum of these elements shown for comparison.
Yet in the case of scattering in substances of low sym-
metry, there is no such simple relation between σ*1 and
σ Μ (ω, θ ) , t l 3 0 ] since the photoabsorption and the Raman
scattering are determined by different matrix elements
(ere and kTk, respectively). The values of the energy
8 determined in Raman-scattering experiments in Li
(57 eV), Be (112 eV), Β (190 eV), and graphite (284 eV)

FIG. 12. Inelastic-scattering spectrum of MoKa radiation
(17.4 keV) in beryllium at angles of 5, 26, and 56°. CE, RS,
and PS are Compton, Raman, and plasmon scattering, respec-
tively.

agree well with the ionization energies gK = RSlg of the
Κ electrons as measured in x-ray absorption experi-
ments. The position of the edge of the Raman line is
sensitive to the chemical environment of the scattering
atom.t l 3 2 ] X-ray Raman scattering has also been ob-
served for the L electrons in Na, Al, and Si.U№1

Analysis of the fine structure of the long-wavelength
edge of the Raman line combined with soft x-ray absorp-
tion experiments can give fuller information on the na-
ture of the band structure of solids. The Raman spec-
trum arises from scattering practically throughout the
specimen, and various inclusions and surface inhomo-
geneities affect its intensity but little, which can't be
said of absorption spectra.

It has been shown theoretically"3·14·13" and to a cer-
tain extent experimentally"24'125fl2ei that the intensity of
the long-wavelength tail of the Raman scattering in-
creases with increasing scattering angle θ, for which
the condition (4.2) ceases to hold, and the position of the
Raman intensity peak ÔQ is shifted toward smaller en-
ergies (ω 0̂< Wj - Ω) to approach the Compton value.

According to (4.4), the Raman cross-section should
increase with increasing scattering angle according to
the law σ(9)~ (1 + cos*3) sin*(3/2) and decrease with in-
creasing nuclear charge.10) Such an angular dependence
has actually been observed in scattering of CrK$ and
Cu/fain Be and graphite at small angles.m 5 J However,
the Raman intensity reached a certain maximum value
with increasing θ, and then began to decline. One can
explain this11*51 by accounting for the third and fourth
terms in the expansion of exp(t'k · r) in the matrix ele-
ments of the transitions I <) - 11).

lithium Beryllium

—w-o ^ - (H-'^ -
231 Z34 225 2,37

FIG. 11. Raman-scattering (solid curves) and K-absorption
(dotted curves) spectra in lithium and beryllium.l1241

B. Line Raman scattering

In addition to transitions to states of the continuous
spectrum, Raman scattering can also involve transition

10)Babushkint1333 has obtained an angular dependence ~ (1
+οο8*ι>)/[1 +sinV/2) I4 resembling Compton scattering for the
Raman cross section. This disagrees with the results of ex-
perimentsCl251 and of calculations.1·1221 His conclusion of a
Debye—Waller dependence of the Raman cross section on the
specimen temperature is also erroneous.
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of an atomic electron to unfilled discrete levels. Alex-
andropoulos and Cohen11281 observed this form of Raman
scattering in scattering of Cuifo in boron (ffK = 188 eV)
at a 60° angle in the form of lines shifted from the Ray-
leigh peak by 183 eV, which corresponded to the Is - 2/>
electronic transition. The line has a width close to that
of the emission line BKa, and it lies 5 eV above the
short-wavelength edge of the broad Raman profile that
corresponds to transition of is electrons to the continu-
ous spectrum.

A rather intense, sharp Raman peak has been ob-
served in the scattering of Cufl:e radiation in lithium in
the region of intermediate momentum transfers (k/kF

-1.6-3.1). It has an energy Ku*EF = 4.7 eV. Appar-
ently this corresponds to the optical transition of the 2s
electron to the upper quasi-bound Zp states, etc. t l 2 9 ]

The reason why this peak is lacking at k< kj33*1 and at
k/kF~ 0.64-2.1[ 8 3 ] is not yet evident.

Alexandropouloscm: has also observed lines in the
long-wavelength portion of the Raman spectrum of CuKa

and CruTa radiations in LiF and NaCl crystals, with an
energy shifted from the energy of the primary radiation
by 5 eV in Lif and 2 eV in NaCl. The position and shape
of these lines did not vary for angles θ~ 16-84°. This
effect is interpreted as Raman scattering by F centers
that are formed upon prolonged irradiation of the crys-
tals with CuKa χ rays, and they can be used for study-
ing the process of formation and measuring the effective
masses, lifetimes, and certain other characteristics of
F centers. The high intensity of the lines at a low con-
centration (~ 1017 cm'3) of color centers gives evidence
of the unexpectedly high cross-section of the line Raman
scattering, which is an as yet unexplained fact.

Observation of inelastic scattering of the radiation
from a copper tube in lithium at specimen temperatures
of 300 and 77 ° Κ has shown that the Raman intensity does
not depend on the temperature, just like the cross sec-
tion of the Compton effect. l l w

To generalize what we've said in Sees. 2-4, it is use-
ful to present a schematic calculated inelastic-scatter-
ing spectrum J{u), e. g., in beryllium (ΚΩ = 112 eV) for
various scattering angles (Fig. 12). At small enough
angles θ, the Compton effect from the conduction elec-
trons is suppressed by Coulomb and Fermi shielding,
and the plasmon scattering line (PS, see Fig. 12a) is
manifested most distinctly in the spectrum. Landau
damping of the plasmons occurs with increasing scatter-
ing angle, i.e., increasing momentum imparted (k>ke),
and the Compton line is shifted to larger ω values, while
it has a parabolic line shape (see (2.8)). The Raman in-
tensity increases, and overlap of the Compton and Ra-
man spectra is no longer observed (Fig. 12b). This is
important for a more distinct determination of their po-
sitions and shapes (a slight overlap of Compton and Ra-
man lines in scattering of WL^ lines in beryllium at 55°
angle has been observed in Ref. 32).

Figure 12c shows the scattering spectrum at a rather
large angle for which ak> 1 and for which the condition
for applicability of the impulse approximation begins to
hold for the long-wavelength fraction of the scattered

radiation. Here one should observe an intensity jump
at the threshold frequency ωζ = ωί-ίϊκ (see, e. g., the
experimental study1271), while the inelastic-scattering
spectrum is a superposition of the spectra of (2.8) and
(2.9) as defined for ω* SlK for the free and bound elec-
trons, respectively. As we have pointed out in Chap. 2,
use of harder and more penetrating radiation permits
one to proceed into the region of heavier elements.
Thus, steps have also been foundcl9S: in the spectrum of
γ rays of energies 412 keV C'eAu source, 482 keV
^"Hf), and 662 keV C37Cs) scattered by specimens of
Pd, W, and Pb, at energies lying below the initial ener-
gies by the bonding energy of the if electrons. Interac-
tion of the recoil electron with the mother atom can lead
to a singularity in the Raman profile in the vicinity of
the threshold energy ω~Ωί1Μ] (see the dotted curve in
Fig. 12c and in Fig. 1 of the experimental study^").
The concrete shape of this singularity depends on the
shape of the wave function of the ground state and on the
scattering angle.

The problem of the shape of a Raman line near the
threshold is extremely important for understanding the
nature of multiparticle interactions in solids. Actually,
the electrons and holes that are created in the scatter-
ing process experience Coulomb interaction with one
another and with other electrons and holes in the crys-
tal. In addition, the conduction electrons interact with
the ion cores, which leads to their Bloch-type behavior.

