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It is hard to overestimate the importance of the in-
formation that could be obtained from gravitational
waves reaching us from the cosmos. Gravitational ra-
diation has a tremendous penetrating capacity, and
would enable one to obtain an adequate description of
the details of gravitational collapse, the internal struc-
ture of supernovae, and the physical conditions during
the very early stages in the evolution of the universe.
(The prospects for gravitational-wave astronomy are
described in1 1·2 3.) But however grandiose may be the
plans based on gravitational waves of cosmic origin, we
cannot get by without persistent attempts to perform
laboratory experiments. Because of its universality,
the gravitational interaction cannot be put on one side
by a fundamental physical theory.

1. WEAK GRAVITATIONAL WAVES

All physical fields except the gravitational can be re-
garded as imbedded, or given, in Minkowski space-
time. A value of a field at the points of spacetime in
no way changes the interval between them:

ώ2 = η μ ν dx» dx> = c- dt- - dx1 - dif - dz\ (1)

The field may be strong or weak (for example, it can
accelerate a charge to velocities that are small com-
pared with the velocity of light c or approach c), but as
long as one does not consider its ability to generate
gravitation the interval between events is not changed.
Producing a gravitational field simply means that one
changes the distances and intervals of time between
events; in other words, one changes the metric of
spacetime. A change in the four-dimensional interval
between events means (except for one very special case)
the introduction of curvature of spacetime, and in this

sense a true (i. e., one that cannot be removed by
transformation) gravitational field is identical to curva-
ture.

Curvature does not prevent one returning to the pic-
ture of flat spacetime locally, in a certain four-dimen-
sional region. The size of the region is determined by
the accuracy to which the metric does not differ from
the Minkowski metric. The curvature of spacetime in
the neighborhood of a given event can be associated with
"radii of curvature, " which have the dimensions of
length and give the characteristic distances and time
intervals over which the deviations from a flat world
can become significant. Let us denote the characteris-
tic value of the radii of curvature by the letter 3Ϊ. If
the size of the region satisfies | « SR, then in it one can
introduce a locally inertial frame of reference. This
means that the metric can be written "almost" as in (1 )j
more precisely, the components of the metric will dif-
fer from 77μι, only by small quantities of order (ξ/9ί)2·

Thus, in a locally inertial frame of reference the
gravitational field (curvature) is manifested only in
small quantities of order (ξ/ f, but, of course, it does
not completely disappear. This choice of the frame of
reference is convenient in that it most closely approaches
to the global inertial system realized in a flat world.

A locally inertial frame of reference can be intro-
duced not only in the neighborhood of a point but also
along the worldline of a freely moving particle. For
example, an observer moving freely in an arbitrary
gravitational field and equipped with clocks and gyro-
scopes that indicate the spatial directions realizes a
locally inertial frame of reference; furthermore, he
does this for a very long time, though possibly in a very
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restricted spatial volume. This makes it possible to
describe cumulative effects due to the presence of
curvature. An example is the variation with time of
the distance between two nearby free falling particles
(the so-called geodesic deviation). The relative change
of the distance Δΐ/l accumulated over the time Δί is in
order of magnitude 2

There is a special case of the gravitational field when
it can be, to a certain extent, treated on an equal foot-
ing with other physical fields, i. e., as a field imbedded
in flat spacetime. This is the case of a weak gravita-
tional field. It is characterized by the fact that the
metric everywhere in the considered region of space-
time differs little from the Minkowski metric and can be
represented in the form

?μν Ίμν ' "μν (2)

where |Λμμ Ι « 1. (On the convergence of the expansions
(2) with allowance for the following terms, s e e m . )

We have seen that any gravitational field can be made
arbitrarily weak in a sufficiently small piece of space-
time. The approximation of a weak field presupposes
more—the validity of (2) in a region whose dimensions
may appreciably exceed the characteristic length and
time intervals over which hliV changes appreciably and,
generally speaking, this dimension may appreciably ex-
ceed the radii of curvature determined by the metric (2).

Weak gravitational waves belong to the class of weak
gravitational fields and are distinguished among these
by the fact that the corrections h^ are oscillating func-
tions of the Lorentz coordinates and time in which the
metric %v is expressed. In this case, one speaks of
weak gravitational waves on a flat background. Weak
gravitational waves have properties similar to other
physical wave fields (see Chap. 2).

The approximation of weak gravitational waves on a
flat background is not merely a purely mathematical
idealization; it is also justified from the experimental
point of view. Within the solar system, we find very
weak gravitational fields produced by the Sun and the
planets. To a high accuracy, we can assume that the
world surrounding us is flat. It is clear that all labora-
tory sources of gravitational waves can create on this
background only a very weak additional field of a wave
nature. The waves that reach the Earth from the cosmos
can also only be weak, although the weak field approxi-
mation may fail completely near the source itself.

One can also speak of gravitational waves on a flat
background when the background space itself describes
some gravitational field, i. e., is curved. (Moreover,
it must in fact already be curved by the averaged
"weight" of the gravitational waves themselves.) The
only important thing is that the characteristic radii of
curvature of the background world be large compared
with the gravitational wavelength λ. Then in regions
with dimensions λ « L« 95 the gravitational waves be-
have in virtually the same way as on a flat background.
Effects such as a change in the frequency of a wave and
curvature of its trajectory of propagation arise only

after a distance of order 9i has been traversed. Of
course, cardinal changes in the properties of a wave
can occur under conditions when λ is not small compared
with 9i. In particular, one can then have effects such
as the amplification of classical gravitational waves and
the quantum effect of graviton production in a nonsta-
tionary situation (see Chap. 7). Essentially, the very
concept of a gravitational wave, which corresponds to
our ideas about other wave fields, presupposes a divi-
sion of the gravitational field (the curvature) into a
smooth background and a weak wave "ripple." : 4 · 5 3

In situations when the waves cease to be weak, the
division into the background and the wave becomes non-
unique. Different divisions correspond to waves and
background worlds with different properties. w 3 The
complete formalism of Einstein's theory of gravitation
enables one to consider arbitrarily complicated metrics,
although the definitions of a gravitational wave in the
arbitrary case of a strong field render absolute only
certain aspects of this phenomenon. In what follows,
we shall consider only weak gravitational waves.

Hitherto, we have spoken of the invariant properties
of the gravitational field and its description in a locally
inertial frame of reference. But the choice of the frame
of reference is to a certain degree a matter for the ob-
server himself. An experimentalist who places a gravi-
tational antenna on the surface of the Earth realizes a
noninertial frame of reference. The world lines of the
elements of his antenna and the complete laboratory are
not geodesies. A dramatic confirmation of this can be
provided by the falling onto the floor with acceleration
g of a valuable instrument dropped carelessly. The ac-
celeration of free fall g" 980 cm/sec2 is precisely the
quantitative measure of the fact that a terrestrial ob-
server is subject to acceleration and his world line is
curved. The typical radius of curvature of the world
line is po b e= c2/g ~ 1018 cm.

In order to detect a gravitational wave field by means
of particles in his laboratory, the experimentalist must
use particles with nearly equal four-dimensional ac-
celerations. Neighboring particles will remain through-
out time at the same distance if they have a definite but
ever so slightly different acceleration. In a bound sys-
tem, the difference of accelerations is compensated by
the resulting stresses. From the fundamental point of
view, it is precisely this situation that obtains in real
experiments on the Earth. The deviation of the frame
of reference from an inertial frame reduces solely to
the fact that in the working body used as gravitational
antenna very slight constant strains arise.

It only remains to consider the extent to which the
components of the gravitational wave field are them-
selves changed after their recalculation in the nonin-
ertial frame of reference. Suppose that the components
of a weak wave field from a source of cosmic origin are
known in an inertial frame introduced far from the Earth
and in which the Earth itself is fixed. Then in the frame
attached to an observer at rest on the Earth they will
have the same values with a relative error of order
3J Θ/Ρο ϊ β ~ 1 0 * s1 0 * s . If both * β source and the detector are
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placed in a laboratory with spatial dimension L, the
relative error will be even less, of order L/poba. Thus,
for the solution of many problems we can restrict our-
selves to the approximation of weak gravitational waves
on a flat background.

2. COMPARISON OF PROPERTIES OF
ELECTROMAGNETIC AND GRAVITATIONAL WAVES

The analogy between electromagnetism and gravita-
tion begins with the laws of Coulomb and Newton. Both
laws can be expressed in the form of Poisson's equa-
tion:

Δφ = —4πρ,

Δψ = ίπΰμ,
(3)
(3')

where φ is the electrostatic potential, ψ is the gravita-
tional potential, ρ and μ are, respectively, the charge
density and the mass density, and G is the gravitational
constant. The Coulomb law of gravitation of two
charges e and - e is transformed into the Newton law
of attraction of two equal masses m by the replacement
of e by -/Gm.

The elliptic nature of Eqs. (3) and (3') means that if
a charge or mass changes its position in space the new
field values corresponding to the changed position of the
source are established instantaneously in the whole of
space, at any distance from the source. It is clear that
these laws can have only a restricted applicability and
are true only approximately. As Einstein wrote1·7·1:
"The conviction had to come that Newton's law of gravi-
tation as Coulomb's laws of electrostatics and magneto-
statics are of electromagnetic phenomena."