As we know, multiparticle effects can be manifested
in ω-emission and absorption spectra of soft χ rays
near the absorption edge. These first-order processes
have been studied rather broadly, both theoretically and
experimentally. However, as Platzman and his associ-
ates first showed, U 3 1 ] an account taken in Raman scat-
tering of the interaction of the particles in the final
states has the result that the u>k Raman spectrum near
the threshold becomes far richer, and it bears valuable
additional information. This is determined by the fact
that the Raman cross-section depends now on the scat-
tering angle, i. e., on the transferred momentum, as
well as the frequency-dependence at fixed k.

Before we proceed to discuss the Raman scattering,
let us first take up briefly the threshold features of the
absorption spectra. For the sake of concreteness, we
shall discuss the case of absorption in metals. In the
absence of multiparticle effects, when the wave function
of the photoelectron is approximated by a plane wave and
the ground state is hydrogen-like, the photoabsorption
cross-section is σ£" ~ω"3 for ω> o>thr, and is zero for ω
< a>thr, where the threshold energy fauthr = &•+EF is the
sum of the ionization energy of the corresponding elec-
tron shell and the Fermi energy. Multiparticles effects,
or more precisely, Coulomb interaction between the
particles, lead to a more interesting frequency-depen-
dence of the absorption cross section near the threshold
than is given by the simple one-electron theory. The
manifestation of Coulomb perturbations can be provi-
sionally classified into three parts:

1) The ejected photoelectron interacts with the hole
left in the atom.
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2) A rapidly produced hole can create numerous elec-
tron-hole pairs in the conduction band.

3) The ejected electron can be scattered by conduc-
tion electrons to form additional electron-hole pairs.

Only the first two effects have been analyzed in detail
at present. The studies of Mahan and Nozieres and
their associates11' have shown that the absorption cross
section can be written in the following form with account
taken of the interaction between a deep, infinitely heavy
hole and the photoelectron:

(4.6)

where

and

(4.7)

The phase shift δ, characterizes the scattering of the
Fermi-surface conduction electrons by the hole, and the
function W, is a smooth function of the frequency. The
index I characterizes the angular momentum of the ini-
tial state. The relationships (4.6) and (4.7) stem from
the law of conservation of angular momentum. For ex-
ample, for an s state the matrix element W, exists only
when 1 = 1.

The absorption cross section of (4.6) depends very
strongly on the magnitude and sign of the constant a,.
When a,>0, the partial cross section increases sharply
near the threshold, and it declines when a,< 0. An ac-
count taken of the finite lifetime of the recombining hole
rules out divergence of the coefficients A, when ω = ωίύτ.

As has been shown, e. g., in Ref. 13, the Raman
cross section is proportional to the electronic structure
factor

S (k. ω) = (2π )\<f\T.e""'\i)\i6ifi-rl-f- (4.8)

An important feature of the Raman-scattering process
is that the matrix elements in Eq. (4.8) contain the
complete exponential exp(tk · r) rather than the second
term of its expansion, as in the one-electron dipole ap-
proximation (4.4). We recall also that a k-dependence
is generally lacking in the matrix elements for the ab-
sorption probability, since the wavelength of the radia-
tion near the absorption edge is much larger than the
dimensions of the corresponding electron orbital, the
exponent kr is ~ (Q/c)a~ if/137 « 1, and we can replace
the exponential by unity.

Since the factor k • r varies with the scattering angle
(in contrast to the absorption case), the Raman spec-
trum generally contains contributions from all the pow-
ers of k · r. If now, following the Mahan-Nozieres theo-
ry, we take account of the Coulomb attraction between
the recoil electron and the hole (central, for the sake of
simplicity), and account for the mixing by the operator

FIG. 13. Relation of the coef-
ficients Rt(k) for metallic lith-
ium to the size of the trans-
ferred momentum in units of
2ir/e, where a =3.50 A is the
lattice constant. The wave
function of the ground state is
taken in hydrogen-like form
with a radius of the Κ shell of
0.195 A.

ktliXtt

exp(tk · r) of the spherical harmonics of the wave func-
tion of the electron in the final state, while using the
law of conservation of angular momentum, then

σ (ω, β) « S (k, ω) = t ιflOΊ (4.9)

M)See Refs. 4 and 5 in Ref. 131.

The explicit form of the functions R,(k) and a graph of
the first several cofactors in the case of metallic lithi-
um are given int l 3 1 J (Fig. 13). If now we vary the scat-
tering angle, i .e., k, then the coefficients Rt(k) will
vary quite significantly, and furthermore, in differing
ways, depending on the index I. For example, for lithi-
um at small k, the coefficients R 0, i?2, and the other
higher terms are proportional to k* or higher powers,
but the principal term Rx~1? (cf. (4.4)). For scattering
in the almost-forward direction, the threshold frequen-
cy-dependence of the Raman cross section is analogous
to the cross section WXAX for absorption of soft χ rays.
The role of the coefficient Rx declines with increasing
k, and the coefficientRo begins to make the main contri-
bution (the term Rz is negligibly small). Thus the rela-
tive weights of the terms having different phase shifts
are redistributed. Since a 0 = 0.41 and a! = - 0 . 1 for
lithium, the singularity near the threshold (a0>0) must
be manifested for relatively large scattering angles,
where the coefficient Ro determines the main contribu-
tion. An analogous situation is reflected schematically
by the dotted line in Fig. 12c. The solid curve is the
scattering cross section in the one-electron approxima-
tion, toward which (4.9) approaches when ω » usthT.

The theory of multiparticle interactions that is devel-
oped in Ref. 131 is as yet preliminary in nature. Exact
solution of the multiparticle problem faces considerable
difficulties, just as in any many-body problem. Reli-
able experimental testing of the conclusions of the theo-
ry1131 J rests in the problem of increasing the resolution,
since one needs in Raman scattering an energy analysis
of spectral details of characteristic dimensions of the
order of 10 eV at energies of scattered quanta of the or-
der of 10 keV.

C. Resonance Raman scattering

We have been discussing thus far the non-resonance
Raman scattering of x-ray quanta having an energy much
larger than the ionization energy: u>x »<s (we assume
hereinafter that H = l). The theoretical and experimen-
tal study of resonance Raman scattering is yet in an em-
bryonic state, but already the first studies have shown
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the usefulness of this method for studying the spectra of
deep electronic transitions.

Resonance Raman scattering, i.e., scattering of
quanta having an energy ωι» gK, was first observed by
Sparkstlse] in 1974 in the scattering of CuKa and ΜοίΓβ

radiations in Ni, Cu, Zn, Ge, and Ta in the form of
lines having a sharp peak at an energy ωΕ* ωχ - SLt

where £ΐ=ΚΩΐ and $t=KaL are the ionization energies
of the Κ and L electrons.12' The intensity of the lines
declined smoothly toward lower energies. Since the en-
ergy of the pump quantum is close to the Κ absorption
edge, the process of resonance Raman scattering must
be described by ρ · A terms in the second-order per-
turbation theory. Here the L electron is "ejected" into
the continuous spectrum, but not by the direct A2 path-
way, but by a resonance pathway via an intermediate
virtual Κ state. Actually the observed Raman intensity
did not depend on the scattering angle, and it varied
considerably from substance to substance, depending on
the size of the mismatch Ω^ - ωχ > 0. The measured"361

cross section for resonance Raman scattering of CuKa

radiation amounts in units of r\ of from 7.0 for Ni to
1.1 for Ge.

Arguments based on considering the law of conserva-
tion of energy in scattering by the elastic and inelastic
channels permitted Sparks to relate the resonance Ra-
man-scattering intensity to the real component of the
dispersion term in the atomic scattering factor, which
is also described by a p · A term, and is independent of
the scattering angle. However, the more rigorous di-
rect calculation of Bannett and Freund11381 gives better
agreement with experiment,H3el and it shows the incor-
rectness of Sparks' approach.

The phenomenon of resonance Raman scattering has
been analyzed most fully in recent studies of Eisen-
berger, Platzman, and Winick.t1391 Following the re-
results of these studies, let us examine some features
of resonance Raman scattering of χ rays.1 3' Apart from
insubstantial details, the electronic spectrum for sim-
ple metals is shown in Fig. 14. The lower electronic
states denoted as Κ and L are filled. The conduction
band, which is depicted in the form of a parabola, is
partially filled up to the Fermi level. These levels are
well resolved for most simple metals. The binding en-
ergies of the if and L electrons are of the order of thou-
sands and hundreds of electron volts, respectively. A
typical value of Er is ~ 5 eV. X rays being scattered by
this system can put it into various excited states, which
are also well resolved.

l2)The results of Ref. 137 on observing a radiative KLL Auger
effect can apparently be treated as being intra-atomic Raman
scattering by the L electrons of the photons that arise in the
atom itself as the if hole becomes filled by an electron from
the L shell.

u )The fundamental problems of resonance and non-reaonance
Raman scattering with account for multiparticle effects have
been presented rather simply and in detailed fashion in the
report by Platzman and Eisenberger at the first Soviet-Amer-
ican symposium on the theory of light scattering in condensed
media.11391

FIG. 14. Energy levels for simple
metals and a diagram of electronic
transitions in resonance Raman
scattering.

We have already treated the phenomena that stem
from an A* perturbation. They are the Compton effect
and plasmon scattering in the system of conduction elec-
trons; the Compton effect within the framework of the
momentum approximation and non-resonance Raman
scattering by localized electrons. The ρ · A perturba-
tion as accounted for in the second order leads to the
following processes: the incident photon forms a hole
in the Κ shell upon being absorbed, while ejecting the Κ
electron into the conduction band. An electron from the
L shell fills the Κ hole. This produces a vacancy in the
L shell and gives rise to the final scattered photon.

Just as in the case of non-resonance scattering, this
simple single-electron pattern actually becomes com-
plicated by multiparticle effects, part of which have
been listed above. Certain problems involving the sin-
gularity in the resonance Raman scattering near the
threshold have been discussed by Nozieres and Abra-
hams. U 4 0 1 Yet if we restrict the treatment to the lower
single-electron approximation, which corresponds to an
experiment at low resolution, then the matrix element
for this process has the form

(4.10)

The states IL) and I A) are bound, hydrogenlike states
of the L and Κ electrons, I Jfe) and ek are the wave func-
tion and the energy of the conduction electron, and Γ,.
is the phenomenological constant for radiational and
radiationless decay of the Κ hole. This matrix element
is of resonance type whenever the energy of the incident
photon is higher than the threshold energy SlK+EF.

In this simple model, we can easily estimate the ef-
fectiveness of the contribution of the ρ · A perturbation
as compared with the A2 term. If we take the A2 contri-
bution to be unity, then

—_3
ω,—«k—

(4.11)

The ratio (EF/tiL) is small, yet the second resonance
coefficient can more than compensate this factor if the
energy Wj suffices to transfer the electron from the Κ
shell beyond the Fermi surface.

In order to find the probability of resonance Raman
scattering, we must as usual sum the square of the
modulus of (4.10) over all the unoccupied final k-states.
Naturally, the frequency of the signal is defined by the
law of conservation of energy Wg = wt - (QL + e^). Each
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individual photon transition can be considered to be
purely dipole in type, since the wavelength of the reso-
nance χ rays is much greater than the characteristic
dimensions of the electron shell. Therefore the reso-
nance Raman cross section does not depend on the
amount of momentum transferred. This feature distin-
guishes resonance from non-resonance Raman scatter-
ing.

Whenever the energy of the pump quantum exceeds the
threshold, i .e . , &Fl = w1-(illc + EF)>0, the real part of
the denominator in (4.10) can be negligibly small, and
a second-order process such as Raman scattering can
be represented as absorption with emission ensuing af-
ter the time Ι/Γ,:

(4.12)

Here the frequency ω2 = Ώκ - Ω £ does not depend on the
mismatch Δ ¥Λ, and it coincides with the frequency of the
characteristic Ka radiation. Thus the relationship
(4.12) above the threshold describes the fluorescence
spectrum.

Below the threshold, when the mismatch AFt is nega-
tive,

W (ω,, <oj) = W "" - oL)
(Ωχ —«L—ω2)2-τ

-. (4.13)

Since the absorption probability depends mainly on the
process of Κ absorption, it varies in the energy range
defined by the binding energy of the Κ electron. This
means that the function w***0™ varies slowly, and it can
be estimated at the threshold energy value, i. e.,
W*™n(QK + £>). The energy-dependence of the Raman
cross-section is determined mainly by the frequency de-
nominator in (4.13).

For detailed study of resonance Raman scattering, it
is very important to have a powerful x-ray source with
a narrow line and a tunable emission frequency. Use of
the synchrotron radiation (SR) of the SPEAR storage
ring of Stanford University permitted Eisenberger,
Platzman, and Winicktl3e: to increase substantially the
pump spectral density (1010 photons/sec following the
monochromator in an energy range of 0.9 eV, which is
two orders of magnitude higher than the intensity of the
characteristic lines of x-ray tubes), and to improve the
resolving power of the experiment (~ 0.8 eV as com-
pared with a resolution of 190 eV in Sparks' study"3 8 3).
In this study, they observed 90° resonance Raman scat-
tering in copper near the Cu/fa fluorescence line (SlK

- Ω ^ 3 / 2 = 8048 eV). Here the energy of the pump quanta
could be varied smoothly in the vicinity of the Κ absorp-
tion edge of copper (QK+EF =8980 eV) by rotating the
silicon monochromator. This isolated from the broad
SR spectrum a narrow region at some given energy. In-
sofar as we know, this is the first report on application
of SR for studying inelastic x-ray scattering.

They confirmed experimentally that the signal fre-
quency coincides with the fluorescent-emission frequen-
cy when A? t >0. Below the threshold (Δ(Λ<0), the en-
ergy of the scattered quanta declines in proportion to

the increase in the negative mismatch. This experimen-
tal result agrees well with the theoretical rectilinear
relationship Wg = ω1 - (ilL + EF) that is implied by (4.13),
if we assume the argument of the function ψ"*011' to be
equal to the threshold value QK + EF.

An interesting result of Ref. 139 is that the experi-
mental width of the Raman line with resonance pumping
(ΔΐΛ =0) is 30% narrower than that of the fluorescent
CuKa emission that arises when the energy of the inci-
dent quanta exceeds the Κ absorption edge. This phe-
nomenon can be explained11393 if one takes correct ac-
count of the finite lifetime of the Κ and L holes, which
was neglected in the previous studies, tlS8«138i and which
led to divergence of the Raman cross section at reso-
nance.

Such experiments can give additional information on
the various physical processes in the system and on the
fine structure of the spectra near the threshold. More-
over, this method need not be restricted to transitions
of the deep electrons, but can be used for studying oth-
er, more weakly bound electronic states. The success
of this first experiment allows us to hope that synchro-
tron radiation will be widely used in the future for sys-
tematic study of inelastic x-ray scattering.

5. PARAMETRIC SCATTERING

Parametric scattering (PS) is a relatively new type of
scattering. From the quantum standpoint, it is a spon-
taneous coherent breakdown of the pumping photons ωχ

into pairs of photons having the frequencies ωζ and ω3

= ω1 - u% upon interacting with matter. This phenome-
non was first observed in the optical range in
1967U«~U3J

 m scattering of pulsed and continuous laser
radiation in the non-centrosymmetric, optically nonlin-
ear crystals KDP, ADP, and LiNbO3.