Allowance for the finiteness of the velocity of propa-
gation of changes in the field is achieved by making the
field equations of hyperbolic type, namely, wave equa-
tions. The equations of electrodynamics and the equa-
tions of gravidynamics (Einstein's equations) can be
expressed in the form of wave equations. The Laplacian
in Eqs. (3) and (3') is replaced by the d'Alembertian,
and the field variables and sources become multicompo-
nent quantities

(4)

(4')

where a^n^B^/Sx^Sx". On the right-hand side of Eq.
(4') we have not only the energy-momentum tensor TaB

of ordinary (nongravitational) matter, but also the quan-
tities taB, which combine nonlinear combinations of
fB. This expresses the universality of the gravitation-
al interaction—all forms of matter (including the gravi-
tational field) are subject to gravitation, and all forms
of matter (including the gravitational field) produce their
own gravitational field.

From the electrodynamic potentials A" and the gravi-
tational potentials ^o S one can determine "observable"
quantities, which occur in the equations of motion of
free test particles—the electromagnetic field tensor
and the curvature tensor, respectively. Equations (4)
and (4') presuppose fulfillment of the gauge conditions

^α-0, (5)

*?/-0 (5')

(here and in what follows, the comma denotes simple
differentiation), which really can always be satisfied
by means of transformations of the potentials. In elec-
trodynamics and the linearized theory of the gravita-
tional field, these transformations do not change the
observable quantities.

A consequence of the equations (4) and (4')—which is
actually also true before the gauge conditions (5) and
(5') are introduced—are the differential conservation
laws {or equations of motion)

xtf-o. (6')

They can be associated with integral conservation laws,
though these, it is true, have a rather formal nature
in the case of gravitation and acquire physical meaning
for isolated systems, in an asymptotically flat region
of spacetime.

In contrast to the equations of electrodynamics, which
allow arbitrary motion of the sources (restricted only
by the condition (6)), the equations of gravidynamics
contain the equations of motion by virtue of their non-
linearity, and they must be solved simultaneously with
the field equations.

If the sources are ignored, i.e., for^'°=0, τββ = 0,
Eqs. (4) and (4') admit the existence of free electro-
magnetic and (weak) free gravitational waves, which
propagate with the same velocity, the velocity of light.

There is an additional arbitrariness in the choice of
the potentials that does not affect the conditions (5) and
(5'). Using this arbitrariness, one can achieve that in
the absence of sources the following additional gauge
conditions are satisfied everywhere in spacetime:

Aau* 0,

0,
(7)

(7')

where u" is a certain vector that is usually chosen in
the form u" = (1,0,0,0). If the conditions (5') and (7')
are satisfied, then either the equation

(8)

is a direct consequence of (5') and (7'), or not all the
constraints (5') and (7') are independent, and then ful-
fillment of (8) can be achieved by using the remaining
arbitrariness. (In some special cases, the gauge con-
ditions (5'), (7'), and (8) can also be satisfied in the
presence of sources.cel)

In both electrodynamics and gravidynamics one can
> «?'*<** The

g
have plane waves: Αμ =A^)eikas",
set of gauge conditions (5), (7) and (5'), (7'), (8) enable
one to reduce all components of the potentials to zero
except for two independent ones. These two components
correspond to the two independent polarization states
of electromagnetic and gravitational waves. It follows
from the same gauge conditions that plane waves are
transverse and traceless. Mathematically, this is ex-
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pressed in the fact that the matrices of the potentials
are "transverse" to the isotropic wave vector k" and
the gauge vector u", and Eq. (8) is satisfied. From
the physical point of view, this means that the wave
basically displaces test particles in the plane perpen-
dicular to the direction of propagation (see Chap. 3),
and moreover in such a way that the volume occupied
by the particles remains unchanged.

The tensor of the electromagnetic field for traveling
electromagnetic waves and the curvature tensor for
traveling gravitational waves have vanishing invariants
and have a similar algebraic structure. At the same
time, the fields of standing electromagnetic and gravi-
tational waves have nonvanishing invariants and again
exhibit a correspondence from the point of view of alge-
braic structure. t e ]

The retardation in the transmission of field changes,
which is taken into account by the retarded solutions of
Eqs. (4) and (4'), has the consequence that far from a
nonstationary source, in the wave zone, the observable
quantities decrease with the distance in accordance with
the r"1 law, instead of the r"2 law of electrostatics and
Newtonian gravitation.

The gravitational analogs of the charge, electric di-
pole, and magnetic dipole moments are constant in time
because of the laws of conservation of the energy, mo-
mentum, and angular momentum (if one does not take
into account their change due to the emission itself). A
spherical body executing radial motions, or an axisym-
metric body rotating about the symmetry axis, do not
emit gravitational waves. Therefore, the lowest pos-
sible multipole order of gravitational radiation is the
quadrupole, instead of the dipole order in the electromag-
netic case. Accordingly, the graviton spin is equal to
2, while that of the photon is 1.

A system that emits electromagnetic or gravitational
waves loses energy. To see this, it is sufficient to con-
sider the solution of the field equations with appropriate
initial and boundary conditions, without forming quanti-
ties of the type of the energy flux from the derivatives
of the potentials. From a known solution of the field
equations, one can find not only the behavior of a detec-
tor placed in the wave zone but also the variations in the
source of the waves due to the presence of the emission.
Since the equations of motion are solved simultaneously
with the field equations in gravidynamics, one automati-
cally takes into account the "force of radiation damping",
and it need not be introduced artificially on the basis of
additional arguments, as in the case of electrodynamics.
The reaction of the gravitational radiation to a source of
waves consisting of slowly moving bodies with weak
field can be found in two ways. Either by extrapolating
a solution of the type of outgoing waves backward, into
the near zone, right down to distance of the order of a
wavelength from the source, and thereby determining
the "radiation" correction to the Newtonian gravitational
potential. C1°-12] Alternatively, and more rigorously,
without any assumptions about the nature of the solution
far from the source, one can solve simultaneously the
field equations and the equations of motion in the near
zone, but then necessarily taking into account retarda-

tion. C 1 3 · l 4 ] The two methods give the same result, whose
physical significance is a reduction in the energy of the
emitting system. In the equations of motion, the reac-
tion of dipole electromagnetic radiation appears in terms
of order (v/cf, whereas in the case of quadrupole grav-
itational radiation it appears in terms of order (v/c)5,
where ν is the characteristic velocity of the motions in
the source.

In the theory of the electromagnetic field, we have the
well defined concept of the energy-momentum tensor.
Using it, one can, for example, find the energy trans-
ported by electromagnetic waves independently of a cal-
culation of the damping of the motions in the source.
For a system executing stationary motion (or more pre-
cisely, a motion that would be stationary if there were
no radiation), this energy is exactly equal to the work
of the force of radiation damping. In the theory of the
gravitational field, the concept of the energy-momen-
tum tensor is absent. The entity ίββ, which arises nat-
urally when the Einstein equations are expressed in the
form (4'), transforms as a so-called "pseudotensor";
that is, it transforms in accordance with the tensor law
only for linear coordinate transformations. By an ap-
propriate choice of the coordinate system, all compo-
nents of i a S can be made to vanish at any point of space-
time. For example, the Landau-Lifshits pseudoten-
sor" 1 can be expressed in terms of the squares of the
first derivatives of the potentials ψββ in much the same
way as the energy-momentum tensor of the electromag-
netic field can be expressed in terms of the squares of
the first derivatives of the potentials Aa. But in a lo-
cally inertial coordinate system, all the first derivatives
of the metric at a given point vanish, and with them so
does the energy-momentum pseudotensor. This cir-
cumstance has been reflected in the widely held opinion
that it is in principle impossible to localize gravitation-
al energy. m In this approach, the impossibility of lo-
calizing gravitational energy does not however prevent
one from obtaining sensible physical results by using in-
tegrated and averaged quantities. For example, the re-
duction of the energy of a system of Newtonian type due
to radiation damping is exactly equal to the energy flux
calculated by means of the energy-momentum pseudo-
tensor and integrated over a distant sphere. A differ-
ent approach has also been developed, in which it is as-
sumed that the density of the energy, momentum, and
stresses of a true (i. e., one that cannot be transformed
away) gravitational field must form a tensor and be ex-
pressed in terms of observable quantities—the compo-
nents of the curvature tensor. This has led to the for-
mulation of a number of interesting definitions and re-
sults, t 1 5 - 1 7 1 but the justification for their derivation has
more to do with the formal analogy with electrodynam-
ics than an internal connection with the Einstein equa-
tions.

This well-known imperfection relating to the descrip-
tion of the energy and momentum of the gravitational
field does not, of course, cast doubt on the conclusions
concerning the effect of gravitational waves on a detec-
tor or the damping of motions in the radiation source.
These conclusions do not in themselves require a con-
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cept such as that of the flux of gravitational energy, al-
though they can be formulated in their simplest forms
when such a concept is used.

Under certain restrictions (weak wave field or
asymptotically flat metric in Cartesian coordinates) one
can use the entity taB, and averaging of it over space-
time regions extending over several wavelengths (for
the wave situation) gives reasonable concepts for the
density of energy, energy flux, and stresses.

Let us write down, for example, the energy-momen-
tum—stress components in plane waves propagating
along the χ axis. By virtue of the gauge conditions (5),
(7), and (5'), (7'), (8) the following two independent com-
ponents of the potentials are nonzero: A2, A3, and ψ22

= h22 = - i/>33 = -h3S, ψ23 = hZ3. We then have accordingly

~~ ~ 16iiC " ·»'· (9')

(Here and in what follows, the dot denotes the derivative
with respect to t.)