Klyshko1144-1 made the first concrete estimate of the
intensity of parametric scattering. The parametric-
scattering phenomenon has been treated more fully in
the studies of Klyshko,C14S] Kleinman,t l 4 e l and a set of
other authors. [ 1 4 7 · 1 4 β ] Parametric scattering, t l 4 3 ] which
has also been termed "parametric fluorescence, " t l 4 a > 1 4 4 ]

and "optical parametric noise" t l 4 6 i is described in the
third order of ordinary peturbation theory. U 4 7 : One can
explain parametric scattering phenomenologically1145·148·1

by assuming that the medium has a nonlinear (quadrat-
ic)1 4 ' polarizability J3. That is, the polarization is P2

= $E1E%. Then the thermal (for Κω3 < kBT) and quan-
tum fluctuations of the field E3 having the so-called id-
ler or supplementary frequency ω3 lead to the polariza-
tion P2 in the presence of the pump field Et, and hence
to emission at the signal frequency ωζ = ωι — ω3. In this
approach the probability of parametric scattering is cal-
culated in first-order perturbation theory with a per-
turbation energy of βΕ^^Ε*, and parametric scattering
can be correlated with Mandel'shtam-Brillouin scatter-
ing, where the equilibrium electromagnetic waves in the
medium play the role of the acoustic waves.

I4)The third-order tensor β differs from zero only in a non-
centrosymmetric medium if we neglect spatial dispersion.
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In contrast to Raman scattering, the parametric-scat-
tering spectrum does not involve directly the intrinsic
frequencies of the medium, so that ufe and ω, are arbi-
trary in principle. The distinctive feature of this form
of scattering is its coherent, directional nature of the
scattering at a given frequency: scattering occurs most
effectively only when the so-called spatial-synchroniza-
tion condition holds for the wave vectors of the fields:

k,=k,+k,. (5.1)

For example, one can determine from the form of
spectrum of the signal the dispersion law, the absorp-
tion coefficient, etc., of the waves at the idler frequen-
cy. Scattering is observed quite reliably when one uses
the radiation of low-power (~ 0.1 W) gas la sers . a a i

WeinbergU49] has found parametric scattering upon
pumping with a mercury lamp.

Evidently the condition (5.1) can be satisfied only in
the presence of anomalous dispersion, or (in a region
where the material is transparent) in the presence of
birefringence. This is just why parametric scattering
is observed in crystals in which the anomalous disper-
sion is imitated by the anisotropy of the refractive index
η(ω). In the x-ray range, a three-frequency interaction
like (5.1) cannot be realized, since crystals are prac-
tically isotropic at x-ray frequencies, and apart from
frequency regions near the photoabsorption edges, they
possess a normal disperion law. That is, n(&i)>n(uit)
if ο»! > ω2.

Yet several methods exist for compensating the dis-
persion. The momentum deficit can be covered by one
of the reciprocal-lattice vectors Q in artificial spatial-
ly-periodic (e. g., layereda50]) media having a variable
refractive index or by using dielectric waveguides hav-
ing a corrugated surface.C15l] as are used in distributed-
feedback lasers. One can also attain phase matching in
a crystalline medium having a layered"583 or domain115"
structure that modulates the quadratic polarizability
β(τ) =χβ j3

(Q) exp(tQ · r), as well as by using an auxiliary
ultrasonic pump.U54] In these cases, the synchroniza-
tion condition is a nonlinear analog of Bragg*s law:

k,+ Q=k,+k,, (5.2)

Here Q is the wave vector of the ultrasonic wave or re-
ciprocal-lattice vector of the periodic structure.

The possibility of observing parametric scattering in
the x-ray range15' was first pointed out in a study by the
the American physicists Freund and Levin"5" in 1969,
where they studied lattice modulation of the quadratic
polarizability of a crystal that they had brought into the
synchronization condition (5.2). They showed on the ba-
sis of Kleinman's results"481 that parametric scattering
can be observed by using powerful modern x-ray tubes.le)

15)Agranovich and GinzburgC701 had previously treated Raman
scattering of χ rays with formation of excitons, which can be
treated as a limiting case of parametric scattering.

16)Strictly speaking, Kleinman's results are valid only for
parametric scattering in a transparent medium. However,
as Klyshkot1453 has shown, the frequency-integral scattering
intensity does not depend on absorption at the idler frequency,
and it coincides with Kleinman's result.

Since the x-ray refractive index hardly differs from
unity, the synchronization condition (5.2) is satisfied
only by the reciprocal-lattice nodes Q,Q', etc., that lie
inside the Ewald sphere U 1 ] of radius ku and the syn-
chronization surfaces amount to ellipsoids of rotation
having the axes kt+Q, k*+Q', etc. These ellipsoids
have one common focus at the origin of the vector kj,
and the remaining foci at the nodes Q, Q', etc. Actual-
ly, the geometric locus of the points having the sum of
distances (ω2/ε)+(ω3/ο) from the ends of a segment of
length llq+QI < u>Jc is an ellipsoid of rotation with its
axis lying along the vector kt +Q. Yet this requirement
on the summation is nothing other than the synchroniza-
tion condition (5.2).

We can write the transverse component of the polar-
ization at the sum frequency ω1 = ωΐ + ω3 in the form

Pf-P№ J-i2£,, ^QU=Cf(Q)e1BJV)h (5.3)
G (Q) = - ifcf (Q), F (Q) = 2] /, (Q)exp (iQr,- W,), (5.4)

e,23 = [e.[s,{-^(eies)Q—i-(e2Q)e3—-jjW»*}]] (5.5)

Here j3 < e u is the transverse component of the convolu-
tion of the tensor |8< β ) with the wave-polarization unit
vectors 62 and e3. In the free-atom model, it is defined
by the so-called nonlinear structure factor G(Q)U 5 5 ];
F(Q) is the linear structure factor, /, is the atomic
scattering factor of the _/th atom in the unit cell,
exp(- Wj) is the Debye-Waller temperature factor'313:
A) = es/w2cu)1wiajs is the quadratic correction to the po-
larizability of a free electron, No is the cell-number
density, and Sj =kl/kl. We assume that the frequencies
of the fields lie considerably higher than those of the Κ
absorption edges. As the frequencies of the fields ap-
proach the absorption edges, we must take account of
the complex dispersion terms in the atomic scattering
factor.1 1 5"

The integrated power (over the spectral width of the
line) of the radiation scattered into a unit solid near θ
i stl55,157].

(5.6)

Here Kte> =Ai ( t ) is the effective volume, St and A are
the pump intensity and cross-section, and /''' is the ef-
fective length that accounts for the absorption of the
pump and the signal. The "reflection" experimental
scheme in which the signal emerges through the front
face of the crystal is the most preferable for increasing
the effective length.E1573 Equation (5.6) implies that the
parametric-scattering power increases with decreasing
angle r\ between the scattering directions kg and k3.
Here the propagation direction kt must differ slightly
from the usual Bragg direction for the pump.

The following estimatesC 1 5 7 ] give a certain picture of
the efficiency of paramet. ic x-ray scatterings: with a
pumping power of 10"4 W at a wavelength of 0.71 A
(MoKa) and with a deviation of kt from the exact Bragg
position by 1.5°, the counting rate in a solid angle of
0.015 sr should amount in scattering in diamond (Q
= (400)), silicon (800), and molybdenum (400) to 144,
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9.4, and 29 quanta per minute, respectively, when ω2

= ω3. The effective lengths are 8xlO3, 333, and 48 μτα,
respectively.

Parametric x-ray scattering was observed in 1970 in
a unique and as yet single experiment by Eisenberger
and McCall,£15el who observed the breakdown of quanta
of ΜοΚα radiation in beryllium into pairs of quanta of
equal energy. The total power of the tube was 2 kW,
the deviation of the primary beam from the Bragg direc-
tion corresponding to the 1120 reciprocal-lattice direc-
tion was 15' of angle, the pump was incident at an angle
of 9° to the surface of the crystal, and θ was 40° (a "re-
flection" experiment). Here they observed one signal
quantum per hour in a solid angle of 2. lx 10"3 sr on the
background of a flux of Compton quanta of 2.5x 103

sec"1, which were eliminated by an energy discrimina-
tor. This agrees well with the theory. They used a co-
incidence system with respect to the signal and idler
channels in order to reduce the noise due to the inco-
herent double Compton effect,tlu which consists in the
scattering of a pump quantum by a free electron to yield
two quanta with satisfaction of the conservation law
(5.2), where the momentum of the recoil electron plays
the role of Q.

Just as for elastic and Compton scattering, a process
of incoherent two-photon scattering of the type ω1 — ω2

+ ω3 = Ω Β can occur with participation of real electronic
transitions of excitation energy №ln, in addition to co-
herent parametric scattering. The probability of this
breakdown increases with increasing Q, and it is always
smaller than the probability of the double Compton ef-
fect at a free electron.

The parametric-scattering cross section as defined
by the function θ | 1 3 depends in a rather complicated way
on the polarization of the primary and scattered radia-
tions. Figure 15 shows the results of calculating"603

the relative intensities Φ»=θ^/(θ| Λ Α + θ ^ Μ + θ | Α Β

+ θ| Β Α ) and the degree of polarization of the signal pAB

= (ΦΛΑ + ΦΛΒ)/(*ΒΑ
 +

 *BB)
 f o r t n e c a s e o f a coplanar ar-

rangement of the vectors in (5.2) for an unpolarized
pump. Here the subscripts A and Β correspond respec-
tively to polarizations of the fields in the scattering

-40° -20 20° 40° γ -60' -40° -20° 0 20° '·0° γ

FIG. 15. Polarization characteristics of parametric scat-
tering, a) Relative intensities Φ (̂Υ); b) degree of polarization
pAB(y) and the intensity J2M averaged over the polarization
states; Ύ is the angle between the pump vector k and the recip-
rocal-lattice vector Q. The curves are calculated for an
unpolarized pump with a Bragg angle corresponding to k, and
Q of 39.5°.

plane and perpendicular to it. The subscripts i,j,k take
on the values A and B. The first and second subscripts
in Φ(/ correspond to polarization of the signal and the
supplementary wave, and ΦΑΒ(γ) <*ΦΒΑ(-γ). T n e zeros
of the function Φ(/ can be interpreted as a nonlinear an-
alog of Brewster's law.

Whenever the nodes Q are close to the surface of the
Ewald sphere for the pump, the supplementary frequen-
cy a>3 can lie in the ultraviolet or the visible. That is,
processes can occur of breakdown of a pump quantum
into x-ray and optical quanta11813 or of frequency addi-
tion (or subtraction) of x-ray and optical radia-
tion. α β · 1 β 3 ] Since n(u>3)*l, the synchronization surface
here near the poles of the "ellipsoids" differs from el-
liptical. When the nodes Q approach closer to the sur-
face of the Ewald sphere, parametric scattering degen-
erates into thermal diffuse scattering, where the elastic
Debye waves play the role of the supplementary waves

= 3 -

The frequency shift,£ls2i which is also called nonlin-
ear x-ray diffraction11611 or inelastic Bragg scatter-
ing1163 3 can be treated as scattering of χ rays by atoms
whose wave functions are perturbed by the optical-fre-
quency field E3(r, t) (real or fluctuational). Here the
local electron density has the form n(r, t) =«0(r) + An(r,
E3), where n0 is the unperturbed density. Addition of
the frequencies ω2 and ω3 leads to the polarization

Ρ (ω, = ω2 + ω3) = - - ^ Ej j Δη (r, E,) e 1 " ' dr, (5.7)

Therefore such experiments permit one to measure the
perturbation Δη directly. An essential point is that Δη
is mainly determined by the structure factor of the va-
lence electrons.t l M : This is important in studying the
nature of chemical bonds in matter, since one measures
only the overall density no(r) by using linear diffraction.
They obtained encouraging estimates in Ref. 162 for
performing frequency-addition experiments, which can
give useful information on the states of an atom excited
by light. However, attempts to mix the radiation of a
nitrogen laser with an x-ray beam have as yet proved
unsuccessful.C1M]

In addition to the cited studies, Cl55-le» quantum-me-
chanical calculation of nonlinear polarizabilities, in-
cluding also account for the contribution of the jump in
electron density at the surface of the crystal, have also
been performed by Jha and Wooae51 and Freund and
Levin.UM] Estimates of the quadratic polarizability
give the following results: t $w\ - l(ru(cmVerg)1/i for
Xt = 1 A, u>2 = ω,, and No~ 10*3 cm*3. For comparison we
point out that β- 1(Γ7 (cm'/erg)1'* for the LiNbO3 crystal
in the optical range. The small size of the quadratic
nonlinearity at x-ray frequencies, at which the electrons
of matter can be considered to be practically free, is
explained in the classical approach by the smallness of
the relativistic term ^ v/c in the Lorentz force. Appar-
ently the resonance polarizability of a nuclear subsys-
tem having narrow Mossbauer transitions should be
more significant. If one of the frequencies lies in the
optical range (~ 101" sec*1), then the electronic polariz-
ability /3(Q) rises to 10*13 (cm3/erg)1/z. A calculation11*"
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of the cubic polarizability has shown that the nonlinear
increment Δε = - (2m0eVmsui<^)<E!e to the linear dielec-
tric constant ε arising from "self-action" of the wave is
negative. This implies that self-focusing of χ rays is
impossible.

A number of studies have analyzed the possible ap-
pearance in the x-ray range of such purely nonlinear ef-
fects as two-photon emission,α η ι two-quantum absorp-
tion of x-ray and laser quanta/1*81 and two-quantum ex-
citation of nuclei in oppositely-directed fluxes of y-quan-
ta. α β β 1 The probability of a two-photon transition from
the L to the Κ shell for a copper ion having a single Κ
vacancy is of the order of 10"e times the probability of a
one-quantum transition, while the two-photon absorption
coefficient in copper at the emission intensity of a neo-
dymium laser of 10 MW/cm* must amount to several
percent of the linear photoabsorption. This permits us
to hope for possible experimental observation of these
effects.

6. THE PHENOMENOLOGICAL APPROACH TO
DESCRIBING INELASTIC SCATTERING

Two equivalent approaches can be taken for describ-
ing inelastic scattering processes. The first is concrete
quantum-mechanical calculation of the scattering cross
sections, and the second is phenomenological descrip-
tion of inelastic scattering by using concepts of the non-
linear polarizabilities of matter. This method has be-
come most widespread in connection with the develop-
ment of nonlinear optics and laser technology.C17OJ Evi-
dently it is completed only by a subsequent mic recalcu-
lation of the introduced polarizabilities. The method
developed in the course of growth of nonlinear optics
can also be extended to the region of x-ray wavelengths.
This approach is a natural generalization of the linear
phenomenological theory of propagation of χ rays. When
combined with the microapproach, it permits one to give
a useful and pictorial interpretation of many inelastic-
scattering phenomena, which is also of interest from the
methodological standpoint.