The power emitted in the form of electromagnetic or
gravitational waves in the case of slow motions of
charges or masses can be expressed in terms of the
electric dipole moment d{ or, respectively, the mass
quadrupole moment Qtk in accordance with

-dr=i^did· do)

do')
Gravitational waves carry away from the system not

only energy but also angular momentum. The conserva-
tion laws that follow from the exact theory and take into
account radiation are formulated namely as follows: the
decreases in the energy and the angular momentum are
equal to the amounts carried away by the waves.

Thus, gravitational waves are an inescapable conse-
quence of the relativistic theory of gravitation. Under
conditions when.they can be meaningfully compared with
electromagnetic waves (weak gravitational waves on an
unchanged or slowly varying background, and also spe-
cial cases of waves with arbitrary amplitude), they ex-
hibit a far-reaching analogy. It is true that sometimes
the analogy does not hold objectively. Perhaps one of
the most remarkable examples of this kind, which leads
to interesting physical consequences, is the conformal
invariance of the electrodynamical equations and the
conformal noninvariance of the gravitational wave equa-
tions (Chap. 7).

3. TEST PARTICLES IN THE FIELD OF A
GRAVITATIONAL WAVE

Just as an electromagnetic wave sets test charges in
motion, a gravitational wave causes test masses to
move. The motion of charges in the field of an electro-
magnetic wave is usually described with respect to an
inertial coordinate system. The motion of test masses
in the field of a gravitational wave can be described with
respect to a coordinate system that most closely ap-

proaches an inertial one, L e., a locally inertial frame.

Let us recall how charges move in the field of a plane
monochromatic electromagnetic wave.: 4 ] If the wave
propagates in the direction of the χ axis, the projection
of the path of a charge that is at rest on the average onto
the yz plane is an ellipse that degenerates into a seg-
ment of a straight line or a circle for linearly polarized
and circularly polarized waves, respectively. In the
general case, there is also displacement of the charge
along the χ axis, which is absent only in the case of a
circularly polarized wave.

In a coordinate system moving with respect to the
original system along the χ axis, the intensity of the
wave and its frequency are changed but the ratio of the
characteristic dimension ξ of the ellipse to the wave-
length λ remains unchanged, and it always much less
than or of the order of unity: ξ/λ = hSl. It is natural
to adopt this ratio as the invariant dimensionless ampli-
tude of the wave and say that the wave is weak if h « 1.
(The parameter h can be readily related to the dimen-
sionless ratio eE0/mcw, which can also be used to esti-
mate the strength of the wave.Cl8]) For a weak wave,
the displacements of the charge in the yz plane are
small compared with λ, but the displacements along the
χ axis are considerably smaller, and they cannot ex-
ceed ΛΤ~|(ξ/λ).

Let us now consider the motion of particles in the
field of a weak plane gravitational wave. Using gauge
conditions analogous to those employed in electrodynam-
ics, we can write the wave metric in the form

(1 -f a) dx32 + 2b dx2 dx3. ( l l )

There are only two nonvanishing independent compo-
nents: $Z3 = hZ3 = b, Ψζζ = hZ!! = -$33 =-h33 = a. F o r a

monochromatic wave

α = lu sin \q (x° — xl) — i|- + ]. b = kx sin [q (x° — χ1) + ψ χ ] ,

and without loss of generality we can assume ψ. = ψχ

- π/2 = ψ. The two states of linear polarization corre-
spond to the choices hx = 0 or ht = 0; the two states of
circular polarization, to the choices hx = ± ht.

The world lines of free test particles are geodesies of
the spacetime ( l l ) . a 9 : These include the world lines x'
= const, which realize the particular coordinate system
in which the metric (ll) is expressed.

We introduce a locally inertial frame of reference # a

associated with, say, the world line xl = x2 = x3 = 0. Along
this world line, the metric (with allowance for small
terms of order ht, hx) must take the usual form of the
Minkowski metric, and all the first derivatives of the
metric must vanish. A coordinate transformation sat-
isfying this requirement is

χ , ax 2

j 1 , ·. 1

, 1 db

— — x<
2 d.r»

_ _ _ , r .

i — x'x3

1 djfi X '1

1 db
_ _

(12)
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where a, b, da/dx°, db/dx° are taken at the points xl

= * 2 =% 3 =0.

The transformed metric is

where h~ Jhi + h$ is the characteristic value of the wave
amplitude and λ = 2it/q is the wavelength.

Let us now consider what is the trajectory in the lo-
cally inertial system of a nearby free particle which is
at rest with respect to the system of coordinates x".
Suppose χ* = 1* = const, and U'l « λ . It then follows from
(12) that with respect to the system of coordinates J a

the particle moves in an ellipse, which can be regarded
as the result of composition of three harmonic motions
with the same frequency along the directions x1, xz, x\
On the average, the particle is at rest with respect to
the center of the ellipse with coordinates I1, I2, I3. We
restrict ourselves to considering particles that on the
average are at rest in the x2x3 plane, i. e., we set I1

= 0. The paths of these particles are described by the
equations

.τ1 - i r,hJH< sin (7.ί·° -Γ if) + 1 h+ {I3' - Pl) cos (qx° + ψ),

?> = Ρ - j-1 )uP sin (?x° -j- if) - -i- ft, Ρ cos (qx° -j- if),

and x" is related to x° by

f)^i} ! i t ( l i ! -I* 2 ) cos (

If the wave is not linearly polarized, then each indi-
vidual particle moves in an ellipse in a plane to which
the unit normal vector is basically oriented along the xl

axis.
also an ellipse with the semi-axes

The projection of the path onto the ~xz~x% plane is

The orientation of the principal directions with respect
to the x2 axis is determined by the angle Θ: tanfl = - Z3/Z2.

If the gravitational wave is linearly polarized, the el-
liptic path of the particle lies in a plane perpendicular
to the x2*3plane, and the projection of the path onto that

FIG. 1. Motion of a particle in the field of a gravitational
wave. The black arrow indicates the spatial motion of the
particle; the open arrow, the projection of the trajectory onto
the x2x3 plane. In Fig. a) the wave is linearly polarized ^ p o -
larization, Ax=0); in Fig. b), circularly polarized (clock-
wise, h%=hj·

x'x3

plane degenerates into the segment of a straight line.
At certain points, there is no displacement of the par-
ticle along the x1 axis (Fig. l) .

The characteristic dimension ξ of the ellipse in the
plane depends on the distance ρ = 7z22 + z32 to the

coordinate origin, and therefore ξ/λ is not an invariant
parameter of the wave. But the ratio ξ/ρ does not de-
pend on p, is proportional to h, and, as in electrody-
namics, gives the invariant dimensionless amplitude of
the wave. Under Lorentz transformations, the frequen-
cy of the wave and its strength (the components of the
curvature tensor) do change, but ξ/ρ does not. The
amplitude of the oscillations of the particle along the x1

axis is much less than ξ, and it does not exceed x1

~/ζρ2/λ~ρ(ξ/λ), which again recalls the situation with
an electromagnetic wave.

A particle which moves on the average with respect
to the locally inertial frame has periodic deviations
from the average direction of the motion. The energy
of the particle also changes along the path. The peri-
odic changes of the energy and the position of the par-
ticle are small (proportional to h), but they can be cu-
mulative, causing the particle to move along a definite
trajectory. To investigate these processes, it is more
convenient to use the coordinate system (11), although
the effect itself does not of course depend on the method
of calculation.

Let us begin with the systematic variation of the en-
ergy (frequency). t l 9 ~ z 2 ] Suppose a particle (or photon)
moves between a pair of free perfectly reflecting mir-
rors, whose world lines are x\ = 0 and xj, = const. At
the point of reflection, the energy of the particle ck°
and the tangential components of the momentum with re-
spect to the mirror do not change, while the normal
component changes sign. A systematic change of the en-
ergy is possible if after reflection from the second mir-
ror the particle returns to the first mirror after exactly
a period of the gravitational wave, having moreover a
different energy. Then, choosing the orientation of the
first mirror in such a way that the particle again sets
off along the same trajectory, everything can be re-
peated again from the start. The energy increments
will then be added.

Between the reflections, the world line of the particle
is described by geodesic segments. It is clear that in
the principal approximation the distance L between the
mirrors must be equal to nttv/qc, where η is an integer
and ν =VMi2 + Ma2 + «a2 is the velocity of the particle. For
« = 1 and ν - c, the distance L is λ/2, while for ν < c we
have L < λ/2. Matching segments of geodesies subject
to the necessary conditions for the components of the
four-momentum, we can find the increment Δω after
one reflection and return of the particle. The same
quantity can be determined by comparing the difference
between the times of departure and return of a pair of
particles that follow one another. Calculating Δω in one
way or another, we find (for n= 1)C19]

(14)
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where tan<̂ > = - h(uzZ - uzZ)/2h*iPuz. It can be seen from
this expression that there is no effect if u1 = 0 or uz = u3

= 0, and also in certain other cases, depending on the
polarization and the phase of the wave at the time of de-
parture of the particle. The maximal value of Δω/ω is
achieved when the particle moves at a certain angle to
the direction of propagation of the wave. After Q re-
flections, the total ratio Δω/ω exceeds (14) by the factor
Q and in order of magnitude is h(j(v/c)z for v«c, while
for v«c

(15)

We now consider the accumulation of deviations of the
particle from the mean direction of motion, which leads
to a systematic drift of a particle. Π 9 ]

Suppose the surfaces x2=0 and xz = L are perfectly re-
flecting mirrors. When the moving particle is reflected
by them, its momentum components ft0, ft1, ft3 do not
change, while ft2 changes sign. Suppose that at time x°
= 0 a particle leaves the point xl = 0 strictly along the
normal to the mirror. In other words, its four-momen-
tum with allowance for terms of order h is ft" = {w/c, 0,
ων/c2,0}. It is necessary to choose L equal to (tm/q)v/c
to ensure that the particle returns to the first mirror
when x°- x1=n2ir/q, i. e., at the same phase of the grav-
itational wave. It is sufficient to require fulfillment of
this condition in the principal approximation since x°
- x1 occurs as argument of the harmonic functions,
which already have the small factor h+ or hx. If the
point of return is shifted with respect to the point of set-
ting out, repeated reflections can increase this dis-
placement. Fitting the segments of the geodesies, one
can readily show that on its return after one reflection
the particle will have the coordinates

x-< = 2 ~ |( — 1)"— 1] h, (sin if — >m cos if).

x" = n — (1 ^-A+sinif) — - ^ - ( Μ Λα. simf.