The starting point of the phenomenological description
of the electromagnetic properties of matter is the as-
sumption that the polarization of the medium that arises
under the action of the field Ε can be written in the
form1170·17":

Ρ = οι ·Ε + β~: ΕΕ + ν": ΕΕΕ + (6.1)

Here a = (ε - 1)/4ττ, j§, and γ are the tensors for the lin-
ear, quadratic, and cubic polarizabilities, and ε is the
dielectric constant. In the general case, the relation-
ship of the response P(r,f) to the field E(r',f') is inte-
gral in nature. α η · 1 7 ϊ ] This is due to the nonlocal nature
of the interaction, and it leads to frequency and spatial
dispersion. For example, for Pt t >,

(6.2)

In a crystalline stationary medium, £(r, r'; t, t')+£(r+b,
r'+b; i-f') = ZoCt e )(r-r\f-<')exp(-tQ.r'), whereb

andiQ are direct and reciprocal-lattice vectors,a n i so
that we have the following expression for the Fourier
components of the induction

D(k, ω)

k. <o)
OB

j dp f
(6.3)

Relationships analogous toJSqs. j(6.2)-(6.3) hold a n i

also for the polarizabilities β and y. The nonlinear
Maxwell equation gives rise to the system

lniik-8«»(k, o»)]E(k, ω)- . <o)E(k+Q, m)=4jtPwt(k, ω),

(6.4)

Here n^-ck/os, and vt is the operator for projection on
a plane perpendicular to k. As we know the fields
E(k, ω) and E(k+Q, ω), do not satisfy the Bragg condition
Ik I « Ik+QI, and they are practically not coupled with
one another. Thus we can omit the corresponding equa-
tions in the system (6.4).

Let a plane monochromatic pump wave βχΕχ exp(tk} · r
-iu^t) (+ complex conjugate) propagate in the medium in
a direction far enough from the Bragg directions (sin-
gle-wave approximation). If the single-wave approxi-
mation also holds for the supplementary wave of fre-
quency a>3 = (Oj - IJ>2, then from (6.1) and (6.4), the non-
linear response Vs L at the signal frequency has the fol-
fowing form:

(6.5)P2"· (k2, ω,) = 2 Ai ( Q ) (k,. <*j) Ε (k2 + Q, ω,)

Here Δα(<" is the nonlinear increment to the linear po-
larizability aw0st, uj:

[$№ (ω,) e.e, + p<Q.> (ω,)efit fl · (ω,) e,l | Et |», (6. 6)
(6.7)

Here G, is the spectral Green's function in the single-
wave approximation for the field of frequency ω3, and
n3 = clk1+Q1-kal/ω3. The relationships (6.5)-(6.8) are
a generalization of the results of Ref. 173, which were
obtained in the single-wave approximation (Q=Qt=0).
The increment Δ& is proportional to the pump intensity,
and it determines the dynamic and the statistical prop-
erties of the medium.

We are interested in the field of the signal E(r, u>L)
in the zone far from the scattering volume V. Upon
writing the solution (6.4) in the form

E(k2, <oi) = SG < Q ) (k2, «^P^ikj + Q. «*),

where d<Q>(kg, ω2) is the Q component of the multiwave
spectral Green's function of the system (6.4), we have
the following expressions for E(r, ω2)=Εε:

E,= JA<2s№(,-r', <B2)exp(-iQr')PirV. ω,), (6.8)
Q

GlQ) (ρ, ω2) = (2n)-> j ΛΟ »̂ (k, ω,) exp (ftp). (6. 9)

According to (6.8), the spectral intensity Ρ^ = {ργ*/
2π) (Ε*· E2) of the light, i. e . , the power scattered per
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unit intervals of frequency and angle, is proportional
to the correlator (PfL*(r, ω2)Ρ*Γ£(Γ/, u)2)>, and it is de-
fined in terms of the increment Δα. One can show this
most simply by using the relation between the fluctua-
tions in the presence of the pump and the cubic nonlin-
earity, I l 7 S I If, following Ref. 175, we convert to dis-
tributed quantities, then this relation acquires a form
analogous to the linear fluctuation-dissipation theorem:

= ih (2π)-* [Δα,, (r, r'; (Bj) — Δα?( (r', r; ω,)] 6(0)2—a>;),

(6.10)

Here we assume that # ω 3 » kB T. Now it remains only to
find the coordinate Green's function (6.9).

For simplicity, let us restrict the treatment to the
two-wave approximation. That is, we shall discuss the
case in which only two reciprocal-lattice nodes (<? = 0
and H) lie near the Ewald sphere for a signal of radius
I *2 I = w2/c, which depends on the angle θ. Let s2 be a
unit vector in the direction of observation, and n0 be
the normal to the surface in the crystal in the outward
direction. As usual,C 3 1 > 1 7 6 ] with account taken of the
boundary conditions, we shall write k2 =H2(e2 +ga0), g
« 1. We can neglect stimulated-scattering processes at
low pump intensity, i. e., Δ α < β ) « α ' β ) . We can pro-
visionally take the wave kg to be the primary wave, and
1^ = 1^+Η to be the diffracted wave, although they are
actually equivalent, and both are "generated" within the
crystal in the presence of the pump. Then we get from
(6.4) and (6.9) after integrating over g:

G(Q)(r, »,)=£ (6.11)

(6.12)

Here the polarization unit vectors e^m> and e^J" for m
= 1 are perpendicular to the plane formed by the vectors
kj and k^; for m - 2, they lie in this plane; y0 and γκ

are the cosines of the angles between n,, and s2 and x2

+ H, respectively. The upper and lower signs in (6.12)
refer to the excitation points μ = 1 and 2. We assume
that yh> 0 (the Laue case), i. e., the vectors kg and kg»
are directed outward. The coefficients L determine the
dynamic coupling between the spatially-conjugate modes
k̂  and kg*.

The parameter pm - - (2Δα>8ϊη2θΒ/ω2 | cm I) V yo/y» char-
acterizes the degree of deviation of the signal frequency
ωζ = ωΒ + Αω from the so-called Bragg frequency ωΒ(β2)
as determined at the given angle (ir/2) + u between S2 and
Η by the relationship ωΒ =cH/2siau.17> We also have the
coefficient cm = I zm I exp(i\), εΜ = ε<Β) (ka, ω2) CM, ε<Η)

I7)In the ordinary dynamical theory, In which the frequency of
the waves is assumed to be fixed, the deviation parameter is
the angular mismatch with the Bragg direction. Yet in in-
elastic-scattering experiments, the observation angle is
fixed. Hence we have been treating a variant of the dynami-
cal theory with frequency mismatch.

, Ci = l, C2=cos25B,
and sin£B = cH/2wi. The dispersion law k£m> of the me-
dium is determined by the contributions of the poles of
the spectral Green's function in (6.9), and it is well
known in the dynamical theory.C 3 1·1 7 8 1

Thus, from (6.8), (6.10), and (6.11), the spectral
intensity of the inelastic scattering with account taken
of the dynamical interaction of the signal waves is

p»«=sm 2 r _ ϋ ρ
(6.13)

Here 5ω 2 = £α)|/8π3Γ2 is the spectral intensity of the
vacuum fluctuations. The expression in square brackets
in (6.13) can be treated as the nonlinear amplification
coefficient of the ?^-wave. For a crystalline plate of
thickness I, the effective volume is

ι

0

Here Α, μ1} and >Ί are the cross- section, absorption
coefficient, and the cosine of the angle of incidence of
the pumping; r2 is the path length of the signal in the
crystal from the point ζ to the exit face; ffwm is the dy-
namical absorption coefficient131'176-1 of the signal, which
is of resonance type in the Laue case with respect to the
mismatch pm, and which strongly differs for the excita-
tion points μ = 1 and 2 (the Borrmann effect for the
scattered wave).