The four- momentum of the returning particle is

The shift along the x3 axis and the appearance of the
component ft3 are due to the x polarization of the gravi-
tational wave. They can be avoided by taking the num-
ber η even.

We restrict ourselves to considering the displacement
along the x1 axis. After one reflection, the displace-
ment is Δχ1 = - L(v/c)ht sinip, i .e., depending on ψ, the
particle is displaced toward positive or negative x1.

Thus, the system of two mirrors in the field of the
gravitational wave is capable of "sorting" particles ac-
cording to the time of their setting off, shifting them in
opposite directions. There is no drift along the xi axis
for φ = 0 or ψ = τι. These are cases when the mean tra-
jectory of a particle that sets off along to the normal to
the mirror is also normal to it. In order to obtain an
effect in these cases as well, it is necessary to arrange

the mirrors in such a way that the x1 component of the
normal is nonzero.

In the case of photons, the smallest admissible dis-
tance between the mirrors is £ = λ/2. After Q reflec-
tions, the point of return of the photon is shifted with
respect to the point of setting off by the distance ΔΖ,
which in order of magnitude is determined by

(16)

Study of the motion of individual particles makes it pos-
sible to understand how a wave affects more complicated
detecting systems.

4. DETECTION OF GRAVITATIONAL WAVES

Many theoretical and experimental studies have been
made of the detection of gravitational waves. The main
ideas and reviews of the present state of the problem
can be found in the booksC5·23-261 and the papers"·2 7·2 8 3.
We shall give only a brief exposition of the basic ideas,
and we shall consider a new and promising direction—
the detection of gravitational waves by means of electro-
magnetic systems. The estimates made in this and the
following sections may differ from the exact expressions
by numerical coefficients, but they cannot contain large
or small dimensionless ratios.

The mirrors considered in the previous section, which
force a particle to move along a definite path, are a
special case of a restoring force. Another example
could be an elastic element (mechanical or electromag-
netic), joining particles. If the frequency with which the
restoring force acts is equal to the frequency of the
monochromatic wave, then after Q periods of the wave
the effect produced by the wave is multiplied by the fac-
tor Q (cf (15) and (16)).

An elementary oscillator provides the basis for study-
ing the detection of gravitational waves. The picture
must be augmented by two further important points:
analysis of the inherent noise of the oscillator antenna
and the study of its response to a wave field of arbitrary
nature, i. e., not necessarily a strictly monochromatic
wave. But these are only the first problems encountered
by the experimentalist. It is also necessary to analyze
subtle questions relating to the realization of a detector
of small measured quantities, its noise, the back reac-
tion on the antenna, the optimal strategy of measure-
ments, etc. C 2 4 · 2 "

The interaction of a weak wave field with a gravita-
tional antenna is described by generally covariant equa-
tions, in which one uses the metric (ll) or a more com-
plicated one, depending on the assumptions made about
the structure of the gravitational field. For a solid-
state antenna, one uses the generally covariant equations
of elastic vibrations; for an electromagnetic antenna,
the generally covariant Maxwell equations, etc. Essen-
tially, the problem reduces to the equation of forced os-
cillations, in which the driving force is provided by the
terms associated with the gravitational wave. Applied
to an elementary mechanical oscillator considered in a
locally inertial coordinate system, we obtain1·23·1
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(17)

where Λο*ο are the components of the curvature tensor
of the wave field; ± V are the "unperturbed" coordinates
of the oscillator masses; ξ' are the small displace-
ments of a mass from its equilibrium position; ω0 is
the natural frequency of the oscillator; and Q is its
quality factor. For distributed systems, ω0 is related
to the velocity of sound va and the length I by the rela-
tion u>o~vjl.

In the simplest case of a monochromatic wave, the
right-hand side of Eq. (17) is proportional to h№zeiat

(where Ω is the frequency of the gravitational wave) and
angular factors that describe the orientation of the os-
cillator.

For actually existing sources, h is so small that the
gravitational force on the right-hand side of (17) is com-
parable with the fluctuation force of Brownian motion in
the antenna.

Under the influence of the inevitable thermal fluctua-
tions, an oscillator of mass m executes randomly mod-
ulated vibrations with frequency o>0. The mean square
amplitude of the vibrations is Af = kT/m ω|, where Τ is
the temperature and k is Boltzmann's constant. The
amplitude and phase of the thermal vibrations change
significantly over a time of the order of the relaxation
time: τ*~ Q /ω0. Over the time τ « τ* the probability
of significant changes is very small. For oij1« τ «τ*,
the probable increment of the amplitude is proportional
to VT/T*:

Δ , Ι Β ~ ] (18)

(This holds for QKuo« kT, where Κ is Planck's con-
constant. For τ~ ω;1 and QKiuo>kT, right down to
~kT, the quantum-mechanical discreteness of the levels
of the macroscopic oscillator makes itself manifest, and
Eq. (18) does not hold.C241 For kT~Κ ω0 and τ~ τ*, it is
possible_to replace kT in order of magnitude by Κω0:

The actual motion of the oscillator is formed by su-
perposition of its thermal vibrations and the displace-
ment due to the gravitational wave. The response of the
oscillator and its limiting sensitivity depend on the na-
ture of the gravitational signal. In the general case, the
signal changes both the amplitude and the phase of the
thermal vibrations of the oscillator, and, depending on
the instantaneous value of the phase, it may happen that
only the amplitude changes or only the phase of the vi-
brations, and for this the experimentalist must be pre-
pared. One can distinguish three typical regimes of
variation of the potentials Λμι>: a) monochromatic wave
of frequency ω0 with characteristic time of variation of
the amplitude and frequency satisfying τ»τ*; b) short
pulse with duration τ~ ωζ1; c) prolonged indeterminate
signal (wide-band or narrow-band noise).

Under the influence of signal a), the amplitude of the
oscillator may change in a time τ « τ* by the amount Δξ
= ΛΖωοτ. During a time of order τ*, it reaches the max-
imal value hlQ. The fluctuation drift of the amplitude

in time τ is determined by Eq. (18). The threshold con-
dition of detection Δξ έ ΔΛΒ for measurement time ri

= τ has the form

(19)

It is advantageous to use the maximal possible observa-
tion t ime^ For τ4 = τ*, we obtain from (19) the inequal-
ity h S-/3|/'Q> or, in other words, the increment of the
oscillator energy during this time:

Δε

must be greater than kT:

(20)

If one can make measurements during η intervals τ*,
the smallest detectable h is

Let us now consider a signal of type b). A pulse of
duration τ~ ως1 has a wide frequency band Δω~ τ'ι~ ω0
>:> wo/Q. We separate the resonance harmonic Λ(ω0).
Substituting τΛ~τ~ ω;1 into (19), we find

Λ ( « o ) m l n ; (21)

Thus, an oscillator with very high Q makes it possible
to detect a short signal which gives rise to a change in
the amplitude that is a small fraction of the equilibrium
value V 3 | . At the same time, the amount of energy
AE which is deposited or extracted by the pulse depends
on the instantaneous value of the amplitude and phase of
the oscillator1 2" and may be &e~hHvs/c)zmcz or Δ?
~h(vs/c)(v/c)mcz, where i; = V-A|^0. The large differ-
ence in the possible Δ? does not however change the de-
tection condition (21). For the earliest Weber type an-
tennas (kT~4° 10"14 erg, m =10" g, ωο*1Ο4 sec"1, lett

« 50 cm, Q~2' 105) the potential sensitivity was h((^0)mln

~ 10"18, which presupposes the possibility of measuring
displacements at the level ΔΖ~ hl~ 5 · 10"17 cm.

Finally, let us consider a gravitational signal of type
c). If in the range ωο± Δω of the noise intensity spec-
trum the mean square amplitude of the metric is ~W(t, ω0

± Δω), then over time τ* the amplitude of the oscillator
reaches in order of magnitude the same maximal value
JhHQ as in the casejrf a strictly monochromatic wave
with amplitude h = -ft?. In order to distinguish the grav-
itational-wave noise on the background of the thermal
noise of the oscillator, it is necessary to know statis-
tical regularities that distinguish the one noise from the
other. It is expedient to use various correlation
schemes.C 3 0 ] (It is more complicated to eliminate the
influence of local gradients of the Newtonian gravita-
tional field.t313) During an observation time containing
η intervals τ* one can in principle detect a signal that
gives_rise to a change in the amplitude that is a fraction
of /A|, so that (see also1 2 3·3 2 3)
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, ωο±Δω)> IQ
(22)

At the present time, the efforts of experimentalists
are mainly directed toward the detection of signals of
type b), which accompany cosmic catastrophes such as
the collision of superdense objects or asymmetric col-
lapse. In order to ensure a reasonable frequency of
events (a few per month), one must be prepared to de-
tect gravitational bursts from objects in galaxies within
a radius ~ 10 Mpc. This presupposes an increase in the
sensitivity of the detectors to the level h(uiQ)mU~ l(r 2 0

- 10"21. The difficulty resides not so much in achieving
this potential sensitivity by reducing Τ and increasing
Q, I, and m as in creating sensors of small displace-
ments capable of registering Δ1~ 10"19 c m - 10"20 cm. It
is to be hoped that this program will, nevertheless, be
successful.

A locally inertial system is convenient for consider-
ing detectors that are small in size compared with the
gravitational wavelength. This is the case in a solid-
state antenna, since l/\~ vs/c « 1. Gravitational waves
can also be detected by electromagnetic resonators,C 2 2 ]

whose dimensions are, because electromagnetic and
gravitational waves propagate at the same velocity,
comparable with λ if the resonance phenomenon is used.
In this case, it is more convenient to use a synchronous
coordinate system with metric of the type (11). From
the generally covariant Maxwell equations

p7, α = 0, (23)

it is easy to obtain a generalization of the ordinary wave
equation to the case when external gravitational fields
are present:

" + Λμ^Ύα μ = - j - 7[μ; v]· (24)

If the gravitational field is weak, gw = η^ + &„„, and sat-
isfies the gauge conditions (5'), then Eq. (24) takes the
form

ί·μν. α + — ]{». ν]

,. „_ ( ) η β [ μ / \ , ] ( ,/\,](,.,, _ ft

(25)
For detection, one can use either a free electromag-

netic field that is not confined by reflecting walls (which
is equivalent to free masses) or a resonator field (which
is equivalent to a mechanical oscillator). The problem
is most readily solved for an ideal resonator having
perfectly conducting walls and a nonconducting dielec-
tric. Such a resonator has infinite Q. However, every
real resonator has a finite Q, which can be attributed to
the effective conductivity of the dielectric σ: σ= ω/iirQ.
Then the currents in Eq. (25) can be expressed in terms
of the electric field strength, j { = - aF0{, and the walls
of the resonator can be regarded as perfect, i. e., the
boundary conditions on them can be formulated in the
form Fof(tang) = £(tan«> = °· Since we assume that the fre-
quency of the gravitational wave is equal to the eigen-
frequency of the electromagnetic field in the resonator,
the elements of the casing of the resonator behave as
free particles under the influence of the wave. Indeed,

the ratio of the lowest eigenfrequencies of the casing of
the resonator (u>5) and of the electromagnetic field in it
(ω) is vjc and therefore ω 5 « ω~ Ω and the elastic force
in the equations of motion of the casing of the resonator
can be ignored compared with the gravitational force.
The boundary conditions for the field in the resonator
are specified on the world lines of the elements of its
wall. In the synchronous coordinate system, they are
described by the simple equations xf = const.

The Fw are the sum of the "unperturbed" field (0)Fut,
and the correction ( 1 ) F № I / , which is due to the influence
of the gravitational wave. Equations (25) can be con-
veniently solved for the ( 1 > F o f , and the remaining com-
ponents n)F(ll determined from (23). Expanding the so-
lution with respect to the eigenfunctions of the unper-
turbed boundary-value problem, ( 1 ) F 0 { = ΣπΕπ(ί)ψη(χ,y, z),
we obtain from (25) the equation of a damped oscillator
with driving force consisting of the terms on the right-
hand side of Eq. (25):

(26)

The actual expression for the force depends on the orig-
inal field (0>.FMI,, the form of the gravitational wave, the
relation between their phases and frequencies, and so
forth. If the resonator contains a natural oscillation of
the electromagnetic field (standing wave) with frequency
ωη, then the interaction with a gravitational wave of fre-
quency Ω produces a driving force at the frequencies wm

= Ω ± ωη. A resonance phenomenon occurs when u>m is a
natural frequency, and the effect is the larger, the low-
er is the natural frequency excited.

We distinguish three characteristic cases:

a) The original field m)Fllv is a constant field (ωΛ = 0)
with strength # .

b) (O)FUV is a natural oscillation of frequency Ω/2 and
characteristic strength E.

c) l0)Fuv is the sum of a constant field Η and a weak
natural oscillation with characteristic strength £ t « Η
and frequency Ω .

In case a), a standing wave with frequency Ω appears
against the background of the constant field. The am-
plitude ' ' '^increases with time and after the time r*
~ Q/Ω reaches the maximal value {UE~hQH. In order
to calculate the change ΔΕ in the total energy of the
electromagnetic field in the resonator, it is necessary
to find all the components " '/£„ and integrate the ener-
gy density over the volume V~ (cn/uf. The terms lin-
ear in h then disappear, and we obtain an expression of
the form

Δ t ~ (hjQf f, (27)

where f =(#2/8ir) V~Hz(c/Q^. We shall assume that
the detection condition is satisfied if AE^Ml(ci (20)).
This corresponds to the assumption that the portion of
energy in one or several quanta ΗΩ can be distinguished
on the background of the electromagnetic fluctuations of
frequency Ω . Then the detectable h is

Mi* (28)
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For Η = 105 G, Q = ΙΟ12, Ω = tc/l~ 10* sec"1 we obtain the
fairly low detectable Λ ~ 10"2' and corresponding flux /
«10 erg sec"1 · cm"2, but, unfortunately, periodic astro-
physical sources in this range are not known, and the
possibilities of laboratory emitters for this level are
still inadequate (see Sec. 5).

In case b) the gravitational wave leads to the appear-
ance of an extra field at the same frequency Ω/2 at
which the original field exists. The oscillations will
be added, and, depending on the relationship between
the phases, this will change the amplitude or the phase
of the field WF№V. If the amplitude is changed, then at
time τ* we shall have mE~hQE. The total energy in
the resonator, apart from the damping of the original
field in accordance with the Q factor of the resonator,
will change by the additional small quantity

Xf (29)

where g = (£*/47Γ) V - ̂ {c/af. Although here AE is
linear in the small hQ (in contrast to (27)), this does not
improve the detection possibilities since the resonance
mode contains a large number of already existing quan-
ta, of order N~ i/hU. The signal can be regarded as
detected if Δ8/ΛΩ > Vw. Then for the detectable h we
obtain a condition of the same type as (28): h> (l/Q)

Finally, in case c) the gravitational wave, which in-
teracts mainly with the strong constant field, will give
rise to an oscillation at the frequency Ω, which is
added to the original wave. During the relaxation time,
the accumulated energy is Af: ~(hQ)(H/El)f , where £
~E\(c/Cif is the total energy concentrated in the un-
perturbed oscillating field. Writing the detection con-
dition in the form At/Ml» -Jg/ffi,, we again obtain (28).
In case c), as in case b), the damping with time of the
original alternating field is somewhat changed by the
gravitational wave, and this can also be described as
a small change in the Q of the resonator: AQ~(hQ) Q.

Thus, the general principles for detecting gravitational
waves by either electromagnetic or mechanical systems
are the same. It is clear that an electromagnetic reso-
nator is more convenient for detecting short waves, and
a mechanical oscillator for long waves. Incidentally,
long waves can be detected synchronously by compact
electromagnetic systems realized in the form of oscil-
latory circuits with low natural frequencies. The ef-
ficiency of any particular type of device is of course
determined by the achievable technical parameters,
the simplicity of preparation, the cost, etc. A very
valuable idea may be that of "quantum nondemolition
(nondisturbative) measurements, "* which may make
it possible to detect individual quanta in the radio
range. B 3 ]

A tremendous number of original suggestions for de-
tecting gravitational waves have been made. They in-
clude the use of neutral and charged particles, liquids
and solids, various mechanical and electromagnetic

systems, and so forth (a fairly detailed bibliography
can be found, for example, ΐη

[ 1·5·2 7·3 4 ]). The quantities
to be measured and the method of measurement differ,
but every suggestion is based on the effect of a weak
gravitational field on a free mass or oscillator. In
every system, one can introduce an effective Q factor
and inherent noise. If one is dealing with a monochro-
matic wave, the relative change of the quantity affected
by the wave is always of order h or hQ (excepting, of
course, trivial and useless cases). Mathematically,
the detecting systems are described by equations with
variable (because of the gravitational field) coefficients.
The situation would change if one could create a system
for which hQ~l (which at present is far beyond the
range of the possible). In such a case, one could
achieve parametric resonance, when the increase in the
energy of the system exceeds its dissipation, and the
growth in the amplitude of the oscillations or vibrations
is limited only by the nonlinearity of the system.