As Eqs. (6.13) and (6.12) imply, we can neglect dy-
namical effects in inelastic scattering at large frequen-
cy mismatches l/>ml»l, since L( H >=0, andZ,< 0 >«l, so
that in the single-wave approximation

(6.15)

Here Δα( 0 >"< 0 is the imaginary component of the in-
crement Δα ( 0 ) ; while the effective volume is determined
by the ordinary linear absorption at the signal frequen-
cy, since σ^,ί Ipm I » 1 ) = μζ/γ0. The relationship (6.15j
permits us to relate simply the imaginary component
Δα( 0 > to the ordinary single-wave inelastic-scattering
cross section σ<0>:

(6.16)

Here ηα is the density of scattering centers, and
z

= c I
z/2v is the pumping intensity.

One can also obtain the result (6.15) from the follow-
ing simple physical arguments: the signal wave in the
presence of the pump propagates according to the law
Ez = E20 expfi (ω2/ε) (t^z/cos^) - iu2t], where the refrac-
tive index «j, =[1 +4ira2

:o) + 4 π Δ ^ 0 ) ] ι / 2 . If we neglect the
linear absorption, then in the case of a weak pump, the
intensity of the signal wave 7 2 =/ 2 0 βχρ(-4πω 2 Δα 2

0 ) "2/
c cos5). Under the conditions of our problem, the role
of the primer intensity / 2 0 is played by the intensity of
the zero-point fluctuations of the vacuum tHu2d

3kz/(2π)3,
and the spectral scattering power is
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^A cos β (ef"l<"*°— 1), (6.17)

Here£=-(4ira>2/e)Ac40>" is the nonlinear amplification
coefficient. The minus one in the parentheses corre-
sponds simply to the fact that the intensity of the zero-
point oscUlations at the exit point of the crystal, which
play the role of the background reference point, must
be subtracted owing to their unobservability. For small
amplification (gl« 1), Eq. (6.17) is reduced to (6.15).

A calculation of the nonlinear x-ray polarizabilities,
which can be done, e. g., by using the results of
P i n e , I m i shows that the first term in (6.6) describes
the Compton effect and Raman scattering, while the
second term corresponds to plasmon and parametric
scattering.le> Actually, for an electron gas, e^g., in
the long-wavelength approximation, the convolution
e ^ 0 » ^ ·β3 = ή§οη<>(ί/ω3)(βι -%)Qh °e3) differs from zero
only for a longitudinal wave k,. After substitution into
(6.6) and (6.16) with account taken of the equality ϊ» ·β3=0,.
this leads to the cross-section of (3.3) for scattering
by plasmons.Q131 One can derive this result also by a
hydrodynamic treatment117" or from the equation for
the perturbed electron-distribution function.tl80]

We have the following expression for the convolution
of the cubic polarizabilitya7S]:

2 (/««* - W I· (k) - ω - «Γ •.

Here/, is the Fermi-Dirac distribution, and w(k) is the
spectrum of the single-particle excitations of (2.2).
According to (6.6) and (6.16), this yields the inverted
parabola of (2.8) for the Compton profile in the Har-
tree-Fock approximation for k^2kr, and a parabola
with a rectilinear break for k<2kF, and also Eq. (3.1)
in the random-phase approximation.tl73]

One can show in exactly the same way that the qua-
dratic polarizability for strongly bound electrons is de-
termined by the relationships (5.3)-(5.5). This leads
to the parametric-scattering power given by (5.6) with
the synchronization law (5.2), while the cubic polariza-
bility for ωι» Ω, and I kj — kg | <z< 1 corresponds to the
Raman x-ray scattering cross section of (4.4).

Thus the phenomenological description and the micro-
approach are equivalent when taken within the frame-
work of identical approximations.

Interestingly, the extinction coefficient σ(Ο>(θ)Μο of
parametric and Raman scattering in optics is of the or-
der of 10"7 cm"1, whereas in the x-ray range these quan-
tities are of the order of 10"9 and 10"2 cm"1 for para-
metric and Compton scattering, respectively. We can
easily note that such significant values of the cross
sections for x-ray inelastic scattering are explained by

18)In optics, the term y describes scattering by infrared-inac-
tive lattice vibrations, while the second term describes scat-
tering by polaritons and longitudinal lattice vibrations. An
expression analogous to (6.6) but with the rank of the tensor
β increased by unity and that of γ by two describes quadratic
inelastic scattering (scattering of light by light and three-
photon Raman scattering).Cl78]

the large value of the spectral intensity of the vacuum
fluctuations S^ in (6.15), which is 12 orders of mag-
nitude larger than in the optical range, and which com-
pensates the smallness of the nonlinear x-ray polariza-
bilities (SUz -10W/cm* sr -Hz at λ2 ~1 A). Hence such
classical nonlinear effects as harmonic generation and
mixing, etc., will apparently not have such a real sig-
nificance in the x-ray range as in the nonlinear optics
of the visible and infrared ranges. Yet the smallness
of the nonlinear polarizabilities and the large width of
the inelastic-scattering spectral line l e a d s a w ] to ex-
tremely large values of the pump intensity (~ 10" W/
cm2) that it takes to attain, e. g., an amplification coef-
ficient of the order of 1 cm"1.

7. COHERENT EFFECTS IN INELASTIC
SCATTERING

In inelastic x-ray scattering in perfect enough single
crystals, one can easily distinguish certain scattering
directions in which the Bragg conditions will be satis-
fied for the signal waves in the medium. Owing to dy-
namical exchange between the modes kg and k^kj+H,
energy redistribution must occur here, and emission
at the frequency u>2 can be observed in new directions
that had previously been forbidden by the laws of con-
servation of energy and momentum. Now the lattice
will take up part of the momentum H. Thus this
amounts to interference of the inelastically scattered
waves, which is a consequence of spatial (lattice) co-
herence. The directions in which coherent effects in
inelastic scattering should be manifested are deter-
mined by the intersection lines of the surface fe2(Sg) that
is formed by the ends of the vectors kg having their
origin at the midpoint of the vector Η with planes per-
pendicular to Η and contacting its ends. This is equiva-
lent to the condition ω20(β2) = ωΒ(β2) that the inelastic-
scattering frequency at the center of the line is equal to
the Bragg frequency.

According to (6.12) and (6.13), coherent effects in
inelastic scattering begin to be manifested when the
mismatch pm approaches zero. In a small neighbor-
hood of ωΒ, the coefficients L of (6.12) differ from
zero or unity. This leads to a considerable difference
of the inelastic-scattering spectral line from the single-
wave value of (6.15). Let us briefly examine the mani-
festation of coherent effects with the example of Comp-
ton scattering. If we keep in (6.13) the terms that give
the major contribution, we have the following expression
for the differential cross-section in the two-wave ap-
proximation:

(7.1)

σ (ω, d ) = 2 - f = [Οίίί)(β?°β1)*σ<«)(ω, Ο)

+ Ο(μ™)(«2™'βι)2σ(»)(ω, #»)] [ 2

Here θΑ is the angle between kg* and 1̂ , and £ ϊ
= L(Q>*L<Q>). If we can neglect absorption, i. e., V%1
= V, then the summation over μ in (7.1) pertains only
to the dynamical coefficients D^. According to (6.12),

(7.2a)
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σ(α>,α) TABLE I. Width of the Bragg gap, contrast, and line displace-
ment in the coherent Compton effect.

~άαι,

FIG. 16. Cross-section for the coherent Compton effect in the
two-wave approximation, a) Spectral cross-section for scat-
tering in the direction s, at which o:B(s2) =ω20(Λ; the depth of
the gap amounts to 0.5σ<0) (ω, - ωΒ, 6); b) scattering profile in
the case ωΒ(β2) = ^20(tV; amplitude of the peak is 0. 5σ(0) (ω,
- ωΒ, Ĵ ) Ύϋ/ΎΗ (for the sake of argument ωΒ > ω20(Λ + 0. 5ΔωαΕ).