5. EMISSION OF GRAVITATIONAL WAVES

Hitherto the amplitude h of the gravitational-wave
perturbation has remained undetermined. It is clear
that under terrestrial conditions we can find only ex-
tremely small h of either laboratory or cosmic origin,
but the actual value of h depends on the source. To get
an idea of the "typical" quantities, let us suppose that
in the center of the galaxy, i. e., at distance Λ» 3· 1022

cm from the Earth, a mass m of the order of the solar
mass, with characteristic radius l~rt~Gm/cz ~3· 105

cm is entirely transformed into gravitational radiation
in a time τ ~ r,/c~ 10"5 sec. Making a very crude esti-
mate in accordance with (10), we find that the emitted
power does not depend on m and is equal to dtjdt
» cs/G, and the value of h at the characteristic frequen-
cy v~c/rr~105 Hz is fe~cf//i~10"17. A rigorous cal-
culation will, most probably, only significantly reduce
this quantity.

The theory of emission has been well developed for
the case of a weak field (for a review of the different
methods of calculation, seet351). The retarded solution
of Eq. (4') is

where

4G f (τ Β > ),.

hafl—2

(30)

*Translator's footnote. These are the English expressions
coined by Prof. Braginskii.

and τοβ contains in addition to the energy-momentum
tensor Γ ο β of the matter terms quadratic in ψββ as well
if the emitting system is gravitationally bound.

The solution (30), found for an isolated source, auto-
matically satisfies the conditions (5')· If the source has
several components, i. e., consists of several parts
with different Ta$, it is sufficient to find <plk from that
one of the parts that makes the greatest contribution to
ψ,Λ, and calculate ψΟβ directly from (5'). B e ] From
known ψαβ in the wave zone one can find the energy flux
and the total emitted power; for this, it is necessary to
know only the "physical" components of ψΒβ satisfying
the conditions (5'), (7'), and (8). If the dimensions of
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the source are small compared with the wavelength, the
calculation of 4>ih reduces to finding the second deriva-
tives with respect to the time of the quadrupole moment,
and the total power is expressed by Eq. (10').

Let us compare the efficiency of mechanical and elec-
tromagnetic emitting systems, doing this in a form
suitable for estimating the possibilities of a laboratory
experiment. K 7 1 We do not write out the indices of the
field components, nor numerical coefficients. We con-
sider elementary mechanical (m) and electromagnetic
(<?) emitters that produce gravitational radiation at the
same wavelength λ. The expression "elementary"
means that in the first case the dimensions of the emit-
ters are of order \s, and in the second λβ) where λ4 is
the wavelength of an acoustic wave, and λβ is that of an
electromagnetic wave. As examples of elementary
emitters we can take a vibrating solid beam and a
standing electromagnetic wave in a resonator. We shall
compare the amplitude of the gravitational-wave field
at the boundary of the wave zone. We take the factor
\/R outside the integral in (30) and replace it by 1/λ.
For Λ>λ, the wave amplitude decreases as 1/R.

Let A be the amplitude of elastic vibrations in an
elementary m emitter. The components TiH are the
elastic stress tensor aik, which is proportional to the
spatial derivatives of the displacement vector. The
proportionality factor, the modulus of elasticity, can
be expressed in terms of the material density pm and
v\. Therefore, the characteristic amplitude of the ten-
sor σίΛ is am~pmv\A/\a. Since w~c/\~vs/\st we
have λ{~ (vs/c) λ « λ. This means that the elementary
m emitter is deep in the induction zone and the retarda-
tion in (30) is negligibly small. For the amplitude of the
gravitational wave at the boundary of the wave zone, we
obtain

, Ο 1
ftm ~ -r ^ σ_ (31)

where rem~Gpm λ^/c2 is the gravitational radius of the
m emitter, rtm~(Gpm>^3

s/cz)A/\s is the gravitational
radius of the variable part of the emitter mass, ν

vs is the velocity of motions in the source.

Applied to an astronomical, gravitationally bound sys-
tem with mass M, radius R, and characteristic velocity
(v/cf~GM/czR of the motions, Eq. (31) gives

rght I r ' 2
I (32)

where rm~GM/c?. in the favorable case of a pair of
stars of solar mass rotating with a period of 0. 5 day
and at a distance 3 · 1019 cm from the Earth, we ob-
tain h~ 5 · 10"1T at the boundary of the wave zone and h
~ 5 · 10"81 on the Earth and wave frequency w= 10"s Hz.

The emission of an isolated rotating star depends on
the asymmetry with respect to the axis of rotation. In
Eq. (32), rt must refer to the "asymmetric" fraction of
the mass. The most optimistic assumptions for the pul-
sar in the Crab lead to h~ 10"25 at the Earth with fre-
quency ν ~ 60 H z . t l : However, the gradual drift in the

frequency of the radiation makes it impossible to use
a prolonged resonance separation of the signal from the
noise unless the frequency of the antenna itself can be
adjusted.

Finally, application of Eq. (32) to short gravitational
bursts from strongly asymmetric explosions, collapses,
or vibrations in neutron stars that have just formed,
etc., leads in the case of objects with a solar mass in
the center of the Galaxy to h ~ 10"20 - 10"17 at character-
istic frequencies v~(l - 105) Hz. (For a discussion of
pulsed gravitational radiation, see also138"42·1.) Let us
now consider an elementary e emitter. Since ω~ο/λ
~c/Xe in this case, the volume of the emitter is of or-
der λ3

( and its size is at the limit of applicability of
Eq. (30) without allowance for retardation. The ampli-
tude σβ of the electromagnetic stress tensor is equal in
order of magnitude to the amplitude of the energy densi-
ty of the alternating electromagnetic field εβ. (If the
field is the sum of an appreciable constant field with
energy density ε° and an additional alternating field with
energy density ε, then the amplitude in which we are in-
terested is σβ ~ ι/ε "ε.) At the boundary of the wave zone,
we obtain

• - Γ (Τ,Λ- - (33)

where rge ~Gp „>?/<? is the gravitational radius of the β
emitter and pec

z =εβ. The ratio of (31) to (33) is hm/he

~(pm/Pe)(vs/c)sA/\s. It is much less than unity for
moderate values of the parameters here, so that an
elementary e emitter is much more effective than an
elementary m emitter. For example, if p m ~ 1 g/cm3,
pe~10-1 8g/cm3, (vs/c)~10-s, (4/λ,)~10-3 then hm/he

~10"10. However, the volume of the e emitter (~λ3) is
much greater than an m emitter's. Let us consider
their comparative efficiency at equal volumes. In a
volume λ3 one can place Ν ~ (λ/λs)

3 ~ (c/vt)
3 » 1 ele-

mentary m emitters. If their gravitational-wave fields
are to be added in the region of the detector and not can-
cel each other, the emitters must be specially arranged
in phase. Of course, in practice an m emitter with
volume λ3 need not consist of Ν individual bodies. It
may be realized as a single body working coherently.
Coherence can be achieved by means of an external in-
fluence, such as, for example, electrostriction, as
Weber proposed. ι Ά 1 However, the technical realiza-
tion of such coherence is probably not a simple matter.
We note that the coherence of an e emitter with volume
~λ3 is achieved automatically, since λ£.~λ.

Suppose that the coherence of the m emitter is real-
ized to the same extent as is achieved automatically in
an e emitter of the same volume (~ λ3). Then the co-
herent m emitter produces at the boundary of the wave
zone

and therefore

Ί Ρ ~ Γ,· ' ί / λ»
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Thus, the comparative efficiency of emitters of the
same volume is determined by the ratio of the achiev-
able stresses, but under the condition that the m emitter
operates coherently.

The greatest stresses (at the limit of the static rup-
ture point) for known materials lie in the region am~109

dyn/cm3. Suppose they are realized in the dynamical
regime in a coherent m emitter. Then it produces the
same gravitational wave amplitude as an electromag-
netic emitter of the same volume with characteristic
fields E~H~IO5 G. If one is speaking of the possible
laboratory systems, the appreciably greater coherence
volume and comparatively simple principles of prepara-
tion probably decide in favor of the electromagnetic
variant.

Coherence of the emitter can also be realized in
volumes appreciably exceeding λ3, in this case, one
could achieve interference "focusing" of gravitational
radiation. (A detailed calculation of the emission pro-
duced by electromagnetic resonators can be found
in"3'4*-1.) Here we merely note that a review of the
suggestions made for the use of macroscopic quantum
objects as generators and detectors of gravitational
waves is contained int 4 8 a ].

6. POSSIBILITIES OF A LABORATORY EXPERIMENT

It is clear that the first attempts to detect gravita-
tional waves were directed toward natural and not arti-
ficial sources and detectors. Unfortunately, the Earth
as a detector of waves of cosmic origin leads to a too
large upper limit of the intensity, which exceeds even
the estimates based on cosmological data.t 2 3·4 5 1 The
present stage is characterized by the creation of sensi-
tive artificial gravitational antennas, but, as before, it
relies on cosmic sources. These investigations were
strongly stimulated by Weber's well-known observa-
tions.I4e3 However, with regard to Weber's experi-
ments, the most remarkable thing would be if they had
been confirmed, because they indicated quite fantastic
processes for whose existence no serious astrophysical
justifications could be found.cl>4: The main hopes of
experimentalists are now concentrated on more probable
but still rather exotic sources. There is no doubt that
the detection capabilities will be improved and the "cos-
mic" program itself continued until signals from sources
of one type or another have been reliably detected. It is
however curious that the requirements that must be im-
posed on a detector of radiation from definitely existing
astronomical sources do not greatly exceed those that
we encounter when we consider essentially feasible
laboratory variants (here, of course, we are talking
about "orders of magnitude" and not "units").

The power of a laboratory emitter is negligible com-
pared with that of a cosmic source, but it has the ad-
vantage that one can place it next to the detector, opti-
mize the shape, use prolonged resonance accumulation
of a signal, and so forth. If necessary, one can create
an emitter with dimensions greatly exceeding λ, and
"focus" the gravitational radiation. An important ad-
vantage is the possibility of controlling the emission,

which makes the interpretation of the observations less
ambiguous.

Various sources could produce either a monochro-
matic wave or short bursts of gravitational radiation
(by, for example, the asymmetric explosion of a
bomb"eb]). Although the amplitude of the gravitational
field may be somewhat higher in the second case than
the first, the impossibility of synchronous separation
of the signal greatly reduces the use of this method, to
say nothing of the fact that ultimately we are interested
not so much in the fact of detection of gravitational radi-
ation as the possibility of using it in physical experi-
ments.

Let us describe one of the laboratory variants that
includes an emitter and detector of electromagnetic
type (for the details, see"43). Their principles of oper-
ation and advantages were discussed in Chaps. 4 and
5. The experimental scheme is shown in Fig. 2.

In an emitting resonator of torus shape an alternating
electromagnetic field that does not depend on the co-
ordinate φ is produced at the natural frequency ω = ck.
The electromagnetic stresses emit a gravitational wave
at the frequency Ω = 2ω = CK. Converging on the sym-
metry axis, the wave is then transformed into an out-
going wave, and, as a result of interference in the focal
region of the emitter, a standing cylindrically symmet-
ric gravitational wave is formed. The components of
the gravitational field in the focal region have the form

''.,•„= - γ A m (Ωί-χ\) sin 2tf J.(Kr), ft,.. = ft,2 = 0,

(34)

where Jo and J2 are Bessel functions. The components
(34) satisfy the gauge conditions (5'), (7'), and (8). In
cylindrical coordinates, the wave terms are expressed
as follows:

ftrr« - A cos (fit + if) ίή&-, ftw= -4cos(Qi+i);)i^i,
hIt = A cos (Qt + ψ) /„ (Kr).

For a suitable choice of the size of the emitting reso-
nator and the configuration of the electromagnetic field
in it, the wave amplitude is equal to A «(G/c*) % /Rt

» (1/2) rt/Ru where V=(Ez/it) V is the total energy of
the electromagnetic field in the resonator, rr = 2G£/c4

is the corresponding gravitational radius, Ε is the char-
acteristic field strength in the resonator, and Vis its
volume. Thus, the complete volume of the emitter
operates coherently. If other resonators are placed

FIG. 2. Scheme of laboratory experiment with emission and
detection of gravitational waves.
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coaxially outside it, they give rise to the same ampli-
tude A in the focal region, since the reduction of A by
the greater distance of the resonator (~ 1/RX) is com-
pletely compensated by the increase in its radius and
volume (~R1). If the phase of the electromagnetic oscil-
lations is correctly chosen, the contributions of all the
coaxially arranged resonators are summed.

In the focal region of the emitter, a detector resonator
of cylindrical form, radius R, and height I is placed. In
it, for example, a constant magnetic field Η oriented
along the ζ axis is produced. The gravitational field
(34) excited an alternating electromagnetic field at the
resonance frequency Ω . Of Eqs. (25), the only non-
trivial one is the equation for il)Fav/r=Ev:

G Εφ + -i- Εφ + - | B, = AK*HJ, (A>) sin (Ωί + ψ),

which, after expansion with respect to eigenfunctions,
reduces to the form (26). The calculation of the change
in the energy of the field in the detector resonator gives

=0.1 (AQfW, where W = (Hz/8)R*l.

Since the torus-shaped emitter is in the field of the
gravitational radiation produced by itself, it can in prin-
ciple also be used as a detector. Indeed, the emitted
ingoing cylindrical wave is transformed, after it has
passed through the symmetry axis, into an outgoing
wave, which passes through the emitter. If an oscil-
lation of frequency ω is excited in it, the frequency of
the created gravitational wave is 2a>, and its interaction
with the field of the emitter leads to the appearance of
additional fields at the frequencies 2ω - ω = ω and 2α>
+ ω = 3ω. If the size of the emitter is specially chosen,
one can arrange that 3w also be a natural frequency of
the resonator. In this case, one would have resonant
excitation of oscillations at this frequency. At the fre-
quency ω, the original and the additional oscillations are
added if the phase relationships are appropriate, which
can always be achieved by the choice of R^.

Let us now substitute actual values of the parameters
of the system that, on the one hand, ensure matching of
the natural frequencies of the emitter and the detector
(2ω = Ω) and, on the other, leave the expressions we
have derived correct in order of magnitude. Suppose
Λ,=2λ, Λ2 = 7λ/2, Λ=2λ/3, £ = / « λ , where λ = 2ττο/Ω.
Thus, the dimensions of the emitter and the detector
and also the distance between them are comparable with
the wavelength λ. Under our assumptions, A«(G/c)B?~>?.
We take the detection condition to be AW~ftU. It has
the form 1 (cf. (28)). Or, finally,

(35)

This equation relates the field strengths in the resona-
tors, the Q factor of the detector, and the wavelength,
which ultimately determines the size of the complete
system. It is assumed that the emitter operates for at
least the time r* ~ Q/Ω needed to detect the signal.

Of course, the relation (35) imposes exceptionally
high requirements on the quantities in it. For example,
for E~ H~3'105G, Q~7°1013, X~io 2 cm, the left-

hand side of (35) is smaller than the right by 4 orders
of magnitude. (This discrepancy is approximately of
the same order as that which exists in the case of the
detection of radiation from double stars by means of
devices capable of realization at the present time.) In
order to satisfy (35), it is necessary to increase λ to
103 cm, or, at λ» 102 cm, to raise the product E?HQ
by the same 4 orders of magnitude.

As one more example, let us consider an accelerator
of elementary particles of annular form with total vol-
ume 2 °1010 cm3 and mean radius 10s cm of the ring.
Suppose that in the complete volume a constant field
5 · 104 G is produced and an alternating field 3 · 102 G.
Then in the center of the ring, in the focal plane, an
amplitude Η~\0~** of the metric is achieved. (A com-
pact system with the same fields and total volume in-
creases A by a further two orders of magnitude.) A
coherently operating detector placed in the focal volume
with total volume 109 cm3, field 3 ·105 G, and Q factor
3 · 109, is capable of detecting hmlB~10^° in a time
3 · 10s sec (of course, the emitter must work for as
long). The elimination of the remaining difference re-
quires a significant improvement in the relevant param-
eters.

It is clear that the realization of an experiment in
which gravitational waves are emitted and detected re-
quires one to overcome tremendous difficulties, but it
is undoubted that such an experiment will lead to a
fundamental extension of our knowledge of nature and
in the future possibly to the use of gravitational waves
for practical ends.

7. BLACKBODY GRAVITONS AND THEIR DETECTION

It is well known that the Earth moves through elec-
tromagnetic radiation emitted by localized astronomi-
cal sources during comparatively recent (on a cosmo-
logical scale) times, and also the isotropic microwave
background, which is a relic of the primordial plasma
in the distant past of our universe. The background
electromagnetic radiation has an equilibrium Planck
spectrum with temperature Τ =2.7°K. This spectrum,
even if it did not exist "from the very start," could
perfectly well have been formed during the prolonged
period of intense interaction between the primordial
photons and matter.

This situation as regards gravitational radiation is
similar to the extent that the Earth probably passes
through gravitational waves produced by individual
astronomical objects as well as an isotropic background
gravitational radiation of primordial origin. It would
be natural to assume that it resembles the microwave
electromagnetic radiation and has a Planck spectrum;
then in the framework of ordinary ideas, we can esti-
mate its temperature to be (1-2) °K.C2e] However, it
is extremely important that, if there existed mecha-
nisms for forming primordial gravitonswithnonequilib-
rium spectrum, then because of the very weak interac-
tion of gravitons with matter i 2 e a ·*9 1 this spectrum must
have persisted unchanged to the present epoch, except,
perhaps, for only the short-wave region of the spec-
trum (waves with wavelength shorter than fractions of
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a centimeter). It is remarkable that the production of
gravitons with nonequilibrium spectrum must occur by
virtue of the mechanism of superadiabatic enhance-
ment of gravitational waves and spontaneous creation of
gravitons in the gravitational field of the Metagalaxy
during the earliest stages of its evolution.t 5 0 ] This
mechanism already operates under the simplest assump-
tions contained in the standard cosmological model, i. e . ,
nonstationarity and isotropy of the smoothed (back-
ground) gravitational field of the Metagalaxy. A gravi-
tational field of more complicted nature leads to a
stronger manifestation of this effect, but does not
change it. (The only possible exceptional case in which
the mechanism does not work will be pointed out below.)

Let us set forth the main principles of this mecha-
nism. The gravitational field of a nonstationary iso-
tropic universe (with, for simplicity, flat three-dimen-
sional space) is described by the metric

'/»" = «μ ν dx* r/.rv =- «- (l|) ((Iff - (1χ°- — rbf — <k').