(7.2b)

where ΑωΒ = (irw21 cm 1/2 βίη2θΒ) Vys/y0 is the effective
width normalized to the unit of the Lorentz line ,

If the direction of observation s8 is such that the fre-
quency ωΒ lies within the Compton line σ( 0 ) (ω, θ), then,
as we see from (7.2a), the first term in (7.1) amounts
to a spectral distribution that consists of the ordinary
Compton profile with a narrow (since ΑωΒ«Αωοΐ) gap
at a frequency ωΒ of Lorentzian form (Fig. 16a). The
amplitude of the gap amounts to exactly half of the in-
tensity a(0>(wt - ωΒ, θ). The second term in (7.1) has a
simple physical meaning; it describes the process of
pumping of energy from the mode kgA that is scattered
at the angle θΛ to the mode k, in the direction of ob-
servation, so that if ωΒ falls in the spectral interval of
σ(0)(ω, θΛ), then a Lorentzian peak must be fixed in the
direction Sg. Ordinary inelastic scattering occurs in
this same direction with the cross-section σ<0)(ω, θ)
(Fig. 16b). In Ref. 181 this phenomenon has been
called the coherent Compton effect (CCE).19)

As Eq. (7.1) implies, one should observe CCE lines
in the frequency-integrated distribution σ(θ) on the back-
ground of the almost uniform incoherent Compton ef-
fect. The lines have a fine angular structure2 0' that de-
pends on whether an excess or deficiency of radiation
occurs in this direction. If the vectors lq and Η are
not perpendicular, then the angular spectrum amounts
to pairs of close-lying lines, one of which is brighter
than the background, while the other is darker. Since
the narrow gap scans along the Compton profile as the
angle θ is varied, the angular line copies the shape of
the frequency distribution. In order to estimate the
contrast R (i. e., the ratio of the excess (or deficiency)

19)A dynamical treatment of the angular, (i.e., integrated over
the frequency) thermal-diffuse-scattering spectrum in thick
crystals had been given earlier by Afanas'ev et al.C1821 within
the framework of the microapproach.

20)On the whole they recall the Kikuchi lines in electron diffrac-
tion^831 in shape and mechanism of production.

Crystal

Radiation

• Reflection

Λ(ι) ο , ®^

ΔΨ, minutes

Silicon

Cu Κ α

l i l

3.2
9

28

1.4
3.9

4b

Mo A' a

1 i t

KM
19
27

220

3.1
8.7

4ό

Germanium

C u K%

I I I | 22(1

9.1
25

4.(1
11
44

MoKa

111 | J2ii

19.7 8.7
24
41

of intensity at the center of the line to the Compton
background) in the case of well-resolved lines, one can
use the relationship R - RQ = (ir/2)(Ao>fl/AwCE). When
1̂  J.H, the lines coincide, and the contrast is Λ<,[1 - (yj
Yh)]. If ΎΟ = ΎΗ, 'hen the lines vanish, which is a mani-
festation of the complete symmetry in this experimental
geometry.

In a thick crystal, i .e . , with }> = β11» 1, the equiva-
lence of the excitation points breaks down, even in the
case where γα = r»· Owing to anomalous transmission,
the volume V^ for scattering into the CCE line can
exceed considerably the "background" volume, and the
contrast should increase: R = R0W(y). Thus, if CT^J,"
= 0.05 nu and y = 1, 2, 3,4, and 5, then the coefficient
W is equal respectively to 0. 54, 2, 5.2, 11. 5, and
25.2. Since the polarizability tm is proportional to the
structure factor F(R) inclusive of the Debye-Waller
factor, the width ΑωΒ of the gap and the contrast of the
CCE line should depend on the temperature.

One must have rather perfect single crystals to ob-
serve the coherent Compton effect, preferably with a
thickness sufficient to suppress the incoherent Compton
effect. Certain estimates of a proposed experiment are
given in Ref, 181. Table I gives values of the width
Δω,, the contrast R^ (Δα>0Ε « 56 eV when fe= 2kF), and
the change Αφ in the polar angle2 1 ) of the CCE line with
increase in the azimuthal angle from 0 to 180° for k,
1H in the case of the (111) and (220) reflections of Comp-
ton quanta in silicon and germanium. nM:

Analogous arguments hold also when one treats co-
herent effects in plasmon and Raman scattering, except
that one must replace σ^ by σ^' or σ^ } . In the case of
parametric scattering, ΔωΒ » Δω Ρ 8 , and an account for
Bragg interaction leads to "repulsion" of the synchron-
ization ellipsoids of (5.2) that correspond to the nodes
Q and Q ' ( Q - Q ' = H) in the vicinity of their intersection
lines. The frequency splitting should be of the order of
Δω,, and the angular splitting should be ~ I cm I ~ 10"5-
10"* radians.

The slightly bent interference Compton lines that have
been observed in a number of studiesc l 8 S ] in scattering
in mosaic crystals can be explainedcl88] by using systems
of equations of the ZachariasenU 8 7 ] type for the intensi-
ties of the "primary" and "diffracted" waves, but with
zero boundary conditions and with distributed noise

21)The displacement Δψ characterizes the degree of deviation
of the "primary" and the "diffracted" Compton lines from
parallelism, which is due to the dependence of the Compton
frequency on the scattering angle (see Ref. 181 for more de-
tails).
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TABLE Π. Some characteristics of different types of inelas-
tic scattering.

Scattering

Compton
Plasma
Raman

Parametric

Angle «,
degrees

180
in

30

40

Cross-
section

1

2 '.in-'

6.610-2

1.1-10-'

Energy
Hu.eV

605
22

112

6.2-103

eV

244
10
29

0.03

iQuanta/sec

DESY

7.7-lOS
8.5-10»
2.5-10*

8.6-10-2

•10'· sr

FIAN

1.5-10»
1.7-10»
5-10«

0.17

sources added to the right-band sides with an intensity
proportional to ^

Thus inelastic scattering of χ rays is an important
method of studying the electronic structure of matter.
Further progress along this line is being hindered by
the lack of powerful x-ray sources. We should note that
the use of synchrotron χ rays, which is characterized by
high spectral intensity, small divergence, high degree
of polarization, and by the possibility of regulating the
frequency and emission spectrum over a broad range,
permits us to hope to get new interesting results.

For comparison of the effectiveness of different types
of x-ray inelastic scattering, Table Π gives the scat-
tering cross sections in beryllium in terms of their
ratio to σΓ, the energies /Τω of the shifts, and the widths
of the lines. The last two columns give the numbers of
quanta scattered per second in a solid angle of 10"3 sr.
The pump intensities at a wavelength of 1 A amount to
7.8x 1010 and 3.7x 1010 quanta/sec·cm2 in an interval of
1 eV. These values correspond to the characteristics
of the DESY (7. 5 GeV) and FIAN (1.3 GeV with special
magnets) synchrotrons.C1883 The thickness of the speci-
mens is 1 cm, and the cross section is 0.27x 1 cm or
1.14x1 cm, respectively, as determined by the slit
width and the divergence of the synchrotron radiation.

Study of inelastic scattering is currently being con-
ducted exclusively in the optical (~3-10xl03 A) and
x-ray (~0.1-2 A) ranges. It is of no lesser interest to
study inelastic scattering in the far ultraviolet and soft
x-ray regions (~ 10-1000 A), in which synchrotron
radiation is perhaps the only effective source. As an
example of an application, we can cite the possible ob-
servation of Raman scattering by excitonic polaritons,
which have an energy of several electron volts.M>

In conclusion, the authors express their deep grati-
tude to D. N. Klyshko for aid and useful discussions of
the problems of the phenomenological theory of inelastic
scattering.
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