Weak gravitational fields on this background, i. e., the
corrections h^v to the metric g^, can be made to satis-
fy the complete set of gauge conditions (5'), (7'), and
(8). After this, Einstein's equations in the linear ap-
proximation reduce to the wave equation

2 — Λ?'- .-a"-g ' № lr , . t.,,.-- 0 . (36)

where the prime denotes the derivative with respect to
η and the comma the derivatives with respect to the
spatial coordinates. Following151·1, we can represent
the wave corrections to the metric in the form of the
sum of terms h] = (μ / a) G], where G) is tensor eigen-
function of number n of the Laplace operator formed
from the metric dlz = dxz + dyz + dzz. Then from (36)
we obtain

The effective potential υ(η) = α"/α distinguishes this
equation from the ordinary wave equation in a Minkow-
ski world. Note that υ(η) = 0 not only for a - const, which
corresponds to a flat background universe, but also in
the unique exceptional case α = αοη. The fact that υ(η)
4 0 is a manifestation of the so-called conformal nonin-
variance of gravitational wave equations.

To solve (36), we use a modification of Lagrange's
method, similar to what is done inC 5 2 ]. Consider some
component h (we omit the indices) of a monochromatic
wave field that depends on η and x. We seek a solution
of (36) in the form

with the additional condition Α' β"*"1 + Β 'eir"> =0. We ob-
tain the two first-order equations

a t and a 2, respectively, and that a varies fairly smooth-
ly in between. As rj—- » and TJ—+°°, A and Β tend to
constant values Au Bz and A2, Bz and I At | 2 - | Bt 1

2

= IA2 I 8 - |B z I8. The characteristic time of variation
of the background metric θ = a/a' as η — ± °° is much
greater than the wave period Τ =2ττ/η, and we have
here short high-frequency waves with adiabatically
varying amplitude h ~ const/α.C 5 1 ]

As can be seen from (37), A and Β are strictly con-
stant only for a" = 0. But if a " Φ 0 and as η - - °° there
is specified a traveling wave of only one direction (for
example, A1*Q, By =0), then in what follows its A am-
plitude increases and, in addition, there appears a
wave of the opposite direction—that is, a B amplitude.
As a result, as TJ— +°° we obtain the original wave ampli-
fied in comparison with the adiabatic law: I Az 12 - | Ax 12

= I Bz 12 >0 and a generated wave in the opposite direc-
tion with amplitude I B 2 1 2 . if a standing wave exists as
η-.-» \A1\

z=\Bl\
z, then as T J - + « U remains a stand-

ing wave, I Az \2 = | Bz Ia, and its amplification or at -
tenuation depends on the initial phase. After averaging
over the phase, amplification of the wave is always ob-
tained. The quantum process of spontaneous creation of
particles is precisely the result of amplification of the
initial vacuum fluctuations. The initial amplitude of the
corresponding classical wave with frequency Ω(ίϊ
= nc/ax) can be found from the condition that the con-
tribution of this wave to the field energy in the volume
λ3 = (2irc/n)3 be equal to /?Ω/2. Subtracting the energy
of the zero-point oscillations at the end of the process,
i .e . , as TJ—+«o, we obtain the spectrum and intensity of
the created waves (particles).

In principle, superadiabatic amplification of the wave
occurs for any law of variation a(rj) (except the case
a " = 0 ) , but significant superadiabatic amplifications
(by several times or more) of the wave occurs only
when there are such rapid variations of the background
metric that θ Ζ Τ. This condition is always satisfied
near the singularity in Friedmann cosmological models.
A universe filled with matter with the equation of state
/> = #ε(0« 9«1) has the scale factor α(τ))=αοτ;2/(3<1*1),
and for any n there exists η such that WTJ< 1. To a cer-
tain % there corresponds theso-calledPlanck time tpl

= /GWC^" 5 = 10"44 sec, which establishes the lower limit
of applicability of modern gravitational theory. If at
the time ^ the initial spectrum h^n) is specified by
appropriately defined amplitudes of the gravitational
waves, then by the contemporary epoch TJ2 it is trans-
formed into the spectrum h^ri). After averaging over
the initial phase, the connection is expressed by hz(n)

Tjlt q)hx{n).

(37)

and their consequence | A|2 - | B\2 = const. Suppose that
as rt~—«and η — +°°the value of a tends to the constants

The function Vhas the following properties. For q
= 1/3, which corresponds to α = αοη, V = l for all n, and
the waves change strictly in accordance with the adia-
batic law. For w such that wj!-», V - l for all q. For
nijt«1 and I (1 - 3^)/(l + Zq) I « «TJt, V - 1 in accordance
with the law V - 1 = (1/4)[(1 - 3<?)/(1 + 3?)]2/(nij1)

a. Final-
ly, for WTJ1« 1 and q not too near 1/3, V ~(n%)-znM<>).

Thus, the initial vacuum spectrum hi(n)~n in the range
ηη χ « 1 is transformed into a power spectrum of some
form, which depends on q (for more details on the spec-
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trum and energy density of primordial gravitons,
seec 5 9 ]). In the region nfy » 1 , the spectrum falls rapid-
ly. In the region of small n, it is meaningful in any
case to consider only η»ί/η2 since ητ?2~1 corresponds
to perturbations with characteristic length of the order
of the distance to the contemporary horizon (Z~3 Ί 0 2 8

cm). The critical value nc~l/rj, corresponds in the
contemporary epoch to waves with a length of tenths or
hundredths of a centimeter, λβ = 2να{ηζ)/ηβ. In other
words, the Planck length lPi=ctpl increases to these
values during the time of expansion from tpl to the
present time. It is curious that the maximum of the
electromagnetic background radiation is in precisely
this range.

If the scale factor α (η) passed through a minimum
at Planck densities or lower (for example, because of
a modification oi Einstein's equations1-53'543 or the exis-
tence of a fundamental length155·56J), the spectrum of the
created gravitons will have a turnover at correspond-
ingly longer wavelengths. In addition, in its low-fre-
quency range the spectrum will contain amplified gravi-
tational waves of the contraction epoch. The low fre-
quency part of the spectrum of gravitons created on the
transition from contraction to expansion in accordance
with a power law is calculated in1 5 7 3.

It should not be thought that in an isotropic nonsta-
tionary universe wave fields of any kind are amplified.
Quite the opposite: of the wave fields corresponding to
the known massless particles only g ravitational waves
have this property. Free electromagnetic waves al-
ways change in accordance with the adiabatic law in an
isotropic universe. In particular, if the evolution of
the scale factor α(η) begins with constant value a 0 and
ends with it, then however complicated the behavior of
a in the intermediate region, the amplitude of an elec-
tromagnetic wave and the energy density at the begin-
ning and end of the evolution are equal. The mathe-
matical reason for this difference is to be found in the
conformal invariance of Maxwell's equations and the
conformal noninvariance of the gravitational-wave
equations deduced from Einstein's equations.

Let us now turn to the possibilities for detecting iso-
tropic background gravitational radiation.t 3 O b 3 As we
have seen, it must now exist in the form of gravitation-
al-wave noise in a very broad spectrum. Let us repre-
sent the spectral density of the perturbations of the
metric for i/<i»cby the power law (hz)v = Hv~r, where
vc = c/\c~ 10u Hz. The various values of the exponent
γ correspond to the predictions for the spectrum under
various models of the singular state and the passage
through the singularity. The spectral density of the flux
Fv is related to (h\ by the equation Fv«(cs/G)vz(hz)v.
The energy density zf concentrated in a definite frequen-
cy range is obtained by integrating Fjc over the fre-
quencies.

At the present time, several indirect bounds on ε,
are known.c26a3 They use additional arguments'-43 that
do not have rigor but are nevertheless plausible. The
strongest restriction is obtained by considering nucleo-
synthesis in the early universe"8 3 and is to the effect
that ε, for waves with X<\m = 3 · 1017 cm (i/m=10"7 Hz)

cannot appreciably exceed the energy density of the
electromagnetic microwave background radiation: ε
a 4.10"13 erg/cm3. We shall take the rather strong
bound

ee = -i- f Fvdv « ΙΟ" 1 2 erg/cm3,

although the available direct cosmological observations
would not contradict an ε, that is 3-4 orders of mag-
nitude greater.

The feasibility of an experiment to detect primordial
gravitons depends strongly on y. For y>0, the effec-
tive temperature Tttt =czFv/2ki? at low frequencies ap-
preciably exceeds the equilibrium temperature, which
facilitates detection of the radiation. Since the natural
frequencies of the existing solid-state antennas lie in the
range i/0~103 Hz, i .e . , at approximately the center of
the range between um and ve, the most favorable spec-
trum for detection has γ near 3. This spectrum cor-
responds to reasonable models of the initial state,
though it is by no means necessary. Let us take (h\Q

*(G/cz)€t/vl; then*"(f, vo±Au)*(h\Av*(G/cz){tt/
v\)/Q, and the detection condition (22) takes the form

\rn GegmPQ (38)

where μ is a combination of ignored numerical coef-
ficients, which may reach values μ ~10-102. The rela-
tion (38) imposes very high requirements on the ex-
perimental level, but they could probably be achieved
by solid-state antennas of the following generation. K 4 3

Another promising possibility would be to use drag-
free objects in space.c 2 4 3 The point is that two space
probes at a distance I from each other can acquire a
relative velocity v~M(G/c*)zl over a time At~l/c.
If I = 3 · 1013 cm, we have v= 2 · 10"7 cm/sec, which could
probably be measured by the technology of the near fu-
ture.

There is no doubt that experiments to detect pri-
mordial gravitational radiation are very difficult, but
the detection of this radiation or a direct restriction
on the possible profile of its spectrum would give funda-
mental information about extremely early stages in the
evolution of the Metagalaxy. Such information is im-
portant not only for astronomy, but also physics quite
generally.
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